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Abstract. We provide a new term-like representation for multi-dimen-
sional trees as defined by Rogers [8,9] which establishes them as a direct
generalization of classical trees. As a consequence these structures can
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1 Introduction

It is well known that string languages that are recognizable by finite-state au-
tomata, the so-called regular languages, have a whole range of advantageous
mathematical properties. However, due to the relatively restricted character of
the latter, language classes that lie beyond regularity are often more interesting
for applications based on formal language theory, even if the devices processing
these languages (e.g., grammars or automata) are significantly more complex.
Obviously, it would be of considerable use if one could reunite the advantages
of regular and less restricted language classes by finding a way to handle these
processes via regular mechanisms without giving up any of the expressive power.

Several such regularization methods have indeed been formulated, and at
least two of them have been shown to be of use in the field of linguistics. A very
prominent linguistic application of formal language theory is the area of natural
language processing, i.e., conceiving the strings formed by a natural language
as a formal language in order to treat them automatically. Unfortunately, the
study of certain phenomena (e.g., cross-serial dependencies in Dutch or Swiss
German) showed that some of these string sets are not context-free. Joshi [6]
claimed the least class of formal languages containing all natural language string
sets to be situated between the context-free and the context-sensitive languages,
and named it the class of mildly context-sensitive languages. The string sets
generated by the grammar formalism defined by Joshi [6] himself, Tree Adjoining
Grammar, prototypically fulfil all the necessary conditions for this class. TAG is
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considered the standard model for mild context-sensitivity and is the foundation
of a considerable amount of current work in applied computational linguistics.

There are two methods of regularization for TAG (see [14]). Both methods are
two-step approaches, i.e., they transform a TAG into a regular device (grammar
or automaton) of some sort by representing its components in another shape and
then reconstruct the intended objects from the objects generated or licensed by
these devices via a simple process that can be carried out with regular means as
well. One is based on an algebraic operation called Lifting (see [7]) which could
be described as a way to write terms in a form that makes their internal structure
more explicit, which, if the term is noted as a tree, has the side effect that all
inner nodes are turned into leaves and thus become rewritable by substitution,
which is a regular mechanism, and the other method (described by Rogers [8,9])
makes use of an additional dimension in space by representing the components
of a TAG as three-dimensional trees which likewise has the consequence that all
inner nodes are turned into leaves and can be expanded by substitution.

The theoretical foundation of the second method are multi-dimensional trees,
which are structures built over tree domains of arbitrarily many dimensions. Just
like ordinary two-dimensional trees, every multi-dimensional tree has a string as-
sociated with it, which is obtained by reducing the dimensions of the tree step
by step to its leaves. The classes of string languages associated with the recog-
nizable multi-dimensional tree languages ordered by number of dimensions form
a (proper) infinite hierarchy properly contained in the context-sensitive class,
with the classes of finite languages (associated with zero-dimensional point sets),
regular languages (one-dimensional string sets), context-free languages (two-
dimensional tree sets, as for the classical definition) and the mildly context-
sensitive string languages generated by (non-strict) TAGs (three-dimensional
tree sets, see [8,9]) as the first four steps. According to Rogers [8], this hierarchy
coincides with Weir’s Control Language Hierarchy [3].

It follows from these correspondencies that by processing recognizable higher-
dimensional descriptions of non-regular string languages instead of the string sets
themselves, finite-state methods become applicable again, and with them all the
advantages and results pertaining to regularity. This can be a valuable insight
in the area of natural language processing, but also in other areas based on for-
mal language theory, e.g., grammatical inference: For instance, just as Angluin’s
learning algorithm for regular string languages [10] has been adapted to regular
tree languages [11,12], thereby making context-free string languages learnable
(wrt the underlying learning model), this adapted algorithm can be general-
ized to recognizable tree languages of arbitrarily many dimensions, making even
string languages beyond context-freeness learnable in polynomial time (see [15]).

