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Abstract

We generalize a learning algorithm by Drewes and Högberg [1] for regular tree languages
based on a learning model proposed by Angluin [2] to recognizable tree languages of arbitrar-
ily many dimensions, so-called multi-dimensional trees. Multi-dimensional trees over multi-
dimensional tree domains have been defined by Rogers [3, 4]. However, since the algorithm
by Drewes and Högberg relies on classical finite state automata, these structures have to be
represented in another form to make them a suitable input for the algorithm: We give a new
representation for multi-dimensional trees which establishes them as a direct generalization of
classical trees over a partitioned alphabet, and then show that with this notation Drewes’ and
Högberg’s algorithm is able to learn tree languages of arbitrarily many dimensions. Via the
correspondence between trees and string languages known as the “yield operation” this is equiv-
alent to the statement that now even some string language classes beyond context-freeness have
become learnable with respect to Angluin’s learning model as well.
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1 Introduction

In the area of grammatical inference the problem of how to algorithmically infer (or “learn”) a
description of a formal language (e.g., a grammar or an automaton) on the basis of given examples
or other information on that language is considered. Several learning models have been formu-
lated, and based on those quite an amount of learning algorithms (mainly for regular languages or
subclasses thereof) have been developed.

In one of those models, which was proposed by Angluin [2] along with a P-time learning algo-
rithm L∗ for regular string languages, the “learner” is helped by a “minimally adequate teacher”
(MAT) who can answer two types of queries, namely if a given word is or is not a member of the
language U to be learned, and, for some finite-state automaton A, if A correctly recognizes U . If
not, the teacher will return a counterexample. The algorithm L∗ has been adapted by Sakakibara
[5] to skeletal regular tree languages (i.e., regular sets of trees where the inner nodes are not labeled)
and then generalized by Drewes and Högberg [1] to regular tree languages throughout. As regular
tree languages are a well-known generalization of regular string languages, this is a logical step.

We will generalize the algorithm by Drewes and Högberg even further to recognizable tree lan-
guages of arbitrarily many dimensions (sets of so-called multi-dimensional trees). Multi-dimensional
trees based on multi-dimensional tree domains have been defined by Rogers [3, 4], along with finite-
state automata recognizing these trees. Labeled one-dimensional trees correspond to strings, and
the automata recognizing them are equivalent to classical finite-state automata. The automata
recognizing labeled two-dimensional trees are equivalent to classical finite-state tree automata.

Every multi-dimensional tree language has a set of strings – the string yields of its elements
– associated with it which is obtained by reducing the number of dimensions of the trees step
by step, down to the first, only retaining the outermost nodes and their connecting structure in
each step (see [3] or Subsection 3.2 for a definition). As is well known, the sets of string yields of
the languages recognized by (two-dimensional) finite-state tree automata coincide with the class of
context-free languages. The sets obtained when reducing the number of dimensions of recognizable
three-dimensional tree languages by one have an interesting linguistic aspect: They correspond
exactly to the sets of trees generated by (non-strict) Tree Adjoining Grammars (see [3, 4]), a
special kind of tree formalism in which trees are built via adjunction, an operation which can be
seen as a particular form of context-free tree rewriting. TAGs have been developed by Joshi [6] in
connection with studies on the formal treatment of natural languages. Joshi [6] claimed the least
class of formal languages containing all natural languages to be situated between the context-free
and the context-sensitive languages in the Chomsky Hierarchy, and named it the class of mildly
context-sensitive languages. The string sets associated with TAGs fulfil all necessary conditions
for this class. TAGs are considered the standard model for mild context-sensitivity and are the
foundation of a considerable amount of current work in applied computational linguistics. Rogers
[4] conjectures that there might also be some linguistic phenomena that can best be handled via
structures of more than three dimensions, and gives an amelioration of the standard TAG account
of modifiers using four dimensions (see [3]).

The classes of sets of string yields associated with the recognizable multi-dimensional tree
languages ordered by the number of dimensions form a (proper) infinite hierarchy properly contained
in the context-sensitive class, with the classes of context-free languages (sets of string yields of
two-dimensional tree sets) and the string languages associated with TAGs (sets of string yields
of three-dimensional tree sets) as the first two steps. According to Rogers [3, 4], this hierarchy
coincides with Weir’s Control Language Hierarchy [7].

It is a consequence of these correspondencies that by processing recognizable higher-dimensional
descriptions of non-regular string languages instead of the string sets themselves, finite-state meth-
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ods become applicable again (see [8, 9]). Thus, just as by adapting Angluin’s learning algorithm for
regular string languages [2] to (skeletal) regular tree languages [5, 1] context-free string languages
have been made MAT-learnable, generalizing the adapted algorithm to recognizable tree languages
of arbitrarily many dimensions and then recurring to the concept of yield can make even string
language classes beyond context-freeness learnable under Angluin’s MAT learning model as well.

As the learning algorithm by Drewes and Högberg [1] is based on classical finite-state tree
automata and consequently on the concept of trees as terms over a partitioned alphabet, but
Rogers’ definition of multi-dimensional trees is based on tree domains, the algorithm cannot be
used on these structures without representing them in another form first. We will therefore give
a new term-like representation for multi-dimensional trees, which was introduced in [8] and which
establishes them as a direct generalization of classical trees, along with an adapted definition of
finite-state automata and of the yield operation, and then show that this innovation enables Drewes’
and Högberg’s algorithm to learn languages of trees of arbitrarily many dimensions by proving that
despite the modified input all its essential properties (including the ability to yield the desired
output) stay preserved.

