
Two Equivalent Regularizations for Tree

Adjoining Grammars

Anna Kasprzik

University of Trier

Abstract. In this paper two methods of how to make derivation in a
Tree Adjoining Grammar a regular process without loss of expressive
power are presented and compared. In a TAG, derivation is based upon
the expansion of tree nodes into other trees. One regularization method
is based on an algebraic operation called Lifting, while the other ex-
ploits an additional spatial dimension by transforming the components
of a TAG into three-dimensional trees. The regularized grammars gener-
ate two kinds of “encoded” trees, from which the intended ones can be
reconstructed by a simple decoding function. We can show the equiva-
lence of these methods by giving a translation between lifted and three-
dimensional trees and proving that via this translation it is possible to
switch between the encodings without losing the information necessary
for the reconstruction of the intended trees.

Key words: Tree Adjoining Grammar, Multi-Dimensional Trees, Lift-
ing, Regularization

1 Introduction

A Tree Adjoining Grammar (TAG) is a special kind of tree grammar which has
been developed by Joshi [6] in connection with studies on the formal treatment of
natural languages. Joshi [6] claimed the least class of formal languages containing
all natural languages to be situated between the context-free and the context-
sensitive languages in the Chomsky Hierarchy, and named it the class of mildly
context-sensitive languages. The string languages associated with TAGs fulfil all
necessary conditions for this class.

As mild context-sensitivity represents a relatively high degree of complexity
already, it would be of considerable use if there were a way to simplify deriva-
tion without giving up any of the expressive power. In general, regularizing a
formalism has the obvious advantage that it makes the whole range of finite-
state methods applicable, which is of interest for most areas based on formal
language theory, e.g. natural language processing or grammatical inference, es-
pecially when objects more complex than strings are involved. As a matter of
fact, for TAGs at least two such regularization methods exist, and it is the pre-
sentation and comparison of these two approaches that constitute the main part
of this work.



2 Anna Kasprzik

2 Preliminaries

We presuppose some familiarity with classical formal language theory and trees.
The necessary preliminaries can be found for example in [1], [5], and also [8]. We
will now give the definition for Tree Adjoining Grammars.

Definition 1. A TAG is a 5-tuple 〈Σ, N, I, A, S〉, where Σ is the (non-ranked)
terminal labeling alphabet, N is the (non-ranked) nonterminal labeling alphabet
with N ∩ Σ = ∅, S is the start symbol with S ∈ N , I is a finite set of initial
trees where the root is labeled with S, and A is a finite set of auxiliary trees.

Nonterminals label inner nodes, terminals label all leaf nodes but one, which is
labeled by the nonterminal also labeling the root of the tree. This leaf is referred
to as the foot node. Initial and auxiliary trees are referred to as elementary trees.
New trees can be built by adjunction: A node in a tree is replaced by an auxiliary
tree and the subtree formerly rooted at that node is attached to the foot node
of the auxiliary tree.

A TAG can be enriched by associating a pair of constraints with every node,
stating if adjunction is required or not (obligatory adjunction (OA) constraint),
and which auxiliary trees may be adjoined at that node (selective adjunction
(SA) constraint). These constraints obliterate the roles of nonterminal and ter-
minal symbols and the start symbol, and hence the distinction between initial
and auxiliary trees as well. Rogers [10] defines non-strict TAGs:

Definition 2. A non-strict TAG is a pair 〈E, I〉 where E is a finite set of
elementary trees in which each node is associated with a label from some alphabet,
an SA constraint (a subset of E), and an OA constraint (Boolean valued). I ⊆ E
is a distinguished non-empty subset. Every elementary tree has a foot node.

We will now give an example for a TAG generating the language anbncndn.

Example 1. Let G with G = 〈{α, β}, {α}〉 be a TAG (over the alphabet {a, b, c, d,
S}). The only initial tree α and the only auxiliary tree β are given below. Con-
straints at the inner nodes and the foot node are: OA = 0 and SA = {β} for the
ones without a bar, and OA = 0 and SA = ∅ for the ones labeled with ‘S̄’. The
bar stands for null adjunction, i.e., no adjunction is allowed at these nodes.

β =

S

ε

α =

S

a

S̄

d

b S̄ c

A derivation for the word aabbccdd is shown in Figure 1.



