
Polynomial learning of regular multi-dimensional
tree languages in different settings:

A meta-algorithm / a unified perspective

Anna Kasprzik (kasprzik@informatik.uni-trier.de)

Technical report 10-1 – University of Trier

Abstract. We recapitulate regular inference from membership and equi-
valence queries, positive and negative finite samples. We present a meta-
algorithm which generalizes over as many settings involving one or more
of those information sources as possible and covers the whole range of
combinations allowing inference with polynomial complexity. We extend
the structures that are learned to trees over arbitrarily many dimensions.
The algorithm uses an observation table in order to retrieve the correct
set of equivalence classes and to document the process at the same time.
Keywords: Regular inference, queries, samples, multi-dimensional trees

1 Introduction

1.1 Learning in a bounded number of steps

The area of grammatical inference is concerned with learning algorithms, i.e.,
algorithms that infer a description (e.g., a grammar or an automaton) for an un-
known formal language from given information in finitely many steps. Various
conceivable learning settings have been outlined, and based on those quite a lot
of algorithms have been developed. One of the language classes studied most
thoroughly with respect to algorithmical learnability so far is the class of regular
languages on the Chomsky Hierarchy.

In our model of choice we assume that a learner should take a finite number
of steps bounded by some measure with respect to the target and then present a
solution. Motivated by several existing algorithms for the inference of a regular
language L we consider four different kinds of information sources that can be
accessible to a learner. Two of them consist in a teacher, or oracle, that is able
to answer queries pertaining either to the membership status of an element w
(membership queries (MQs); ‘w ∈ L?’) or to the correctness of a description A
for the target (equivalence queries (EQs); ‘L = L(A)?’), and the teacher returns
a counterexample cL(A) ∈ (L\L(A))∪(L(A)\L) in case of non-equivalence. The
other two kinds are finite subsets of L (positive samples), or of its complement
(negative samples), which in addition can fulfil certain significant properties with
respect to a canonical description of L.

It has been shown (see [1–3]) that regular languages cannot be learned from
one kind of query or sample only. Three well-studied combinations of two such

2 Anna Kasprzik

sources favourable to regular inference join MQs and EQs (see [4, 5]), MQs and a
finite positive data set (see [6, 7]), and finite positive and negative data sets (see
[8, 9]). In these cases the successful identification of L is possible with a poly-
nomially bounded number of steps or queries depending on the size of a correct
minimal target description and of the data received throughout the process.

1.2 Why multi-dimensional trees?

Most algorithms for the settings mentioned in the previous subsection have been
adapted to regular tree languages (see [5, 7, 10]). This represents a first step of
generalization when one conceives strings as non-branching trees with (a special
symbol inserted at the beginning of the string as label for the single leaf,) the
symbols of the string as node labels and the last symbol labeling the root. (Also
note that consequently any negative results for strings apply to trees, and pos-
itive results for trees apply to strings as well). It is relatively easy to continue
this extension to a certain generalized notion of trees over an arbitrary but fixed
number of dimensions – we have done so for the setting joining MQs and EQs in
[11] and we intend to complete the picture for further settings in the following.

So-called multi-dimensional trees were studied by Rogers (see [12, 13]) in an
attempt to handle the linguistic formalism of Tree Adjoining Grammars (TAG;
see [14]), which was developed in order to deal with certain non-context-free
phenomena in natural languages, with regular means. Rogers mainly considers
three-dimensional trees but also mentions some linguistic phenomena where four
dimensions allow a more satisfactory analysis (see [12], Section 9.2). Thus, by
learning multi-dimensional tree languages and then conceiving their elements
as structural information (i.e., as a means to represent individual derivation
processes) we can claim to be even able to infer string languages from a class
beyond context-freeness. A closer study of their properties may be fruitful for
computational linguistics as well as for formal language theory in general.

As Rogers contents himself with using an unpartitioned labeling alphabet,
the author of this paper has developed a term-like notation for multi-dimensional
trees in [15, 11] in order to permit the extension of all kinds of algorithms working
with term-based tree representations to this more general kind of trees.

1.3 Content of this work

So we contribute to the completion of the picture under at least two aspects: We
consider learning regular languages of tree-like structures comprising strings and
classical trees, and we present a meta-algorithm intended as a generalization of
existing and conceivable learning algorithms based on the retrieval of the correct
set of equivalence classes under the Myhill-Nerode relation (with a polynomially
bounded complexity) from a combination of the information sources introduced
above. This includes a brief discussion of some combinations for which no such
well-studied algorithms exist as for those named in Subsection 1.1. The meta-
algorithm is what is sometimes referred to as specializing in the sense that it
starts out with a single class which is then successively split up. It is based on the

Learning multi-dimensional tree languages 3

system of an observation table which is a versatile and relatively abstract means
to perform and document the inference process at the same time. We adapt the
corresponding notions and terminology to the most general extent possible as
we go along, and we have tried to factorize the various subprocedures as widely
as possible as well. We give information on the (different kinds of) complexity of
the algorithm for various input constellations (Subsection 3.7), and we compare
four alternative methods of processing a counterexample in the Appendix.

2 Preliminaries

Multi-dimensional trees are structures over an arbitrary but fixed number of
dimensions. They can be conceived as a generalization of the classical tree notion
to the effect that the children of a node are not merely ordered but arranged into
another multi-dimensional structure of the overall number of dimensions minus
1. Thus, the base is given by zero-dimensional trees or points, one-dimensional
trees correspond to strings, and classical trees are two-dimensional, where the
fact that the children of a node are arranged in a linear order is recaptured in
the perspective that they form a (one-dimensional) string.1

We denote sequences (like tuples) using angle brackets, and the concatenation
operation for sequences by the symbol ‘·’. Let ‘•’ be a special counting symbol.

Definition 1. Let 0• := {•}, and let d• for d ≥ 1 be the smallest set such that
〈〉 ∈ d• and 〈x1, . . . , xn, y〉 ∈ d• for 〈x1, . . . , xn〉 ∈ d•, n ≥ 1, and y ∈ d−1•. We
define the set of 0-dimensional tree domains by T0 := {∅, {•}} and the set Td of
all d-dimensional tree domains for d ≥ 1 as the set of all finite T ⊆ d• satisfying
∀x, x′ ∈ d• : x ·x′ ∈ T⇒ x ∈ T and ∀y′ ∈ d• : {y′′ ∈ d−1• | y′ · 〈y′′〉 ∈ T} ∈ Td−1.

For d ≥ 1, we define a d-dimensional tree labeling alphabet Σd as a set of symbols
in which each symbol is associated with some (d− 1)-dimensional tree domain.
Let Σd

t denote the set of all symbols associated with t ∈ Td−1, and let εd denote
the empty d-dimensional tree without nodes. We define the rank rank(f) of a
symbol f ∈ Σd

t as the number of nodes in t. The set TΣd of all d-dimensional
trees over Σd for some given d ≥ 0 and alphabet Σd shall be defined as follows:

Definition 2. Let Σ0 be a set of (constant) symbols, and let TΣ0 := {ε0}∪Σ0.
For d ≥ 1 we define TΣd as the smallest set of expressions such that εd ∈ TΣd
and s = f [s1, . . . , sn]t ∈ TΣd for all f ∈ Σd

t with t ∈ Td−1 where (uniformly
throughout this work) n is the number of nodes in t and s1, . . . , sn ∈ TΣd \ {εd}

1 Note the difference to the more common generalization from strings to trees sketched
in Subsection 1.2: From the new perspective strings are not two-dimensional trees in
which “accidentally” no node has more than one child but one-dimensional trees in
which the child structure of every node is a (zero-dimensional) point by definition.
However, we would still arrange the symbols of the string in the same way with
the last symbol as label for the overall root in a conceivable formal translation of a
classical string into a one-dimensional tree.

4 Anna Kasprzik

are rooted breadth-first2 in that order at the nodes of a (d− 1)-dimensional tree
over the tree domain t. For t = 〈〉 we simply write s as f . We call s1, . . . , sn the
direct subtrees of s, and we define the set of all subtrees of s as Subt(s) := {s}∪
Subt(s1) ∪ . . . ∪ Subt(sn), and Subt(S) := {s′ | ∃s′′ ∈ S : s′ ∈ Subt(s′′)} for S ⊆
TΣd . A node labeled by a symbol from Σd

〈〉 is a (d-dimensional) leaf. The depth
dpt(s) of s is defined as the length of the longest path from some d-dimensional
leaf to the root in s, and the size |s| of s (“big”, “small”) is defined as the number
of nodes in s. Any set L ⊆ TΣd represents a d-dimensional tree language.

From here on we will assume that Σd is always finite. This way the maximal
rank in Σd is fixed, which is of some importance for reflections on complexity.

