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Abstract

We study the Extended Proximal Auxiliary Problem Principle-method
(EPAPP) by Kaplan and Tichatschke [17, 20] for solving varia-
tional inequalities whose operator is the sum of a maximal monotone
and a continuous operator.

As in comparable methods using Bregman distances the authors re-
quired that the operator of the considered variational inequality (here
called main operator) is paramonotone (see [11] for definition and prop-
erties of paramonotone operators).

The main purpose of this paper is to establish the convergence of
the EPAPP-method without use of paramonotonicity. A sort of error
summability criterion is used to allow inexact solutions of the auxiliary
problems, and we also admit an outer approximation of the set-valued
component of the operator. Due to the use of Bregman-like functions
to construct the symmetric components of the auxiliary operators an
interior point effect is provided, that is, – with a certain precaution –
the auxiliary problems can be treated as unconstrained ones.
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1 Introduction

Cohen [5] originally introduced the Auxiliary Problem Principle (APP) for
optimization problems aiming for a unification of convergence analysis of
optimization algorithms like (sub-) gradient and decomposition algorithms.
Later on the APP-method was extended to a more general class of variational
inequalities [6]. The utility of APP and APP-based theory is wide-spread,
for example, new convergence results for the Lions-Mercier splitting al-
gorithm [22] could be found on this way.
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The APP provides another useful advantage. Namely, on this way it is pos-
sible to solve variational inequalities with non-potential operators (that is,
variational inequalities that do not arise from optimization problems) by
means of solving a sequence of optimization problems (see [6]).

Martinet [23] introduced the classical Proximal-Point-Algorithm (PPA)
for solving ill-posed optimization problems. This method has been ex-
tended to variational inequalities by Rockafellar [24]. Up to now, there
have been created numerous variants and extensions of this method, even
using non-quadratic distances, in particular Bregman distances (see e.g.
[3, 4, 8, 9]) in the Bregman Proximal Point Algorithm (BPPA).

A connection of the concepts of BPPA and APP was studied by Kaplan
and Tichatschke (cf. [17, 20]) in the framework of an Extended Proximal
APP (EPAPP). In these and other papers on Bregman-based methods (e.g.
[3, 7, 9, 10, 14, 16, 19, 25]) paramonotonicity of the main operator was sup-
posed.

Kaplan and Tichatschke [18] also modified the concept of Bregman func-
tions which allowed to construct Bregman-function-based methods with an
interior point effect also for problems with nonlinear constraints.

This paper is organized as follows: Section 2 contains the statement of prob-
lem and the state of the art in the theory of Bregman-like functions, whereas
Section 3 treats the EPAPP-method and its convergence analysis without
the paramonotonicity assumption. Finally we draw some conclusions in
Section 4.

2 Statement of Problem & Bregman-like functions

Let K ⊂ Rn be a closed convex set, F : K → Rn a continuous operator with
certain monotonicity properties and Q : Rn → 2Rn

be a maximal monotone
and multi-valued operator. Consider the variational inequality

V I(K,F ,Q) find x∗ ∈ K and q∗ ∈ Q(x∗) : (1)
〈F(x∗) + q∗, x− x∗〉 ≥ 0 ∀ x ∈ K,

where 〈·, ·〉 denotes the canonical inner product in Rn. The solution set of
this problem V I(K,F ,Q) will be denoted by SOL(K,F ,Q).

Splitting the main operator is of interest, for instance, in mathematical
physics (e.g. for Bingham problems or problems with friction), where an
appropriate splitting allows efficient approximations of Q (cf. [15]).
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Throughout this article x∗ ∈ SOL(K,F ,Q) is an arbitrary (but fixed) solu-
tion and q∗ denotes an element of Q(x∗) such that (1) is fulfilled. Further,
we will make the following general assumptions.

Assumption A
The problem under consideration generally has the following properties:

(A.1) SOL(K,F ,Q) 6= ∅.

(A.2) F is continuous on K.

(A.3) Q is a maximal monotone operator and it holds ri(domQ∩K) 6= ∅.

(A.4) The set K admits the following representation:

K = {x ∈ Rn : gi(x) ≤ 0, i ∈ I1 ∪ I2},

where the functions gi : Rn → R are affine for i ∈ I1 and convex and
continuously differentiable for i ∈ I2. Furthermore assume that the
set

M = {y ∈ K : ∃ j ∈ I2 : gj(y) = 0}

contains no line segments.