Two Equivalent Regularizations for Tree Adjoining Grammars 3

S da

S̄ da

S̄ cb

S̄ cb

S

ε

ε

S̄

=⇒

S̄

ε

S

b

=⇒ a d

S̄ c

Fig. 1. A derivation for the word aabbccdd

3 Lifted Trees

The technique of Lifting belongs into the realm of treating formal language
classes with algebraical means. For the necessary preliminaries concerning uni-
versal algebra (esp. many-sorted algebras) and trees as terms, see [2, 3]. For
Lifting the notion of derived alphabets is essential:

Definition 3. Let Σ be a ranked alphabet. The derived (N∗ × N)-indexed al-
phabet of Σ, denoted by D(Σ), is defined as follows. Let, for each n ≥ 0,
Σ′

n = {f ′|f ∈ Σn} be a new set of symbols; let for each n and each i, 1 ≤ i ≤ n,
πn

i be a new symbol (the ith projection symbol of sort n); and let, for each
n, k ≥ 0, cn,k be a new symbol (the (n, k)th composition symbol). Then

– D(Σ)ε,0 = Σ′
0 ;

– for n ≥ 1, D(Σ)ε,n = Σ′
n ∪ {πn

i |1 ≤ i ≤ n} ;
– for n, k ≥ 0, D(Σ)nkn,k = {cn,k} , and
– D(Σ)w,s = ∅ otherwise.

Note that all operators in Σ are treated as constants in D(Σ). Lifting a term
over some Σ just means translating it into a corresponding term over D(Σ):

Definition 4 ([8]). Let Σ be a ranked alphabet. For k ≥ 0, LIFT
Σ
k : TΣ(Xk) −→

T k
D(Σ) is defined as follows:

LIFT
Σ
k (xi) = πk

i

LIFT
Σ
k (f) = c0,k(f ′) for f ∈ Σ0

LIFT
Σ
k (f(t1, . . . , tn)) = cn,k(f ′, LIFT

Σ
k (t1), . . . , LIFT

Σ
k (tn))

for n ≥ 1, f ∈ Σn and t1, . . . , tn ∈ T (Σ, Xk) .

Lifting has a very useful side effect: If you note a term as a tree and lift it,
all inner nodes become leaves. This obviously makes the operation of replacing
those nodes by bigger structures a much easier process, to wit, speaking in
terms of formal language theory, a regular process. Consequently any context-free



4 Anna Kasprzik

tree grammar (CFTG, based on the rewriting of inner nodes) over a signature
Σ can be translated into a regular tree grammar (RTG, rewriting of leaves
only) over the signature D(Σ) by lifting the trees on the right hand sides of
the productions and, since all nonterminals have become constants (i.e., leaf
labels), by deleting the variables representing daughters on the left hand sides.
The intended trees over the original signature can then be reconstructed using
the information contained in the “encoded” trees the RTG generates via the
following function:

rec(f ′) = f(x1, . . . , xn) for f ∈ Σn

rec(πn
i ) = xi

rec(c(t, t1, . . . , tn)) = rec(t)[rec(t1), . . . , rec(tn)] .

The proof of the following lemma (contained implicitly in [2]) is given in [7]:

Lemma 1. Suppose Γ = (Σ, F, S, X, P ) is a CFTG and L(Γ ) the tree language
it generates. Then there is a derived regular tree grammar Γ L = (D(Σ), D(F), S′,
PL) such that L(Γ ) is the image of L(Γ L) under the mapping rec.

Morawietz [8] has collected some properties of trees generated by a lifted
CFTG over some signature D(Σ): a) All inner nodes are and no leaf is labeled by
some composition symbol cn,k, b) any node labeled with a symbol in Σ′

n, n ≥ 1,
is on a leftmost branch, and c) for any node p labeled with some projection
symbol πn

i there is a unique node µ which properly dominates p and whose
ith sister will eventually evaluate to the value of πn

i under the mapping rec.
Moreover, µ will be the first node properly dominating p on a left branch. We
will call lifted trees that fulfil condition c) closed lifted trees.

Lifting can be used to regularize TAGs as well. However, since TAGs function
a little differently from CFTGs (which is linked to the fact that TAG trees are la-
beled by non-ranked symbols), this is not possible without some transformation.
It has been proven by Fujiyoshi and Kasai [4] that every TAG can be translated
into a spine grammar, which is a special kind of CFTG, where in the tree on
the right-hand side of every production there exists a path from the root to a
variable-labeled leaf and every other variable is the child of a node on that path.
See [4] for the exact definition, construction, and proof of weak equivalence to
TAGs. Their method can be easily adapted to non-strict TAGs as well. Example
2 shows the result of applying the translation of Fujiyoshi and Kasai [4] to the
TAG of Example 1, and its lifted version.

