
Technical Reports Mathematics/Computer Science
FB IV – Department of Computer Science
University of Trier
54296 Trier, Germany

Revisiting Shinohara’s Algorithm for
Computing Descriptive Patterns

Henning Fernau, Florin Manea, Robert Mercaş, Markus L. Schmid

Technical Report No. 14-3 September 2014

Revisiting Shinohara’s Algorithm for Computing

Descriptive Patterns

Henning Fernau1 Florin Manea2 Robert Mercaş2

Markus L. Schmid1

1Fachbereich IV – Abteilung Informatikwissenschaften, Universität Trier,

D-54286 Trier, Germany, {Fernau,MSchmid}@uni-trier.de

2Kiel University, Department of Computer Science,

D-24098 Kiel, Germany, {flm,rgm}@informatik.uni-kiel.de

Abstract

A pattern is a string consisting of variables and terminal symbols,
and its language is the set of all words that can be obtained by substi-
tuting arbitrary words for the variables. The membership problem for
pattern languages, i. e., deciding on whether or not a given word is in the
pattern language of a given pattern is NP-complete. We show that any
parameter of patterns that is an upper bound for the treewidth of appro-
priate encodings of patterns as relational structures, if restricted, allows
the membership problem for pattern languages to be solved in polynomial
time. Furthermore, we identify new such parameters.

1 Introduction

The class of pattern languages was introduced by Angluin [1] as a formalism
to describe similarities of words with respect to their repeating factors. For
example, the words w1 = abbaabaa, w2 = baabbabaabba and w3 = abaaaba

share the common feature of having a prefix that contains an occurrences of
ba that is surrounded by exactly the same factor. These commonalities can
be described by the pattern α = x1bax1x2, where x1 and x2 are variables that
stand for arbitrary factors. The pattern language defined by α, denoted by L(α),
is the set of all words that can be obtained from α by uniformly substituting
the occurrences of variables x1 and x2 by some non-empty words. For example,
the words w1, w2 and w3 can be obtained from α by the substitutions (x1 7→
ab, x2 7→ aa), (x1 7→ baab, x2 7→ ba) and (x1 7→ a, x2 7→ aba), respectively,
which shows that w1, w2, w3 ∈ L(α). In [19], Shinohara introduces extended
or erasing pattern languages, where variables can be substituted by the empty
word. In this work, we are only concerned with classical pattern languages; for

1

more informations about erasing pattern languages, the reader is referred to the
survey [13].

Pattern languages are important in the context of learning theory since they
constitute a prominent example of a language class that is inferable from positive
data. In fact, their introduction – along with Angluin’s characterisation of those
language classes that are inferable from positive data (see [2]) – brought new
life to the field of inductive inference. Nowadays there exists an active research
field devoted to specific aspects of the learnability of pattern languages (see,
e. g., [12, 14,18,20,22] and, for a survey, [21]).

A useful tool for the inductive inference of pattern languages are so-called
descriptive patterns, introduced in [1]. A pattern α is descriptive of a finite set S
of words if S ⊆ L(α) and there is no pattern β that describes S more accurately,
i. e., S ⊆ L(β) ⊂ L(α). For example, the pattern x1baax2x3a is descriptive
of S = {w1, w2, w3}, where the wi’s are as defined above, while the pattern α
introduced at the beginning of the work is not, since S ⊆ L(x1bax1x2a) ⊂ L(α).

Independent of its application for inductive inference, the task of computing
descriptive patterns constitutes an interesting problem in its own right. For
example, a descriptive pattern α may serve as a representation of the structural
commonalities of some set S of textual data (e. g., employee files, entries of a
bibliographical database, etc.) and in order to check whether a new data ele-
ment meets this common structure, it is sufficient to check whether it can be
generated by α. The main obstacle of this application of descriptive patterns
is that deciding on whether a given word can be generated by a given pattern,
i. e., the membership problem for pattern languages, is NP-complete [1]. Fur-
thermore, it has been shown in [1] that an algorithm computing a descriptive
pattern of maximal size necessarily solves the membership problem and there-
fore, assuming P 6= NP, it cannot have a polynomial running time.

In [20], Shinohara introduces an exponential time algorithm that computes
descriptive patterns by performing membership queries, and he also provides
subclasses of patterns for which the membership problem can be solved effi-
ciently and for these his algorithm computes descriptive patterns in polynomial
time. Note that the concept of descriptiveness can be easily restricted to an
arbitrary subclass Π of patterns; more precisely, a pattern α is Π-descriptive if
α ∈ Π, S ⊆ L(α) and there is no other pattern β ∈ Π with S ⊆ L(β) ⊂ L(α).

We unify and further extend both Angluin’s insights with respect to the
hardness of computing descriptive patterns as well as Shinohara’s work on their
efficient computation as follows. We show that for every S a Π-descriptive
patterns exist if and only if x ∈ Π and, furthermore, that a modified version
of Shinohara’s algorithm can be used to compute Π-descriptive patterns if and
only if Π is a Shinohara-class, i. e., it contains the set {x1x2 · · ·xk | k ∈ N}
and, for every α ∈ Π, the pattern α′ obtained by substituting some length i
suffix of α by a sequence of new variables y1y2 · · · yi is also in Π. Within the
set of Shinohara-classes of patterns, we prove that Π-descriptive patterns can
be computed in polynomial time (by any algorithm) if and only if the question
whether α ∈ Π and the membership problem for Π can be decided in polynomial
time.

2

We also investigate the consistency problem for classes Π of patterns, which
is the problem to decide, for two given finite sets P and N of words, whether
there exists a pattern α ∈ Π, such that P ⊆ L(α) and L(α)∩N = ∅. As shall be
demonstrated, this problem is much more difficult than the membership problem
for pattern languages or the problem of computing descriptive patterns.