(A.5) Slater’s constraint qualification holds:

∃ x ∈ K : gi(x) < 0 ∀ i ∈ I1 ∪ I2.

While the necessity of (A.1) and (A.5) is obvious, (A.2) and (A.3) represent
some extension of Cohen’s APP which is obtained by setting F := F +Q,
where often the single-valuedness of F +Q is supposed additionally.

The assumption (A.4) represents the state of the art in the theory of Bregman-
like functions. It seems to be quite theoretically, but it is for example ful-
filled, if each gi (i ∈ I2) is strictly convex or if the elementwise maximum of
the functions gi (i ∈ I2) is a strictly convex function (for related discussions
see [18, 19]). However, the example K := {x ∈ R2 : −x1 + x2

2 ≤ 0} shows
that not even one of the constraints has to be strictly convex.

Geometrically, if one assumes I1 = ∅ then M describes the boundary ∂K,
so (A.4) requires a certain curvature of the boundary of K. More generally,
this assumption demands that if there is some line segment contained in
∂K, this can be traced back to one of the affine constraints.

Let us discuss the concept of Bregman-like functions in some detail.
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Definition 1. (Bregman-like functions)
Let S ⊂ Rn be a nonempty set. A function h : cl(S) → R is said to be a
Bregman-like function with zone S, when the following holds:

(B.1) S is an open and convex set.

(B.2) h is continuous and strictly convex on cl(S).

(B.3) h ∈ C1(S).

(B.4) The set M(x, α) := {y ∈ S : Dh(x, y) ≤ α} is bounded for all fixed
α ∈ R and x ∈ cl(S), where the Bregman distance is defined by

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉,

when x ∈ cl(S), y ∈ S.

(B.5) If {zk}k∈N is a sequence in S, converging to z ∈ cl(S), at least one of
the following statements holds:

(a) Dh(z, zk) → 0 for k →∞.
(b) If z 6= z is another point in cl(S), then Dh(z, zk) →∞ (k →∞).

(B.6) Let {zk} ⊂ cl(S) and {yk} ⊂ S be two sequences and assume that one
of these sequences is convergent. If further Dh(zk, yk) → 0 (k → ∞)
holds, then the other sequence converges to the same limit as well.

A Bregman-like function h is said to be zone-coercive, if additionally the
following holds:

(B.7) ∇h(S) = Rn.

One readily recognizes that the difference between such Bregman-like func-
tions and standard Bregman functions can be found in condition (B.5).
Solodov and Svaiter [25] showed that (B.6) is a consequence of (B.2)
and (B.3). Furthermore it is well-known that Dh is a non-negative function
and Dh(x, y) = 0 if and only if x = y (since h is strictly convex), but Dh is
not a distance function in general.

Now let us consider a (zone-coercive) Bregman-like function h with zone
int(K) when K ⊂ Rn admits a description by (A.4) and (A.5). Kaplan
and Tichatschke [13, 18, 19] considered the function

h(x) :=
m∑

i=1

φ(gi(x)) + κ · ||x||2, (2)

for fixed κ > 0, where gi are the constraints describing K.

Constructing φ according to the following construction assignments, one gets
a broad class of Bregman-like functions.
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Lemma 1. (Construction of Bregman-like functions) (see [13])
Let φ in (2) be constructed with the following properties:

(C.1) φ is strictly convex, continuous and increasing with dom φ = (−∞, 0].

(C.2) φ is continuously differentiable on (−∞, 0).

(C.3) It holds t · φ′(t) → 0 for t ↑ 0.

(C.4) It holds φ′(t) →∞ for t ↑ 0.

Then the function h, defined by (2), is a strongly convex (with modulus κ)
and zone-coercive Bregman-like function with zone int(K).

Note that there are functions φ satisfying (C.1)-(C.4), e.g. the potential-like
function φ(t) = −(−t)p with p ∈ (0, 1) fixed. However, even if φ is chosen as
above, the standard Bregman condition (B.5)a) is not always fulfilled (see
Example 1 in [18]).

In the following we assume that h is a strongly convex (with modulus κ),
zone-coercive Bregman-like function with zone int(K), where K ⊂ Rn ad-
mits a description like in (A.4) and (A.5).

3 The EPAPP-method and its convergence

The EPAPP-method by Kaplan and Tichatschke [20] is illustrated in
Algorithm 1.