2 The learning algorithm for trees by Drewes and Högberg

In this section, we are going to describe the learner for trees by Drewes and Högberg [1]. First of
all, we need some basic notions about trees (mostly taken in a shortened, modified form from [1]).

A ranked alphabet is a finite set of symbols, each associated with a rank n ∈ N (including 0).
By Σn we denote the set of all symbols in Σ with rank n. Traditionally, every symbol is associated
with a single rank only, but it is just as possible to admit several ranks for one symbol (see for
example [5]), as long as there is a maximal admissible rank and the alphabet stays finite.

The set TΣ of all trees over Σ is defined inductively as the smallest set of expressions such that
f [t1, . . . , tn] ∈ TΣ for every f ∈ Σn and all t1, . . . , tn ∈ TΣ. t1, . . . , tn are the direct subtrees of the
tree. The set subtrees(t) consists of t itself and all subtrees of its direct subtrees. Given a set T of
trees, Σ(T ) denotes the set of all trees of the form f [t1, . . . , tn] such that f ∈ Σn for some n and
t1, . . . , tn ∈ T . A subset of TΣ is called a tree language.

Let � be a special symbol of rank 0. A tree c ∈ TΣ∪{�} in which � occurs exactly once is a
context, the set of all contexts over Σ is denoted by CΣ. For c ∈ CΣ and s ∈ TΣ, c[[s]] denotes the
tree obtained by substituting s for � in c. depth(c) is the length of the path from the root to �.

A (total, deterministic) bottom-up finite-state tree automaton (fta) is a tuple A = (Σ, Q, δ, F )
with ranked input alphabet Σ, finite state set Q, transition function δ assigning to every f ∈ Σn

and all q1, . . . , qn ∈ Q a state δ(q1 · · · qn, f) ∈ Q, and set of accepting states F ⊆ Q. The transition
function extends to trees: δ : TΣ −→ Q is defined such that if t = f [t1, . . . , tn] ∈ TΣ then δ(t) =
δ(δ(t1) · · · δ(tn), f). The set of trees accepted by A is L(A) = {t ∈ TΣ|δ(t) ∈ F}. Such a tree
language is called regular.

It is well known that the Myhill-Nerode theorem carries over to regular tree languages: Let
L ⊆ TΣ. Given two trees s, s′ ∈ TΣ, let s ∼L s′ iff for every c ∈ CΣ, either both of c[[s]] and c[[s′]]
are in L or none of them is. Obviously, ∼L is an equivalence relation on TΣ. The equivalence class
containing s ∈ TΣ is denoted by [s]L. The index of L equals |{[s]L|s ∈ TΣ}|. The Myhill-Nerode
theorem states that L is a regular tree language iff L is of finite index iff L is the union of all
equivalence classes [s]L with s ∈ L. It follows from this that for every fta A, L(A) is of finite index.
Conversely, if a tree language is of finite index, we can easily build an fta AL recognizing L, with
the states being the equivalence classes of L, F = {[s]L|s ∈ L}, and, given some f ∈ Σk and states
[s1]L, . . . , [sk]L, δL([s1]L, . . . , [sk]L, f) = [f [s1, . . . , sk]]L. Moreover, this fta is the unique minimal
fta recognizing L, up to a bijective renaming of states (see for example [10], p. 35, for a proof).
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As indicated before, Drewes and Högberg [1] have designed a learning algorithm for regular tree
languages, based on the one for strings by Angluin [2]. As strings can be seen as special trees over
an alphabet containing only symbols of rank 1 or 0 (ε being the only constant – the string abc is
then noted as the expression c(b(a(ε))), for example), this algorithm represents a generalization.

The aim of the learner is to construct an fta that recognizes an unknown regular tree language
U ⊆ TΣ. The learner is helped by a teacher who is able to perform two tasks: The teacher can check
whether t ∈ U for some t ∈ TΣ, and, given an fta A, the teacher can return a counterexample(A) ∈
(U \ L(A)) ∪ (L(A) \ U). At any stage of the computation, the learner maintains two sets S ⊆ TΣ

and C ⊆ CΣ satisfying certain conditions. Intuitively, one may imagine that the learner builds a
table whose rows are indexed by the elements of S ∪ Σ(S) and the columns by the elements of C.
The cell in row s and column c contains a truth value indicating whether c[[s]] ∈ U .

Definition 1 The pair (S,C) (S ⊆ TΣ, C ⊆ CΣ finite, C non-empty) is called an observation table
if the following conditions hold:

• For every tree f [s1, . . . , sn] the trees s1, . . . , sn are in S as well – S is subtree-closed, and

• for every context c0 of the form c[[f [s1, . . . , si−1,�, si+1, . . . , sn]]] ∈ C, c is in C as well and
s1, . . . , si−1, si+1, . . . , sn ∈ S – we say that C is generalization-closed.

The elements of S can be seen as candidates for representatives of the equivalence classes of ∼U ,
and the elements of C can be seen as witnesses that these representatives do indeed belong to
different equivalence classes.

Given an observation table T = (S,C) and a tree s ∈ S ∪ Σ(S), the observed behaviour of s is
denoted by obsT (s) (formally, obsT (s) denotes the function obs : C −→ {1, 0} such that obs(c) = 1
iff c[[s]] ∈ U for all c ∈ C).

Definition 2 Let T = (S,C) be an observation table. T is closed if obsT (Σ(S)) ⊆ obsT (S), and
consistent if, for all f ∈ Σn and all s1, . . . , sn, s′1, . . . , s

′
n ∈ S, if obsT (si) = obsT (s′i) for all i with

1 ≤ i ≤ n then obsT (f [s1, . . . , sn]) = obsT (f [s′1, . . . , s
′
n]).

