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Abstract

We survey two existing algorithms for the inference of finite-state
tree automata from membership queries and a finite positive sample or
equivalence queries, and we suggest a correction for one of them which
we deem necessary in order to ensure its termination. We present two
algorithms for the same two settings when the underlying description
is not a deterministic but a residual canonical finite-state automaton.
To this end, we adapt all necessary notions to the residual tree case.
From our completed perspective, we discuss the terms on which those
four algorithms can be considered to be of polynomial complexity, and
also where there may be hidden exponentiality.

Keywords: Grammatical inference, one-shot learning, query learning,
learning from finite samples, polynomial characterizability

1 Introduction

The area of Grammatical Inference (GI) has evolved as the formal language
part of Computational Learning Theory and is concerned with learning al-
gorithms that infer a description (for example, a grammar or an automaton)
for an unknown formal language from given information.

In the present article, we assume a learning model where a learner has
access to several information sources and is required to return a single final
hypothesis describing the target language after a finite number of steps. This
notion has also been termed one-shot learning (see [28, 29]). In addition to
being finite, we want the number of steps taken by the learner to be bounded
by some polynomial measure with respect to the target (efficient learning),
although that measure will not be revealed to the learner.

The sources of information in a learning process can take various forms.
Besides a continuous data stream (as studied in [21]), the most studied ones
are probably the following. Let L be the target language.

• Equivalence queries (EQs): The learner has access to a teacher, also
called oracle, who is able to judge the correctness of a description A for
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the target, i.e., answers queries of the form ‘L = L(A)?’, and returns a
counterexample c ∈ (L\L(A))∪ (L(A)\L) in case of non-equivalence.

• Membership queries (MQs): The learner has access to an oracle who
is able to answer whether an object w is a member of L (‘w ∈ L?’).

• Finite samples of L, which can be positive (subsets of L) or negative
(subsets of the complement of L): No teacher is required, or rather, the
only task of the teacher is to procure such a sample and give it to the
learner before the learning process is begun. However, in order to en-
sure identification, especially if no query-based information source is
given, those sets have to fulfil certain significant properties with respect
to L. The learner has to rely on the given sample containing all necess-
ary information in some form. We will concentrate on cases where this
information notably depends on the structure of the target, and more
specifically, on the structure of a canonical description of L.

During the past decades a considerable range of learning algorithms for
various settings have been developed and presented in the literature. One of
the language classes that have been examined most thoroughly with respect
to their algorithmic learnability is the class of regular languages. It has been
shown (see [3, 4, 21]) that the regular class cannot be learned efficiently from
one kind of query or sample alone. Three well-studied combinations of two
such sources that allow the inference of the most notorious canonical repre-
sentation for a regular language, the state-minimal deterministic finite-state
automaton (DFA), join MQs and EQs (exploited by Angluin’s seminal algo-
rithm LSTAR [2]), MQs and a finite positive sample ([1]), and finite positive
and negative samples (RPNI [32, 14]).

The cited learners successfully identify a regular language L in a poly-
nomially bounded number of steps and/or queries depending on the size of
the state-minimal DFA for L and/or of the data set received throughout the
process, provided that the samples fulfil certain informativeness conditions.
Here the size of an automaton refers to the number of its states and the
size of a set of strings refers to the sum of the lengths of all its members.
Moreover, all those results are based on the retrieval of the correct set of
equivalence classes under the Myhill-Nerode relation (see [23, 12]) and as
a consequence, the language description returned by the learners is exactly
the state-minimal DFA for L itself.

These polynomial learnability results are actually quite spectacular seen
against the rather bleak background of Gold’s [22] finding that in general the
retrieval of the smallest automaton consistent with a finite labeled set of data
is NP-complete. And there are more negative results: In [13], de la Higuera
defines the notion of polynomial characterizability where a description class
is polynomially characterizable for a certain learner if for each description
we can construct a special set which when included into the available data is
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sure to make the learner identify the corresponding language correctly and is
of polynomial size with respect to the size of the description. He then goes on
to show that among other description classes the classes of non-deterministic
finite-state automata (NFA) and of context-free grammars (CFGs) are not
polynomially characterizable (given P 6= NP). However, as we will see from
the next two paragraphs, this is not a non-inferability result as yet.