2 Preliminaries

Let N = {1, 2, . . .}, N0 = N∪{0}, and A be a finite alphabet of symbols. A word
(over A) is any sequence of symbols from A. For any word w over A, |w| denotes
its length and ε denotes the empty word, i. e., |ε| = 0. By A+ we denote the set
of all non-empty words over A and A∗ = A+ ∪ {ε}. For the concatenation of
two words w1, w2 we write w1 · w2 or simply w1w2. Let w ∈ A∗ be a word. We
say that v ∈ A∗ is a factor of w if w = u1vu2 for some u1, u2 ∈ A∗. If u1 = ε, or
u2 = ε, then v is a prefix, or a suffix, respectively, of w. For any b ∈ A, by |w|b
we denote the number of occurrences of b in w. For each 1 ≤ i ≤ j ≤ |w|, let
w[i..j] = w[i] · · ·w[j], where w[k] is the letter on position k in w, for 1 ≤ k ≤ |w|.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is nonerasing if and only if, for every
a ∈ A, h(a) 6= ε. Let Σ be a finite alphabet of so-called terminal symbols
and X a countably infinite set of variables with Σ ∩ X = ∅. We normally
assume X = {x1, x2, . . .}. A pattern (over Σ) is a non-empty word over Σ ∪X
and a (terminal) word is a string over Σ. We define Σ-Pat = (Σ ∪ X)+ and
Pat =

⋃
Σ Σ-Pat. For any pattern α, we refer to the set of variables as var(α)

and to the set of terminal symbols as term(α). If term(α) = ∅, then α is
terminal-free. We also use term(w) and term(S) in order to denote the set of
symbols that occur in a word w ∈ Σ∗ or in a set S of words. A pattern α is in
canonical form if and only if, for some k ∈ N, var(α) = {x1, . . . , xk} and, for
every i, 1 ≤ i ≤ k− 1, the leftmost occurrence of xi is to the left of the leftmost
occurrence of xi+1. For a pattern α, by cf(α), we denote its canonical form,
i. e., cf(α) is obtained from α by renaming the variables in such a way that a
pattern in canonical form is constructed. A morphism h : (Σ ∪X)

∗ → (Σ ∪X)
∗

is called a substitution if h(a) = a for every a ∈ Σ and a substitution of form
(Σ ∪X)

∗ → Σ∗ is a terminal substitution. For a pattern α ∈ Σ-Pat, the
pattern language of α (over Σ) is defined by LΣ(α) = {h(α) | h : (Σ ∪X)

∗ →
Σ∗ is a nonerasing terminal substitution} (we also write L(α) if the alphabet is
clear from the context). This particularly means that LΣ(α) is only defined if
term(α) ⊆ Σ. For any Π ⊆ Pat, {LΣ(α) | α ∈ Π, term(α) ⊆ Σ} is the set of
Π-pattern languages.

Let Π ⊆ Pat. The class Π is natural if, for a given α, the question cf(α) ∈ Π
is decidable and the pattern x1 is in Π. The class Π is called tractable if the
question whether cf(α) is in Π can be decided in polynomial time and the
membership problem for Π-pattern languages can be decided in polynomial time.
For any pattern α and for every i, 0 ≤ i ≤ |α|, we define the i-tail-generalisation
of α by tg(α, i) = cf(α[1..i] · y1y2 · · · y|α|−i), where {y1, y2, . . . , y|α|−i} ⊆ (X \

3

var(α)) with |{y1, y2, . . . , y|α|−i}| = |α|−i. The tail-generalisation of α is the set
tg(α) = {tg(α, i) | 1 ≤ i ≤ |α|} and this definition is lifted to sets Π of patterns
by tg(Π) =

⋃
α∈Π tg(α). A natural class Π of patterns is a Shinohara-class if,

for every k ∈ N, Π contains a pattern of length k and tg(Π) = Π. The following
proposition follows immediately from the definition.

Proposition 1. Let Π be a Shinohara-class of patterns. Then {x1x2 · · ·xn |
n ∈ N} ⊆ Π and, for every α ∈ Π, tg(α) ⊆ Π.

As a convention, we shall always assume that classes Π of patterns satisfy
Π = {cf(α) | α ∈ Π}, i. e., they only contain patterns in canonical form.

The binary relations v and ≡ on Pat, introduced in [1], are defined as
follows. For every α, β ∈ Pat, α v β if there exists a non-erasing substitution
h with h(β) = α and α ≡ β if there exists a non-erasing renaming of variables
h with h(β) = α, i. e., h is a non-erasing substitution with |h(x)| = 1, for
all x ∈ var(β), and h(x) = h(y) if and only if x = y, for all x, y ∈ var(β).
Alternatively, as can be easily verified, α ≡ β if and only if cf(α) = cf(β).

Lemma 2 (Angluin [1]). Let α, β ∈ Pat. The relation v is transitive. If α v β,
then, for every alphabet Σ with term(α) ⊆ Σ, LΣ(α) ⊆ LΣ(β). We have that
α ≡ β if and only if α v β and β v α. If |α| = |β| and LΣ(α) ⊆ LΣ(β) for
some alphabet Σ with |Σ| ≥ 2, then α v β.

Lemma 2 shows that, for every alphabet Σ, α v β is a sufficient condition
for LΣ(α) ⊆ LΣ(β), but not a necessary one (see [1]). However, for the special
case that |α| = |β|, α v β is characteristic for LΣ(α) ⊆ LΣ(β) if Σ contains
at least 2 symbols. In particular, since patterns describing the same pattern
language must have the same length, this implies that α ≡ β if and only if
LΣ(α) = LΣ(β).

Let Π ⊆ Pat. The membership problem for Π-pattern languages asks to de-
cide for a given pattern α ∈ Π and a word w, whether w ∈ Lsymb(w)∪term(α)(α).

Theorem 3 (Angluin [1]). The membership problem for Pat-pattern languages
is NP-complete.

In [1] a stronger result than Theorem 3 is shown, i. e., the membership prob-
lem is NP-complete even if the terminal alphabet Σ is a fixed binary alphabet.
Let Σ be an alphabet, S be a finite set of words and Π ⊆ Pat. A pattern α is
Σ-Π-descriptive of S if α ∈ Σ-Pat, cf(α) ∈ Π, S ⊆ LΣ(α) and there does not
exist a β ∈ Π with S ⊆ LΣ(β) ⊂ LΣ(α).1 In the following, we call a finite set S
of words a sample (over Σ).

Example 4 (Angluin [1], Freydenberger and Reidenbach [6]). Let Σ1 = {a, b},
Σ2 = {a, b, c}, S1 = {aabaa, babab, aabab, babaa}, S2 = {ababa, ababbababbab,
babab} and S3 = {aabcaaa, caacbca, bbcccbbbc}. The patterns xabay and xxy
are both Σ1-Pat-descriptive of S1. The patterns xyxyx and xaby are both Σ1-
Pat-descriptive of S2. For every i ∈ N, let Patvar≤i = {α ∈ Pat | | var(α)| ≤ i}

1Descriptive patterns for erasing pattern languages as well as for infinite sets have also
been investigated (see Jiang et al. [7] and Freydenberger and Reidenbach [6]).

4

denote the set of patterns with at most i variables. The pattern xyczx is Σ2-
Patvar≤3-descriptive of S3 and x is Σ2-Patvar≤1-descriptive of S3.