Algorithm 1: EPAPP-algorithm
1. Let a start-iterate x1 ∈ int(K) be given. Choose scalars δ1 ≥ 0,

χ1 > 0, ε1 ≥ 0, an auxiliary operator L1 and an operator Q1 with
Q ⊂ Q1 ⊂ Qε1 (for the notation see (A.6) in the sequel). Set k := 1.

2. If xk solves the problem VI(F ,Q,K) → STOP.

3. Calculate xk+1 ∈ K, qk+1 ∈ Qk(xk+1) by solving (P k
δ ).

4. Choose δk+1 ≥ 0, χk+1 > 0, εk+1 ≥ 0, Lk+1 and Qk+1.
Set k := k + 1 and go to step 2.

The core of this method can be found in step 3 (solving the problems (P k
δ )

which will be referred to as auxiliary problems), all the other steps serve for
updates and optimality testing.
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The auxiliary problems (P k
δ ) in the third step are given by

(P k
δ ) find xk+1 ∈ K, qk+1 ∈ Qk(xk+1) such that :

〈F(xk) + qk+1 + Lk(xk+1)− Lk(xk) + χk

(
∇h(xk+1)−∇h(xk)

)
, x− xk+1〉

≥ −δk · ||x− xk+1|| ∀ x ∈ K.

See e.g. [20] for a short overview of some special cases (regularized Newton
method, projection methods etc.) of the EPAPP method; we will come back
to them later on.

Remark 1. Sometimes the auxiliary problems are formulated slightly dif-
ferent. Consider the following one:

(P k
e ) find xk+1 ∈ K, qk+1 ∈ Qk(xk+1), ek+1 ∈ Rn :

F(xk) + qk+1 + Lk(xk+1)− Lk(xk) + χk∇1Dh(xk+1, xk) = ek+1,

where ||ek+1|| ≤ δk and ∇1 denotes the partial gradient with respect to the
first argument. Then it is easy to see that each solution (xk+1, qk+1) of (P k

e )
also is a solution of (P k

δ ) and there is no problem if we continue with the
discussion of (P k

δ ).

In the sequel we use the following additional assumptions on operators and
variables introduced by Kaplan and Tichatschke in [20]. They also
assume the paramonotonicity of the main operator F + Q. This para-
monotonicity assumption for the involved operator is standard for Bregman-
function-based proximal methods. It is avoided in logarithmic-quadratic
proximal methods, which are applicable however only to linearly constrained
problems [1, 12].

Assumption A (continuation)

(A.6) Qk is an outer approximation of Q satisfying Q ⊂ Qk ⊂ Qεk
where

Qεk
stands for the εk-enlargement of Q (cf. [2] for properties of Qεk

).

(A.7) Given a family {Ly}y∈K with each Ly : K → Rn a single-valued,
continuous and monotone operator, the operators F − Ly admit the
existence of γ > 0 with

〈F(y)−Ly(y)+q∗+Ly(x∗), y−x∗〉 ≥ γ||F(y)−Ly(y)−F(x∗)+Ly(x∗)||2

for all y ∈ int(K)∩ domQ and x∗ ∈ SOL(K,F ,Q) arbitrary but fixed.
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(A.8) For any convergent sequence {yk} ⊂ int(K) ∩ domQ it holds

Lyk(yk+1)− Lyk(yk) → 0 as k →∞.

(A.9) It holds
∑∞

k=1 max{δk, εk} < ∞ (remember δk, εk ≥ 0).

(A.10) There are χ, χ such that (4γκ)−1 ≤ χ ≤ χk ≤ χ < ∞ and further

∞∑
k=1

max{0, χk − χk+1} < ∞.

As indicated by (A.8), discussing the auxiliary operators Ly one should think
of a parametrization Lk := Ly|y=xk , where xk are the iterates generated by
the method under consideration.

Let us briefly discuss some of these assumptions. (A.6) and (A.9) allow an
inexact solution and the use of auxiliary operators in the auxiliary problems
and permit a quite simple implementation. Instead of (A.8) it is frequently
assumed that the operators Ly are Lipschitz continuous with a Lipschitz
constant independent of the choice of y. Easy to see that property (A.8)
used here is much weaker than this Lipschitz assumption.

Concerning (A.7) we state that this is fulfilled if the operators F − Ly are
co-coercive (have the Dunn property, see [26] for definition and elementary
properties of co-coercive operators).