However, before such applications founded on formal tree languages can be
generalized to arbitrarily many dimensions, there is a missing link to be pro-
vided: Most of them are not based on tree domains, as is Rogers’ definition of
multi-dimensional trees, but on the concept of trees as terms over a partitioned
alphabet. In this paper we will give a new term-like representation for multi-
dimensional trees, along with an adapted definition of finite-state automata for
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these structures, and prove the equivalence of the two notations. As a conse-
quence multi-dimensional trees can be seen and used as a direct generalization
of classical trees, and the full range of beneficial results for regular (tree) lan-
guages as known from formal language theory in the spirit of the Chomsky
Hierarchy can be exploited.

2 Preliminaries

2.1 Tree Basics

We presuppose familiarity with classical formal language theory (see for example
[1]). We will give some basic notions regarding trees (see for example [2,5]).

A ranked alphabet is a finite set of symbols, each associated with a rank
n ∈ N. By Σn we denote the set of all symbols in Σ with rank n. Traditionally,
every symbol has a single rank, but it is just as possible to admit several ranks
for one symbol, as long as there is a maximal rank and the alphabet stays finite.

The set TΣ of all trees over Σ is defined inductively as the smallest set of
expressions such that f [t1, . . . , tn] ∈ TΣ for every f ∈ Σn and all t1, . . . , tn ∈ TΣ .
A subset of TΣ is called a tree language. t1, . . . , tn are the direct subtrees of the
tree. The set subtrees(t) consists of t itself and all subtrees of its direct subtrees.

Let � be a special symbol of rank 0 (leaf label). A tree c ∈ TΣ∪{�} in which
� occurs exactly once is called context, the set of all contexts over Σ is denoted
by CΣ . For c ∈ CΣ and s ∈ TΣ, c[[s]] denotes the tree obtained by substituting
s for � in c. The depth of c is the length of the path from the root to �.

A (total, deterministic) bottom-up finite-state tree automaton (fta) is a tuple
A = (Σ, Q, δ, F ) where Σ is the ranked input alphabet, Q is the finite set of
states, δ is the transition function assigning to every f ∈ Σn and all q1, . . . , qn ∈
Q a state δ(q1 · · · qn, f) ∈ Q, and F ⊆ Q is the set of accepting states. The
transition function extends to trees: δ : TΣ −→ Q is defined such that if t =
f [t1, . . . , tn] ∈ TΣ then δ(t) = δ(δ(t1) · · · δ(tn), f). The language accepted by A
is L(A) = {t ∈ TΣ|δ(t) ∈ F}. Such a tree language is called regular.

It is well known that the Myhill-Nerode theorem carries over to regular tree
languages: Let L ⊆ TΣ. Given two trees s, s′ ∈ TΣ , let s ∼L s′ iff for every
c ∈ CΣ , either both of c[[s]] and c[[s′]] are in L or none of them is. Obviously,
∼L is an equivalence relation on TΣ . The equivalence class containing s ∈ TΣ is
denoted by [s]L. The index of L is the cardinality of {[s]L|s ∈ TΣ}. The Myhill-
Nerode theorem states that L is a regular tree language iff L is of finite index iff
L is the union of all equivalence classes [s]L with s ∈ L. It follows from this that
for every fta A, L(A) is of finite index. Conversely, if a tree language is of finite
index, we can easily build an fta AL recognizing L, with the states being the
equivalence classes of L, F = {[s]L|s ∈ L}, and, given some f ∈ Σk and states
[s1]L, . . . , [sk]L, δL([s1]L, . . . , [sk]L, f) = [f [s1, . . . , sk]]L. Moreover, this fta is the
unique minimal fta recognizing L, up to a bijective renaming of states.

The Pumping lemma for regular tree languages (see [5] for a proof):
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Lemma 1. For any regular tree language T ⊆ TΣ there is a number n ≥ 1
such that, if t ∈ TΣ has height k ≥ n, then, for some s ∈ TΣ and p, q ∈ CΣ,
t = q[[p[[s]]]] where p has depth ≥ 1 and q[[p[[. . . p[[s]] . . .]]

︸ ︷︷ ︸

k times

]] ∈ TΣ for all k ≥ 0.