Let Σ be an alphabet, S be a sample and Γ be the smallest alphabet with
S ⊆ Γ∗. If a pattern α is Σ-Π-descriptive of S, then S ⊆ LΣ(α) is satisfied,
which implies Γ ⊆ Σ and α ∈ Γ-Pat. Hence, if a pattern is Σ-Π-descriptive of S,
then Σ is necessarily a superset of Γ. However, for two different supersets Σ and
Σ′ of Γ, it seems that it makes a difference whether a pattern is Σ-Π-descriptive
or Σ′-Π-descriptive of S. Proposition 5 shows that a Γ-Π-descriptive pattern is
also Σ-Π-descriptive for every superset Σ of Γ.

Proposition 5. Let Σ be an alphabet, S ⊆ Σ∗ be a sample, Γ be the smallest
alphabet with S ⊆ Γ∗ and Π ⊆ Pat. If a pattern is Γ-Π-descriptive of S, then
it is also Σ-Π-descriptive of S.

Proof. Let α be Γ-Π-descriptive of S. Then cf(α) ∈ Π and, since Γ ⊆ Σ,
LΓ(α) ⊆ LΣ(α) is implied and therefore S ⊆ LΣ(α) holds. If α is not Σ-Π-
descriptive of S, then there is a β ∈ Π with S ⊆ LΣ(β) ⊂ LΣ(α). This implies
α 6≡ β and LΓ(β) 6= LΓ(α). From Γ ⊆ Σ and LΣ(β) ⊂ LΣ(α), we can conclude
LΓ(β) ⊆ LΣ(α). Since all words in LΓ(β) are defined over Γ and are images
of α, it follows that LΓ(β) ⊆ LΓ(α). Thus, S ⊆ LΓ(β) ⊂ LΓ(α), which is a
contradiction to the assumption that α is Γ-Π-descriptive of S.

As justified by Proposition 5 and the preceding discussion, in the following
we are only concerned with Σ-Π-descriptive patterns, where Σ is the set of
symbols that occur in the sample. For the sake of convenience, we say that
a pattern is Π-descriptive of S if it is Σ-Π-descriptive for the smallest Σ with
S ⊆ Σ∗.

A Brief Discussion of The Role of the Terminal Alphabet

By definition, the terminal alphabet over which a pattern is defined is implicitly
given by the pattern itself. On the other hand, it is important to explicitly
state the underlying terminal alphabet for the pattern language of a pattern
(i. e., LΣ(α) 6= LΣ′(α) if Σ 6= Σ′). Furthermore, in accordance with the existing
literature, we always assume that in a pattern language all terminal symbols
that occur in the pattern are also available as symbols in the terminal alphabet
(e. g., L{a,b}(xaxcyya) is undefined). For descriptive patterns, as pointed out by
Proposition 5, the terminal alphabet under consideration is determined by the
sample. For the membership problem, we ask for a given word w and a pattern α
whether w ∈ Lterm(w)∪term(α)(α). This makes sense, since term(w) * Σ′ implies
w /∈ LΣ′(α) and if term(α) * Σ′, then LΣ(α) is not defined. As mentioned
before, in the literature, a stronger version of the membership problem is also
considered, where the input pattern and the input word are required to be
defined over a fixed alphabet Σ.

5

3 The Hardness of Computing Π-Descriptive Pat-
terns

We now investigate the problem of computing a Π-descriptive pattern for a
sample S. Since, by definition, S ⊆ LΣ(α) implies |α| ≤ m = min{|w| | w ∈
S}, an obvious approach to find a descriptive pattern is to search all patterns
that describe S for one that is minimal with respect to the subset relation of
the corresponding pattern languages. Unfortunately, this approach cannot be
carried out by an algorithm, since the inclusion problem for pattern languages
is undecidable (see [5]). However, as shown in [1], in order to compute Pat-
descriptive patterns, it is sufficient to only search the patterns of maximal size,
for which the inclusion is characterised by the relation v (Lemma 2). This idea
can be extended to natural classes of patterns and, furthermore, if it is possible
to compute a Π-descriptive pattern for any sample, then Π must be natural.

Theorem 6. Let Π ⊆ Pat. There is an effective procedure that, for a sample
S, computes a Π-descriptive pattern of S if and only if Π is natural.

Proof. In order to prove the if direction, we assume that Π is natural. Let Σ
be the smallest alphabet with S ⊆ Σ∗. We compute the set Q of all patterns
α in canonical form that satisfy α ∈ Π and S ⊆ LΣ(α) by enumerating all
patterns α ∈ (Σ ∪ X)∗ in canonical form up to length m = min{|w| | w ∈ S}
and checking whether α ∈ Π (this is possible since Π is natural) and S ⊆ LΣ(α)
(this is possible since S is finite and the membership problem for Π-pattern
languages is decidable). For any pattern α, if |α| > m, then S * LΣ(α); thus,
the construction of Q from above is correct. By definition, Q is finite and,
since x1 ∈ Π and S ⊆ LΣ(x1), Q is non-empty. Now let Qmax ⊆ Q contain all
elements of Q with maximum length. Next, we compute a pattern β ∈ Qmax

that is minimal for the set Qmax with respect to v, which can be done by
computing the relation v for the whole set Qmax. We note that if β is not
Π-descriptive of S, then there exists an α ∈ Q with S ⊆ LΣ(α) ⊂ LΣ(β). If
α ∈ Qmax, then, since |α| = |β|, α v β is implied, which contradicts the fact
that β is minimal with respect to Qmax and v. On the other hand, if α /∈ Qmax,
then |α| < |β|, which contradicts to LΣ(α) ⊂ LΣ(β). Thus, β is Π-descriptive
of S.

In order to prove the only if direction, we assume that there is an effective
procedure χ that, for a given sample S, computes a pattern that is Π-descriptive
of S. If x1 /∈ Π, then there is no α ∈ Π with {a, b} ⊆ L{a,b}(α); thus χ does
not compute a Π-descriptive pattern on input {a, b}. It remains to show that,
for every α ∈ Pat, the question cf(α) ∈ Π is decidable. Let α′ be obtained
from α by substituting each occurrence of a variable x ∈ var(α) by a distinct
terminal symbol ax /∈ term(α) and let γ be computed by χ on input {α′}.
Obviously, since γ ∈ Π, γ ≡ α implies cf(α) ∈ Π. Next, we assume that
γ 6≡ α. Since γ is Π-descriptive of {α′}, α′ ∈ Lterm(α′)(γ) holds, which implies
α′ v γ. Furthermore, since α′ is a renaming of α, α v γ is satisfied as well.
Consequently, {α′} ⊆ Lterm(α′)(α) ⊂ Lterm(α′)(γ), which means that if cf(α) ∈
Π, then γ is not Π-descriptive; thus, cf(α) /∈ Π.