These two properties are essential for observation tables if they are to be used by the learner to build
a candidate for the desired automaton: From a closed and consistent observation table T = (S,C)
one can synthesize an fta AT whose set of states is QT = {obsT (s)|s ∈ S}, the set of accepting
states is FT = {obsT (s)|s ∈ S ∩ U}, and δT (obsT (s1) · · · obsT (sn), f) = obsT (f [s1, . . . , sn]) for all
f ∈ Σn and s1, . . . , sn ∈ S. Drewes and Högberg [1] formulate the following lemma, adapted from
a corresponding one in [2]:

Lemma 1 Let T = (S,C) be a closed and consistent observation table. Then

• δ(s) = obsT (s) for all s ∈ S ∪ Σ(S), and

• for all s ∈ S∪Σ(S) and all c ∈ C, AT accepts c[[s]] iff c[[s]] ∈ U . Moreover, AT is the unique
minimal fta with this property (up to a bijective renaming of states).

We will prove a similar lemma for our generalized learning algorithm in Section 4.
The algorithm by Drewes and Högberg [1] can be seen below. I is the index of U .1 The learner

starts with a table T1 = ({a}, {�}) (for some a ∈ Σ0). The procedure CLOSURE adds suitable

1Drewes and Högberg [1] use I as a termination criterion. However, this does not affect the computation as such
– they prove that their algorithm always returns the desired automaton in time, i.e., it never halts without result
because of the termination criterion alone – and is therefore equivalent to assuming that the teacher, when asked
for a counterexample, first checks if A = AU , which is the termination criterion for the algorithm by Angluin [2].
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candidates to S as long as T is not closed (which corresponds to asking the teacher membership
queries for these candidates and noting the result in the table). The procedure RESOLVE adds
elements to C as long as T is not consistent. The procedure EXTEND synthesizes an fta from
the current observation table (assume that an operation synthesize(T ) just exists) and asks the
teacher for a counterexample. If the counterexample is unnecessarily large it is “pruned” via the
procedure EXTRACT, which is an amelioration introduced by Drewes and Högberg [1] with respect
to the original learner for strings by Angluin [2]. The counterexample is then added to the table,
along with its membership status. See [1] for details.

T = (S,C) := ({a}, {�}) for some arbitrary a ∈ Σ0;
while | {obsT (s) | s ∈ S} | < I do

if T is not closed then T := CLOSURE(T)
else if T is not consistent then T := RESOLVE(T)
else T := EXTEND(T)

end while;

return AT;

procedure CLOSURE(T) where T = (S,C)
find s ∈ Σ(S) such that obsT (s) /∈ obsT (S);
return (S ∪ {s}, C);

procedure RESOLVE(T) where T = (S,C)
find c[[s]], c[[s′]] ∈ Σ(S) where s, s′ ∈ S and depth(c) = 1 such that

obsT (c[[s]]) 6= obsT (c[[s′]]) and obsT (s) = obsT (s′);
find t, t′ ∈ S such that

obsT (t) = obsT (c[[s]]) and obsT (t′) = obsT (c[[s′]]);
find c′ ∈ C such that obsT (t)(c′) 6= obsT (t′)(c′);
return (S,C ∪ {c′[[c]]});

procedure EXTEND(T) where T = (S,C)
AT := synthesize(T );
return EXTRACT(T, counterexample(AT ));

procedure EXTRACT(T, t) where T = (S,C)
choose c ∈ CΣ and s ∈ subtrees(t) ∩ (Σ(S) \ S) such that t = c[[s]];
if there exists s′ ∈ S such that

obsT (s′) = obsT (s) and t ∈ U ⇔ c[[s′]] ∈ U then

return EXTRACT(T, c[[s′]]);
else

return (S ∪ {s}, C)
end if;

Let Tl = (Sl, Cl) be the table obtained after l − 1 steps. Note that according to Drewes and
Högberg [1] (and as is easy to see) the procedures CLOSURE, RESOLVE, and EXTEND all guarantee that
each constructed observation table satisfies the following conditions: (A) Tl is indeed an observation
table, (B) for all distinct trees s, s′ ∈ Sl, s ≁U s′, (C) |Sl|+ |Cl| = l + 1, and (D) |Cl| ≤ |obsTl

(Sl)|.
Drewes and Högberg [1] prove that their algorithm always terminates after less than 2I loop

executions and returns the desired fta (see their paper for the proof).
In the following section we will introduce multi-dimensional trees and some related concepts.
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3 Multi-dimensional trees and automata

3.1 Multi-dimensional trees as defined by Rogers [3, 4]

Starting from a definition of ordinary trees based on two-dimensional tree domains, Rogers [3, 4]
generalizes the concept both downwards (to strings and points) and upwards and defines labeled
multi-dimensional trees based on a hierarchy of multi-dimensional tree domains:

Definition 3 Let d1 be the class of all dth-order sequences of 1s: 01 := {1}, and n+11 is the smallest
set satisfying (i) 〈〉 ∈ n+11, and (ii) if 〈x1, . . . , xl〉 ∈

n+11 and y ∈ n1, then 〈x1, . . . , xl, y〉 ∈
n+11.

Let T
0 := {∅, {1}} (point domains). A (d+1)-dimensional tree domain is a set of hereditarily prefix

closed (d + 1)st-order sequences of 1s, i.e., T ∈ T
d+1 iff

• T ⊆ d+11,

• ∀s, t ∈ d+11 : s · t ∈ T ⇒ s ∈ T,

• ∀s ∈ d+11 : {w ∈ d1|s · 〈w〉 ∈ T} ∈ T
d.