Example 2. The new CFTG G′ = (Σ0∪Σ1∪Σ3, F0∪F1∪F3, S
′, X, P ) obtained

from the TAG G in Example 1 is defined as follows: Σ0 = {ε, a, b, c, d}, Σ1 =
{s1}, Σ3 = {s3}, X = {x1, x2, x3}, F0 = {S′}, F1 = {S1}, F3 = {S3}, and

P =































S′ −→ s1(ε)
S′ −→ S1(ε)

S1(x1) −→ s3(a, s3(b, s1(x1), c), d)
S1(x1) −→ s3(a, S3(b, s1(x1), c), d)

S3(x1, x2, x3) −→ s3(a, s3(b, s3(x1, x2, x3), c), d)
S3(x1, x2, x3) −→ s3(a, S3(b, s3(x1, x2, x3), c), d)

































Two Equivalent Regularizations for Tree Adjoining Grammars 5

In lifted form, this grammar then looks like this: G′L = (D(Σ), D(F), S′′, PL)
with D(Σ)ε,0 = {ε, a′, b′, c′, d′}, D(Σ)ε,1 = {s′1}, D(Σ)ε,3 = {s′3, π

3
1 , π

3
2 , π3

3},
D(Σ)nkn,k = {c}, D(F)ε,0 = {S′′}, D(F)ε,1 = {S′

1}, D(F)ε,3 = {S′
3}, and

PL =































S′′ −→ c(s′1, ε)
S′′ −→ c(S′

1, ε)
S′

1 −→ c(s′3, a
′, (s′3, b

′, c(s′1, π1), c
′), d′)

S′
1 −→ c(s′3, a

′, (S′
3, b

′, c(s′1, π1), c
′), d′)

S′
3 −→ c(s′3, a

′, (s′3, b
′, c(s′3, π1, π2, π3), c

′), d′)
S′

3 −→ c(s′3, a
′, (S′

3, b
′, c(s′3, π1, π2, π3), c

′), d′)































Figure 2 shows two corresponding trees generated by G′ and G′L – note how
the elementary trees of the original TAG are still distinguishable. In fact we
can state the following: In a tree generated by a lifted TAG the elementary
trees are represented by the tree parts between one composition symbol on a
leftmost branch and the next, and the expanded nodes correspond to the mother
nodes of these composition symbols. In order to see this, consider the following
observations: a) An adjunction in a TAG corresponds to the rewriting of an inner
node in the corresponding CFTG, and consequently to the rewriting of a leaf in
the corresponding lifted CFTG.1 b) A composition symbol on a leftmost branch
is certain evidence that at this node a production of the lifted CFTG has been
applied.2 It follows from this that the parts separated by composition symbols
on leftmost branches must be the elementary components of the original TAG.
Foot nodes are represented by nodes whose children except the leftmost are all
labeled by projection symbols.

4 Three-Dimensional Trees and their Yields

In this section we will consider a method based on a generalization of the concept
of trees by Rogers [9, 10]. Starting from ordinary trees based on two-dimensional
tree domains Rogers extends the concept both downwards (strings and points)
and upwards and defines labeled multi-dimensional trees:

Definition 5. Let d1 be the class of all dth-order sequences of 1s: 01 := {1}, and
n+11 is the smallest set satisfying (i) 〈〉 ∈ n+11, and (ii) if 〈x1, . . . , xl〉 ∈ n+11

1 Recall Lemma 1. The individual derivation steps also correspond:
Lemma 2. t′ is derived in Γ L from t in k steps, i.e., t ⇒ t′ via the productions

pL

1 , . . . , pL

k in P L if and only if there are corresponding productions p1, . . . , pk in P

such that rec(t′) is derived in Γ from rec(t) via those productions.
2 This can be explained as follows: Lifting a CFTG comprises lifting all the trees

on the righthand sides of the rules. In such a lifted tree all leftmost daughters of
any node are labeled with symbols in Σ′

n (for some n), and never by composition
symbols. Consequently, a composition symbol on a leftmost branch indicates that
the tree cannot be contained as a whole in the rules of the grammar (i.e., as the
right-hand side of a rule starting with “S′

−→ . . .”) but that some production must
have been applied that licenses the rewriting of a leaf by the subtree now rooted at
the node in question (which, however, can contain other rewritings itself).



6 Anna Kasprzik

s3

a s3 d

b c

b c

c

s′3 a′ d′

c b′ c′

s′1 π1s′3 a′ c d′

s′3 b′ c c′

s′3 π1 π2 π3

a ds3

s3

s1

ε

c

c

c

ε

Fig. 2. Two trees, generated via corresponding rules of G′ and G′L

and y ∈ n1, then 〈x1, . . . , xl, y〉 ∈ n+11. Let T
0 := {∅, {1}} (point domains). A

(d+1)-dimensional tree domain is a set of hereditarily prefix closed (d+1)st-order
sequences of 1s, i.e., T ∈ T

d+1 iff

– T ⊆ d+11,
– ∀s, t ∈ d+11 : s · t ∈ T ⇒ s ∈ T,
– ∀s ∈ d+11 : {w ∈ d1|s · 〈w〉 ∈ T} ∈ T

d .