6

The procedure of the proof of Theorem 6 is obviously not efficient. Further-
more, we note that it computes a descriptive pattern of maximal length. In [1],
it is shown that, if P 6= NP and Π = Pat, then, even if the terminal alpha-
bet is a fixed binary alphabet, computing a Π-descriptive pattern of maximal
length cannot be done in polynomial time. We can prove a similar result that
is stronger in the sense that it does not need the maximality condition and the
size of S can be restricted to 2, but weaker in the sense that the alphabet is
considered a part of the input and is not fixed.

Lemma 7. Let Π be a natural class of patterns. If there exists a polynomial
time algorithm that, for a given sample S of size 2, computes a pattern that
is Π-descriptive of S, then the membership problem for Π-pattern languages is
decidable in polynomial time.

Proof. Let w be a word over some alphabet Σ and α ∈ Π. Without loss of
generality, we can also assume that α ∈ Σ-Pat, since otherwise term(α) * Σ and
therefore, by definition, w /∈ LΣ(α). For every x ∈ var(α), let ax be a distinct
terminal symbol with ax /∈ Σ and let α′ be obtained from α by substituting every
occurrence of every variable x by ax. We define Σ′ = Σ ∪ {ax | x ∈ var(α)}.

Claim: Let γ be Π-descriptive of {α′, w}. Then γ ≡ α if and only if w ∈ LΣ(α).

Proof of Claim: The only if direction follows trivially, since if γ ≡ α and γ is
Π-descriptive of {w,α′}, then w ∈ LΣ(γ) = LΣ(α). We prove the if direction
by contraposition. To this end, we assume that γ 6≡ α. Since γ is Π-descriptive
of {α′, w}, α′ ∈ LΣ′(γ) and therefore α′ v γ. Moreover, since α′ is a renaming
of α, we can conclude that α v γ, which implies LΣ′(α) ⊆ LΣ′(γ). Furthermore,
since α 6≡ γ, LΣ′(α) 6= LΣ′(γ) and, thus, it follows that LΣ′(α) ⊂ LΣ′(γ). Now
if w ∈ LΣ(α), then w ∈ LΣ′(α), which implies {α′, w} ⊆ LΣ′(α). Consequently,
{α′, w} ⊆ LΣ′(α) ⊂ LΣ′(γ), which leads to the contradiction that γ is not Π-
descriptive of {α′, w} and therefore w /∈ LΣ′(α). (Claim) �

We conclude the proof by observing that if there is a polynomial time algorithm
χ that, for a given sample S of size 2, computes a pattern that is Π-descriptive
of S, then we can decide, in polynomial time, whether w ∈ LΣ(α) by computing
a pattern γ that is Π-descriptive of {α′, w} and checking whether or not γ ≡ α
holds, which can obviously be done in polynomial time.

The next lemma shows a similar result, but with respect to the question
whether a pattern α is a member of a class Π of patterns.

Lemma 8. Let Π be a natural class of patterns. If there exists a polynomial time
algorithm that, for a given sample S, computes a pattern that is Π-descriptive
of S, then there exists a polynomial time algorithm that, for a given pattern α,
decides whether cf(α) ∈ Π.

Proof. Let χ be a polynomial time algorithm that, for a given sample S, com-
putes a pattern that is Π-descriptive of S and let α be a pattern. For every
x ∈ var(α), let ax be a distinct symbol with ax /∈ term(α) and let α′ be ob-
tained from α by substituting every occurrence of every variable x by ax. Let

7

γ be the pattern that is Π-descriptive of {α′} computed by χ. If α ≡ γ, then,
since γ ∈ Π, cf(α) ∈ Π follows. Hence, we now assume that α 6≡ γ and observe
that this implies Lterm(α′)(α) 6= Lterm(α′)(γ). Since α′ ∈ Lterm(α′)(γ), α′ v γ
and, since α is a renaming of α′, α v γ follows, which implies Lterm(α′)(α) ⊆
Lterm(α′)(γ). Furthermore, α′ ∈ Lterm(α′)(α) obviously holds, which means that
{α′} ⊆ Lterm(α′)(α) ⊂ Lterm(α′)(γ). Consequently, cf(α) ∈ Π directly implies
that γ is not Π-descriptive of {α′}, which is a contradiction. Thus, α ≡ γ if
and only if cf(α) ∈ Π and therefore we can decide in polynomial time whether
cf(α) ∈ Π by computing γ with χ and then checking whether α ≡ γ.

Hence, under the assumption P 6= NP, for the polynomial time computation
of descriptive patterns for natural classes Π of patterns (i. e., for classes for which
descriptive patterns exist) it is necessary that Π is tractable. In the following
we show that for Shinohara-classes of patterns this condition is also sufficient.

4 Computing Descriptive Patterns for Shinohara-
Classes

The procedure of the proof of Theorem 6 is inefficient in two regards: there
might be an exponential number of patterns to enumerate and for each such
pattern we need to solve the membership problem, which, at least in the general
case, is NP-complete. In [20], Shinohara presents an algorithm for computing
Pat-descriptive patterns in which the only non-efficient element are member-
ship queries. We generalise this algorithm such that it computes Π-descriptive
patterns for an arbitrary Shinohara-class Π of patterns (see Algorithm 1). We
denote by α[x 7→ π] the pattern obtained from α by substituting x with π.

Π-DescPat works as follows. We start with a pattern α = x1x2 · · ·xm,
where m is the length of a shortest word w in the sample S. Then we move over
α from left to right and at every position i, we try to refine α by first replacing
xi by the ith symbol of w (Line 4) and then consecutively by all the variables
that occur in the prefix α[1..i− 1] (Line 7). As soon as one of these refinements
yields a pattern that describes the sample S (and that is still in Π), we move
on to the next position and if all refinements fail, then we keep variable xi at
position i (which means that xi occurs in the final pattern that is computed).

Lemma 9. Let Π be a Shinohara-class with shortest word w. On input (S,w),
Π-DescPat computes a Π-descriptive pattern of S. If Π is tractable, then Π-
DescPat can be implemented such that it has polynomial running time.