Example 1. (see [16])
Consider the example with n = 1, K = [−2, 2], Ly ≡ 0 ∀y,

F(x) =

{
x2, x ≥ −1,

x + 2, x < −1

and Q(x) = x + 4 in which (A.7) is fulfilled, although the operators F − Ly

are not monotone (so they can a fortiori not possess the Dunn property).
Note that here F is not even pseudomonotone (in the sense of Karamardian,
see [21] for the definition).

In addition to these comments in [16] we observe that (A.7) also admits that
not even the sum of F and a strongly monotone operator is pseudomonotone
(consider F + I in the above example, I stands for the identity mapping).

Before discussing the convergence of the method we should take care of well-
definedness. We just give the result briefly.
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Theorem 1. (see [20])
Suppose that (A.1)-(A.3) hold, that the operators Lk are continuous and
monotone on K and that the control parameters fulfill χk > 0 and δk, εk ≥ 0
for each k. Then the problem (Pk

δ ) with Qk := Q and δk = 0 has a unique
solution and the generated sequence {xk} belongs to int(K).

It is a direct consequence that the considered auxiliary problems (P k
δ ) with

the original Qk and δk > 0 are solvable in int(K) (clearly, one cannot ex-
pect uniqueness of their solutions). Thus, the method under consideration
is well-defined.

Now let us answer the question of convergence. Kaplan and Tichatschke
proposed, e.g. in [17], to consider the following function, serving as a
Lyapunov-like function. Let Γ : SOL(K,F ,Q) × int(K) × [χ, χ] → R
be defined by

Γ(x∗, x, χ) := Dh(x∗, x) +
1
χ
〈F(x∗) + q∗, x− x∗〉.

Proposition 1. (see [17])
If the assumptions (A.1)-(A.3), (A.7), (A.9), (A.10) are valid and if h is a
zone-coercive, strongly convex Bregman-like function with zone int(K), the
following statements for the sequence {xk} (generated by EPAPP) hold:

(1) The sequence {Γ(x∗, xk, χk)} is convergent for each x∗ ∈ SOL(K,F ,Q).

(2) The generated sequence {xk} is bounded.

(3) Dh(xk+1, xk) → 0 for k →∞.

(4) ||xk+1 − xk|| → 0 for k →∞.

Now we are going to prove the convergence of the EPAPP-method without
using paramonotonicity. Doing so, we will consider two cases in this article.

Case 1: Q is the subdifferential ∂f of a proper convex, lower semicontinuous
(lsc) function f and Qεk

here is the εk−subdifferential. Assume that
(A.7) also holds for the family {Ly} with Ly ≡ 0 for all y ∈ int(K):

〈F(y) + q∗, y − x∗〉 ≥ γ · ||F(y)−F(x∗)||2. (3)

Case 2: The operator F+Q satisfies a weakened Dunn property, meaning that
for each x∗ ∈ SOL(K,F ,Q) there is an α(x∗) > 0 such that

〈F(y)+q−F(x∗)−q∗, y−x∗〉 ≥ α(x∗)·||F(y)+q−F(x∗)−q∗||2 (4)

for all y ∈ int(K) and q ∈ Q(y).
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Remark 2. It is worth noting that Q(x∗) has to be a singleton in Case 2.
More generally we can proof the following:

If an operator Q : K → 2Rn
is co-coercive with modulus c > 0, then

Q is single-valued. Indeed, the co-coercivity assumption means that for all
x, y ∈ K and all qx ∈ Q(x), qy ∈ Q(y) the following holds:

〈qx − qy, x− y〉 ≥ c · ||qx − qy||2. (5)

Now letting x = y in (5) and assuming qx 6= qy yields a contradiction.

�

Remark 3. Sometimes (e.g. in [8, 20]) it is assumed that if qk ∈ Q(yk)
when yk → x ∈ K, then {qk} is a bounded sequence. In Case 2, this is
implied by (4). Indeed, using the Cauchy-Schwarz inequality, we deduce

α(x∗) · ||F(yk) + qk −F(x∗)− q∗||2

≤ 〈F(yk) + qk −F(x∗)− q∗, yk − x∗〉
≤ ||yk − x∗|| · ||F(yk) + qk −F(x∗)− q∗||.