DFA are not the only kind of automata where each state can be unam-
biguously related to an equivalence class of the corresponding language. In
[16], Denis et al. introduce a special case of NFA, so-called residual finite-
state automata (RFSA), where each state represents a residual language of
the language recognized by the automaton. A residual language is the set
of all suffixes that extend a given string into the language in question. For
any formal language there is a natural one-to-one correspondence between
the residual languages and the equivalence classes it defines. And contrary
to NFA in general, RFSA also have the advantageous property that for
every regular language there exists a unique state-minimal (the transition-
maximal, or saturated) RFSA, which makes them an attractive choice for
descriptions in the design of learning algorithms and their applications due
to their succinctness since that RFSA can be exponentially smaller than the
state-minimal DFA and is at most as big.

In [15], RFSA have been shown not to be polynomially characterizable
either. However, the authors of [15] also provide an efficient algorithm learn-
ing regular string languages from given data that returns another kind of
saturated RFSA which for every regular language is unambiguously defined
as well and for many languages has a smaller number of states than the
corresponding state-minimal DFA. And some years later, Bollig et al. [7]
have presented an efficient algorithm for the setting of MQs and EQs (based
on Angluin’s LSTAR [2]) which in case of success returns an RFSA that is
isomorphic to the canonical state-minimal RFSA mentioned above.

The given learnability results for DFA have soon been extended to de-
terministic finite-state tree automata (DFTA), see [33, 17, 5, 31]. Moreover,
the notion of RFSA can be equally extended to trees: Residual finite-state
tree automata (RFTA) have been defined and studied in [8]. As in the case
of strings, for every regular tree language L there is a unique state-minimal
and transition-maximal RFTA which can be exponentially more succinct
in its number of states than the corresponding state-minimal DFTA. The
inference of tree automata is particularly attractive due to the wide range
of their applications, from computational linguistics to mark-up languages
in the context of the world wide web. On a theoretical level, tree structures
represent a reasonable balance between expressivity and tractability.

In the present work, we will concentrate on the effects of shifting from
the string to the tree case and from the deterministic to the residual case.
We discuss the necessary preliminaries in Section 2. In Subsection 3.1, we
describe two prototypical learners (based on existing ones [17, 5] from the
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Figure 1: References for inference from MQs & EQs, MQs & a sample

literature) for the deterministic tree case, and suggest a correction for the
algorithm in [5] that we deem necessary to ensure its termination. Then we
attempt to reproduce those results under the assumption that the canonical
description of choice is not a DFTA but an RFTA in Subsection 3.2. So far,
the learnability results for residual finite-state automata were established
only for the case of strings ([15, 7]) – the tree case involves a fair amount
of additional intricacy when one considers the possible transitions in a con-
jectured tree automaton due to the interactions between adjacent subtrees.
On the one hand, we want to demonstrate that we can assemble algorithms
with components resembling the ones developed for the deterministic case
since it shows that due to the Myhill-Nerode theorem the inference of DFTA
and of RFTA is based on the same fundamental principle. This contributes
to the completion of the picture of regular tree language inference in settings
involving combinations of the information sources fixed above, see Figure 1.
For related work by the author, also see [24, 25, 26, 27]. On the other hand,
the impact of this shift from determinism to non-determinism on the general
complexity interacts with the impact of the shift from strings to trees, and
as one of our main concerns we would like to discuss the conditions for
successful identification of the target description using only a polynomial
measure of computation resources. The crucial issue is the exact definition
of that measure and we argue that there are several points in the two shifts
addressed above where exponentiality can be hidden. We conclude with a
summarizing discussion in Section 4.