2.2 Tree Adjoining Grammar

We will now give a definition for the grammar formalism Tree Adjoining Gram-
mar, which was designed under linguistic considerations:

Definition 1. A TAG is a 5-tuple 〈Σ, N, I, A, S〉, where Σ is the (non-ranked)
terminal labeling alphabet, N is the (non-ranked) nonterminal labeling alphabet
with N ∩ Σ = ∅, S is the start symbol with S ∈ N , I is a finite set of initial
trees where the root is labeled with S, and A is a finite set of auxiliary trees.

Nonterminals label inner nodes, terminals label all leaf nodes but one, which is
labeled by the nonterminal also labeling the root of the tree. This leaf is referred
to as the foot node. Initial and auxiliary trees are referred to as elementary trees.
New trees can be built by adjunction: A node in a tree is replaced by an auxiliary
tree and the subtree formerly rooted at that node is attached to the foot node
of the auxiliary tree.

A TAG can be enriched by associating a pair of constraints with every node,
stating if adjunction is required or not (obligatory adjunction (OA) constraint),
and which auxiliary trees may be adjoined at that node (selective adjunction
(SA) constraint). These constraints obliterate the roles of nonterminal and ter-
minal symbols and the start symbol, and hence the distinction between initial
and auxiliary trees as well. Rogers [9] defines non-strict TAGs:

Definition 2. A non-strict TAG is a pair 〈E, I〉 where E is a finite set of
elementary trees in which each node is associated with a label from some alphabet,
an SA constraint (a subset of E), and an OA constraint (Boolean valued). I ⊆ E

is a distinguished non-empty subset. Every elementary tree has a foot node.

Example 1. Let G = 〈{α, β}, {α}〉 be a TAG (over the alphabet {a, b, c, d, S}).
The only initial tree α and auxiliary tree β are given in Figure 1. Constraints
at the inner nodes and the foot node are: OA = 0 and SA = {β} for the ones
without a bar, OA = 0 and SA = ∅ for the ones labeled with ‘S̄’. The bar stands
for null adjunction, no adjunction is allowed at these nodes. G generates the
(non-context-free) string language anbncndn.

3 Multi-dimensional trees and automata

In this section we will introduce multi-dimensional trees and some related con-
cepts as presented by Rogers [8,9].

Starting from a definition of ordinary trees based on two-dimensional tree
domains, Rogers [8,9] generalizes the concept both downwards (to strings and
points) and upwards and defines labeled multi-dimensional trees based on a hi-
erarchy of multi-dimensional tree domains:
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Fig. 1. A TAG generating the (non-context-free) string language anbncndn.

Definition 3. Let d1 be the class of all dth-order sequences of 1s: 01 := {1}, and
d+11 is the smallest set satisfying (i) 〈〉 ∈ d+11, and (ii) if 〈x1, . . . , xl〉 ∈ d+11
and y ∈ d1, then 〈x1, . . . , xl, y〉 ∈ d+11. Let T

0 := {∅, {1}} (point domains). A
(d+1)-dimensional tree domain is a set of hereditarily prefix closed (d+1)st-order
sequences of 1s, i.e., T ∈ T

d+1 iff

– T ⊆ d+11,
– ∀s, t ∈ d+11 : s · t ∈ T ⇒ s ∈ T,
– ∀s ∈ d+11 : {w ∈ d1|s · 〈w〉 ∈ T} ∈ T

d.

A Σ-labeled Td (d-dimensional tree) is a pair 〈T, τ〉) where T is a d-dimensional
tree domain and τ : T −→ Σ is an assignment of labels in the (non-partitioned)
alphabet Σ to nodes in T . We will denote the class of all Σ-labeled Td as T

d
Σ.