A Σ-labeled Td (d-dimensional tree) is a pair (T, τ) where T is a d-dimensional
tree domain and τ : T −→ Σ is an assignment of labels in the (non-ranked)
alphabet Σ to nodes in T . We will denote the class of all Σ-labeled Td as T

d
Σ.

Every d-dimensional tree can be conceived to be built up from d-dimensional
local trees, that is, trees of depth at most one in their major dimension. Each of
these smaller trees consists of a root and an arbitrarily large (d−1)-dimensional
“child tree” consisting of the root’s children. Composite trees can then be built
from local ones by identifying the root of one local tree with a node in the
child tree of another (see Figure 3 for an illustration). Rogers [10] also defines
automata for multi-dimensional trees based on the notion of local trees.

Perhaps the most important concept Rogers adapts to multi-dimensionality
is that of the yield of a tree. The yield of a two-dimensional tree is the string
formed by its leaf labels. In Rogers’ words, it is a projection of the tree onto the
next lower level, i.e., its dimensions are reduced by one. d-dimensional trees with
d ≥ 3 have several yields, one for each dimension that is taken away, down to
the one-dimensional string yield. Note that when taking the yield of a tree with
d ≥ 3, some thought has to go into the question of how to interweave the child
trees of its local components to form a coherent (d − 1)-dimensional tree, since



Two Equivalent Regularizations for Tree Adjoining Grammars 7

there are often several possibilities. Rogers solves this by a construction quite
similar to foot nodes in TAGs. See [10] for the exact definition.

Rogers [10] has established a link between T3 trees and TAGs – he has proven
the equivalence of T3 recognizing automata and non-strict TAGs:

Theorem 1. A set of Σ-labeled two-dimensional trees is the yield of a recogniz-
able set of Σ-labeled T3 iff it is generated by a non-strict TAG.

From a certain perspective, trees accepted by a T3 automaton derived from
a non-strict TAG are but a special sort of derivation trees3 for that TAG in
which one does not have to resort to tree names since both the elementary trees
in question and the way they are combined can be displayed explicitly in the
same object. Their direct yield is the set of the trees generated by that TAG,
and their one-dimensional yield is the corresponding string language.

The representation of a TAG via three-dimensional trees obviously also con-
stitutes a regularization: Trees are now constructed by adding local trees at the
frontier of another tree (see Figure 3), which is a regular process, instead of in-
serting trees at the interior. As stated above, the trees generated by the original
TAG can be extracted from the three-dimensional trees via the yield function.
We have thus described the second regularization method for TAG.

Fig. 3. Adjunction in TAG expressed via three-dimensional trees

We will now introduce an a bit more “term-like” representation for three-
dimensional trees, which will include the concept of rank (in the second dimen-
sion), in order to facilitate the comparison to lifted trees. Let Σ be an arbitrary
ranked alphabet. We define the set 3DΣ of three-dimensional trees over Σ:

Definition 6. (f, t) ∈ 3DΣ if f ∈ Σ0 (f is the root label) and t ∈ 3D
+
Σ (t

is the structure formed by the nodes properly dominated by the root in the third
dimension). 3D

+
Σ is the set of antitrunks (three-dimensional trees without a root):

– (f, t, 〈t1, . . . , tn〉) ∈ 3D
+
Σ if f ∈ Σn, t ∈ 3D

+
Σ and ti ∈ 3D

+
Σ for 0 ≤ i ≤ n

(the ti are the daughter antitrunks of f in the second dimension).
– (f, 〈t1, . . . , tn〉) ∈ 3D

+
Σ if f ∈ Σn and ti ∈ 3D

+
Σ for 0 ≤ i ≤ n.

3 A derivation tree keeps track of the steps taken in the course of a derivation. For
TAGs, its root is labeled with the name of an initial tree, and all other nodes are
labeled with a pair containing the name of an auxiliary tree and an address in the
tree named in the label of the mother of that node – the address of the node the
auxiliary tree has been adjoined to.



8 Anna Kasprzik

In addition, we use a binary feature to indicate if a node is a foot node or
not. For example, (f, 〈〉, 1) for some label f ∈ Σ and t ∈ 3D

+
Σ is a foot node,

(f, t, 〈t1, t2〉, 0) for t1, t2 ∈ 3D
+
Σ is not, and (f, t, 〈t1, t2〉, 1) is not well-formed.

We postulate the following conditions for foot nodes: a) Foot nodes are leaves in
the second and third dimension, b) every contiguous two-dimensional tree in an
antitrunk has to contain exactly one foot node, c) leaves in the second dimension
are also leaves in the third.