All algorithms described or cited in this article that infer a finite-state
automaton for a regular language from given information are based on the
retrieval of the correct set of equivalence classes using a substructure-context
relation in some way or other. The majority of them recur to the concept of a
so-called observation table, which is a versatile and relatively abstract means
to perform and document the inference process at the same time since it
allows to represent the relationship between the available substructures and
contexts with respect to a language in a fairly intuitive way without having
to deal with the idiosyncrasies of more specific descriptions such as finite-
state automata or grammars, which moreover can be easily derived from it.
The concept can be traced back to Gold’s [22] state characterization matrix
and has been widely established in the GI community since Angluin [2] has
adopted it for the description of her seminal algorithm LSTAR. Therefore,
we will use observation tables in order to make our point.
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2 Preliminaries

We assume familiarity with the Chomsky Hierarchy and associated notions
for strings (see for example [23]). This section also includes some important
theoretical observations for the discussion to come.

2.1 Trees

Definition 1 A ranked alphabet is a pair 〈Σ, σ〉 where Σ is a set of symbols
and σ : Σ −→ N is a total function assigning a rank to each element of Σ.
We will abbreviate 〈Σ, σ〉 to Σ, and we denote by Σn := {f ∈ Σ | σ(f) = n}
the set of symbols from Σ that are associated with rank n.
The set TΣ of all trees over a ranked alphabet Σ is defined as the smallest
set such that Σ0 ⊆ TΣ and t = f(t1, . . . , tn) ∈ TΣ for all n ≥ 1, f ∈ Σn, and
t1, . . . , tn ∈ TΣ. Any set L ⊆ TΣ is called a tree language.
Let t = f(t1, . . . , tn) ∈ TΣ for n ≥ 0. We define the set Subt(t) of all subtrees
of t as the smallest set such that t ∈ Subt(t) and, if n ≥ 1, Subt(ti) ⊆ Subt(t)
for all i ∈ {1, . . . , n}. We call t1, . . . , tn the direct subtrees of t. We define
Subt(T ) :=

⋃
{Subt(t) | t ∈ T} for a set T ⊆ TΣ.

Definition 2 Let � be a special symbol of rank 0 not contained in Σ.
A tree c ∈ TΣ∪{�} in which � occurs exactly once is a context, and the set
of all contexts over Σ is denoted by CΣ. For c ∈ CΣ and s ∈ TΣ ∪ CΣ, c[[s]]
denotes the tree obtained by substituting s for � in c. The depth cdp(c) of
a context c is the length of the path from the root to the leaf labeled by �.
Let t ∈ TΣ ∪ CΣ and T ⊆ TΣ ∪ CΣ. We define
Cont(t) := {c ∈ CΣ | ∃t′ ∈ Subt(t) : c[[t′]] = t} and
Cont(T ) := {c ∈ CΣ | ∃t′ ∈ Subt(T ) : c[[t′]] ∈ T}.
For a tree f(t1, . . . , tn) ∈ TΣ and j ∈ {1, . . . , n} we define f(t1, . . . , tn)�

j as a
context f(t′1, . . . , t

′
n) ∈ CΣ with t′j = � and t′i = ti for all i ∈ {1, . . . , n}\{j}.

The traditional (term-based) tree language theory ([12, 20]) also establishes
the concept of finite-state automata for trees. We consider bottom-up tree
automata where the automaton assigns a state to each leaf and then works
its way up by assigning states to the respective mother nodes according to
the states assigned to the children and the admissible transition rules.

Definition 3 Let Σ be finite.
A finite-state tree automaton (FTA) is a tuple A = 〈Σ, Q, F, δ〉 where Q is
the finite set of states, F ⊆ Q the set of accepting states, and the transition
relation δ is a set of triples of the form 〈f, q1 · · · qn, q〉 for n ≥ 0, f ∈ Σn, and
q1, . . . , qn, q ∈ Q where q1 · · · qn denotes the sequence of the states q1, . . . , qn
in the same order which for n = 0 we will write as 〈〉. We will also use δ to
denote a function such that δ(〈f, q1 · · · qn〉) = {q ∈ Q | ∃〈f, q1 · · · qn, q〉 ∈ δ}.
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From δ we can derive a function δ∗ : TΣ −→ 2Q such that δ∗(f(s1, . . . , sn)) =