Every d-dimensional tree can be conceived to be built up from one or more
d-dimensional local trees, that is, trees of depth at most one in their major di-
mension. Each of these smaller trees consists of a root and an arbitrarily large
(d − 1)-dimensional “child tree” consisting of the root’s children (a formal def-

inition of the set T
d,loc
Σ of all local trees over some alphabet Σ would be for

example T
d,loc
Σ = {〈T, τ〉|〈T, τ〉 is a Σ-labeled Td, and ∀s ∈ T : |s| ≤ 1}). Local

strings (i.e., one-dimensional trees), for example, consist of a root and a point as
its child tree. Local two-dimensional trees consist of a root and a string. Local
three-dimensional trees would have a pyramidal form, with a two-dimensional
tree as its base. There are also trivial local trees (consisting of a single root), and
even empty ones. Composite trees can be built from local ones by identifying the
root of one local tree with a node in the child tree of another (and adapting the
addresses in order to incorporate them into the newly created tree domain). Fig-
ure 2 shows examples of local and composite trees for the first four steps of the
hierarchy (only some composite trees are labeled, and in the three-dimensional
case, only the addresses of nodes that do not appear in the rightmost local tree
as well are given, for clarity. εd denotes an empty sequence of order d).

Rogers [9] also defines automata for labeled Tds:

Definition 4. A Td automaton with finite state set Q and (non-ranked) alphabet
Σ is a finite set of triples Ad ⊆ Σ × Q × T

d−1
Q .

The interpretation of a triple 〈σ, q, T 〉 ∈ Ad is that if a node of a Td is labeled
with σ and T encodes the assignment of states to its children, then that node
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Fig. 2. Local and composite trees for d = 0, 1, 2, 3

may be assigned state q. A run of a Td automaton on a Σ-labeled Td T = 〈T, τ〉
is a mapping r : T −→ Q in which each assignment is licensed by Ad. Note that
this implies that a leaf labeled with σ may be assigned state q only if there is
a triple 〈σ, q, ∅〉 ∈ Ad, where ∅ is the empty T(d − 1). If F ∈ Q is the set of
accepting states, then the set of (finite) Σ-labeled Td recognized by Ad is that
set for which there is a run of Ad that assigns the root a state in F .

T1 automata correspond to finite-state automata for strings, i.e., they rec-
ognize the regular languages. T2 automata correspond to (non-deterministic)
finite-state automata for trees, i.e., they recognize the regular tree languages.

One of the most important concepts in connection with multi-dimensional
trees is that of the yield of a tree. The yield of a two-dimensional tree is the
string formed by its leaf labels. In Rogers’ [9] words, it is a projection of the tree
onto the next lower level, i.e., its dimensions are reduced by one. Tds with d ≥ 3
have several yields, one for each dimension that is taken away, down to the one-
dimensional string yield. Note that when taking the yield of a tree with d ≥ 3,
some thought has to go into the question of how to interweave the child trees of
its local components to form a coherent (d− 1)-dimensional tree, since there are
often several possibilities. Rogers solves this by introducing special nodes called
heads and defines them such that in the child tree of every local component there
is a unique path of heads leading from the root to a leaf. This leaf is called the
foot of the child tree and marks the splicing point, i.e., the point where the yield
of the subtree containing it should be connected to the remaining part of the
overall yield. See [9] for the exact definition.

As is well known, the class of the string yields of languages recognized by
(two-dimensional) finite-state tree automata are the context-free languages. The
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Fig. 3. Ambiguity in the yield for d ≥ 3, resolved by marked foot nodes

class of the string yields of d-dimensional tree languages for d ≥ 3 are situated
between the classes of context-free and context-sensitive languages in the Chom-
sky Hierarchy, where for every d the class of string yields of the d-dimensional
tree languages is properly contained in the next (i.e., for d + 1).

Via the yield operation, Rogers has established a link between T3s and TAGs
by proving the equivalence of T3 recognizing automata and non-strict TAGs:

Theorem 1 ([9]). A set of Σ-labeled two-dimensional trees is the yield of a
recognizable set of Σ-labeled T3 iff it is generated by a non-strict TAG.

The representation of a TAG as three-dimensional trees obviously constitutes
a regularization: Trees are now constructed by adding local trees at the frontier
of another tree (see Figure 4), which is a regular process, instead of expanding
nodes at the interior. As follows from Theorem 1, the trees generated by the
original TAG can be extracted from the T3s using the yield operation.