A Σ-labeled Td (d-dimensional tree) is a pair 〈T, τ〉) where T is a d-dimensional tree domain and
τ : T −→ Σ is an assignment of labels in the (non-partitioned) alphabet Σ to nodes in T . We will
denote the class of all Σ-labeled Td as T

d
Σ.

Every d-dimensional tree can be conceived to be built up from one or more d-dimensional local
trees, that is, trees of depth at most one in their major dimension. Each of these smaller trees
consists of a root and an arbitrarily large (d − 1)-dimensional “child tree” consisting of the root’s

children (a formal definition of the set T
d,loc
Σ of all local trees over some alphabet Σ would be for

example T
d,loc
Σ = {〈T, τ〉|〈T, τ〉 is a Σ-labeled Td, and ∀s ∈ T : |s| ≤ 1}). Local strings (i.e., one-

dimensional trees), for example, consist of a root and a point as its child tree. Local two-dimensional
trees consist of a root and a string. Local three-dimensional trees would have a pyramidal form,
with a two-dimensional tree as its base. There are also trivial local trees (consisting of a single
root), and even empty ones. Composite trees can be built from local ones by identifying the root
of one local tree with a node in the child tree of another (and adapting the addresses in order
to incorporate them into the newly created tree domain). Figure 1 shows examples of local and
composite trees for the first four steps of the hierarchy (only some composite trees are labeled, and
in the three-dimensional case, only the addresses of nodes that do not appear in the rightmost local
tree as well are given, for clarity. εd denotes an empty sequence of order d).

Rogers [4] defines automata for labeled Tds as well:

Definition 4 A Td automaton with finite state set Q and (non-ranked) alphabet Σ is a finite set
of triples Ad ⊆ Σ × Q × T

d−1
Q .

The interpretation of a triple 〈σ, q,T 〉 ∈ Ad is that if a node of a Td is labeled with σ and T encodes
the assignment of states to its children, then that node may be assigned state q. A run of a Td
automaton on a Σ-labeled Td T = 〈T, τ〉 is a mapping r : T −→ Q in which each assignment is
licensed by Ad. Note that this implies that a maximal node (wrt the major dimension, i.e., a leaf)
labeled with σ may be assigned state q only if there is a triple 〈σ, q, ∅〉 ∈ Ad, where ∅ is the empty
T(d − 1). If F ∈ Q is the set of accepting states, then the set of (finite) Σ-labeled Td recognized
by Ad is that set for which there is a run of Ad that assigns the root a state in F .

As mentioned in the Introduction, T1 automata correspond to finite-state automata for strings,
i.e., they recognize the regular languages. T2 automata correspond to (non-deterministic) finite-
state automata for trees, i.e., they recognize the regular tree languages, the associated string sets of

6



composite
(labeled) a b c d

ε1 〈1〉 〈1, 1〉 〈1, 1, 1〉

〈〈1〉, 〈1〉〉

〈ε1〉 〈〈1, 1〉〉

〈〈1〉, ε1〉

ε2

〈〈1〉〉

ε1

ε2

〈ε1〉

ε2

1

-

ε1 〈1〉

〈〈〈1〉〉〉

〈〈ε1〉〉

〈ε2〉

〈〈〈1, 1〉〉〉

〈〈〈1〉, 〈1〉〉〉

ε3

〈〈〈1〉, ε1〉〉

3

ε3

1

〈〈1〉〉

〈ε2〉

r

a

b

d

e

c

f

g

k

j

h

i

〈〈〈1〉〉, 〈ε1〉〉

〈〈〈1〉〉, 〈〈1〉〉〉

〈〈〈1, 1〉〉, 〈ε1〉〉

〈〈〈1, 1〉〉, ε2〉
〈〈〈1〉〉, ε2〉

ε3

〈ε2〉

〈〈〈1〉〉〉

〈〈ε1〉〉

0 2

ε2

〈ε1〉

local

Figure 1: Local and composite trees for d = 0, 1, 2, 3

which are the context-free languages. For d ≥ 3, Td automata recognize languages of d-dimensional
trees whose sets of string yields are situated between the classes of context-free and context-sensitive
languages in the Chomsky Hierarchy, where for every d the class of string yields of the d-dimensional
tree languages is properly contained in the next (i.e., for d + 1).

3.2 Multi-dimensional trees as terms

In this subsection we will give a representation for multi-dimensional trees which establishes them
as a direct generalization of the one on which (classical) finite-state tree automata are based, i.e.,
one that allows multi-dimensional trees to be noted as expressions over a partitioned alphabet.
This notation was first introduced in [8].

We use finite d-dimensional tree labeling alphabets Σd where each symbol f ∈ Σd is associated
with at least one unlabeled (d − 1)-dimensional tree t specifying the admissible child structure for
a root labeled with f (note that as before it is just as possible to associate several admissible child
structure trees with one symbol). t can be given in any form suitable for trees, as long as it is
compatible with the existence of an empty tree. For consistency’s sake we will use the definition of
multi-dimensional trees given below and write t as an expression over a special kind of “alphabet”
containing just one symbol ρ for which any child structure is admissible.

Let Σd
t for d ≥ 1 be the set of all symbols associated with t and Σ0 a set of constant symbols.

The set of all d-dimensional trees TΣd can then be defined inductively as follows:

Definition 5 Let εd be the empty d-dimensional tree. Then

• TΣ0 := {ε0} ∪ Σ0, and

• for d ≥ 1: TΣd is the smallest set such that εd ∈ TΣd and f [t1, . . . , tn]t ∈ TΣd for every
f ∈ Σd

t , n the number of nodes in t, t1, . . . , tn ∈ TΣd and t1, . . . , tn are rooted breadth-first in
that order2 at the nodes of t.