Division by α(x∗) · ||F(yk)+ qk −F(x∗)− q∗|| and finally using the estimate
||a|| − ||b|| ≤ ||a− b|| yield the inequality

||qk − q∗|| ≤ ||F(yk)−F(x∗)||+ 1
α(x∗)

||yk − x∗||. (6)

Using the convergence of {yk} and continuity of F we obtain the assertion.

�

We observe that the operator in Example 1 also fulfills the hypothesis of
Case 2 (with 2α(x∗) ≤ 1). Thus, even if the sum of F and a strongly mono-
tone operator is not pseudomonotone, this assumption can be fulfilled, too.

Turning to the convergence analysis, let us begin with some statements that
do not require any of the additional assumptions in one of the cases. They
will be used in the proof of convergence later.

By Proposition 1 we know that {xk} is a bounded sequence, so there has
to be at least one cluster point x, which belongs to K, because K is closed.
For the rest of this article, denote {xkl} a subsequence with

xkl → x. (7)

It is known that the sequence {χk} is convergent (see Remark 1 in [17]).
Using this fact and the well-known three-point-formula ([4], Lemma 3.1) we
obtain

〈∇h(xkl+1)−∇h(xkl), x∗ − xkl+1〉 → 0, l →∞. (8)
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Now let us turn to the discussion of Case 1. Clearly, Q then is also para-
monotone, but since F does not have to be monotone, F + Q also does
not have to be monotone, a fortiori not paramonotone (see Example 1 and
related explanations).

In the first case we will make use of the following result.

Lemma 2. (see [20])
Assume that Q is the subdifferential ∂f of a proper convex, lsc function f ;
(A.2) is fulfilled and x∗ ∈ SOL(K,F ,Q) and x ∈ K. If additionally (A.7)
is valid or F is monotone then the following statements are equivalent:

1. It holds
〈F(x), x− x∗〉+ f(x)− f(x∗) ≤ 0.

2. q∗ – which belongs to Q(x∗) – also is an element of Q(x) and it holds

〈F(x) + q∗, x− x∗〉 ≤ 0.

We begin to prove the convergence of the method for Case 1 and Case 2.
We will start with a lemma concerning the cluster points of the generated
sequence {xk}.

Lemma 3. Assume that the case-specific hypotheses of Case 1 or 2 are
fulfilled, respectively. Then each cluster point of the sequence {xk}, generated
by EPAPP, belongs to SOL(K,F ,Q).

Proof. Consider Case 1.

By the iteration scheme (P kl
δ ), the monotonicity of each Lk and the definition

of Qk we have for the subsequence {xkl}:

−χkl
· 〈∇h(xkl+1)−∇h(xkl), x∗ − xkl+1〉 − δkl

· ||x∗ − xkl+1|| (9)
≤ 〈F(xkl) + qkl+1 + Lkl

(xkl+1)− Lkl
(xkl), x∗ − xkl+1〉

≤ 〈F(xkl) + q∗ + Lkl
(xkl+1)− Lkl

(xkl), x∗ − xkl〉 (10)
+ 〈F(xkl) + q∗ + Lkl

(xkl+1)− Lkl
(xkl), xkl − xkl+1〉+ εkl

. (11)

Denote T := 〈F(xkl) + q∗ + Lkl
(xkl+1) − Lkl

(xkl), x∗ − xkl〉 in (10). Due
to (A.8), (8) and the continuity of F one easily recognizes that (9) and (11)
converge to zero for l → ∞. So let us discuss what happens with (10), i.e.
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with T ; remember that all Lk are monotone.

T = 〈F(xkl) + q∗ + Lkl
(x∗)− Lkl

(xkl), x∗ − xkl〉
+ 〈Lkl

(xkl+1)− Lkl
(x∗), x∗ − xkl〉

= 〈F(xkl) + q∗ + Lkl
(x∗)− Lkl

(xkl), x∗ − xkl〉
+ 〈Lkl

(xkl)− Lkl
(x∗), x∗ − xkl〉

+ 〈Lkl
(xkl+1)− Lkl

(xkl), x∗ − xkl〉
≤ −γ · ||F(xkl)−F(x∗) + Lkl

(x∗)− Lkl
(xkl)||2 (12)

+ 〈Lkl
(xkl+1)− Lkl

(xkl), x∗ − xkl〉. (13)

Since (9), (11) and (13) tend to zero for l → ∞, we can state that the
non-positive term (12) must tend to zero as well, that means

F(xkl)−F(x∗) + Lkl
(x∗)− Lkl

(xkl) → 0, l →∞. (14)

On the other hand, due to (A.8) and the special assumption of Case 1 it
obviously holds

T = 〈F(xkl) + q∗, x∗ − xkl〉 + 〈Lkl
(xkl+1)− Lkl

(xkl), x∗ − xkl〉 (15)
≤ −γ · ||F(xkl)−F(x∗)||2 + 〈Lkl

(xkl+1)− Lkl
(xkl), x∗ − xkl〉.