{q ∈ Q | ∃〈f, q1 · · · qn, q〉 ∈ δ : ∀i ∈ {1, . . . , n} : qi ∈ δ∗(si)},

and a function δ+ : Q×CΣ −→ 2Q such that δ+(q,�) = {q} and for e 6= �,

δ+(q, e) = {q′ ∈ Q | ∃e′, e′′ ∈ CΣ : e = e′[[e′′]] ∧ ∃q′′ ∈ Q : q′ ∈ δ+(q′′, e′) ∧
∃n ≥ 1 : ∃f(s1, . . . , sn) ∈ TΣ : e′′ = f(s1, . . . , sn)�

i ∧
∃〈f, q1 · · · qn, q′′〉 ∈ δ : qi = q ∧ ∀j ∈ {1, . . . , n} \ {i} : qj ∈ δ∗(sj)}.

Intuitively, δ∗(t) is the set of all states that the tree t ends up in and δ+(q, e)
is the set of all states that can be reached from the state q by the context e.
Let Lq := {s ∈ TΣ | q ∈ δ∗(s)} and Cq := {e ∈ CΣ | δ+(q, e) ∩ F 6= ∅}.
Intuitively, Lq is the set of all trees that can end up in q and Cq is the set
of all contexts that can lead from q into an accepting state.
We write A(s) = 1 for s ∈ TΣ if δ∗(s) ∩ F 6= ∅, A(s) = 0 if δ∗(s) ∩ Q 6= ∅
but δ∗(s) ∩ F = ∅, and A(s) = ∗ if δ∗(s) = ∅.
The language accepted by A is defined as L(A) := {s ∈ TΣ | A(s) = 1}.
Any tree language accepted by an FTA is called recognizable or regular.
If for all n ≥ 0 with Σn 6= ∅ and for all f ∈ Σn and all q1, . . . , qn ∈ Q there is
a transition 〈f, q1 · · · qn, q〉 ∈ δ then A is total. If for no 〈f, q1 · · · qn, q〉 ∈ δ
there is 〈f, q1 · · · qn, q′〉 ∈ δ with q′ 6= q then A is deterministic (a DFTA).

For any tree language L ⊆ TΣ, the equivalence relation ≡L is defined such
that t ≡L t′ for t, t′ ∈ TΣ iff e[[t]] ∈ L ⇔ e[[t′]] ∈ L for all contexts e ∈ CΣ.
The index IL of L is the cardinality of the set EL := {[t]L | t ∈ TΣ} where [t]L
denotes the equivalence class containing t. The Myhill-Nerode theorem (see
for example [23] for strings, and [12] for trees) states that IL is finite iff L
is recognizable by a finite-state automaton. For every regular tree language
L ⊆ TΣ there is a unique FTA AL = 〈Σ, QL, FL, δL〉 with IL states where

• QL := EL,

• FL := {x ∈ QL | x ⊆ L}, and

• δL := {〈f, x1 · · ·xn, x〉 | x1, . . . , xn, x ∈ QL ∧ f ∈ Σn ∧
∃t1, . . . , tn ∈ TΣ : ∀i ∈ {1, . . . , n} :

ti ∈ xi ∧ f(t1, . . . , tn) ∈ x}.
Each state x ∈ QL recognizes the equivalence class under ≡L it is associated
with, i.e., we have Lx = x. As a consequence, AL recognizes L and is the only
state-minimal total DFTA recognizing L up to isomorphism (see [12]).
If we have TΣ \ Subt(L) 6= ∅ then there is a failure state q in that DFTA
with Cq = ∅ and hence there exists a non-total DFTA for L with one less
state which is obtained by stripping the total one of the failure state q. We
denote any of those two canonical DFTA for L by AL in general but in cases
where it matters, we will denote the total one by A•L = 〈Σ, Q•, F•, δ•〉 and
the not necessarily total one without a failure state by A◦L = 〈Σ, Q◦, F◦, δ◦〉.
For TΣ \ Subt(L) = ∅ the automata A•L and A◦L coincide.
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2.2 Residual languages

The following three definitions are based on [8].