Proof. Let α be the output of Π-DescPat on input (S,w). We first prove that
α is Π-descriptive of S. To this end, let m = |w| and, for every i, 1 ≤ i ≤ m+1,
let αi be the pattern at the beginning of the ith iteration of the main loop of Π-
DescPat, i. e., αi ≡ tg(α, i− 1), 1 ≤ i ≤ m+ 1; in particular, α1 = x1x2 · · ·xm
and αm+1 = α. We note that if both S ⊆ LΣ(αi) and cf(αi) ∈ Π are satisfied at
the beginning of the ith iteration of the main loop, then αi is changed into αi+1

with S ⊆ LΣ(αi+1) and cf(αi+1) ∈ Π. This is due to the fact that if αi is changed

8

Algorithm 1: Π-DescPat

Input : A sample S ∈ Σ∗, a shortest word w of S.
Output: A Π-descriptive pattern

1 m := |w|, α1 := x1x2 · · ·xm;
2 for i := 1 to m do
3 q := true, j := 1;
4 if cf(αi[xi 7→ w[i]]) ∈ Π and S ⊆ LΣ(αi[xi 7→ w[i]]) then
5 αi+1 := αi[xi 7→ w[i]] and q := false;
6 while j < i and q do
7 if xj ∈ var(α[1, i− 1]), cf(αi[xi 7→ xj]) ∈ Π, S ⊆ LΣ(αi[xi 7→ xj])

then
8 αi+1 := αi[xi 7→ xj] and q := false;
9 else

10 j := j + 1;

11 if q = true then
12 αi+1 := αi;

13 return cf(αm+1)

into αi+1 by Lines 5 or 8, then the conditions of Lines 4 or 7, respectively, are
satisfied, and if Lines 5 or 8 are never executed, then Line 12 is executed, which
sets αi+1 to αi and, by assumption, S ⊆ LΣ(αi) and cf(αi) ∈ Π. Hence,
since S ⊆ LΣ(α1) and cf(α1) ∈ Π is satisfied (see Proposition 1), S ⊆ LΣ(α)
and α ∈ Π follows. It remains to show that there is no pattern β ∈ Π with
S ⊆ LΣ(β) ⊂ LΣ(α). For the sake of contradiction, we assume that there exists
such a pattern β ∈ Π with S ⊆ LΣ(β) ⊂ LΣ(α).

We first note that |α| = |β|, which follows from the observation that |α| < |β|
implies w /∈ LΣ(β) and |β| < |α| implies LΣ(β) * LΣ(α). Hence, we have
LΣ(β) ⊂ LΣ(α) and |α| = |β|, which, by Lemma 2, implies β v α. Without
loss of generality, we can assume that, for every i, 1 ≤ i ≤ m, if β[i] = xj and
|β[1..i − 1]|xj

= 0, then i = j (note that all αi have this property, too). Since
LΣ(β) ⊂ LΣ(α), α 6≡ β and therefore α 6= β is implied; thus, there exists a p,
1 ≤ p ≤ |α|, with α[p] 6= β[p] and α[1..p − 1] = β[1..p − 1]. As shown above,
β v α, which implies that α[p] = xq (for some xq ∈ var(α)) and β[p] = z (for
some z ∈ var(β) ∪ Σ), i. e., β v α[xq 7→ z]. Since xq ∈ var(α), position q is the
first occurrence of xq in α and since β[q] = z 6= xq and α[1..p− 1] = β[1..p− 1],
it follows that p = q. In particular, since αq ≡ tg(α, q− 1), this also means that
α[xq 7→ z] v αq[xq 7→ z] and, since v is transitive (see Lemma 2), β v αq[xq 7→
z] follows, which implies S ⊆ LΣ(αq[xq 7→ z]). Moreover, cf(αq[xq 7→ z]) =
tg(β, q) and β ∈ Π; thus, with Proposition 1, cf(αq[xq 7→ z]) ∈ Π is implied.
If z ∈ var(β), then z ∈ {x1, x2, . . . , xq−1}. This is due to the fact that, by our
assumption from above, the first occurrence of any variable xj , j ≥ q + 1, is
to the right of position q. If, on the other hand, z ∈ Σ, then clearly z = w[q].
Consequently, in iteration q of the main loop, either cf(αq[xq 7→ w[q]]) ∈ Π and
S ⊆ LΣ(αq[xq 7→ w[q]]) is satisfied or cf(αq[xq 7→ xj]) ∈ Π and S ⊆ LΣ(αq[xq 7→

9

xj]) with 1 ≤ j ≤ q − 1 is satisfied. This implies that Line 5 or 8 is executed,
which means that in α there is no occurrence of variable xq. Since this is clearly
a contradiction, we conclude that α is in fact Π-descriptive of S.

It remains to prove that if, for any pattern β, the question cf(β) ∈ Π and the
membership problem for Π-pattern languages are decidable in polynomial time,
then Π-DescPat is a polynomial time algorithm. To this end, note that the for-
loop has m iterations and the while-loop has at most m iterations. Therefore
Lines 4 and 7 are executed O(m2) times, and for each execution we have to
check, for a pattern αi, whether cf(αi) ∈ Π and S ⊆ LΣ(αi). Hence, by first
checking cf(αi) ∈ Π in polynomial time and then checking S ⊆ LΣ(αi) only in
the case that cf(αi) ∈ Π, Lines 4 and 7 can be executed in polynomial time.

From Lemmas 7, 8 and 9 we can conclude the following meta-theorem:

Theorem 10. Let Π be a Shinohara-class of patterns. There exists a poly-
nomial time algorithm that, for a given sample S, computes a pattern that is
Π-descriptive of S if and only if Π is tractable.

4.1 Applications of the Meta-Theorem

The significance of Theorem 10 is brought out by the observation that many
classes of patterns that are known to be tractable are in fact Shinohara-classes.
We shall now give a brief overview of such classes of patterns.

The class Patreg of regular patterns, where every variable has only one occur-
rence (e. g., x1abx2x3ax4), and the class Patnc of non-cross patterns, where the
occurrences of variables are sorted by their index (e. g., x1ax1x1x2bx2x3abx3x3),
are the classes for which Shinohara originally formulated his algorithm in [20].
However, these classes have the disadvantage of being rather strongly restricted,
which means that descriptive regular or non-cross patterns do not very accu-
rately represent the common structure of the words in a sample S.