We will now define our own yield function ydΣ : 3D
+
Σ × N → TΣ0 where Σ0

is a ranked alphabet with Σ0
n = Σn∪Σ0 for every n ≥ 0 and TΣ0 is the set of all

two-dimensional trees over Σ0. Let x1, . . . , xl be elements of a countable set of
variables. Let tv, t1, . . . , tm ∈ 3D

+
Σ. grk : Σ0 ×N → Σ0 is a function that takes a

label of rank 0 and yields another label consisting of the same symbol, but with
the rank given in the second argument.

ydΣ(t, l) =







































f(ydΣ(t1, l), . . . , ydΣ(tm, l)) if f ∈ Σm, m ≥ 0,

t = (f, (t1, . . . , tm), 0)

ydΣ(tv, m)[(ydΣ(t1, l), . . . , ydΣ(tm, l)] if f ∈ Σm, m ≥ 1, t =

(f, tv, (t1, . . . , tm), 0)

fl(x1, . . . , xl) if t = (f, (), 1) and

for fl = grk(f, l) f ∈ Σ0

The function is subdivided into three different cases because we have to distin-
guish between foot nodes and non-foot nodes, and among the latter between
nodes that have an extension in the third dimension and nodes that do not. The
second argument keeps track of the number of daughters of the roots in the third
dimension so that when a foot node is reached the correct number of variables
can be attached (which are then substituted by the direct subtrees of the corre-
sponding root). The function yd works on antitrunks. In order to obtain the yield
of a three-dimensional tree we have to apply a function ydpre

Σ : 3DΣ → TΣ0 first
that detaches the root and initializes the second argument: ydpre

Σ (ta) = ydΣ(t, 0)
for a tree ta = (f, t) with f ∈ Σ and t ∈ 3D

+
Σ.

5 Equivalence

We would like to establish the equivalence of the two regularization methods for
TAGs presented in the previous sections, represented either by the transforma-
tion into a lifted spine grammar or into a T3 automaton. In order to do this, it
is important to note several structural similarities between the tree-like objects
defined by these devices: Both types of objects still include two kinds of informa-
tion about the originally intended trees, namely which individual components,
i.e., elementary trees they are composed of, and how these are put together,
which is precisely the information needed in order to reconstruct the intended
trees from the “encoded” ones.

In the case of the T3 method the elementary trees are the child structures of
the local trees the T3 tree is composed of, and the points where the local trees



Two Equivalent Regularizations for Tree Adjoining Grammars 9

are joined together are the nodes that are expanded by these child structures.
In a tree generated by a lifted TAG the elementary trees are represented by the
tree parts between one composition symbol on a leftmost branch and the next,
and the expanded nodes correspond to the mother nodes of these composition
symbols, as already stated in Section 3.

We will give a direct formal translation between lifted and three-dimensional
trees that exploits these structural similarities by finding corresponding points
and making them match. Let us start by giving the function hli translating
lifted into three-dimensional trees. For this, let LD(Σ) be a set of trees over
D(Σ) characterized by the following:

–
⋃

n≥0

D(Σ)ε,n ∈ LD(Σ) .

– c(f, t1, . . . , tn) ∈ LD(Σ) if f ∈ Σn
′ and t1, . . . , tn ∈ LD(Σ) \ {π

n
i |1 ≤ i ≤ n} .

– c(f, π1, . . . , πn) ∈ LD(Σ) if f ∈ Σ′
n and n ≥ 1 .

– c(t, t1, . . . , tn) ∈ LD(Σ) if n ≥ 1, t, t1, . . . , tn ∈ LD(Σ) \ {π
n
i |1 ≤ i ≤ n} and t

contains projection symbols π1, . . . , πn that are not dominated by more than
one composition symbol on a leftmost branch in t.

It is clear that all trees generated by a lifted CFTG derived from a TAG via
the algorithm of Fujiyoshi and Kasai [4] and all their subtrees are contained in
LD(Σ). We will therefore take LD(Σ) as the domain of our translation function.

The range will be the set 3D
+
Σ : hli : LD(Σ) → 3D

+
Σ.

Let in the following be tv, t1 . . . , tn, q1, . . . , qm ∈ LD(Σ) for all n, m ≥ 0, and
tv, t1 . . . , tn /∈ {πi|i ≥ 1}. gze :

⋃

n≥0

Σ′
n → Σ0 is a function that takes a label and

yields another label consisting of the same symbol, but with rank 0.

hli(t) =















































(f, (hli(t1), . . . , hli(tn)), 0) if t = c(f, t1, . . . , tn)

with f ∈ Σ′
n and n ≥ 0

(♦, hli(tv), (hli(t1), . . . , hli(tn)), 0) if t = c(tv, t1, . . . , tn),

n ≥ 1, tv = c(q1, . . . , qm)

and m ≥ 1

(f, (), 1) with f = gze(f0) if t = c(f0, π1, . . . , πn)

with f0 ∈ Σ′
n and n ≥ 1.