Definition 3. Let � /∈ Σd be a special symbol associated with 〈〉 (a leaf label).
A tree e ∈ TΣd∪{�} in which � occurs exactly once is called a context, and the set
of all contexts in TΣd∪{�} is denoted by CΣd . For e′ ∈ CΣd and s ∈ TΣd \ {εd},
e′[[s]] denotes the tree obtained by substituting s for the leaf labeled by � in e′.
For e′′ ∈ CΣd , define cdp(e′′) as the length of the path from � to the root in e′′.
For L ⊆ TΣd or L ⊆ CΣd , Cont(L) := {e′′ ∈ CΣd | ∃s′ ∈ Subt(L) : e′′[[s′]] ∈ L}.

Definition 4. For d ≥ 1, a d-dimensional finite-state tree automaton (d-FTA)
A is a tuple 〈Σd, Q, F, δ〉 where Σd is a finite d-dimensional tree labeling alphabet,
Q is the finite set of states, F ⊆ Q is the set of accepting states, and δ is the
transition relation defined by a set of mappings of the form 〈f, t(q1, . . . , qn)〉 7→ q
with f ∈ Σd

t , q ∈ Q, and t(q1, . . . , qn) denoting a (d − 1)-dimensional tree over
t whose nodes are labeled breadth-first in that order by q1, . . . , qn ∈ Q. From
this relation we can derive a function δ∗ : TΣd −→ 2Q with δ∗(f [s1, . . . , sn]t) =
{q ∈ Q | ∃〈f, t(δ∗(s1), . . . , δ∗(sn))〉 7→ q ∈ δ}. The language accepted by A is
L(A) := {s ∈ TΣd | δ∗(s) ∈ F} (and is classified as recognizable or regular).
We will also write A(s′) = 1 for s′ ∈ TΣd if δ∗(s′) ∩ F 6= ∅ and A(s′) = 0 if
δ∗(s′) 6= ∅ ∧ δ∗(s′) ∩ F = ∅, and A(s′) = ∗ if δ∗(s′) = ∅.
If ∀〈f, t(q1, . . . , qn)〉 7→ q ∈ δ : ¬∃〈f, t(q1, . . . , qn)〉 7→ q′ ∈ δ : q′ 6= q then A is
deterministic (a DFTA), and we write δ∗(s′′) = q′′ for δ∗(s′′) = {q′′}.
If A is a DFTA and for all t ∈ Td−1 with Σd

t 6= ∅ and all f ∈ Σd
t , q1, . . . , qn ∈ Q

there is 〈f, t(q1, . . . , qn)〉 7→ q′′′ ∈ δ then A is total.

Let the equivalence relation ≡L for a language L ⊆ TΣd be defined such that
r ≡L s for r, s ∈ TΣd iff e[[r]] ∈ L ⇔ e[[s]] ∈ L for all e ∈ CΣd . The index IL of
L is the number |{[s0]L | s0 ∈ TΣd}| where [s0]L denotes the equivalence class
containing s0. The Myhill-Nerode theorem (see for example [16] for strings, and
2 The breadth-first traversal is of course an ad hoc settlement, any other spatial ar-

rangement based on a total ordering of the nodes of t would do as well. Although the
expression ‘breadth-first’ may seem slightly incongruous in connection with multi-
dimensionality at first glance we use it to evoke the correct intuition of an ordering
where (a) a node has precedence over all other nodes it dominates with respect to
any dimension, and (b) a node dominated by another node p with respect to some
dimension has precedence over all nodes dominated by p with respect to a higher
dimension, as opposed to ‘depth-first’ where in (b) precedence is reversed.

Learning multi-dimensional tree languages 5

[17] for classical trees) states that IL is finite iff L is recognizable by a finite-
state automaton. With the definition of a d-FTA above it is easy to see that the
theorem naturally extends to multi-dimensional trees as well. As a consequence,
for every recognizable d-dimensional tree language L there is a total DFTA AL
with IL states and each state recognizing a different equivalence class under ≡L.
The index IL is the smallest possible number of states in a total DFTA for L,
and AL is unique up to isomorphism. If TΣd \ Subt(L) 6= ∅ there is a unique
non-total DFTA for L with one less state (i.e., it lacks the failure state) and the
smallest possible number of transitions. In cases where it matters, let us denote
the total minimal DFTA for L by A•L and the not necessarily total minimal
DFTA without a failure state for L by A◦L (but note that for TΣd \ Subt(L) = ∅
A•L and A◦L coincide).

The type of learner we will consider tries to infer a state-minimal DFTA for
an unknown regular tree language L over some fixed alphabet Σd from given
information. It solves this task principally by means of an observation table in
which it keeps track of the information it has obtained and processed so far. The
rows of the table are labeled by trees from some set S, the columns are labeled
by contexts from some set E.

Definition 5. Let L ⊆ TΣd . The triple 〈S,E, obs〉 with S ⊆ TΣd and E ⊆ CΣd
finite, E non-empty, is called an observation table if S is subtree-closed, i.e., for
all f [s1, . . . , sn]t ∈ TΣd with f ∈ Σd

t and s1, . . . , sn ∈ TΣd , if f [s1, . . . , sn]t ∈ S
then s1, . . . , sn ∈ S, and obs : TΣd × CΣd −→ {0, 1, ∗} is a total function with

obs(s, e) =

1 if e[[s]] ∈ L is confirmed,
0 if e[[s]] /∈ L is confirmed,

if unknown.

The row of an element s ∈ S is defined as row(s) := {(e, obs(s, e)) | e ∈ E}, and
row(S) := {row(s) | s ∈ S}. A row or table not containing the ∗-symbol is called
complete. Two elements r, s ∈ S are called obviously different (OD; denoted by
r <> s) iff ∃e ∈ E such that obs(r, e) 6= obs(s, e) for obs(r, e), obs(s, e) ∈ {0, 1}.

The row labeling set S is further partitioned into two sets red and blue (accord-
ing to criteria proper to each learner), i.e., red ∪ blue = S ∧ red ∩ blue = ∅.
We call the elements of redSΣd := {f [s1, . . . , sn]t ∈ S \ red | s1, . . . , sn ∈ red}
the one-symbol extensions of red (from S). As an additional condition, blue
must contain redSΣd as a subset.During the learning process, elements are moved
successively from blue to red and blue is filled up with the smallest set of trees
such that blue still meets the given condition from a third “supply” set white.

Definition 6. Let T = 〈S,E, obs〉 be an observation table, and S = red∪blue.
T is closed iff ¬∃s ∈ blue : ∀r ∈ red : r <> s. T is weakly consistent iff, for all
t ∈ Td−1, f ∈ Σd

t , s1, . . . , sn, s′1, . . . , s
′
n ∈ S, ¬(si <> s′i) for all i with 1 ≤ i ≤ n

and f [s1, . . . , sn]t, f [s′1, . . . , s
′
n]t ∈ S implies ¬(f [s1, . . . , sn]t <> f [s′1, . . . , s

′
n]t).

We add ‘weakly’ because the ∗-symbol may mask differences that are not obvious
yet. Definition 7 rules out the cases in which hidden differences might prove fatal:

6 Anna Kasprzik

Definition 7. T is strongly consistent iff it is weakly consistent and, for all
s ∈ S and all r ∈ red: If ¬(s <> r) then row(s) and row(r) must be complete.

From a table T = 〈S,E, obs〉 with S = red ∪ blue 6= ∅ we can derive a d-FTA
AT = 〈Σd, QT , FT , δT 〉 defined by

– QT := row(red),
– FT := {row(s) | s ∈ red ∧ obs(s,�) = 1}, and
– δT := {〈f, t(q1, . . . , qn)〉 7→ q | f ∈ Σd

t ∧ ∃s1, . . . , sn ∈ red : ∃s′ ∈ S :
s′ = f [s1, . . . , sn]t ∧ ∀i ∈ {1, . . . , n} : qi = row(si) ∧ ¬(q <> row(s′))}.

Note that as S is subtree-closed ¬∃q′ ∈ QT : L(q′) = ∅, i.e., all states can be
reached. If T is not closed AT cannot be total (as there is at least one one-symbol
extension of red labeling a blue row that is not a state of AT , and thus there
is no transition for that symbol from the corresponding rows in red). If T is
strongly consistent then AT is deterministic. A DFTA derived from a closed and
strongly consistent table T is minimal with respect to the number of states, i.e.,
IL(AT) − 1 ≤ |QT | ≤ IL(AT). (Also note that while theoretically AT may have
a failure state without being total this never happens with tables that are built
by any concrete learning algorithm considered here.)