Fig. 4. Adjunction in TAG expressed via three-dimensional trees

Rogers conjectures that there may also be potential linguistic applications
for structures of more than three dimensions, and gives an amelioration of the
standard TAG account of modifiers using four dimensions (see [8]).

In the next section we will introduce a new notation for multi-dimensional
trees that is a generalization of the one on which (classical) finite-state tree
automata are based, i.e., a representation that allows multi-dimensional trees to
be noted as expressions over a partitioned alphabet.
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4 Multi-dimensional trees as terms

We will use finite d-dimensional tree labeling alphabets Σd where each symbol
f ∈ Σd is associated with at least one unlabeled (d − 1)-dimensional tree t

specifying the admissible child structure for a root labeled with f (as before it is
possible to admit several child structure trees for one symbol). t can be given in
any form suitable for trees, as long as it is compatible with the existence of an
empty tree. For consistency’s sake we will use the definition of multi-dimensional
trees given below and write t as an expression over a special kind of “alphabet”
containing just one symbol ρ for which any child structure is admissible.

Let Σd
t for d ≥ 1 be the set of all symbols associated with t and Σ0 a set

of constant symbols. The set TΣd of all d-dimensional trees can then be defined
inductively as follows:

Definition 5. Let εd be the empty d-dimensional tree. Then

– TΣ0 := {ε0} ∪ Σ0, and

– for d ≥ 1: TΣd is the smallest set such that εd ∈ TΣd and f [t1, . . . , tn]t ∈ TΣd

for every f ∈ Σd
t , n the number of nodes in t, t1, . . . , tn ∈ TΣd and t1, . . . , tn

are rooted breadth-first in that order1 at the nodes of t.

Note how naturally this generalization comprises the concept of rank for labeling
symbols in two-dimensional trees: For every symbol f in Σ2

s for some string s,
s encodes the rank of f in its length, and specifies that the children of a node
labeled with f should be ordered linearly (as is normal in two-dimensional trees).
For d ≥ 3 the term “rank” of some symbol g ∈ Σd

t still makes sense if we indicate
the number of nodes in t by it – this way most of the results for two-dimensional
trees can be read directly as applying to multi-dimensional trees in general.

For some tree tp = f [t1, . . . , tn]t with f ∈ Σd
t , t1, . . . , tn are the direct subtrees

of the tree, and the rest of the usual tree terminology can be applied in a similar
manner. Also, for some fixed d, let � be a special symbol associated with εd−1

(leaf label). A tree c ∈ TΣd∪{�} in which � occurs exactly once is still called a
context, and c[[s]] for c ∈ CΣd and s ∈ TΣd is defined via substitution as before.

Our new notation is equivalent to the one by Rogers in the following sense:
For every recognizable set LR ⊆ T

d
Σ of d-dimensional trees over some alphabet

Σ in Rogers’ notation there is a translation Φ : LR −→ TΣd characterized by:

– For d = 0: 〈∅, ∅〉 7→ ε0 and, for some a ∈ Σ, 〈{1}, {1 7→ a}〉 7→ a.

– For d ≥ 1: 〈∅, ∅〉 7→ εd, 〈{〈〉}, {〈〉 7→ a}〉 7→ a for some a ∈ Σ, and, for some
f ∈ Σ, 〈{〈〉} ∪ Tx, {〈〉 7→ f} ∪ τx〉 7→ f [Φ(〈T1, τ1〉), . . . , Φ(〈Tn, τn〉)]t with
t = Φ(〈Tt, τt〉) where Tt is the set of first elements of the members of Tx

and τt is the unique function τt : Tt −→ {ρ}, and Ti = {z|〈ai〉 · z ∈ Tx} for
1 ≤ i ≤ n where ai is the ith element in the sequence obtained by ordering
the members of Tt inductively by length. τi is defined by τi(z) = τx(〈ai〉 · z).