In [17], an infinite hierarchy of classes of patterns has been introduced, where
every level of the hierarchy is a tractable Shinohara-class. We recall the defini-
tion of this hierarchy. For every y ∈ var(α), the scope of y in α is defined by
scα(y) = {i, i + 1, . . . , j}, where i is the leftmost and j the rightmost position
of y in α. The scopes of some variables y1, y2, . . . , yk ∈ var(α) coincide in α
if
⋂

1≤i≤k scα(yi) 6= ∅. The scope coincidence degree of α (scd(α) for short) is
the maximum number of variables in α such that their scopes coincide. For
every k ∈ N, let Patscd≤k = {α ∈ Pat | scd(α) ≤ k}. Since, for every k ∈ N,
the membership problem for Patscd≤k-pattern languages is solvable in polyno-
mial time [17] and Patscd≤k is a Shinohara-class, we can compute Patscd≤k-
descriptive patterns in polynomial time. Furthermore, by increasing the bound
on the scope coincidence degree, we can boost the accuracy of the computed
descriptive patterns at the expense of a slower running time and, conversely, by
decreasing this bound, we improve on the running time, but lose accuracy of
the computed descriptive patterns.

The algorithm Π-DescPat seems to be of no use, if Π is not a Shinohara-
class, e. g., the well-known classes Patvar≤k = {α | | var(α)| ≤ k}, k ∈ N, of

10

k-variable patterns (briefly mentioned in Example 4). The membership problem
for these classes can obviously be solved in polynomial time and Angluin shows
in [1] that it is possible to compute Patvar≤1-descriptive patterns in polynomial
time. However, to the knowledge of the authors, it is still an open question
whether or not Patvar≤k-descriptive patterns can be computed in polynomial
time, for k ≥ 2 (see also [4,8,18]). In contrast to the classes Patvar≤k, the classes
Patrvar≤k = {α | |{x ∈ var(α) | |α|x ≥ 2}| ≤ k}, k ∈ N, of patterns with at most
k repeated variables are Shinohara-classes. The algorithm Patrvar≤k-DescPat
can therefore be used in order to compute Patrvar≤k-descriptive patterns and this
even in polynomial time since the conditions of Theorem 10 are satisfied. Of
course, a Patrvar≤k-descriptive pattern α is not necessarily Patvar≤k-descriptive,
but, since Patvar≤k ⊆ Patrvar≤k, α covers S at least as closely as a Patvar≤k-
descriptive one, i. e., it is impossible that a Patvar≤k-descriptive pattern β exists
with S ⊆ L(β) ⊂ L(α). So if we are interested in Patvar≤k-descriptive pat-
terns it seems that computing Patrvar≤k-descriptive patterns instead is a good
alternative.

We shall now exhibit in more detail the connections between descriptive
patterns and inductive inference of pattern languages (for unexplained concepts
and definitions the reader is referred to [21]). It has been shown in [2] that, for
a class Π of patterns, the following procedure describes an inference machine for
Π-pattern languages: for every new word w that is not described by the current
hypothesis, we output as new hypothesis a pattern that is Π-descriptive of all
formerly received words and w. If Π-descriptive patterns can be computed in
polynomial time, then this inference machine infers the Π-pattern languages in
polynomial time. Thus, we obtain the following corollary of Theorem 10:

Corollary 11. Let Π be a tractable Shinohara-class of patterns. Then the class
of Π-pattern languages is polynomial time inferable from positive data.

Consequently, Shinohara’s algorithm is very useful for the polynomial time
inference of Π-pattern languages if Π is a Shinohara-class.

The classes of k-variable patterns were also the first for which polynomial
time inference was investigated. Since these classes are no Shinohara-classes,
we can not use the approach from above to obtain a polynomial time infer-
ence machine for Patvar≤k-pattern languages. If instead we use the algorithm
Patrvar≤k-DescPat, we get an inference machine for Patrvar≤k-pattern languages
rather than for Patvar≤k-pattern language. Since Patvar≤k ⊂ Patrvar≤k, this in-
ference machine could also be used for inferring Patvar≤k-pattern languages,
but then it produces hypotheses that are not in Patvar≤k and therefore, in the
strict sense, it is not an inference machine for Patvar≤k-pattern languages. It
can nevertheless be transformed into an inconsistent inference machine (i. e.,
one that may output hypotheses that do not describe all the received words)
for Patvar≤k-pattern languages by simply keeping the current hypothesis if the
new hypothesis would be in Patrvar≤k \Patvar≤k or, alternatively, even into a
consistent one by replacing every hypothesis from Patrvar≤k \Patvar≤k by the
hypothesis x1. This provides an alternative proof for the result first shown by

11

Lange [11] that Patvar≤k-pattern languages are consistently polynomial time in-
ferable (in fact, the inference machine of [11] also produces the overly general
hypothesis x1 from time to time).

5 The Consistency Problem for Patterns

The consistency problem (for patterns) is to decide for given finite sets P,N ⊆
Σ∗, whether there exists a pattern α that is consistent with P and N , i. e.,
P ⊆ LΣ(α) and N ∩LΣ(α) = ∅. For any class Π of patterns, the Π-consistency
problem is to find a pattern of Π that is consistent with P and N .

The consistency problem (sometimes also called separation problem) is a
formalisation of the natural task to find a rule that separates one set of examples
from another and it arises in various contexts, e. g., learning theory, artificial
intelligence and model checking. It is also crucial for probably approximately
correct (PAC) learning, introduced by Valiant [23], since its polynomial time
solvability is necessary for polynomial time PAC learning (see, Blumer et al. [3]).

For arbitrary classes Π of patterns, the Π-consistency problem is in ΣP2 , the
second level of the polynomial-time hierarchy (see, e. g., [16]), since it can be
solved by first guessing a pattern α and then checking by membership queries
whether α is consistent (note that this directly implies containment in NP
if the membership problem for Π-pattern languages can be solved in polyno-
mial time) and Ko and Tzeng show in [10] that the Pat-consistency problem is
even ΣP2 -complete (an NP-hardness result is given in [9]). This result suggests
that, unlike for the problem of computing descriptive patterns, the hardness of
the membership problem is not solely responsible for the hardness of the Pat-
consistency problem and this intuition is supported by the fact that the con-
sistency problem is even NP-hard for regular patterns (see Miyano et al. [15]),
for which the membership problem can be easily solved in polynomial time. It
turns out that, by modifying the construction and the proof given in [15], this
result can be strengthened in the following way:

Theorem 12. Let Π ⊆ Pat, σ be a symbol and Γ = {β1 · · ·βn | n ∈ N, βi ∈
{xiσ, σxi}, 1 ≤ i ≤ n}. If Γ ⊆ Π, then the Π-consistency problem is NP-hard.