An aside on definitions: The definition of an observation table for strings
in [4] features the additional condition that E should be suffix-closed, and the
corresponding definition for classical trees in [5] accordingly features the condi-
tion that (a) ∀e ∈ E : {e′ ∈ CΣd | ∃e′′ ∈ CΣd : e′[[e′′]] = e} ⊆ E (“generalization-
closedness”) and moreover requires that (b) ∀s ∈ Subt(e) : s /∈ CΣd ⇒ s ∈ red
(“S-composure”). Note that none of these properties is essential for the extrac-
tion of an automaton from a table – the only relevant function of E is to create
rows that can be compared cell by cell. – The article [5], as a (in contrast to
the more refined version [18]) relatively straightforward adaptation of [4], also
contains a lemma stating that if T is a complete closed and strongly consistent
observation table then AT (c[[s]]) = 1 iff c[[s]] ∈ L for all s ∈ S and all c ∈ E.
However, this only holds for tables fulfilling the conditions (a) and (b) given
above (otherwise there may be transitions needed to parse c[[s]] correctly that
are not provided by red ∪ blue). – Thus, unless L(AT) = L the automaton
AT may fail to predict the content of a cell in T correctly. However, we must
note as a new lemma that the essential point from [4] and [5] stays preserved:
(1) If T is (not necessarily complete or closed but) strongly consistent then AT
is a state-minimal DFTA for L(AT) with IL(AT) − 1 or IL(AT) states. This is
a direct consequence of the Myhill-Nerode theorem and of the definition of QT .
(2) As soon as L(AT) = L, we know that AT has IL − 1 or IL states, and the
strong consistency of T ensures concurrence with the transitions in A•L.

All learning algorithms figuring in this paper can be conceived to start out
with a provisional set of equivalence classes and then try and converge to the
partition induced by the equivalence ≡L for the target language L by splitting
up or merging these classes, according to the obtained information. In a table
T = 〈S,E, obs〉 the set S contains trees whose rows are candidates for states in

Learning multi-dimensional tree languages 7

the minimal DFTA for L, and E contains experiments proving that two elements
of S do belong to distinct classes and should represent two different states.

Another concept we will need is the subtree automaton for a finite set of trees.

Definition 8. Define the subtree automaton (STA) for a finite set X ⊆ TΣd as
STA(X) := 〈Σd, Q, F, δ〉 with Q = {{s} | s ∈ Subt(X)}, F = {{s} | s ∈ X}, and
δ = {〈f, t(s1, . . . , sn)〉 7→ f [s1, . . . , sn]t |f ∈ Σd

t ∧ s1, . . . , sn, f [s1, . . . , sn]t ∈ X}.

The states of STA(X) are labeled by singleton sets of trees. Our meta-algorithm
will unite some of these sets during the learning, according to the information
that has been processed so far, so that at each step each state is labeled by the
set of all trees ending in it the learner has found up to the present stage.
Finally, we will have to classify language samples that are given to the learner:

Definition 9. A finite set X+ ⊆ L is representative for a tree language L ⊆ TΣd
with A◦L = 〈Σd, Q, F, δ〉 iff for every transition 〈f, t(q1, . . . , qn)〉 7→ q ∈ δ there is
f [s1, . . . , sn]t ∈ Subt(X+) with qi = δ∗(si) for 1 ≤ i ≤ n, and for all accepting
states qf ∈ F there is an element s ∈ X+ with δ∗(s) = qf .
A finite set X− ⊆ TΣd \ L is separative for L iff for all q1, q2 ∈ Q with q1 6= q2
there is s′′ ∈ X−, s′ ∈ TΣd , and e ∈ CΣd with s′′ = e[[s′]] such that δ∗(s′) = q1 ∨
δ∗(s′) = q2 and, for all s1, s2 ∈ TΣd with δ∗(s1) = q1 and δ∗(s2) = q2, we have
(δ∗(e[[s1]]) ∈ F ∧ δ∗(e[[s2]]) ∈ (Q \ F)) ∨ (δ∗(e[[s2]]) ∈ F ∧ δ∗(e[[s1]]) ∈ (Q \ F)).

Intuitively, X− is separative for L if for any two distinct states of A◦L there is
s0 ∈ X− consisting of a subtree ending in one of them and a context proving
that these states represent different classes under ≡L based on the fact that it
leads from one of them into an accepting state but not from the other.

3 Meta-algorithm GENMULTI

The input of our meta-algorithm consists of a tuple IP = 〈EQ ,MQ , X+, X−〉
containing two Boolean values indicating if there is a teacher answering EQs
and/or MQs, respectively, a positive, and a negative finite sample of the target
language L in that order. We assume that the components of IP are visible as
global variables throughout all procedures, as well as all other variables that
are not explicitly passed on, such as the set C of all counterexamples obtained
so far.3 Let T = 〈S,E, obs〉 with S = red ∪ blue and O = 〈Σd, QO, FO, δO〉
always be defined by the current values of their respective components, with
obs(s, e) := ∗ if the value has not been set explicitly. We also give the smallest
alphabet Σd such that L ⊆ TΣd .4

3 We maintain C in order to extract the maximal amount of information and thus to
keep down complexity in practice since a counterexample may yield several distinc-
tions, and some of those may not even be possible to detect at the time when the
counterexample is first retrieved. Literary note: A similar idea was studied for the
case of learning classical regular tree languages from MQs and EQs in [19].

4 For reasons of convenience we assume εd /∈ L. If this option is desired nevertheless
it can be introduced and handled via special cases. Moreover, we assume that L

8 Anna Kasprzik

3.1 Getting started

We will now present GENMULTI step by step. The main body is simple:
Input: A 4-tuple IP = 〈EQ ,MQ , X+, X−〉, an alphabet Σd.

Output: A d-DFTA.

1 INIT;

2 while white 6= ∅
3 if T is not closed CLOSURE

4 else NEXTDIST

5 return AT .

The table T is initialized. Then, while there is still information left to process
(‘white 6= ∅’) we check for closedness and if T is closed we check if we can still
find states in our current hypothesis automaton that should be split up.
procedure INIT

6 P := POOL;

7 O := MQORACLE;

8 red := {a} for some arbitrary a ∈ Σd
〈〉;

9 blue := P ∩ (Σd
〈〉 \ {a});

10 E := {�};
11 white := P \ (red ∪ blue);

12 C := ∅;
13 UPDATE.

INIT initializes the membership oracle O (see procedure MQORACLE), and T .
It resorts to the procedure POOL in order to obtain the set of all trees we want to
consider as candidates under the given input at present. red is the set of already
processed candidates that were fixed to represent a state in the final automaton,
and is initialized with a tree whose single node is labeled by an arbitrarily chosen
leaf labeling symbol from Σd

〈〉, whereas blue contains candidates representing
states to which there exists a transition from a combination of states in red.
white is the set of remaining candidates from which blue will be filled up. The
value of C is set to ∅ to indicate that no counterexample has yet been retrieved.
The cells of the initial table are filled by UPDATE (Subsection 3.5).
procedure MQORACLE

14 if MQ = 1 return OL else return STA(X+).

MQORACLE returns the best membership oracle the learner can hope for at
the time. For MQ = 1 this is trivial: We instantiate it with a total DFTA OL
recognizing L. Otherwise the oracle is initialized by the subtree automaton for
X+ (which is the all-rejecting automaton if X+ = ∅). This imperfect oracle is
developed further during the process every time the learner gains a new insight.

contains at least one tree of depth at least 1 (which also implies d > 0). This seems
justifiable as finite languages are trivial to learn.

Learning multi-dimensional tree languages 9

procedure POOL

15 if IP = 〈0, 1, ∅, X−〉 ∧ X− 6= ∅
X+ := {s ∈ TΣd | dpt(s) ≤ d

√
2m− + 1 e ∧ O(s) = 1}

16 if EQ = 0 ∧ X+ 6= ∅ return Subt(X+)

17 return {s′′ ∈ TΣd | dpt(s′′) ≤ 1}.

POOL builds a suitable set of candidates using information available at the
moment. If EQ = 0 and X+ 6= ∅ then POOL returns Subt(X+) (line 16), other-
wise P is initialized with the set of all trees up to depth 1. Note that if POOL
uses X+ the output automaton will not contain a failure state. If X− 6= ∅ and
MQ = 1 (line 15) we depend on X− being separative because then we can ex-
tract information about the maximal number of states in AL from X− and build
a representative sample via MQs: Let m− be the number of nodes in all trees in
X− added up, which is also the maximal cardinality of Cont(X−). In the worst
case, every element of Cont(X−) distinguishes a different one of the (I2

L− IL)/2
possible state pairs. From the resulting inequation m− ≤ (I2

L − IL)/2 we com-
pute an upper bound for IL (the rather ugly term d1 +

√
2m− + 1 e) and take

the set of all members of L up to that depth as a positive sample X+ since the
longest state repetition-free path in L can be at most of length IL − 1. Observe
that building this X+ can take exponentially many MQs with respect to |X−|.