Like our yield function from the previous section, this function is also subdivided
into three cases. This time we have to distinguish between nodes that have
projection symbols as daughters (the future foot nodes) and nodes that do not,
and among those between nodes whose leftmost daughter is a symbol in Σ′

n and
nodes whose leftmost daughter is the root of another complex term (which is
translated into an extension in the third dimension). As the function does not
depend on the subscripts of the composition symbols (cn,k for some n and k),
they are left out. hli yields antitrunks. In order to translate the elements of LD(Σ)

into three-dimensional trees we have to apply a function pli : LD(Σ) → 3DΣ first
with pli(t) = (♦, hli(t)) that attaches a three-dimensional root and then recurs



10 Anna Kasprzik

to the actual translation function. ♦ is a special placeholder for labelling three-
dimensional roots, since the lifted trees do not contain the information about
the labels they should have, i.e., the labels the nodes have in the original TAG
before their expansion. ♦ can have any rank (♦ ∈ Σn for all n ≥ 0).

The function h3d that translates antitrunks into lifted trees has the set 3D
+
Σ

as its domain and the set LD(Σ) as its range: h3d : 3D
+
Σ × N → LD(Σ). Let

tv, t1, . . . , tm ∈ 3D
+
Σ. grk(ε) : Σ0 × N →

⋃

n≥0

Σ′
n is a function that takes a label

of rank 0 and yields another label consisting of the same symbol, but of type
〈ε, n〉, where n is fixed by the second argument.

h3d(t, n) =







































cm(f, h3d(t1, n), . . . , h3d(tm, n)) if m ≥ 0, f ∈ Σm,

t = (f, (t1, . . . , tm), 0)

cm(h3d(tv, m), if m ≥ 1, f ∈ Σm and

h3d(t1, n), . . . , h3d(tm, n)) t = (f, tv, (t1, . . . , tm), 0)

cn(f, π1, . . . , πn) if n ≥ 1, f0 ∈ Σ0

with f = grk(ε)(f0, n) and t = (f0, (), 1).

The cases for this function are identical to the ones for the yield function. Com-
position symbols on left branches are translated into extensions in the third
dimension, and foot nodes are translated into nodes with the right number of
sisters (i.e., the number of daughters of the node that was expanded by the cor-
responding elementary tree in the original TAG) labeled by projection symbols.
Of the composition symbols cn,k only the index n is given (the value of k is
not as immediate as the one of n but can be easily inferred from the lifted tree
afterwards). h3d takes antitrunks as its input. If we want to use h3d to translate
a T3 tree ta = (f, t) with f ∈ Σ and t ∈ 3D

+
Σ, we first have to apply a function

p3d : 3DΣ → LD(Σ) with p3d(ta) = h3d(t, 0) that detaches the root of ta and
initializes the second argument of the translation function.

Formally, the equivalence of Lifting and of T3 trees as regularization methods
for TAG can be shown by proving that the direct decoding of an “encoded”
tree and its translation into the other encoding and the decoding of the result
yield exactly the same intended tree. More precisely, we can state the following
theorem – see the attachment for the full proof.4

Theorem 2. For all closed lifted trees tl ∈ LD(Σ) generated by the lifted version
of some TAG (over Σ) and all trees ts ∈ 3DΣ generated by the three-dimensional
version of the same TAG,

– rec(ts) = ydpre(pli(ts)) , and
– ydpre(ts) = rec(p3d(ts)) .

4 We also believe an even stronger equivalence in the sense of a bijection to hold: Let
A be the set of trees generated by a lifted spine grammar that is the regularized
version of a TAG, and let B be the set accepted by a T3 automaton that has been
extracted from the same TAG. Then pli(A) = B and p3d(B) = A, and even, for
some tree t1 ∈ A, p3d(pli(t1)) = t1 as well as pli(p3d(t2)) = t2 for some tree t2 ∈ B.