Multi-dimensional trees in this notation can be translated one-to-one into trees in Rogers’ notation
and vice versa – see [8] for the translation and proof.

2This is an ad hoc settlement, any other spatial arrangement would do as well.
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Figure 2: Ambiguity in the yield for d ≥ 3 (resolved by marked splicing points)

For some tree tp = f [t1, . . . , tn]t with f ∈ Σd
t , t1, . . . , tn are the direct subtrees of the tree, and

the rest of the usual tree terminology can be applied in a similar manner. Also, for some fixed d,
let � be a special symbol associated with εd−1 (i.e., a leaf label). A tree c ∈ TΣd∪{�} in which �

occurs exactly once is still called a context, and the set of all contexts over Σd is denoted by CΣd .
c[[s]] for c ∈ CΣd and s ∈ TΣd is defined via substitution as before as well.

We can now represent automata for d-dimensional trees as direct generalization of classical fta’s:

Definition 6 A (total, deterministic) finite-state d-dimensional tree automaton is a quadruple
Ad = (Σd, Q, δ, F ) with input alphabet Σd, finite state set Q, set of accepting states F ⊆ Q and
transition function δ with with δ(t(q1, . . . , qn), f) ∈ Q for every f ∈ Σd

t where t(q1, . . . , qn) encodes
the assignment of states to the nodes of t (i.e., t(q1, . . . , qn) is isomorphic to t and its nodes are
labeled with q1, . . . , qn breadth-first in that order if Q is taken as a partitioned alphabet in which
every element is associated with all the child structures it occurs with in δ). The transition function
extends to d-dimensional trees: δ : TΣd −→ Q is defined such that if tp = f [t1, . . . , tn]t ∈ TΣd then
δ(tp) = δ(t(δ(t1), . . . , δ(tn)), f). The set of trees accepted by Ad is L(Ad) = {tp ∈ TΣd |δ(tp) ∈ F}.

The equivalence between this definition and the one by Rogers [4] is easy to see. For two corre-
sponding automata Ad = (Σd, Q, δ, F ) and Ad

R ⊆ ΣR ×QR ×T
d−1
QR

(with accepting state set FR) in
the two notations the sets of states Q and QR, and F and FR coincide, the construction of ΣR from
Σd is trivial, and Σd is constructed from Ad

R as follows: f ∈ Σd
t for all triples 〈f, q, t0〉 ∈ Ad

R, where
t ∈ T{ρ}d−1 is isomorphic to t0. Most importantly, there is a one-to-one correspondence between the

elements of Ad
R and δ: Every triple 〈f, q, t0〉 ∈ Ad

R can be translated to an assignment δ(Ψ(t0), f) = q
of Ad, and every assignment δ(t(q1, . . . , qn), f) = q of Ad to a triple 〈f, q,Φ(t(q1, . . . , qn))〉 ∈ Ad

R,
where Φ and Ψ are translations from one notation into the other (see [8] for a definition). From
this and from the identical state sets it follows that L(Ad

R) = Ψ(L(Ad)) and L(Ad) = Φ(L(Ad
R)).

Finally, we give a definition of the yield operation for multi-dimensional trees in the new nota-
tion. As for d ≥ 3 the yield is not unambiguous (see Figure 2), the structures have to be enriched
with additional information. Assume that, for d ≥ 2, in every tree tp ∈ TΣd every labeling symbol
f ∈ Σd is indexed with a set S ⊆ {2, . . . , d}. If x ∈ S then we call a node labeled by fS a foot
node for the (x− 1)-dimensional yield of tp. For every subtree tq of tp the distribution of these foot
nodes must fulfil certain conditions:

(1) If tq has depth 0 the index set in its root label must contain d, otherwise tq = fS [t1, . . . , tn]t
with f ∈ Σd

t , S ⊆ {2, . . . , d}, and t1, . . . , tn ∈ TΣd must have exactly one direct subtree
ti ∈ {t1, . . . , tn} whose root labeling symbol is indexed with a set containing d and this
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subtree is attached to a leaf in t. In both cases, we will refer to that root as the d-dimensional
foot node of tq.

(2) The foot nodes are distributed in such a way that for every n-dimensional yield of tp with
n < d, condition (1) is fulfilled as well.

For d ≥ 2, the direct yield of a tree tp ∈ TΣd is then defined recursively as

ydd−1(tp) =























εd−1 for tp = εd,

aS for tp = aS with a ∈ Σd
εd−1 and S ⊆ {2, . . . , d},

optp(t1) for tp = fS[t1, . . . , tn]t with t1, . . . , tn ∈ TΣd , f ∈ Σd
t ,

t 6= εd−1, and S ⊆ {2, . . . , d},

where optp(ti) for ti ∈ {t1, . . . , tn} is defined as the (d − 1)-dimensional tree that is obtained by
replacing the d-dimensional foot node of ti in ydd−1(ti) by eR[optp(tj), . . . , optp(tk)]tx , where eR with
e ∈ Σd and R ⊆ {2, . . . , d} is the label of the foot node, tx is the (d−2)-dimensional child structure
of the node at which ti is attached in t and tj, . . . , tk are the direct subtrees of tp that are attached
(breadth-first in that order) at the nodes of tx. The result ydd−1(tp) is a (d − 1)-dimensional tree
over an alphabet Σd−1 containing at least all the node labels in ydd−1(tp), each associated at least
with the child structures it occurs with. Obviously, the string yield of a d-dimensional tree for
d ≥ 2 can be obtained by taking the direct yield d − 1 times.