1 This is an ad hoc settlement, any other spatial arrangement would do as well.
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Σd is obtained as follows: For each term tp ∈ Φ(LR) and each subterm f [t1, . . . ,
tn]t of tp, f ∈ Σd

t . We have restricted ourselves to recognizable sets of trees
(i.e., that are built from a finite set of local trees) because otherwise Σd may
be infinite, which is due to the fact that Rogers uses non-partitioned labeling
alphabets so that in theory arbitrarily many roots labeled with the same symbol
can have completely different child structures.

For every set LN ⊆ TΣd of d-dimensional trees in the notation given above
there is a translation Ψ : LN −→ T

d
Σ characterized by the following (the con-

struction of Σ from Σd is trivial):

– For d = 0: ε0 7→ 〈∅, ∅〉 and, for a ∈ Σ0, a 7→ 〈{1}, {1 7→ a}〉.
– For d ≥ 1: εd 7→ 〈∅, ∅〉, a 7→ 〈{〈〉}, {〈〉 7→ a〉} for some a ∈ Σd

εd−1 , and,
for some f ∈ Σd

s , f [s1, . . . , sm]s 7→ 〈{〈〉} ∪ Ty, {〈〉 7→ f} ∪ τy〉 where Ty =
⋃

1≤i≤m, x∈Si

〈bi〉·x with 〈Si, σi〉 = Ψ(si) for all i with 1 ≤ i ≤ m and 〈Ss, σs〉 =

Ψ(s) and bi is the ith element in the sequence obtained by ordering the
elements of Ss inductively by length. τy is defined by τy(〈bi〉 · z) = σi(z).

Both translations traverse the input structure recursively, which includes, for
every symbol, a recursion through the tree specifying the admissible child struc-
ture for that symbol, which in turn entails recursions through the dimensions
down to zero (as the child structure tree is translated, too). We will now show
the equivalence of the two notations by proving that Ψ(Φ(tp)) = tp for all tp ∈ L1

for some arbitrary recognizable L1 ⊆ T
d
Σ and Φ(Ψ(tq)) = tq for all tq ∈ L2 for

some arbitrary L2 ⊆ TΣd for corresponding alphabets Σ and Σd.

(1) Ψ(Φ(tp)) = tp for all tp ∈ L1: For d = 0 this is clear. We will prove the
claim for d ≥ 1 by induction on the depth of tp. For depth 0 (tp = 〈∅, ∅〉) and 1
(tp = a for some a ∈ Σ) this is also clear. Assume that the claim holds for all
d1 < d and all d-dimensional trees with depth k for some k ≥ 0. Assume that
tp = 〈{〈〉} ∪ Tx, {〈〉 7→ f} ∪ τx〉 for some f ∈ Σ has depth k + 1.

tp = 〈{〈〉} ∪ {〈a1〉} · T1 ∪ . . . ∪ {〈an〉} · Tn,

{〈〉 7→ f} ∪
⋃

z∈T1

(〈a1〉 · z 7→ τ1(z)) ∪ . . . ∪
⋃

z∈Tn

(〈an〉 · z 7→ τn(z))〉

(definition of Tx and τx, with Ti, τi, ai defined as above)

Ψ(Φ(tp)) = 〈{〈〉} ∪ 〈b1〉 · S1 ∪ . . . ∪ 〈bm〉 · Sm,

{〈〉 7→ f} ∪
⋃

z∈S1

(〈b1〉 · z 7→ σ1(z)) ∪ . . . ∪
⋃

z∈Sm

(〈bm〉 · z 7→ σm(z))〉

(definition of Ty and τy, with Si, σi, bi defined as above)

Ψ(Φ(tp)) = Ψ(f [Φ(〈T1, τ1〉), . . . , Φ(〈Tn, τn〉)]Φ(〈Tt,τt〉)) (definition of Φ).