3.2 Procedures of the main loop

procedure CLOSURE

18 while T is not closed

19 find s ∈ blue such that ∀r ∈ red : r <> s;

20 red := red ∪ {s};
21 blue := (blue \ {s}) ∪

{s′ ∈ white | ∃f ∈ Σd
t : ∃r1, . . . , rn ∈ red : s′ = f [r1, . . . , rn]t};

22 UPDATE.

CLOSURE is straightforward, it successively finds all elements preventing the
closedness of T , moves them to red, and calls UPDATE to fill up the table.
Note that since CLOSURE is the only procedure moving elements to red and
since it only moves them if they are OD from every element in red, the elements
of red are all pairwise OD as well, and every equivalence class of the target L
does not have more than a single(!) official representative in the output.

procedure NEXTDIST

23 x := FINDNEXT;

24 if x 6= 〈εd,�〉 MAKEOD(x)

25 else if MQ = 1 ∧ X+ = ∅ white := ∅
26 else blue := blue ∪ white;

27 UPDATE.

NEXTDIST relies on T being closed and calls FINDNEXT to look for another
candidate that should be fixed as a distinct state of the solution. Then T is
modified by MAKEOD such that CLOSURE will move this element to red in the

10 Anna Kasprzik

next call. If no such candidate can be found FINDNEXT returns a pair 〈εd,�〉
(and thus the search for a next candidate can be seen as a test for termination).
In that case white is emptied for the cases in which we learn from queries only,
for all other cases the remaining candidates are moved to blue in order not to
lose the information contained in the pool and T is updated once more.
procedure FINDNEXT

28 if MQ = 1 ∧ (EQ = 1 ∨ X+ 6= ∅)
29 if COMPATIBLE(AT ,O, C)
30 if ∃s0 ∈ S ∪ white : ∃e0 ∈ E ∪ Cont(S ∪ white) :

AT (e0[[s0]]) 6= O(e0[[s0]]) ∧ (AT (e0[[s0]]) = ∗ ⇒ O(e0[[s0]]) = 1)

31 (choose a smallest s0 and e0); C := C ∪ {e0[[s0]]}
32 else if EQ = 1 ∧ EQ(AT) = ‘no’ C := C ∪ {cL(AT)}
33 else C := ∅
34 return MINIMIZE(PREVENT(AT ,O, C))
35 else if MQ = 0 MERGENEXT;

36 if ∃s ∈ blue : ∀s′ ∈ blue : |qs′ | = 1⇒ s � s′ (qs′ ∈ QO)
37 return 〈s,�〉
38 return 〈εd,�〉.

procedure COMPATIBLE(A,A′, X) [X ⊆ TΣd]
39 if ∀x ∈ X : A(x) = 1⇔ A′(x) = 1 return true else return false.

procedure PREVENT(A,A′, X) [X ⊆ TΣd]
40 if ∃x ∈ X : A(x) 6= A′(x) ∧ A′(x) = 0⇒ A(x) 6= ∗
41 (choose a smallest x); return x

42 else return εd.

procedure MINIMIZE(c)

43 if c = εd return 〈εd,�〉
44 if ∃e ∈ CΣd : ∃s ∈ blue : e[[s]] = c ∧

¬∃r ∈ red : ¬(r <> s) ∧ (O(c) = 1⇔ O(e[[r]]) = 1)

45 (choose a smallest s); return 〈s, e〉
46 find e′ ∈ CΣd, s′ ∈ blue, r′ ∈ red such that e′[[s′]] = c ∧

¬(r′ <> s′) ∧ (O(c) = 1⇔ O(e′[[r′]]) = 1);

47 return MINIMIZE(e′[[r′]]).

We discuss the cases MQ = 1 and MQ = 0 in FINDNEXT separately below.

3.3 The case MQ = 1 in FINDNEXT

If MQ = 1 we can exploit a counterexample. If the set C no longer contains a
counterexample (which we can check via the procedure COMPATIBLE) we try
to find another one. First note that AT might not predict all cells of the table
correctly (see Section 2 above) and thus we can find a counterexample in T itself
without asking further queries. Otherwise, the learner tries to retrieve one from
an extension of T augmented with all candidates currently available from white
and with contexts that can be constructed using the set of candidates and E.
For the setting where X+ is used this extension corresponds to a table Text =

Learning multi-dimensional tree languages 11

〈Subt(X+), E∪Cont(X+), obsext〉, and we can show that if X+ is representative
we can always derive a counterexample from Text because Subt(X+) must contain
trees that are either OD from all red elements or make Text inconsistent:

Lemma 1. Let T = 〈S,E, obs〉, and let X+ be representative for L. As long
as white 6= ∅ we can derive a counterexample for AT from the extended table
Text = 〈Subt(X+), E ∪ Cont(X+), obsext〉 with Text complete.

Proof: Observe that as Text is complete the function obsext is unambiguously
defined. Either Text has the right number of distinct rows and represents a DFTA
for L so that as T cannot have that number of distinct rows yet there must be
at least one s0 ∈ white OD from all red elements. We distinguish two cases:

– AT (s0) ∈ {0, 1}: As s0 is OD from all red elements there must be e0 ∈
E ∪ Cont(X+) distinguishing s0 from the state assigned to s0 by AT .

– AT (s0) = ∗ (and consequently AT (e0[[s0]]) = ∗): As s0 ∈ Subt(X+) we can
find e0 ∈ Cont(X+) with e0[[s0]] ∈ X+ (and consequently O(e0[[s0]]) = 1).

In both cases e0[[s0]] is a counterexample for AT (as defined in line 30 – note that
we need the second condition because O is total and AT does not have to be).
If Text does not represent a DFTA for L we exploit the fact that it comprises
the entire information provided by X+. Text corresponds to a table that would
have been built at an intermediate stage by the algorithm learning from MQs
and a positive sample in [7] (or rather our adaptation to multi-dimensional trees
integrated into GENMULTI), and consequently the lemmata proven in [7] can
be applied to Text as well: Lemma 5 states that as soon as the table is consistent
it represents a DFTA for L. Lemma 2 states that as long as the table does not
represent a DFTA for L it features an inconsistency involving s1, . . . , sn, s′1, . . . ,
s′n, s, s

′ ∈ Subt(X+), t ∈ Td−1, f ∈ Σd
t with s = f [s1, . . . , sn]t, s′ = f [s′1, . . . , s

′
n]t

such that ¬(si <> s′i) for all i with 1 ≤ i ≤ n but s <> s′ with s ∈ L ∧ s′ /∈ L.
Since s <> s′ there must be e ∈ E ∪Cont(X+) distinguishing s from s′. As T is
closed and (due to the fact that all red elements are pairwise OD and that T is
complete) strongly consistent s and s′ cannot be both in S, and as ¬(si <> s′i)
for all i with 1 ≤ i ≤ n, we have δ∗T (s) = δ∗T (s′) and δ∗T (se) = δ∗T (s′e), and
consequently either se or s′e must be a counterexample with respect to AT . �

Observe that for the setting where we learn from queries only line 30 corresponds
to a consistency check for a table T ′ with red′ = red∪blue and blue′ = white
as in that case we define white as the set of all one-symbol extensions of S.
By requiring the learner to look for a smallest s0 and e0 (successively) we would
like to hint at a possibility to process the alternatives outlined above in a favour-
able order (we would divide the search process into three stages, starting with a
table T ′′ = 〈S ∪white, E, obs ′′〉 and then extending the set of experiments in
two steps as suggested by line 30) in order to reduce complexity in practice.
If all these attempts fail but EQ = 1 an EQ is asked. If the answer is negative
the learner obtains a new counterexample from the teacher. Otherwise, since we
cannot find another counterexample the learning process is – successfully or not
– concluded, and C must be reset to ∅ in order to pass this information on.

12 Anna Kasprzik

Any actual counterexample c ∈ C (which can be retrieved using the procedure
PREVENT) must have at least one subtree representing an undetected distinct
state of the target but this subtree might not be in blue. FINDNEXT calls
MINIMIZE to look for a blue subtree s of c that can be replaced by a red
tree r with the same row such that the result is not a counterexample since if
such a subtree exists then r and s should be OD and s is returned as a suitable
candidate, along with the context e fulfilling c = e[[s]]. Otherwise MINIMIZE
replaces an arbitrary blue subtree of c by a red one with the same row. Note
that there is at least one subtree of c in blue as there is at least one subtree
of c in red (a leaf, labeled by some symbol from Σd

〈〉) and the non-red one-
symbol extensions of those are in blue as in the present cases either all possible
non-red one-symbol extensions of red trees are in blue, or c is constructed
using a tree from blue∪white, and S ∪white is subtree-closed. The resulting
counterexample is resubmitted to MINIMIZE until we have recursively obtained
e′′[[s′′]] such that s′′ ∈ blue and e′′ distinguishes s′′ from all trees in red.
Line 43 covers the case where there is no actual counterexample available such
that MINIMIZE cannot return a suitable candidate and returns εd.