Example 1 defines an automaton A3
ww recognizing a three-dimensional tree language whose set

of string yields yd1(L(A3
ww)) equals the copy language Lww = {ww|w ∈ {a, b}+}:

Example 1 A3
ww = (Σ3, {qa, qb, qg, qy, qz, qf , qx}, δ, {qf}) where Σ3 = {a, b, f, g, g{3}} with a, b, f,

g, g{3} ∈ Σ3
ε2 and f ∈ Σ3

t1
for t1 = ρ[ρ[]ε1 , ρ[ρ[]ε0 ]ρ[]

ε0
]ρ[ρ[]

ε0
]ρ and f ∈ Σ3

t2
for t2 = ρ[ρ[]ε1 , ρ[ρ[]ε1 ,

ρ[]ε1 ]ρ[ρ[]
ε0

]ρ ]ρ[ρ[]
ε0

]ρ. Note that Σ3 contains symbols that have already been distinguished by the
index sets relevant for the yield (however, only index sets containing 3 have been considered, as the
distribution of foot nodes for the string yield is never ambiguous). δ is defined as follows:

δ(ε2, a) = qa δ(t1(qg, qa, qz, qa)) = qf

δ(ε2, b) = qb δ(t1(qg, qb, qz, qb)) = qf

δ(ε2, f) = qz δ(t2(qg, qa, qz, qy, qa)) = qz

δ(ε2, g) = qg δ(t2(qg, qb, qz, qy, qb)) = qz

δ(ε2, g{3}) = qy

and δ(t0, x) = qx for all other admissible t0 and all symbols x ∈ Σ3. Figure 3 shows t1 and t2 on
the left, three trees ta, tb, tc ∈ L(A3

ww) in the middle, and the two-dimensional yield for tc on the
right, whose one-dimensional yield is the string abab.

With the slightly adapted definitions of contexts and automata, the Myhill-Nerode theorem
(see Section 2) carries over quite naturally to multi-dimensional trees, and consequently, for every
recognizable d-dimensional tree language L there exists a unique minimal automaton Ad

L recognizing
L. It is this fact that enables us to give a learning algorithm for languages of trees of arbitrarily
many dimensions based on the same principle as the one by Drewes and Högberg [1].

4 The learner for multi-dimensional tree languages

We will now generalize the learning algorithm for regular tree languages by Drewes and Högberg
[1] to recognizable tree languages of arbitrarily many dimensions. The necessary concepts for the
learning algorithm can be adapted in an obvious way (assume that t has n nodes):

9



ρ

ρ

ρ ρ

ρ

t2

ρ

ρρ

ρ

t1 f

f

g

b

b
g

f

g b

f

f

g

a

a

g

a

b

a

f
f

a

g

ba

f

b

g{3}

g

ta tb

tc

Figure 3: Example 1

• Subtree-closed: For every tree f [t1, . . . , tn]t ∈ S, the trees t1, . . . , tn are in S as well.

• Generalization-closed: For every context of the form c[[f [t1, . . . , ti−1,�, ti+1, . . . , tn]t]], c is in
C as well and t1, . . . , ti−1, ti+1, . . . , tn are in S.

• Σd(S) denotes the set of all trees of the form f [t1, . . . , tn]t such that f ∈ Σd
t for some t and

t1, . . . , tn ∈ S.

• Closed (for an observation table T ): T is closed if obsT (Σd(S)) ⊆ obsT (S).

• Consistent (for an observation table T ): For all f ∈ Σd
t and all s1, . . . , sn, s′1, . . . , s

′
n ∈ S, if

obsT (si) = obsT (s′i) for all i with 1 ≤ i ≤ n then obsT (f [s1, . . . , sn]t) = obsT (f [s′1, . . . , s
′
n]t).

From a closed and consistent observation table T = (S,C) one can derive a finite-state d-dimensional
tree automaton Ad

T whose set of states is QT = {obsT (s)|s ∈ S}, the set of accepting states
is FT = {obsT (s)|s ∈ S ∩ U}, and δT (t(obsT (s1), . . . , obsT (sn)), f) = obsT (f [s1, . . . , sn]t) for all
f ∈ Σd

t and s1, . . . , sn ∈ S.
With this settled, the learning algorithm for recognizable d-dimensional tree languages (not

containing the empty tree, and for some d ≥ 1, since TΣ0 is finite, i.e., trivial to learn) is very
easy to formulate; in fact, it is identical to the one given in Section 2 (just change Σ(S) to Σd(S)
throughout and start with T = ({a}, {�}) for some arbitrary a ∈ Σd

εd−1). We will prove that the
validity of Lemma 1, repeated below in a slightly adapted form as Lemma 2, hasn’t been changed
by our generalization to trees of arbitrarily many dimensions. The proofs are inspired by the
corresponding ones in [2].

Lemma 2 Let T = (S,C) be a closed, consistent observation table. Then

(a) δT (tp) = obsT (tp) for all tp ∈ S ∪ Σd(S),

(b) for all tp ∈ S ∪ Σd(S) and all contexts c ∈ C, Ad
T accepts c[[tp]] iff c[[tp]] ∈ U , and

(c) Ad
T is the unique minimal automaton with property (b), up to a bijective renaming of states.