Proof. In [15, Theorem 3.1], Miyano et al. show, by a reduction from 3Sat,
that the consistency problem of regular patterns is NP-complete. By a minor
modification of the construction and the argument, this result also holds for all
classes Π that contain the class Γ.

We shall now recall the construction from [15]. Let F = {C1, C2, . . . , Cm}
be a 3-CNF formula with clauses Ci, 1 ≤ i ≤ m, and Boolean variables
y1, y2, . . . , yn. We assume that no clause contains both yi and yi, the vari-
able yi in negated form. The sets P and N of words over {a, b} are defined in

12

the following way:

s0 = (aa)n,

t̂j = aj , 1 ≤ j ≤ 2n− 1.

si = (aa)i−1 aba (aa)n−i, 1 ≤ i ≤ n,
ti = (aa)i−1 bb (aa)n−i, 1 ≤ i ≤ n,

dk = r1r2 · · · rn, 1 ≤ k ≤ m, with r` =

ab if y` ∈ Ck,
ba if y` ∈ Ck,
aa else.

1 ≤ ` ≤ n,

P = {si | 0 ≤ i ≤ n},
N = {t̂j , ti, dk | 1 ≤ j ≤ 2n− 1, 1 ≤ i ≤ n, 1 ≤ k ≤ m}.

The only difference compared to the reduction from [15] is that we add the words
t̂j , 1 ≤ j ≤ 2n− 1, to N . It can be verified in the same way as done in [15] that
there exists α ∈ Γ that is consistent with P and N if and only if F is satisfiable
(more precisely, let σ : {yi | 1 ≤ i ≤ n} → {true, false} and α = β1β2 · · ·βn ∈ Γ
such that σ(yi) = true if and only if βi = xia and σ(yi) = false if and only if
βi = axi, then σ satisfies F if and only if α is consistent with P and N).

It remains to show that there exists a pattern that is consistent with P and
N if and only if there exists a pattern in Γ that is consistent with P and N .
Since the if direction is obviously true, we shall now assume that there exists a
pattern α that is consistent with P and N . Since s0 ∈ P , we can conclude that
α is a pattern over (X∪{a})∗ of length at most |s0|. If |α| = j < |s0| = 2n, then
α can generate t̂j ; thus, |α| = 2n follows. The words si have length 2n+ 1 with
si[2i] = b. This means that it must be possible to map α to si in such a way
that si[2i] is generated by either α[2i−1] or α[2i], which implies that α[2i−1] or
α[2i] is a variable. Furthermore, since si[2i] is the only occurrence of b in si, this
variable has only one occurrence in α. Hence, α = β1β2 · · ·βn with βi = zixi or
βi = xizi, where |α|xi = 1 and zi ∈ (X ∪ {a}). If, for some i, 1 ≤ i ≤ n, zi ∈ X
and |α|zi = 1, then ti can be generated by α, which is a contradiction; thus, for
every i, 1 ≤ i ≤ n, either zi = a or zi ∈ X with |α|zi ≥ 2. We assume now that,
for some i′ with 1 ≤ i′ ≤ n, zi′ ∈ X with |α|zi′ ≥ 2. Since α is consistent, it
can generate every si, 0 ≤ i ≤ n, and since |α| = 2n, |si| ≤ 2n + 1, |si|b ≤ 1,
1 ≤ i ≤ n, this can only be done by substituting zi′ with the single letter a.
This implies that we can substitute every occurrence of zi′ in α by a and obtain
a pattern that is still consistent with P and N (note that the impossibility of
generating words from N is not affected). Consequently, by replacing all zi with
|α|zi ≥ 2 in α by a, we can transform α into a pattern α′ ∈ Γ that is consistent
with P and N .

Theorem 12 is a strong negative result, since it implies the NP-hardness
of the consistency problem for all the classes Patreg-, Patnc-, Patr

var≤k- and
Patscd≤k, k ∈ N, for which the membership problem is known to be solvable in

13

polynomial time. As Γ * Patvar≤k, the question arises whether the Patvar≤k-
consistency problem can be solved in polynomial time, for some k ∈ N.

These observations point out that the Π-consistency problem can be in-
tractable even though the membership problem for Π-pattern languages can
be solved efficiently. As reported in the previous sections, this contrasts with
the problem of computing descriptive patterns. Nevertheless, we are able to
prove a result about the consistency problem that is similar to Lemma 7, i. e.,
if the membership problem for Π-pattern languages is NP-hard, then the Π-
consistency problem is NP-hard as well (at least for classes Π of patterns with
a bounded number of occurrences of terminal symbols). Before we state this
result, we first cite the following two lemmas.

Lemma 13 (Angluin [1]). Let Σ be an alphabet with |Σ| ≥ 2 and let α ∈ Σ-Pat.
There exists a set Sα ⊆ LΣ(α) such that, for every pattern β with |α| = |β|,
Sα ⊆ LΣ(β) implies LΣ(α) ⊆ LΣ(β). Furthermore, Sα can be computed in time
linear in |α|.

Lemma 14 (Ko and Tzeng [10]). Let Σ be an alphabet, let α ∈ Σ-Pat be a
pattern. There exist finite sets Pα, Nα ⊆ Σ∗ with Pα ⊆ LΣ(α) and Nα∩LΣ(α) =
∅ with the following properties. For every P,N ⊆ Σ∗ with Pα ⊆ P and Nα ⊆ N ,
if β is consistent with P and N , then |β| = |α|. The sets Pα and Nα can be
constructed in time O(2k(|α|+ 1)k+1), where k =

∑
a∈term(α) |α|a.

We are now ready to state and prove the result mentioned above.

Theorem 15. Let Π ⊆ Pat with
∑
a∈term(α) |α|a ≤ k for all α ∈ Π and a

constant k. If the Π-consistency problem is solvable in polynomial time, then
the membership problem for Π-pattern languages is solvable in polynomial time.

Proof. Let α be a pattern, let w be a word and let Σ = term(α)∪ term(w) with
|Σ| ≥ 2. Furthermore, let P = Sα ∪ Pα ⊆ Σ∗ and N = Nα ∪ {w} ⊆ Σ∗ (where
Sα, Pα and Nα are the sets given by Lemmas 13 and 14).

Claim: There exists a pattern that is consistent with P and N if and only if
w /∈ LΣ(α).