Passing to the limit in (15), we obtain that

F(xkl) → F(x) = F(x∗). (16)

On the other hand, because of Q = ∂f the subgradient inequality holds:

〈qkl+1, x∗ − xkl+1〉 ≤ f(x∗)− f(xkl+1) + εkl+1.

Inserting the last inequality into the iteration scheme (Pkl
δ ), and passing to

the limit l →∞, we get

〈F(x), x∗ − x〉+ f(x∗)− f(x) ≥ 0.

Now q∗ ∈ Q(x) and 〈F(x) + q∗, x − x∗〉 ≤ 0 are a direct consequence of
Lemma 2. So there is q ∈ Q(x) (namely q := q∗) with

〈F(x) + q, x∗ − x〉 ≥ 0. (17)

Combining (17) and (16) yields

〈F(x) + q, x− x〉 = 〈F(x) + q, x− x∗〉+ 〈F(x) + q, x∗ − x〉
≥ 〈F(x) + q, x− x∗〉
= 〈F(x∗) + q∗, x− x∗〉
≥ 0,
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and thus x ∈ SOL(K,F ,Q) is proven for Case 1.

Now consider Case 2.

Owing to the iteration scheme (Pkl
δ ) there is qkl+1 ∈ Qkl(xkl+1) with

〈F(xkl) + qkl+1 + Lkl
(xkl+1)− Lkl

(xkl), x∗ − xkl+1〉
≥ −δkl

· ||x∗ − xkl+1|| − χkl
· 〈∇h(xkl+1)−∇h(xkl), x∗ − xkl+1〉.

Because of x∗ ∈ SOL(K,F ,Q) there is q∗ ∈ Q(x∗) with

〈F(x∗) + q∗, x∗ − xkl+1〉 ≤ 0.

Combining the last two inequalities leads to

〈F(xkl)−F(x∗) + qkl+1 − q∗ + Lkl
(xkl+1)− Lkl

(xkl), x∗ − xkl+1〉
≥ −δkl

· ||x∗ − xkl+1|| − χkl
· 〈∇h(xkl+1)−∇h(xkl), x∗ − xkl+1〉,

and continuing

δkl
· ||x∗ − xkl+1|| + 〈Lkl

(xkl+1)− Lkl
(xkl), x∗ − xkl+1〉

+ χkl
· 〈∇h(xkl+1)−∇h(xkl), x∗ − xkl+1〉

≥ 〈F(xkl)−F(x∗) + qkl+1 − q∗, xkl+1 − x∗〉 (18)
= 〈F(xkl+1)−F(x∗) + qkl+1 − q∗, xkl+1 − x∗〉

+ 〈F(xkl)−F(xkl+1), xkl+1 − x∗〉.

To apply the special assumption of the second case one has to pay attention
since qkl+1 ∈ Qkl(xkl+1) does not have to belong to Q(xkl+1). But owing to
the Brønsted-Rockafellar-property (cf. [2]) of the ε−enlargement we know
that for each l there is x̃kl+1 and some q̃kl+1 ∈ Q(x̃kl+1) such that

||x̃kl+1 − xkl+1|| ≤ √
εkl+1 and ||q̃kl+1 − qkl+1|| ≤ √

εkl+1. (19)

The convergence {x̃kl} → x is obvious. Denote fkl := F(x̃kl)−F(xkl); since
F is continuous, we know that fkl → 0 for l → ∞. Analogeously, by (19)
we know that {q̃kl − qkl} → 0 for l →∞, too.