3.4 The case MQ = 0 in FINDNEXT

For MQ = 0 we continue improving O by merging states unless there is infor-
mation preventing it. MERGENEXT (called in line 35, given below) retrieves
all blue trees representing states that can be but have not yet been merged
with some state with a red tree in its label and being minimal with respect to
the partial order � which compares trees first by depth and then by their root
labels observing a lexical order on Σd (order is important – see Subsection 3.6).
These trees can be found by searching for state labels that are singletons since
labels of states resulting from a merge must contain more than one tree. The
mergeability of two states is checked via COMPATIBLE using O with the two
states merged, the total all-rejecting automaton A•∅, and X− as input (observe
that this amounts to a test if after the merge all elements of X− are still correctly
rejected). When an eligible tree b ∈ blue is found the corresponding state qb is
merged with one of the suitable states containing a red tree in their label. The
merge is done by RECMERGE which calls MERGE and recursively “repairs”
any non-determinism introduced by that merge. blue is filled up with the avail-
able one-symbol extensions of red ∪ {b} from white and white is updated.
Note that b stays in blue but cannot be considered as a candidate again.
After the call of MERGENEXT in FINDNEXT either all blue trees correspond
to states resulting from a merge or there is a tree that is minimal with respect
to � and represents a non-mergeable state. This tree should be a distinct state
of the solution as well and is returned along with the context � in order to meet
the requirements of the interface, but for MQ = 0 this second component will
not be considered (see Subsection 3.5). Also note that the tests in line 44 and
36 will always fail for X+ = ∅ since in that case L(O) = ∅ and blue = ∅.

Learning multi-dimensional tree languages 13

procedure MERGENEXT

48 while ∃b ∈ blue : |qb| = 1 ∧ ∃r ∈ red :

COMPATIBLE(RECMERGE(qr, qb,O),A•∅, X−) ∧ ∀s ∈ blue : |qs| = 1 ∧
∃x ∈ red : COMPATIBLE(RECMERGE(qx, qs,O),A•∅, X−)

⇒ b � s (qb, qr, qs, qx ∈ QO)
49 O := RECMERGE(qr, qb,O);
50 blue := blue ∪ {s0 ∈ white | ∃t ∈ Td−1 : ∃f ∈ Σd

t : ∃r1, . . . , rn ∈ red :

s0 = f [r1, . . . , rn]t};
51 UPDATE.

procedure RECMERGE(p, q,A) [p, q ∈ QA]
52 A := MERGE(p, q,A);
53 for t ∈ Td−1 with Σd

t 6= ∅ do

54 for f ∈ Σd
t do

55 D := {q0 ∈ QA | ∃〈f, t(q1, . . . , qn)〉 7→ q0 ∈ δA ∧
∃i ∈ {1, . . . , n} : qi = (p ∪ q)};

56 if |D| > 1 find p′ 6= q′ ∈ D;

57 A := RECMERGE(p′, q′,A)
58 return A.

procedure MERGE(p, q,A) [p, q ∈ QA]
59 qx := p ∪ q;
60 QA := (QA \ {p, q}) ∪ {qx};
61 if q ∈ FA FA := (FA \ {p, q}) ∪ {qx}
62 δA := (δA \ {〈f, t(q1, . . . , qn)〉 7→ q0 | ∃qi ∈ {q0, q1, . . . , qn} : qi ∈ {p, q}}) ∪

{〈f, t(q′1, . . . , q′n)〉 7→ q′0 | ∃〈f, t(q1, . . . , qn)〉 7→ q ∈ δA ∧ ∀q′i ∈ {q′0, q′1, . . . , q′n} :

(qi ∈ {p, q} ⇒ q′i = qx) ∧ (qi /∈ {p, q} ⇒ q′i = qi)};
63 return A.

3.5 Making a distinction and wrapping up

In all cases that were not covered by the distinctions in lines 28–37 we have to
state that we cannot reliably find another candidate to move and return 〈εd,�〉.
procedure MAKEOD(〈s, e〉)
64 for r ∈ red do

65 if ¬(s <> r)

66 if MQ = 1 E := E ∪ {e}; UPDATE

67 else c := PREVENT(RECMERGE(qr, qs,O),A•∅, X−);
68 E′ := {e′ ∈ CΣd | ∃x ∈ {y ∈ TΣd | δO(y) ∈ {qr, qs}} : e′[[x]] = c};
69 E := E ∪ E′; choose er ∈ E′;
70 obs(r, er) := 1; obs(s, er) := 0.

MAKEOD is called if FINDNEXT has returned a pair 〈s, e〉 with s 6= εd so that
we know that CLOSURE should move s to red to represent a distinct state of
the final automaton. For MQ = 1, as the elements in red are pairwise OD and
all rows of S are complete there is only one red element r that is not OD from s,
and the given e is a context distinguishing s and r, so we add a single experiment

14 Anna Kasprzik

e to E and let UPDATE fill in the cells of the newly created column. Note that
there are various ways to exploit a counterexample (conceivable or actually used
in the literature), several of which are discussed and shown to be equivalent to
our method here in Appendix A.1. For MQ = 0 the row of s contains only ∗’s
so that we have to make s OD from every red element r “by hand”: We obtain
a counterexample c ∈ X− that forbids the merge of qr and qs via PREVENT –
observe that such a counterexample must exist as in all other cases with MQ = 0
FINDNEXT would have returned 〈εd,�〉. We retrieve all subtrees of c that end
up in qr or qs and add the resulting complementary contexts to E. Then we
randomly pick one of those contexts and fill the two associated cells of r and
s with differing values in order to make CLOSURE promote s to red in the
next call. Note that these values do not have to be correct with respect to L
since after the next call of CLOSURE they will never be of consequence again –
however, we must make sure that all red elements receive the same value (in our
case: 1) because otherwise distinctions established by previous executions of the
loop in MAKEOD can be obliterated. Thus, although strictly speaking obs may
temporarily fail to meet the condition in Definition 5 this is not fatal as the cells
of T will be overwritten completely (and, in case of a successful identification of
L, correctly) by the very last call of UPDATE before the algorithm terminates.
procedure UPDATE

71 white := white \ blue;
72 if MQ = 1 ∨ white = ∅

obs := {(s, e) 7→ o | s ∈ S ∧ e ∈ E ∧
O(e[[s]]) = 1 ⇒ o = 1 ∧ O(e[[s]]) ∈ {0, ∗} ⇒ o = 0}

73 if MQ = 1 ∧ X+ = ∅
white := {w ∈ TΣd | ∃t ∈ Td−1 : ∃f ∈ Σd

t : ∃s1, . . . , sn ∈ blue :

w = f [s1, . . . , sn]t}.

UPDATE clears the elements that were moved to blue out of white and fills
in the cells of T in case we have a perfect membership oracle which for MQ = 1
is true at any time and for MQ = 0 when we have processed all the information
available, provided that it was sufficient. Usually a possible change in the output
of a function is assumed to be implied as soon as its domain is changed but we
prefer to build obs explicitly as a set of mappings in order to show clearly which
procedure modifies which cells of the table. For cases with MQ = 1 in which X+
is not used we have to fill up white using all one-symbol extensions of blue
(which has the effect that in these cases the output automaton will be total).

3.6 Behaviour of GENMULTI

Various parts of GENMULTI were inspired by the algorithms that were studied
in [4, 5] (L∗; MQs and EQs), [7] (MQs and a positive sample), and [9, 10] (RPNI; a
positive and a negative sample) but we have modified, reordered, and generalized
a range of subprocedures such that at some points GENMULTI behaves in a
slightly different way – for example, procedures COMPATIBLE and PREVENT
were inspired by the description of RPNI given in [9] but observe how we have

Learning multi-dimensional tree languages 15

respecified them in order to be able to deal with the set C of counterexamples
obtained so far in FINDNEXT, which in turn has made it necessary to apply a
little trick (consult the all-rejecting automaton about the negative sample X−)
in order to preserve the use of COMPATIBLE and PREVENT when testing the
mergeability of states in O for the case where MQ = 0 and we use X+.

The meta-algorithm presented here is intended as a generalization of existing
and conceivable algorithms for settings where inference is possible in polynomi-
ally many steps from the given information sources under consideration, which
also implies that it is deterministic and does not guess or backtrack. However,
we have taken care to make it behave in an intuitively appropriate way for the
remaining cases in which (polynomial) inference is not guaranteed as well.