By the induction hypothesis we know that 〈Ss, σs〉 = Ψ(s) = Ψ(Φ(〈Tt, τt〉)) =
〈Tt, τt〉 and consequently n = m and ai = bi for all 1 ≤ i ≤ n, m. In the same
way we know that 〈Si, σi〉 = Ψ(Φ(〈Ti, τi〉)) = 〈Ti, τi〉 for all i with 1 ≤ i ≤ n, m,
and thus Ψ(Φ(tp)) = tp. �
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(2) Φ(Ψ(tq)) = tq for all tq ∈ L2: Again, for d = 0 this is clear. We will prove
the claim for d ≥ 1 by induction on the depth of tq. For depth 0 (tq = εd) and
1 (tq = a for some a ∈ Σd

εd−1) this is also clear. Assume that the claim holds for
all d1 < d and all d-dimensional trees with depth k for some k ≥ 0. Assume that
tq = f [s1, . . . , sm]s for some f ∈ Σd

s has depth k + 1.

Φ(Ψ(tq)) = Φ(〈{〈〉} ∪ {〈b1〉} · S1 ∪ . . . ∪ {〈bm〉} · Sm,

{〈〉 7→ f} ∪
⋃

z∈S1

(〈b1〉 · z 7→ σ1(z)) ∪ . . . ∪
⋃

z∈Sm

(〈bm〉 · z 7→ σm(z))〉)

(definition of Ty and τy, with Si, σi, bi defined as above)

= f [Φ(〈T1, τ1〉), . . . , Φ(〈Tn, τn〉)]Φ(〈Tt,τt〉) (definition of Φ).

We know, by the relevant definitions, that 〈Tt, τt〉 = 〈{b1, . . . , bm}, {b1 7→ ρ, . . . ,

bm 7→ ρ}〉 = Ψ(s) and thus Φ(〈Tt, τt〉) = Φ(Ψ(s)) = s by the induction hypoth-
esis, which also implies m = n. By the same reflection, 〈Ti, τi〉 = 〈{z|〈bi〉 · z ∈
{〈b1〉} · S1 ∪ . . . ∪ {〈bm〉} · Sm},

⋃

z∈Si

(〈bi〉 · z 7→ σi(z))〉 = Ψ(si) and Φ(〈Ti, τi〉) =

Φ(Ψ(si)) = si for all i with 1 ≤ i ≤ n, m. This concludes the proof. �

We can now represent automata for multi-dimensional trees as a direct gen-
eralization of classical finite-state tree automata:

Definition 6. A (total, deterministic) finite-state d-dimensional tree automaton
is a quadruple Ad = (Σd, Q, δ, F ) with input alphabet Σd, finite set of states Q,
set of accepting states F ⊆ Q and transition function δ with δ(t(q1, . . . , qn), f) ∈
Q for every f ∈ Σd

t where t(q1, . . . , qn) encodes the assignment of states to the
nodes of t (i.e., t(q1, . . . , qn) is isomorphic to t and its nodes are labeled with
q1, . . . , qn breadth-first in that order if Q is taken as a partitioned alphabet in
which every element is associated with all the child structures it occurs with in δ).
The transition function extends to d-dimensional trees: δ : TΣd −→ Q is defined
such that if tp = f [t1, . . . , tn]t ∈ TΣd then δ(tp) = δ(t(δ(t1), . . . , δ(tn)), f). The
set of trees accepted by Ad is L(Ad) = {tp ∈ TΣd |δ(tp) ∈ F}.

The equivalence between this definition and the one by Rogers [9] is easy to see:
For two corresponding automata Ad = (Σd, Q, δ, F ) and Ad

R ⊆ ΣR ×QR ×T
d−1
QR

with the set of accepting states FR in the two notations the set of states Q and
QR and accepting states F and FR coincide, the construction of ΣR from Σd is
trivial, and Σd is constructed from Ad

R as follows: f ∈ Σd
t for all triples 〈f, q, t0〉 ∈

Ad
R, where t = Φ(〈T0, τ0+〉) for t0 = 〈T0, τ0〉 and τ0+ is the unique function τ0+ :

T0 −→ {ρ}. Most importantly, there is a one-to-one correspondence between
the elements of Ad