Now (18) turns to

T kl := 〈χkl
·
(
∇h(xkl+1)−∇h(xkl)

)
+ Lkl

(xkl+1)− Lkl
(xkl), x∗ − xkl+1〉

+ δkl
· ||x∗ − xkl+1|| − 〈F(xkl)−F(xkl+1), xkl+1 − x∗〉

≥ 〈F(xkl+1)−F(x∗) + qkl+1 − q∗, xkl+1 − x∗〉
= 〈F(x̃kl+1)−F(x∗) + q̃kl+1 − q∗, x̃kl+1 − x∗〉

+ 〈F(x̃kl+1)−F(x∗) + q̃kl+1 − q∗, xkl+1 − x̃kl+1〉
+ 〈F(xkl+1)−F(x̃kl+1), xkl+1 − x∗〉
+ 〈qkl+1 − q̃kl+1, xkl+1 − x∗〉.



N. Langenberg: Convergence analysis of an extended APP... 13

Using the weakened Dunn property (4) we deduce

T kl ≥ α(x∗) · ||F(x̃kl+1)−F(x∗) + q̃kl+1 − q∗||2 (20)
+ 〈q̃kl+1 − q∗, xkl+1 − x̃kl+1〉 (21)
+ 〈F(x̃kl+1)−F(x∗), xkl+1 − x̃kl+1〉 (22)
+ 〈F(xkl+1)−F(x̃kl+1), xkl+1 − x∗〉 (23)
+ 〈qkl+1 − q̃kl+1, xkl+1 − x∗〉. (24)

Passing to the limit l → ∞ we see that T kl → 0 (remember (8), (A.8),
Proposition 1 and the continuity of F), (21) - (24) also vanish (for (21)
remember Remark 3). Therefore, for l →∞

F(x̃kl+1)−F(x∗) + q̃kl+1 − q∗ → 0 (25)

has to be since all other terms tend to zero. With respect to the continuity
of F the convergence F(x̃kl+1) → F(x) is obvious, and that is why the se-
quence {qkl} has to be convergent, say {qkl} → q.

Since also {q̃kl} → q is valid, maximal monotonicity of Q implies q ∈ Q(x),
and using (25) we conclude that

F(x∗) + q∗ = F(x) + q, (26)

where q∗ is defined as above. Using this fact, x∗ ∈ SOL(K,F ,Q) and the
iteration scheme, x ∈ SOL(K,F ,Q) is derived straightforward:

〈F(x) + q, x− x〉 = 〈F(x) + q, x∗ − x〉+ 〈F(x) + q, x− x∗〉
≥ 〈F(x) + q, x∗ − x〉
= lim

l→∞
〈F(xkl) + qkl+1, x∗ − xkl+1〉

≥ − lim
l→∞

〈Lkl
(xkl+1)− Lkl

(xkl), x∗ − xkl+1〉

+ lim
l→∞

δkl
· ||x∗ − xkl+1||

− lim
l→∞

χkl
· 〈∇h(xkl+1)−∇h(xkl), x∗ − xkl+1〉

= 0.

Thus, x ∈ SOL(K,F ,Q) is also proven for the second case.

Before concluding the convergence of the sequence {xk} we will discuss the
necessity of symmetry of Q. Let us specify the consequences of the common
use of (A.7) and (3). Although the latter assumption does not deal with the
Ly directly, it permits via (14) and (16) to conclude

lim
l→∞

Lkl
(x∗)− Lkl

(xkl) = 0. (27)
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So we are looking for a condition on the Ly which permit to conclude x∗ = x
in this situation.

Lemma 4. Assume that (3) holds and further for all sequences yk → y with
yk ∈ int(K) and zk → z with zk ∈ K the continuity property

Lyk(zk) → Ly(z) (28)

is valid. Additionally assume that each Ly is an injective mapping. Then
each cluster point of the generated sequence belongs to the solution set, too.

Proof. In the situation above we obtain Lx(x∗) = Lx(x) by using the conti-
nuity hypothesis. But since Lx is injective, we obtain x = x∗ and therefore,
x ∈ SOL(K,F ,Q) is valid also for non-symmetric operators Q.

Up to now we have shown that the generated sequence has at least one clus-
ter point and each of its cluster points belongs to the solution set. Now we
deduce the convergence of the entire sequence.

Theorem 2. The sequence {xk} generated by the method under considera-
tion converges to a solution of V I(K,F ,Q).

Proof. Since each cluster point x belongs to SOL(K,F ,Q) by Lemma 3
(and Lemma 4, respectively), it holds due to Proposition 1

Dh(x, xk) → D, k →∞,

for some D ≥ 0. Now suppose that the first alternative in (B.5) holds (i.e.
we are discussing the case of a standard Bregman function). Due to the
convergence xkl → x we obtain from (B.5)a)

Dh(x, xkl) → 0, l →∞,

i.e. D = 0 has to be valid. Now Dh(x, xk) → 0 for k → ∞ and (B.6) yield
the assertion

xk → x, k →∞.