Let us call an information source non-void for queries if MQ = 1 or EQ = 1,
respectively, for a positive sample if it is representative, and for a negative one if
it is separative. A query-based information source is non-empty if it is non-void.

Theorem 1. Let L be the regular target language. GENMULTI terminates for
any input after at most 2IL−1 executions of the main loop. For input including at
least two non-void information sources except for 〈1, 0, X+, X−〉 with X+ or X−
void the output is a state-minimal DFTA for L. For 〈0, 0, X+, X−〉 with neither
X+ nor X− void 〈X+, X−〉 must fulfil an additional condition (see below).

Before we write down an actual proof we discuss each constellation individually
(in more or less detail). The cases where only brief explanations are given can
be easily verified by going through the algorithm step by step while observing
the relevant case distinctions. Recall that for the given alphabet Σd, A∅ is the
all-rejecting and AT

Σd
is the all-accepting state-minimal DFTA for TΣd .

– 〈0, 0, ∅, ∅〉: Returns A•∅ after one execution – the table is closed and the
procedure FINDNEXT returns 〈εd,�〉.

– 〈0, 1, ∅, ∅〉: Terminates as soon as the table is closed because FINDNEXT
returns 〈εd,�〉. The table is closed after at most two executions, and the
resulting automaton can have at most two states.

– 〈1, 0, ∅, ∅〉: Returns A•∅ after one execution – see 〈0, 0, ∅, ∅〉.
– 〈0, 0, X+, ∅〉: Returns AT

Σd
after one execution provided that every f ∈ Σd

figures at least once in X+ – the table is closed and FINDNEXT merges all
states of O with the result that after the call of FINDNEXT white = ∅.

– 〈0, 0, ∅, X−〉: Returns A•∅ after one execution – see 〈0, 0, ∅, ∅〉.

Of course for MQ = 1 or EQ = 1 a learner could continue querying possible trees
or DFTAs in any order, but as polynomial identification is not ensured (not even
for strings – see [2, 3]) the behaviour of FINDNEXT is supposed to represent the
formal equivalent of a “reasonable resignation”. For the other three cases listed
above the output seems appropriate as well.

– 〈1, 1, ∅, ∅〉: We emulate the well-known algorithm L∗ from [4] or rather the
version for classical trees developed in [5] which we have adapted to multi-
dimensionality in [11], with some more modifications that can be shown not
to affect the correctness of the algorithm as we have done in Appendix A.1.

16 Anna Kasprzik

– 〈0, 1, X+, ∅〉: Subt(X+) is processed incrementally in the manner of L∗ but we
compute distinctions by a method such that the correctness of GENMULTI
can be seen directly from the correctness proof for the algorithm in [7] (see
Subsection 3.3). Note that our approach is still based on an initially given
finite set of data which for d = 1 distinguishes it from an algorithm learning
string languages from MQs and a stream of labeled data described in [20].

– 〈0, 0, X+, X−〉: We emulate the algorithm RPNI [8, 9] and in parallel record
our progress in a table. In this setting X+ and X− must fulfil an additional
condition to make the learner identify. This is due to the following: We must
avoid situations where we merge a state with another while it is still possible
that a transition leading away from one of them may become an illegal
possibility to reach an accepting state at a later stage. As a consequence, as
long as not all one-symbol extensions of some subset of red containing only
trees up to a certain depth are processed we should not process trees strictly
greater than those extensions with respect to � as otherwise the fact that
after a merge all elements of X− are still parsed correctly is not informative.
Hence the given samples have to be favourable regarding the order in which
we process our candidates. We have chosen an ordering by depth which at
least prevents us from processing a tree before any of its subtrees. The lexical
ordering of the root labels is arbitrary but must be observed equally for all
depths and all roots for the same reason outlined above. Let
• sSubt(L) := {s ∈ Subt(L) | ∀s′ ∈ TΣd : s ≡L s′ ⇒ s � s′} and
• kSubt(L) := {f [s1, . . . , sn]t ∈ Subt(L) | s1, . . . , sn ∈ sSubt(L)}.

Suitable sets X+ and X− meet the following conditions (also compare [10]):
(a) ∀s ∈ kSubt(L) : ∃e ∈ CΣd : e[[s]] ∈ X+ ∧ (s ∈ L ⇒ e = �), and
(b) ∀s1 ∈ sSubt(L) : ∀s2 ∈ kSubt(L) : ¬(s1 ≡L s2)⇒ ∃e ∈ CΣd : e[[s1]] ∈ X+

∧ e[[s2]] ∈ X− ∨ e[[s1]] ∈ X− ∧ e[[s2]] ∈ X+.
So for every state we need a �-minimal tree leading up to it to represent it in
the data – informally stated, otherwise one state of O can “overtake” another
in the processing order when the latter is represented by an unnecessarily big
candidate. Moreover, for all those representatives and all their one-symbol
extensions (i.e., all candidates that should show up in red and blue to make
the learner identify), and for all non-mergeable pairs of those states and at
least one suitable distinguishing context both representatives should appear
with this context in the data – one in X+ and the other in X−. We would
like to note that there is an alternative for the condition (b): For all contexts
e in which one of the merging partners appears in X+, the other partner
must appear in X− in a context e′ such that any e′0 ∈ Subt(c′) ∩ CΣd with
cdp(e′0) ≤ 1 is equal to or precedes any e0 ∈ Subt(e)∩CΣd with cdp(e0) ≤ 1
with respect to �, and in addition we require e0, e′0 ∈ kSubt(L).

The next three cases seem of interest because to our knowledge there are no such
well-studied algorithms for these settings as in the three cases listed above.

– 〈0, 1, ∅, X−〉: See 〈0, 1, X+, ∅〉. We build a positive sample X+ (line 15 of the
algorithm, see Subsection 3.2) which however may be exponential in size with

Learning multi-dimensional tree languages 17

respect to |X−| so that likewise the number of MQs may not be polynomial
with respect to the cardinality of the given data set in the input.

– 〈1, 0, X+, ∅〉: See 〈0, 0, X+, ∅〉. Let us suppose we wanted to handle this case in
a way analogous to the previous four: We would have to test the mergeability
of states in O via EQs. If X+ is representative a positive counterexample
reveals the existence of states that should be merged, and a negative one of
states that should not have been. When we query the result of a merge (even
without repairing non-determinism by further merges) and receive a positive
counterexample we could either repeat the same EQ and wait for a negative
one – but the number of positive ones may be infinite. Or we could query the
next merge – but when (if!) we eventually get a negative counterexample we
do not know which of the previous merges was illegitimate. So this method
is just as complex as ignoring all counterexamples and simply querying the
result of every possible set of merges in O, of which there are exponentially
many. Hence, since we cannot proceed as in cases where inference is ensured
with a polynomial number of steps or queries we have chosen to eclipse this
case from GENMULTI by the corresponding case distinctions.

– 〈1, 0, ∅, X−〉: This case is equally problematic to include in the present frame-
work. First, observe that if X− is separative negative counterexamples do
not contribute additional information, and their number may be infinite at
any step. Second, the set of positive counterexamples obtained so far may
not be representative so that we cannot reliably detect an illegitimate merge
because there may be accepting states of the solution that are not even re-
presented in the current version of O such that the compatibility check is
too weak. If we make the merge we might have to undo it on the receipt of
another positive counterexample, which is a situation we want to avoid. This
case is therefore eclipsed from GENMULTI by case distinctions as well.

Input containing more than two non-empty sources is treated by choosing one of
the options above where for 〈1, 1, X+, X−〉 with X+ 6= ∅ the solution for MQs
and EQs is preferred over the one for MQs and X+ and 〈1, 0, X+, X−〉 is treated
like 〈0, 0, X+, X−〉 as a result of the integrated case distinctions. There are other
options, for example for 〈1, 1, X+, X−〉 with X+ 6= ∅ we could use X+ to estab-
lish the pool and only start generating more candidates if after processing the
elements of P the EQ is still answered in the negative, which might improve
practical complexity. Also note that for 〈0, 1, X+, X−〉 we might miss a chance
to succeed if X+ is void but X− is not – however, as there is absolutely no way
of knowing if the given data sets are non-void we have made our choice as stated.
Note that for L = ∅ any representative sample must be empty, and a separative
sample for a DFTA with just one state can be empty. It is easy to verify that
in those cases GENMULTI returns a (trivial) correct solution as well. Also note
that if GENMULTI uses a void X+ then the output is a DFTA for a subset of
L as there may be states or transitions missing. With a representative X+ and
a void X− the output is a DFTA for a superset of L because illegitimate merges
create illegal possibilities to reach accepting states.