Proofs. (a) is easily proved by induction via the definitions of δ and δT : It certainly holds for
all a ∈ Σd

εd−1 ∩ S (trees consisting of one node in S), as δT (a) = δT (εd−1, a) = obsT (a). Now let
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tp = f [s1, . . . , sn]t for an arbitrary f ∈ Σd
t and s1, . . . , sn ∈ S∪Σd(S). As tp ∈ S ∪Σd(S), s1, . . . , sn

must be in S (which is clear for tp ∈ Σd(S) – for tp ∈ S recall that S is subtree-closed). If (a)
holds for s1, . . . , sn then it also holds for tp, as δT (f [s1, . . . , sn]t) = δT (t(δT (s1), . . . , δT (sn)), f) =
δT (t(obsT (s1), . . . , obsT (sn)), f) = obsT (f [s1, . . . , sn]t). �

(b) is proved by induction over the depth of the contexts in C. For c = � and all tp ∈ S∪Σd(S),
δT (c[[tp]]) = δT (tp) = obsT (tp) by (a). tp is either in S or in Σd(S). Case 1, tp ∈ S: δT (tp) ∈ F ⇔
obsT (tp) ∈ F ⇔ obsT (tp) ∈ {obsT (s)|s ∈ S ∩ U} ⇔ tp ∈ S ∩ U ⇔ tp ∈ U . Case 2, tp ∈ Σd(S): As
T is closed, there exists tq ∈ S with obsT (tp) = obsT (tq), and thus δT (tp) = δT (tq) (and the rest of
the argument runs as in Case 1). This proves (b) for c = �.

Now assume that c ∈ C is of depth k + 1, and (b) holds for all contexts in C up to depth
k and all tp ∈ S ∪ Σd(S). As C is generalization-closed, there exists c2 ∈ C of depth k and
s1, . . . , sn ∈ S such that c = c2[[f [s1, . . . , si−1,�, si+1, . . . , sn]t]] for some f ∈ Σd

t . (b) holds for c2,
i.e., δT (c2[[tp]]) ∈ F ⇔ c2[[tp]] ∈ U for all tp ∈ S ∪ Σd(S). Again, as T is closed, there exists tq ∈ S
with δT (tp) = obsT (tp) = obsT (tq) = δT (tq). Obviously, f [s1, . . . , si−1, tq, si+1, . . . , sn]t is in Σd(S).
Then (with δT (tq) = δT (tp), and as T is consistent) δT (c2[[f [s1, . . . , si−1, tq, si+1, . . . , sn]t]]) =
δT (c2[[f [s1, . . . , si−1, tp, si+1, . . . , sn]t]]) ∈ F ⇔ c2[[f [s1, . . . , si−1, tp, si+1, . . . , sn]t]] ∈ U ⇔ c[[tp]] ∈
U , which proves (b) for all c ∈ C and all tp ∈ S ∪ Σd(S). �

(c) is equivalent to the claim that any other automaton Ad′ = (Σd, Q′, δ′, F ′) consistent with
T that has equally many or fewer states than Ad

T is isomorphic to Ad
T . Let Ad

T have n states.
Define, for each q′ ∈ Q′, obsT (q′) to be the finite function g : C −→ {0, 1} such that g(c) = 1 iff
δ′(c[[q′]]) ∈ F ′, where δ′(c[[q′]]) = δ′(c[[t]]) for all t with δ′(t) = q′. Since Ad′ is consistent with
T , for each tp ∈ S ∪ Σd(S) and each c ∈ C, δ′(c[[tp]]) ∈ F ′ iff obsT (tp)(c) = 1, which also means
that δ′(c[[δ′(tp)]]) ∈ F ′ iff obsT (tp)(c) = 1, so obsT (δ′(tp)) = obsT (tp). As tp ranges over all of S,
obsT (δ′(tp)) ranges over all of Q, so Ad′ must have at least, i.e., exactly, n states.

Thus, for each tp ∈ S there is a unique q′ ∈ Q′ such that obsT (tp) = obsT (q′), namely
δ′(tp). Define for each tp ∈ S, φ(obsT (tp)) = δ′(tp). This mapping is bijective. We must ver-
ify that it preserves the transition function and maps F to F ′. For s1, . . . , sn ∈ S and f ∈ Σd

t ,
let tp ∈ S such that obsT (f [s1, . . . , sn]t) = obsT (tp). Then φ(δ(t(obsT (s1), . . . , obsT (sn)), f)) =
φ(obsT (f [s1, . . . , sn]t)) = φ(obsT (tp)) = δ′(tp), and also δ′(t(φ(obsT (s1)), . . . , φ(obsT (sn))), f) =
δ′(t(δ′(s1), . . . , δ

′(sn)), f) = δ′(f [s1, . . . , sn]t). Since obsT (δ′(tp)) = obsT (δ′(f [s1, . . . , sn]t)), δ′(tp)
and δ′(f [s1, . . . , sn]t) must be the same state of Ad′, and so we can conclude that φ(δ(t[obsT (s1),
. . . , obsT (sn)], f)) = δ′(t[φ(obsT (s1)), . . . , φ(obsT (sn))], f) for all s1, . . . , sn ∈ S and f ∈ Σd

t . To
complete the proof we must see that φ maps F to F ′, but this is clear since if obsT (tp) ∈ F then
tp ∈ U for all tp ∈ S, so as φ(obsT (tp)) is mapped to a state q′ with obsT (q′) = obsT (tp), q′ must be
in F . Conversely, if obsT (tp) is mapped to a state q′ ∈ F ′, then since obsT (q′) = obsT (tp), tp ∈ U ,
so obsT (tp) ∈ F . φ is indeed an isomorphism, and (c) is proved. �

Theorem 3 The learner returns Ad
U after less than 2I loop executions.

The proof stays the same as in [1]: According to property (D) of the obtained observation tables
there cannot be more contexts in Cl than there are trees in Sl, for all l. Since (C) states that
|Cl| + |Sl| = l + 1, this means |Sl| > l/2. We also know that the learner halts when Sl has I
elements (by (B)), so we conclude that it will halt before l = 2I.