R and δ: Every triple 〈f, q, t0〉 ∈ Ad
R can be translated to an

assignment δ(Ψ(t0), f) = q of Ad, and every assignment δ(t(q1, . . . , qn), f) = q

of Ad to a triple 〈f, q, Φ(t(q1, . . . , qn))〉 ∈ Ad
R. From this and from the identical

state sets it follows that L(Ad
R) = Ψ(L(Ad)) and L(Ad) = Φ(L(Ad

R)).
With the term representation and the adapted definitions of contexts and

automata given in this section, results pertaining to the class of regular string
or tree languages as for instance the Myhill-Nerode theorem or the Pumping
lemma (see Section 2.1) and all their consequences (like the existence of a
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unique minimal finite-state automaton Ad
L recognizing L for every recognizable

d-dimensional tree language L) carry over directly to multi-dimensional trees.
Finally, we will define a yield function for multi-dimensional trees in the new

notation. As for d ≥ 3 the yield is not unambiguous (see Figure 3), the structures
have to be enriched with additional information. Assume that, for d ≥ 2, in every
tree tp ∈ TΣd every labeling symbol f ∈ Σd is indexed with a set S ⊆ {2, . . . , d}.
If x ∈ S then we call a node labeled by fS a foot node for the (x−1)-dimensional
yield of tp. For every subtree tq of tp the distribution of these foot nodes must
fulfil certain conditions:

(1) If tq has depth 0 the index set in its root label must contain d, otherwise
tq = fS [t1, . . . , tn]t with f ∈ Σd

t , S ⊆ {2, . . . , d}, and t1, . . . , tn ∈ TΣd must
have exactly one direct subtree ti ∈ {t1, . . . , tn} whose root labeling symbol
is indexed with a set containing d and this subtree is attached to a leaf in t.
In both cases, we will refer to that root as the d-dimensional foot node of tq.

(2) The foot nodes are distributed in such a way that for every n-dimensional
yield of tp with n < d, condition (1) is fulfilled as well.

For d ≥ 2, the direct yield of a tree tp ∈ TΣd is then defined recursively as

ydd−1(tp) =







εd−1 for tp = εd,

aS for tp = aS with a ∈ Σd
εd−1 and S ⊆ {2, . . . , d},

optp
(t1) for tp = fS [t1, . . . , tn]t with t1, . . . , tn ∈ TΣd , f ∈ Σd

t ,

t 6= εd−1, and S ⊆ {2, . . . , d},

where optp
(ti) for ti ∈ {t1, . . . , tn} is defined as the (d − 1)-dimensional tree

that is obtained by replacing the d-dimensional foot node of ti in ydd−1(ti) by
eR[optp

(tj), . . . , optp
(tk)]tx

, where eR with e ∈ Σd and R ⊆ {2, . . . , d} is the
label of the foot node, tx is the (d − 2)-dimensional child structure of the node
at which ti is attached in t and tj , . . . , tk are the direct subtrees of tp that are
attached (breadth-first in that order) at the nodes of tx.

The result ydd−1(tp) is a (d − 1)-dimensional tree over an alphabet Σd−1

containing at least all the node labels in ydd−1(tp), each associated at least with
the child structures it occurs with. Obviously, the string yield of a d-dimensional
tree for d ≥ 2 can be obtained by taking the direct yield d − 1 times.

5 Conclusion

We have provided a new, term-like representation for multi-dimensional trees
which establishes them as a direct generalization of classical trees. As a conse-
quence multi-dimensional trees can now be used as an input for (slightly adapted)
finite-state applications based on classical formal (tree) language theory, for ex-
ample in the areas of grammatical inference (shown in [15]) or natural language
processing. Via the concept of the yield of a multi-dimensional tree this also
means that these applications can now be conceived to be able to process even
some language classes that lie beyond context-freeness as well.
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Due to lack of space we have not furnished the full possible system of concepts
linked to recognizable multi-dimensional tree languages, but of course further
notions such as regular grammars can be formulated for these structures as well.
Also, various results can be ameliorated such as a less complex-looking, regular
version of the Pumping lemma for the string languages generated by TAGs [13]
relying on the correspondence to three-dimensional trees (see Section 3).

Another interesting project we propose for the near future would be to check
whether any implementations of known finite-state applications based on formal
tree languages can be adapted to multi-dimensional trees, or even if with this
generalization new implementations have become possible.
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