18 Anna Kasprzik

Proof of Theorem 1. As long as the termination criterion is not fulfilled,
in each loop execution either a blue element is moved to red by CLOSURE
or NEXTDIST adds contexts distinguishing a blue element from all red ones
so that it is moved to red in the next execution. This can be seen from the
discussion of the individual procedures in the previous subsections (also compare
the proofs for the algorithms described in [4, 7, 9]). Consequently, GENMULTI
terminates after at most 2IL−1 loop executions, and each tree in red represents
a different equivalence class under ≡L. If the given information is sufficient as
specified above, due to the pairwise difference of the red elements and the
completeness of the table T is strongly consistent and AT deterministic. Since
red ∪ blue = Subt(X+) if we have or build a representative sample X+ and
blue contains all possible one-symbol extensions of red otherwise no transition
is missing and AT is a state-minimal DFTA recognizing L (note that in the cases
where X+ is used AT is isomorphic to A◦L, and to A•L otherwise). �

3.7 About complexity

As mentioned before, since despite the adaptation to multi-dimensionality the
notion of rank for a symbol has not been changed in its essence (number of direct
subtrees) and the maximal rank ρ is still bounded by the (finite!) alphabet Σd

there is no complexity rise to be expected in comparison to classical trees. Let us
consider the complexity of GENMULTI with respect to the number of steps taken
and/or queries asked for those settings in which (polynomial) identification of
the target language is guaranteed. We assume that the results of MQs are stored
in order not to query any tree twice (this is especially relevant for the complexity
caused by calls of the procedures in FINDNEXT and of UPDATE). Let n+ be
the number of nodes in the biggest tree in X+, and let m+ and m− the number
of nodes of all trees in X+ and X− added up, respectively.

– EQs and MQs: The number of EQs needed is O(IL) because in a worst case
every counterexample obtained via an EQ may reveal just one more distinct
state. The number of MQs needed is O(I4ρ

L + |c0|IL) where c0 is the biggest
counterexample received because (a) T itself contains O((IL + |Σd|IρL)IL) =
O(Iρ+1

L) cells to be filled but, due to the somewhat cumbersome check in
line 30 where we consider white for the construction of both candidates
and contexts, in reality we fill an extended table of size O((IL + |Σd|IρL +
|Σd|(IL + |Σd|IρL)ρ)2 · IL) = O(I4ρ

L), and (b) MINIMIZE may have to check
every subtree of a counterexample for substitutability by a red element.
Note that the use of the procedure MINIMIZE can significantly reduce the
number of cells in T with respect to the other methods discussed in Appendix
A.1. However, see [21] for references demonstrating that by a binary search
method the number of O(|c|) MQs needed to derive a distinguishing context
from a counterexample c can be optimized to O(log |c|).

– MQs and a representative X+: Observe that |Subt(X+)| = m+ if no two
trees in X+ have a common subtree, and |Cont(X+)| = m+ if no two trees
in Subt(X+) have the same non-empty context in X+. The table Text has

Learning multi-dimensional tree languages 19

|Subt(X+)| rows and |Cont(X+)|+O(IL) columns, i.e., O(m+(m+ + IL)) =
O(m2

+ + ILm+) cells to be filled via MQs. As we rely on the representativity
of X+ the final table constructed by GENMULTI has |Subt(X+)| rows as
well. The biggest constructed counterexample can have O((IL+1)n+) nodes
(since the size of the biggest context increases by O(n+) nodes in each call of
FINDNEXT) and thus the overall MQ complexity is O(m2

+ +ILm+ +I2
Ln+).

– Representative X+ and separative X−: As we faithfully emulate RPNI [8, 9]
GENMULTI is at least as complex as RPNI. If no two trees in X+ have a
common subtree the automaton STA(X+) hasm+ states andm+ transitions.
Hence, testing if the automaton that we are developing based on STA(X+)
(wrongly) accepts a tree in X− takes O(m+m−ρ) steps. We try to merge
every state with a red state (O(m2

+) steps), and we check each merge against
X−, and thus the construction of our oracle has a complexity of O(m3

+m−ρ).
In addition we fill a table of size O(m+m−) using candidates from Subt(X+)
and contexts from Cont(X−). Note: Due to the tree structure of the STA the
computation of potential merges is polynomial (see [9]). Also note that there
is an incremental version of RPNI [22] which performs better in practice.

– MQs and a separative sample: Unfortunately building X+ can cost exponen-
tially many MQs with respect to |X−|, but this is already the case for strings.

We disregard complexities such as parsing and comparing, and we also disre-
gard the complexity of the teacher. However, our solution takes care to ask the
minimal amount of EQs possible by storing every received counterexample in C.

Remark: One might wonder why there is no (inevitable) exponential blow-up
when learning (multi-dimensional) trees instead of strings, i.e., why we can keep
at least some complexity measures at a polynomial bay. For the case of learning
from samples this is due to the fact that we have a fixed inventory of potential
subtrees (the elements of red) and we consider only those of their one-symbol
extensions that can be found in the data as well. However, note that in cases
where we learn without a positive sample, if the maximal rank ρ of the alphabet
is not fixed but seen as a part of the input then filling up the sets blue and white
is indeed an exponential procedure with respect to ρ. See [18] for a remedy.5

4 Discussion

GENMULTI represents a generalized learner for regular multi-dimensional tree
languages starting out with a single equivalence class under the Myhill-Nerode
relation which is then split up according to the available information. The process
is executed and documented using an incrementally built observation table.6

We have aimed to factorize our meta-algorithm into as many subprocedures
as possible in order to obtain a uniform design for different settings with their
various idiosyncrasies, and hence, unlike algorithms that were developed for one
5 Remark: Trivially, an absolute lower bound for the size of T is Ω((IL + x) log IL)

with x = 0 for cases where we use a positive sample, and x = |Σd|IρL otherwise.
6 Also see [21] for a survey of other suitable representations (for the case of strings).

20 Anna Kasprzik

setting only we cannot exploit the whole range of conceivable strategies to reduce
complexity. The design of GENMULTI may cause some objectionable artefacts7

– however, this is probably the price to pay for a generalized perspective on
the common task shared by all prototypical algorithms for the different settings
under consideration (the retrieval of the correct set of equivalence classes), and
we have tried to work out that perspective by fitting them into a common mould
with special emphasis on the basic routines that regardless of the setting have to
be run through alike. This may help to formulate even clearer explanations for
the interchangeability of information sources (also see [23, 24]). Note that in the
majority of the cases GENMULTI is at least not more complex than certain well-
established algorithms for the individual settings, and we have sketched some
possibilities (such as maintaining the set of all counterexamples obtained so far)
to reduce complexity in practice. Moreover, maybe an extended GENMULTI
(also see the next paragraph) could be used as a template or starting point from
which more algorithms, for hitherto unstudied scenarios, can be instantiated.

GENMULTI offers itself for theoretical experimentation in various directions.
We could try to generalize the type of objects even more and explore possibili-
ties such as graphs, matrices, and infinite strings or trees.8 Then there are other
kinds of information sources throughout the literature that can be of help in the
computation of distinctions, such as correction queries [25], active exploration
[26], distinguishing functions [27], and many more, and we could try and modify
GENMULTI such that they can be given as input parameters as well. A third
direction centers around the fact that we can extend the language class that is
learned beyond regularity and even beyond context-freeness by conveying struc-
tural information – as we have mentioned in the Introduction, multi-dimensional
trees are one way but see [28] (even linear languages, control languages) or [29]
(languages recognized by certain finite-state automata with infinite transition
graphs) for strategies that could be adapted rather easily to other settings by
using our meta-algorithm as well, and [30] (multiple context-free grammars) as a
further option to investigate. We could also study the conditions that we may im-
pose on the given input when GENMULTI is learning certain subregular classes
such as the reversible or the locally testable languages (see [31, 32]). In summary,
the development of GENMULTI may be of use in the concretization of an even
more general model of learning in the sense of polynomial inference as considered
here – also see the very interesting current work of Clark (for example [33]).

7 For example, when we learn from MQs and a positive sample we process the elements
of Subt(X+) incrementally but keep referring to a table containing all of them, and
we build a counterexample using a candidate that represents a distinct state of the
solution and in general derive another candidate from it to be moved to red (which
is due to the constraint that we want to draw the representatives in red from blue
only). Also, when we learn from two samples we document our progress in a table
which however we do not use to construct a hypothesis before the oracle is perfect.

8 Note that as a precondition we would have to define an unambiguous concatenation
operation for those objects, which might not be completely trivial to accomplish.