Now, let Ad
Tm

be the returned automaton. Then Tm is a closed, consistent observation table

and Ad
Tm

is the unique minimal automaton such that, for all s ∈ Sm and c ∈ Cm, c[[s]] ∈ L(Ad
Tm

) iff

c[[s]] ∈ U (see Lemma 2(b)). However, Ad
U has the same property and the same number of states,

so Ad
Tm

= Ad
U up to a bijective renaming of states. �

We will now sketch an example run of the algorithm for the language L(A3
ww) from Example 1.
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Example 2 The learner starts with T1 = ({a}, {�}), and obsT (a) = 0. T1 is closed and consistent,
so the learner proposes AT1

, which accepts nothing, and gets the counterexample tb = f [g, b, f, b]t1
(see Figure 3), from which the procedure EXTRACT derives T2. T2 is closed, but not consistent
(for example, obsT (a) = 0 and obsT (b) = 0, but obsT (c[[a]]) = 0 and obsT (c[[b]]) = 1 for c =
f [g, b, f,�]t1). Several invocations of RESOLVE yield T3, from which the learner synthesizes an
automaton AT3

with five states and one accepting state obsT (tb), and gets the counterexample tc =
f [g, a, f [g, b, f, g{3}, b]t2 , a]t1 (see Figure 3). The procedure EXTRACT adds two more rows to T3, and
RESOLVE another column, yielding T4, which is closed and consistent. AT4

has I = 7 states (which
is the termination criterion, see Section 2) and recognizes L(A3

ww).

T2 �

a 0
b 0
f 0
g 0
tb 1

T3 � c1 c2 c3

a 0 0 0 0
b 0 1 0 0
f 0 0 1 0
g 0 0 0 1
tb 1 0 0 0

T4 � c1 c2 c3 c4

a 0 0 0 0 0
b 0 1 0 0 0
f 0 0 1 0 0
g 0 0 0 1 0
tb 1 0 0 0 0

g{3} 0 0 0 0 1

tc 1 0 1 0 0

tb = f [g, b, f, b]t1
tc = f [g, a, f [g, b, f, g{3}, b]t2 , a]t1
t1 = ρ[ρ[]ε1 , ρ[ρ[]ε0 ]ρ[]

ε0
]ρ[ρ[]

ε0
]ρ

t2 = ρ[ρ[]ε1 , ρ[ρ[]ε1 , ρ[]ε1 ]ρ[ρ[]
ε0

]ρ]ρ[ρ[]
ε0

]ρ

c1 = f [g, b, f,�]t1
c2 = f [g, b,�, b]t1
c3 = f [�, b, f, b]t1
c4 = f [g, a, f [g, b, f,�, b]t2 , a]t1

We have shown that the algorithm by Drewes and Högberg [1] can be used in an almost un-
changed form to learn multi-dimensional trees in the new notation introduced in Subsection 3.2.
This is tantamount to the claim that the algorithm is also able to learn even string languages that
lie beyond the context-free class, provided that the learned multi-dimensional tree languages are
enriched with the information that is needed in order to take the yields. Probably the easiest way
to do this is to integrate the index sets directly into the alphabet (as has been done in Example 1),
i.e., to multiply the symbols of the alphabet by the power set of Sd = {2, ..., n} for d ≥ 2. String
languages situated beyond the regular class can then be learned in a two-step approach by first
letting the algorithm learn a higher-dimensional representation of the language and then taking the
string yields of the set that is recognized by the resulting automaton.

5 Conclusion

Generalizing the MAT learning algorithm L∗ to regular tree languages of arbitrarily many dimen-
sions is only one of the first steps to a more thorough understanding of the interaction between
grammatical inference and formal language theory. The next steps would be to find L∗-like learning
algorithms for finite-state recognizable languages of all kinds of objects, such as for example graphs
or pictures, or take existing ones, such as the learning algorithm Lω for ω-regular string languages
[11], and try to integrate these often very similar looking algorithms into a single one that can
process as many different types of inputs as possible. The same can then be attempted for other
learning models and algorithms.

Ultimately, it is our goal to understand which general mathematical properties of formal lan-
guage classes of all kinds of suitable objects underlie algorithmical learnability. Which conditions
does a class of formally definable objects have to fulfil to be learnable under a certain model? Are
they best captured in terms of universal algebra, or mathematical logics? At least for the class of
regular languages, which up until now is the most explored formal language class in the area of
grammatical inference, there is some evidence pointing to universal algebra as a convenient foun-
dation, such as the Myhill-Nerode theorem (see [10], p. 34) or the fact that finite-state automata
can be best defined for objects with term-like representations. Since we do not want to restrict
ourselves to string or tree languages, this opens up another interesting question: What are the
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exact properties (if they can be formulated at all) that characterize the term of “regularity” in
general? And, for that matter, what about the language classes beyond that? For many kinds of
formally definable objects the question whether the classical terms of the Chomsky Hierarchy can
actually be applied in a reasonable manner is still to be settled.

To come back to the results of our paper: Possibly the finding that recognizable three-dimensio-
nal tree languages are learnable and the fact that these are connected to the linguistically inspired
grammar formalism TAG can bring about more research and consequently more knowledge about
natural language learning as well. The connection between formal learnability and human language
acquisition is an ample field of speculations which are yet to be verified.

Another goal for the near future would be to try and implement the results of this paper. As
an implementation for the algorithm by Drewes and Högberg [1] already exists, this should not be
too hard to accomplish. Such a project might also be an impulse to reflect further on complexity
issues, as Drewes and Högberg have already done in [1] and pursued in [12].
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