On the other hand, if (B.5)b) holds, consider two convergent subsequences

xkl → x and xkm → x′,

and suppose x 6= x′. Then (B.5)b) yields

Dh(x, xkm) →∞,

but that is a contradiction to the convergence of the latter sequence (remem-
ber that x ∈ SOL(K,F ,Q) and then use Proposition 1). Therefore, there
can only be one cluster point, and for a bounded sequence this is equivalent
to its convergence.
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Remark 4. The continuity property discussed in Lemma 4 is fulfilled for
many auxiliary operators. Indeed, if e.g. Lk(x) := ∇F(xk)x (correspon-
dence to a Newton method), then (28) is fulfilled; for projection methods,
Lk(x) := Ax, this holds true, too.

Further, also the injectivity property of the Ly is fulfilled for commonly
used auxiliary operators. Indeed, if we consider some projection methods,
Lk(x) := Ax with a positive definite matrix A, then – due to the regularity
of A – (27) is equivalent to x = x∗.

On the other hand, discussing the Newton method Lk(x) := ∇F(xk)x, we
analogeously obtain x − x∗ ∈ ker(∇F(x)); if the latter Jacobian is regular,
this means x = x∗.

So, considering commonly used auxiliary operators with a certain full-rank-
property it is no longer of interest whether Q is a subdifferential or not,
since the proof of x = x∗ does not need this argument when considering
concrete families {Ly} with such a property. In other words, only using
(A.1) - (A.10) and (3) the EPAPP-method always converges to a solution
if an auxiliary operator with some – quite natural – properties is chosen.

�

Finally, we can make the following statement concerning the behaviour of
the EPAPP-method whenever SOL(K,F ,Q) is not a singleton.

Corollary 1. (see [20])
Suppose that the above mentioned conditions are fulfilled. If SOL(K,F ,Q)
contains more than just one element, the sequence {xk} converges to an
element x with gi(x) < 0 for all i ∈ I2.

Note that in case of non-uniqueness of solutions such an x always has to
exist. Otherwise one would obtain a contradiction applying the referred
proof to each z ∈ SOL(K,F ,Q).

4 Concluding Remarks

Up to now, convergence results of Bregman function based methods have
always been created under the hypothesis of paramonotonicity of some op-
erator and some other, more or less, theoretical assumptions. On the one
hand paramonotonicity allowed one to avoid co-coercivity-like assumptions,
but, on the other hand, the latter ones are much easier to check. Although
co-coerciveness implies paramonotonicity in general, Example 1 shows that
weakened co-coerciveness does not even imply monotonicity.
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Zhu and Marcotte [26] started their investigations with some co-coercivity
assumptions, and presented a method which requires a (standard) Bregman
function with a Lipschitz-continuous gradient. This implicates a lack of ap-
plicability (there are not many sets for which such Bregman functions are
known) and, even worse, the Lipschitz-continuity of the gradient of Bregman
functions contradicts their zone-coercivity. But the latter one is the reason
for the mentioned interior-point-effect, i.e. the effect that the auxiliary prob-
lems can – with a certain precaution – be treated as unconstrained problems.

The method presented here (including the used assumptions) is a unification
of these two research fields in some way. It admits

• non-paramonotone operators with some special properties,

• a multi-valued operator Q,

• a successive (outer) approximation of the multi-valued operator Q by
means of the ε-enlargement,

• treating the auxiliary problems as unconstrained ones,

• an inexact solution of the auxiliary problems under the criterion of
summability of the errors.

To finish, let us shortly classify the discussed cases. In the absence of aux-
iliary operators, Case 1 only requires the assumptions made by Kaplan
and Tichatschke except the missing paramonotonicity. The assumption
Q = ∂f can be avoided by the choice of adequate auxiliary operators (see
Lemma 4) with some quite natural properties.

Case 2 presents a convergence analysis based on a co-coercivity-like as-
sumption which is much more general than the classical assumption of
co-coercivity. In the case of the latter one we would discuss single-valued
operators only (see Remark 2). As demonstrated in Example 1, the weak-
ened hypothesis even admits a set-valued operator F whose sum with some
strongly monotone operator is not even pseudomonotone.
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