Learning multi-dimensional tree languages 21

References

1. Gold, E.: Language identification in the limit. Information and Control 10(5)
(1967) 447–474

2. Angluin, D.: Queries and concept learning. Machine Learning 2 (1988) 319–342
3. Angluin, D.: Negative results for equivalence queries. Machine Learning 5 (1990)

121–150
4. Angluin, D.: Learning regular sets from queries and counterexamples. Information

and Computation 75(2) (1987) 87–106
5. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: DLT

2003. Volume 2710 of LNCS., Springer (2003) 279–291
6. Angluin, D.: A note on the number of queries needed to identify regular languages.

Information and Control 51 (1981) 76–87
7. Besombes, J., Marion, J.Y.: Learning tree languages from positive examples and

membership queries. Theoretical Computer Science 382 (2007) 183–197
8. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In Bunke,

H., ed.: Advances in Structural and Syntactic Pattern Recognition. Volume 5 of
Machine Perception and Artificial Intelligence. World Scientific (2002) 99–108

9. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press (2010)

10. Oncina, J., Garcia, P.: Inference of recognizable tree sets. Technical report, DSIC
II/47/93, Universidad de Valencia (1993)

11. Kasprzik, A.: A learning algorithm for multi-dimensional trees, or: Learning beyond
context-freeness. In: ICGI 2008. Volume 5278 of LNAI., Springer (2008) 111–124

12. Rogers, J.: Syntactic structures as multi-dimensional trees. Research on Language
and Computation 1 (2003) 265–305

13. Rogers, J.: wMSO theories as grammar formalisms. Theoretical Computer Science
293 (2003) 291–320

14. Joshi, A.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural description. In D. Dowty, L. Karttunen, A.Z., ed.:
Natural Language Processing. Cambridge University Press (1985)

15. Kasprzik, A.: Making finite-state methods applicable to languages beyond context-
freeness via multi-dimensional trees. In J. Piskorski, B. Watson, A.Y., ed.: Post-
Proceedings of FSMNLP 2008. IOS Press (2009) 98–109

16. Hopcroft, J., Ullmann, J.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Longman (1990)

17. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. (2005)

18. Drewes, F., Högberg, J.: Query learning of regular tree languages: How to avoid
dead states. Theory of Computing Systems 40(2)

19. Drewes, F., Högberg, J.: Extensions of a MAT learner for regular tree languages.
In: SAIS 2006. (2006) 35–44

20. Parekh, R., Nichitiu, C., Honavar, V.: A polynomial time incremental algorithm
for learning DFA. In: ICGI 1998. Volume 1433 of LNAI., Springer (1998) 37–49

21. Balcázar, J., Dı́az, J., Gavaldà, R., Watanabe, O.: Algorithms for learning finite
automata from queries: A unified view. In: Advances in Algorithms, Languages,
and Complexity, Springer (1997) 53–72

22. Dupont, P.: Incremental regular inference. In: ICGI 1996, Springer (1996) 222–237
23. Parekh, R., Honavar, V.: On the relationship between models for learning in helpful

environments. In: ICGI 2000. (2000) 207–220

22 Anna Kasprzik

24. Jain, S., Kinber, E.: Learning languages from positive data and a finite number of
queries. Information and Computation 204(1) (2006) 123–175

25. T̂ırnăucă, C.: A note on the relationship between different types of correction
queries. In: ICGI 2008, Springer (2008) 213–223

26. Pitt, L.: Inductive inference, DFAs, and computational complexity. In: AII 1989,
Springer (1989) 18–44

27. Fernau, H.: Identification of function distinguishable languages. Theoretical Com-
puter Science 290(3) (2003) 1679–1711

28. Fernau, H.: Even linear simple matrix languages: Formal language properties and
grammatical inference. Theoretical Computer Science 289(1) (2002) 425–456

29. Berman, P., Roos, R.: Learning one-counter languages in polynomial time. In:
SFCS 1987, IEEE Computer Society (1987) 61–67

30. Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional
substitutability from positive data. In: ALT 2009. (2009) 278–292

31. Angluin, D.: Inference of reversible languages. JACM 29(3) (1982) 741–765
32. Head, T., Kobayashi, S., Yokomori, T.: Locality, reversibility, and beyond: Learning

languages from positive data. In: ALT 1998, Springer (1998) 191–204
33. Clark, A.: Towards general algorithms for grammatical inference. In: Proceedings

of ALT. (2010)
34. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Information

and Computation 118(2) (1995) 316–326

A Appendix

A.1 Equivalence of four ways to use a counterexample for MQ = 1

There are various options that we could have chosen for GENMULTI of how to
“milk” a counterexample for MQ = 1. Let us compare four of them:

Lemma 2. For MQ = 1, let T = 〈S,E, obs〉 with S = red ∪ blue be an
observation table and c a counterexample for AT . The following four methods all
lead to the existence of at least one more distinct row labeled by a red element:

a. Join Subt(c) to red.
b1. Join Cont({c}) to E.
b2. Find s ∈ blue and e ∈ CΣd with c = e[[s]] and join Cont({c}) \ {e′ ∈ CΣd |
∃s′ ∈ Cont(s) : e′ = e[[s′]]} to E.

c. (Procedure MINIMIZE) If there is s ∈ blue and e ∈ CΣd \{�} with c = e[[s]]
but no r ∈ red with ¬(r <> s) such that e[[r]] is a counterexample for AT as
well add {e} to E. Otherwise find s′ ∈ blue, e′ ∈ CΣd \ {�}, and r′ ∈ red
with c = e′[[s′]] and ¬(r′ <> s′) such that e′[[r′]] is a counterexample for AT
and repeat procedure MINIMIZE with input e′[[r′]].

Proof. (a): Either such a row is created directly if E already contains a suitable
separating context, or T becomes inconsistent. To see the latter, assume that
no element of Subt(c) is OD from every red element. Note that in GENMULTI
this occurs for EQ = 1 only since when we use a positive sample c is constructed
using a subtree s0 that is OD from all red elements. We may also assume that

Learning multi-dimensional tree languages 23

AT (c) ∈ {0, 1} since AT is total for EQ = 1. As the automaton derived from the
new table including Subt(c) can obviously assign a different state to c than AT
although no new distinct row representing a separate state has been created this
automaton must be non-deterministic, and the table inconsistent. A consistency
check (which is necessary with this method) would correct that in the following
loop execution by adding a context distinguishing two red elements that have
not been OD before to E, thus creating another distinct row (also see [4]).
(c): There is always a subtree of any counterexample we consider in blue – see
Subsection 3.3 for an explanation. Suppose MINIMIZE returns 〈s, e〉 (s ∈ blue).
As T is closed there is r ∈ red with ¬(r <> s) but e[[s]] is a counterexample
whereas e[[r]] is not. Consequently s and r should represent distinct states such
that e leads to an accepting state from one of them but there is no such accept-
ing state for the other. Obviously s and r will be distinguished by adding e to
E. Note that we could alternatively add s to red (see [5]) but then we would
need a consistency check that retrieves a separating context as is the case with
method (a) because generally the red elements would not all be pairwise OD.
(b1)/(b2): Consider (c) and the fact that the context e′ added to E in (c) is an
element of Cont({c}) \ {e′′ ∈ CΣd | ∃s′′ ∈ Cont(s) : e′′ = e[[s′′]]} ⊆ Cont({c}). �

The equivalent of method (a) for strings is the one used in the original work
by Angluin (algorithm L∗, see [4]). Method (b1) for strings was suggested in a
footnote in [34]. Method (b2) is based on the reflection that there is at least one
suitable context in Cont({c}) that does not have an element of Cont({s}) as a
subtree and thus we can avoid creating redundant columns by excluding con-
texts with subtrees in Cont({s}) from the set of contexts that we join to E. The
method (c) which we have chosen for GENMULTI is loosely based on a method
used in a version of L∗ for classical trees given in [5] but among other details
our method differs from the one in [5] in that we reduce the number of recursive
calls to MINIMIZE by looking for an irreplaceable blue candidate first, and we
do not add that candidate to red immediately but pass it on along with the
distinguishing context which we have derived from the counterexample.
Remark 1: Joining Cont({c}) to E obviously introduces all distinguishing con-
texts that can be derived from c into the table at once but this may also lead to
redundant columns. We proceed differently: We add one distinguishing context
at a time but we keep c as long as it can be a counterexample and hence even-
tually we will have added all distinguishing contexts derivable from c as well.
Remark 2: With methods (b2) and (c) the set E easily fails to be generalization-
closed and/or S-composed (see the aside in Section 2) but, as we have stated
before, this is not an essential property for the extraction of an automaton from
an observation table. The fact that E fulfils it both in [4, 5] (L∗; learning from
MQs and EQs) and [7] (learning from MQs and a finite positive data set) is just
a by-product of the way how those algorithms compute their next distinction.