Two Equivalent Regularizations for Tree Adjoining Grammars 11

Figure 4 shows two encoded trees and the corresponding intended tree, which
is an element of the set generated by the TAG from Example 1 (with the deriva-
tion shown in Figure 1). The lifted tree in the lower right corner is an element
of the set generated by the regularized version of that TAG as given in Example
2, and in the upper right corner is the matching three-dimensional tree.

p3d pli

S′
3 a′ c d′

c b′ c c′

d′ S′
1 π1

c′

π2

c

c

π3

S′
3 a′

S′
3 b′

S′
3 π1

c ε

c

c

b

S
b

a

S
yd

rec

S

S

S

S

S

d

d

c

c

ε

a

a

b

b

ε

S

a

S
d

S

d
Sc

S

♦

Fig. 4. Two encoded trees and the corresponding intended tree

6 Conclusion

In this paper, we have presented two regularization methods for TAGs. Regu-
larized TAGs of both kinds define sets of “encoded” trees, which, however, still
contain the necessary information to reconstruct the intended trees defined by
the original TAG. Both methods operate by transforming the components of a
TAG in a way that turns all inner nodes into leaves, thus making it possible
to expand these nodes by means of a regular mechanism. Both methods exploit



12 Anna Kasprzik

a side effect of the theoretical concepts they are based on – algebraic Lifting
and the notion of multi-dimensional trees – since neither was developed with the
primary intention of regularizing the grammar formalism TAG.

However, the methods described here have even more in common: The two
different kinds of objects generated by regularized TAGs exhibit a number of
structural similarities, which we exploited in order to show their direct trans-
latability. Objects of both kinds can be seen as a special sort of derivation tree for
the originally intended tree, and it is only natural that this should be somehow
related to regularization in that derivation trees, which are composed starting
from a root and adding every further step of the derivation somewhere at the
leaves, are a special sort of regular trees – recall that regularity in general rep-
resents a mode of constructing an object where one element after the other is
added at the frontier of that object, and not somewhere in between. By letting
us find different kinds of derivation trees for a formalism, in addition to gaining
knowledge about how the properties of derivation as such can be modified, the
study of regularization may thus perhaps give further insight about derivation
in the formalism in particular as well.

A possible continuation of this work could be to search for more regularization
methods for TAGs and determine if the structure of the objects created in the
process resembles the structure of the objects treated here. One could even
conjecture that every similar effort of reducing the complexity of derivation
must result in similar properties, i.e., in objects that are directly translatable
into lifted or three-dimensional trees as well.

References

1. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and com-
putation. Addison-Wesley (1979)

2. Engelfriet, J., Schmidt, E.: IO and OI, part I. Journal of Computer and System
Sciences 15, 328–353 (1977)

3. Engelfriet, J., Schmidt, E.: IO and OI, part II. Journal of Computer and System
Sciences 16, 67–99 (1978)

4. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory of Com-
puting Systems 33, 59–83 (2000)

5. F. Gécseg, M. Steinby: Tree automata. Akademiai Kiado (1984)
6. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to

provide reasonable structural description. In: Dowty, D., Karttunen, L., Zwicky, A.
(eds.) Natural Language Processing. Cambridge University Press (1985)

7. Mönnich, U.: On cloning contextfreeness. In: Kolb, H.P., Mönnich, U. (eds.) Studies
in Generative Grammar, vol. 44, pp. 195–229. Mouton de Gruyter (1999)

8. Morawietz, F.: Two-Step Approaches to Natural Language Formalisms. Studies in
Generative Grammar, vol. 64. Mouton de Gruyter (2003)

9. Rogers, J.: Syntactic Structures as Multi-dimensional Trees. Research on Language
and Computation 1, 265–305 (2003)

10. Rogers, J.: wMSO Theories as Grammar Formalisms. Theoretical Computer Sci-
ence 293, 291–320 (2003)



Two Equivalent Regularizations for Tree Adjoining Grammars 13

Appendix

We shall here show the following: (1) For any closed lifted tree ts ∈ LD(Σ),
as well as (2) for any three-dimensional tree ts ∈ 3DΣ , it is true that the direct
decoding of ts yields exactly the same tree as its translation into the other
encoding and the decoding of the result. Both directions are proven by induction
on the structure of the objects under concern. We will begin with (1).

(1) We show that rec(ts) = ydpre(pli(ts)) for all closed lifted trees ts ∈
LD(Σ). Since ydpre(pli(ts)) = ydpre((♦, hli(ts))) = yd(hli(ts), 0), this amounts
to showing that rec(ts) = yd(hli(ts), 0). To that end, we will prove the more
general equation rec(t) = yd(hli(t), m) (∗) for all subtrees t of ts (including ts)
and any m ≥ 0 in order to cover the recursive cases as well. For each of the
cases, which correspond to the cases of hli, the relevant results are underlined
in order to make it easier to verify that (∗) holds. Assume that (∗) applies for
tv, t1, . . . , tn ∈ LD(Σ) and that tv, t1, . . . , tn /∈ {πi|i ≥ 1}.