Proof of Claim: We first prove the only if direction and assume that β is a
pattern that is consistent with P and N . By Lemma 14, Pα ⊆ P and Nα ∩
LΣ(β) = ∅ implies |α| = |β|. Furthermore, since Sα ⊆ LΣ(β), we conclude with
Lemma 13 that LΣ(α) ⊆ LΣ(β). Now if w ∈ LΣ(α), then w ∈ LΣ(β), which
is a contradiction to the assumption that β is consistent with P and N ; thus,
w /∈ LΣ(α) follows. In order to prove the if direction, we assume that there
does not exist a pattern that is consistent with P and N . In particular, this
means that α is not consistent with P and N . By Lemmas 13 and 14, we know
that P ⊆ LΣ(α) and Nα ∩ LΣ(α) = ∅, which implies that w ∈ LΣ(α), since
otherwise α would be consistent with P and N . (Claim) �

Now let Π ⊆ Pat and
∑
a∈term(α) |α|a ≤ k for all α ∈ Π and some constant k.

We assume that there exists a polynomial time algorithm χ that solves the Π-
consistency problem. We can now solve the membership problem for Π-pattern

14

languages for an instance α and w in the following way. We first construct the
sets P = Sα ∪ Pα and N = Nα ∪ {w}. Since

∑
a∈term(α) |α|a ≤ k for all α ∈ Π,

this can be done in polynomial time (see Lemma 14). Then we use χ in order
to decide whether or not there exists a pattern in Π that is consistent with P
and S in polynomial time, which, as stated by the Claim, answers whether or
not w ∈ LΣ(α).

The requirement in Theorem 15 that the patterns have a bounded number of
constants seems to be a strong restriction. However, the set Pattf of terminal-
free patterns is a prominent class of patterns that has been studied in the context
of learning theory and language theory; moreover, terminal-free patterns are
generally used in order to describe combinatorial properties in words.

Next, we try to answer the question whether there are non-trivial classes Π
of patterns for which the consistency problem can be solved in polynomial time.
In this regard, we can state the following simple sufficient condition.

Proposition 16. Let Π ⊆ Pat. If, for every word w over an alphabet Σ, all
α ∈ Π with w ∈ LΣ(α) and all β ∈ Π with w /∈ LΣ(β) can be enumerated in
polynomial time, then the Π-consistency problem is solvable in polynomial time.

Note that the condition of Proposition 16 is equivalent to the requirement
that the membership problem for Π-pattern languages can be solved efficiently
and, for every word w, all α ∈ Π with w ∈ LΣ(α) or all β ∈ Π with w /∈ LΣ(β)
can be enumerated in polynomial time.

It turns out that there are structurally simple, yet interesting examples of
classes of patterns for which the condition of Proposition 16 is satisfied, e. g., the
class {x1x

k
2x3 | k ≥ 2} of patterns that describe words that contain repetitions of

exponent at least 2 and the class {x1x2x3x2(x3x2)kx4 | k ≥ 1} describing words
that contain overlaps. While these are fairly special classes of patterns that
have no applications in learning or language theory, for them the consistency
problem can be solved in linear time and they are relevant in other parts of
theory, e. g., combinatorics and algorithimcs on words. Another example of a
larger class of patterns satisfying the condition of Proposition 16 is the class
(Patnc ∩Patvar≤k ∩Pattf).

References

[1] D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst.
Sci., 21:46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data.
Inform. and Control, 45:117–135, 1980.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929–965, 1989.

15

[4] T. Erlebach, P. Rossmanith, H. Stadtherr, A. Steger, and T. Zeugmann.
Learning one-variable pattern languages very efficiently on average, in par-
allel, and by asking queries. Theor. Comput. Sci., 261:119–156, 2001.

[5] D.D. Freydenberger and D. Reidenbach. Bad news on decision problems
for patterns. Inform. and Comput., 208:83–96, 2010.

[6] D.D. Freydenberger and D. Reidenbach. Existence and nonexistence of
descriptive patterns. Theor. Comput. Sci., 411:3274–3286, 2010.

[7] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for pat-
terns. J. Comput. Syst. Sci., 50:53–63, 1995.

[8] K.-I. Ko and C.-M. Hua. A note on the two-variable pattern-finding prob-
lem. J. Comput. Syst. Sci., 34:75–86, 1987.

[9] K.-I. Ko, A. Marron, and W.-G. Tzeng. Learning string patterns and tree
patterns from examples. In Proc. of the seventh international conference
on Machine learning, pages 384–391, 1990.

[10] K.-I. Ko and W.-G. Tzeng. Three ΣP2 -complete problems in computational
learning theory. Computational Complexity, 1:269–310, 1991.

[11] S. Lange. A note on polynominal-time inference of k-variable pattern lan-
guages. In Proc. 1st International Workshop on Nonmonotonic and Induc-
tive Logic, volume 543 of LNCS, pages 178–183, 1991.

[12] S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern
languages. New Generation Computing, 8:361–370, 1991.

[13] A. Mateescu and A. Salomaa. Patterns. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 1, pages 230–242. Springer,
1997.

[14] Z. Mazadi, Z. Gao, and S. Zilles. Distinguishing pattern languages with
membership examples. In Proc. 8th LATA, volume 8370 of LNCS, pages
528–540, 2014.

[15] S. Miyano, A. Shinohara, and T. Shinohara. Polynomial-time learning of
elementary formal systems. New Generation Comput., 18(3):217–242, 2000.

[16] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[17] D. Reidenbach and M.L. Schmid. Patterns with bounded treewidth. In-
form. and Comput. To appear.

[18] R. Reischuk and T. Zeugmann. Learning one-variable pattern languages in
linear average time. In Proc. 11th COLT, pages 198–208, 1998.

[19] T. Shinohara. Polynomial time inference of extended regular pattern lan-
guages. In Proc. RIMS Symposium on Software Science and Engineering,
volume 147 of LNCS, pages 115–127, 1982.

16

[20] T. Shinohara. Polynomial time inference of pattern languages and its appli-
cation. In Proc. 7th IBM Symp. Math. Found. Comp. Sci., pages 191–209,
1982.

[21] T. Shinohara and S. Arikawa. Pattern inference. In K.P. Jantke and
S. Lange, editors, Algorithmic Learning for Knowledge-Based Systems,
GOSLER Final Report, volume 961 of LNAI, pages 259–291. 1995.

[22] T. Shinohara and H. Arimura. Inductive inference of unbounded unions of
pattern languages from positive data. Theor. Comput. Sci., 241:191–209,
2000.

[23] L.G. Valiant. A theory of the learnable. Commun. ACM, 27:1134–1142,
1984.

17

	Introduction
	Preliminaries
	The Hardness of Computing -Descriptive Patterns
	Computing Descriptive Patterns for Shinohara-Classes
	Applications of the Meta-Theorem

	The Consistency Problem for Patterns