Case 1: t = c(f, t1, . . . , tn), f ∈ Σ′
n, n ≥ 0.

rec(t) = f(x1, . . . , xn)[rec(t1), . . . , rec(tn)] = f(rec(t1), . . . , rec(tn)) .

hli(t) = (f, (hli(t1), . . . , h(tn)), 0) and

yd(hli(t), m) = f(x1, . . . , xn)[yd(hli(t1), m), . . . , yd(hli(tn), m)]

= f(yd(hli(t1), m), . . . , yd(hli(tn), m)) for any m.

Case 2: t = c(tv, t1, . . . , tn), n ≥ 0, and tv = c(q1, . . . , ql), l ≥ 1.

rec(t) = rec(tv)[rec(t1), . . . , rec(tn)] .

hli(t) = (♦, hli(tv), (hli(t1), . . . , hli(tn))) and

yd(hli(t), m) = yd(hli(tv), n)[yd(hli(t1), m), . . . , yd(hli(tn), m)] for any m.

Case 3: t = c(f, π1, . . . , πn), f ∈ Σ′
n, n ≥ 1.

rec(t) = f(x1, . . . , xn) .

hli(t) = (f, (), 1) and yd(hli(t), m) = f(x1, . . . , xm) . Problem!

Obviously, Case 3 seems to be a problem, as (∗) only holds for m = n. This
can be resolved as follows: Since c(f, π1, . . . , πn) is not a closed lifted tree, t =
c(f, π1, . . . , πn) must be a genuine subtree of ts, and, since we postulated that ts
be closed, the projection symbols π1, . . . , πn in t must of necessity point to some
n subtrees of ts whose roots are sisters to the right of some node q labeled by a
composition symbol on a left branch dominating the root r of t (the dominance



14 Anna Kasprzik

relation may have to be reflexive here, for q = r). The subtree rooted at the
mother of q is covered by Case 2, where the translation of the subtree rooted at
q itself (containing t) is fed into the first and the number n is fed into the second
argument of the yd function. According to the definition of LD(Σ), the path from
q to r may not contain any other node labeled by a composition symbol on a
left branch (which would cause the second argument of yd to be changed to the
number of sisters of that node), and thus n is passed down the path until the
point where the first argument of yd is the translation of t. Consequently, when
yd(hli(t), m) is compared to rec(t) in Case 3, the value of m is always n. �

(2) For the other direction, we want to show that ydpre(ts) = rec(p3d(ts)) for
all ts ∈ 3DΣ. Since ydpre(ts) = yd(tp, 0) and rec(p3d(ts)) = rec(h3d(tp, 0)) for
ts = (f, tp), f ∈ Σ, this amounts to showing that yd(tp, 0) = rec(h3d(tp, 0)) for
all tp ∈ 3D

+
Σ. We prove the more general equation yd(t, m) = rec(h3d(t, m)) (∗∗)

for all t ∈ 3DΣ and any m ≥ 0 in order to cover the recursive cases, as above.
Again, the cases here correspond to the cases of h3d, and the relevant results are
underlined. Assume that (∗∗) applies for tv, t1, . . . , tn ∈ 3D

+
Σ.

Case 1: t = (f, (t1, . . . , tn), 0), f ∈ Σ′
n, n ≥ 0.

yd(t, m) = f(x1, . . . , xn)[yd(t1, m), . . . , yd(tn, m)]

= f(yd(t1, m), . . . , yd(tn, m)) for any m.

h3d(t, m) = c(f, h3d(t1, m), . . . , h3d(tn, m)) and

rec(h3d(t, m)) = f(x1, . . . , xn)[rec(h3d(t1, m)), . . . , rec(h3d(tn, m))]

= f(rec(h3d(t1, m)), . . . , rec(h3d(tn, m))) for any m.

Case 2: t = (f, tv, (t1, . . . , tn), 0), f ∈ Σ′
n, n ≥ 1.

yd(t, m) = yd(tv, n)[yd(t1, m), . . . , yd(tn, m)] for any m.

h3d(t, m) = c(h3d(tv, n), h3d(t1, m), . . . , h3d(tn, m)) and, for any m,

rec(h3d(t, m)) = rec(h3d(tv, n))[rec(h3d(t1, m)), . . . , rec(h3d(tn, m))] .

Case 3: t = (f, (), 1), f ∈ Σ′
0.

yd(t, m) = f(x1, . . . , xm) for any m.

h3d(t, m)) = c(f, π1, . . . , πm) and rec(h3d(t, m)) = f(x1, . . . , xm) for any m. �

We have proven that rec(ts) = ydpre(pli(ts)) for all closed lifted trees ts ∈ LD(Σ)

and ydpre(ts) = rec(p3d(ts)) for all trees ts ∈ 3DΣ.