Definition 4 The (bottom-up) residual language t−1L of a tree t ∈ TΣ

with respect to a language L ⊆ TΣ is defined as the set {e ∈ CΣ | e[[t]] ∈ L}.
The set of all residual languages defined by L is denoted by CL.

There is a natural correspondence between the equivalence classes and the
residual languages of L determined by s−1L = t−1L ⇔ s ≡L t for any s, t ∈
TΣ which is due to the fact that the definitions of both concepts are based on
the substructure-context relation. As a consequence, each of the IL equiva-
lence classes under ≡L defines a unique residual language with respect to L,
and any pair of equivalence classes of L can be distinguished by their differing
– but not necessarily disjoint – sets of contexts. Obviously, since the index IL
is finite if and only if L is regular the same holds for CL. This precise corres-
pondence also accounts for Lemma 1, which has been proven in [8]:

Lemma 1 Let t1, . . . , tn, t′1 . . . , t
′
n ∈ TΣ for some n ≥ 1. If ti−1L ⊆ t′i

−1L
for all i ∈ {1, . . . , n} then f(t1, . . . , tn)−1L ⊆ f(t′1 . . . , t

′
n)−1L for all f ∈ Σn.

By the notion of residual languages one can define a special kind of FTA:

Definition 5 A residual finite-state tree automaton (RFTA) is an FTA
R = 〈Σ, Q, F, δ〉 such that for all q ∈ Q there is t ∈ TΣ with Cq = t−1L(R).

The class of tree languages that are recognized by RFTA corresponds exactly
to the class of regular tree languages as a whole (see [8]).

Definition 6 Let L ⊆ TΣ. A residual language γ ∈ CL is composed iff
γ =

⋃
{γ′ ∈ CL | γ′ ( γ}. Otherwise we say that it is prime. The set of

prime residual languages of L is denoted by PL.

For a regular L ⊆ TΣ, one can define an FTA RL = 〈Σ, QL, FL, δL〉 by

• QL := PL,

• FL := {y ∈ QL | � ∈ y}, and

• δL := {〈f, y1 · · · yn, y〉 | y1, . . . , yn, y ∈ QL ∧ f ∈ Σn ∧
∃t1, . . . , tn ∈ TΣ : ∀i ∈ {1, . . . , n} :

yi = ti
−1L ∧ y ⊆ f(t1, . . . , tn)−1L}.

The transitions in δL are determined by the inclusion relations among the
residual languages of L. The resulting FTA RL recognizes L and meets the
definition of an RFTA. Moreover, for each state y ∈ QL = PL the set Cy
equals y. The definition of δL also entails that RL is saturated, i.e., any addi-
tion to the transitions of δL would result in an automaton that recognizes a
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superset of L. Thus, RL is the unique state-minimal saturated RFTA recog-
nizing L up to isomorphism (see [8]) and is suitable as a canonical description
for L. There may be other RFTA recognizing L having the same number of
states and less transitions – however, a state-minimal RFTA for L featuring
the smallest possible number of transitions may not be unique.

2.3 Observation tables

We fix a regular tree language L ⊆ TΣ. The type of learning algorithm
we consider tries to infer a canonical FTA for L from given information.
This task is solved principally by means of an observation table in which the
learner keeps track of the information obtained and processed so far. The
rows of the table are labeled by trees, the columns are labeled by contexts.

Definition 7 A triple T = 〈S,E, obs〉 containing two finite sets S ⊆ TΣ

and E ⊆ CΣ with � ∈ E is called an observation table if

• S is subtree-closed, i.e., if f(s1, . . . , sn) ∈ S implies s1, . . . , sn ∈ S for
all f(s1, . . . , sn) ∈ TΣ, and

• obs : TΣ × CΣ −→ {0, 1} is a total function with

obs(s, e) =

{
1 if e[[s]] ∈ L is confirmed,
0 if e[[s]] /∈ L is confirmed.

For trees s, s′ ∈ TΣ and a context e ∈ CΣ, we will say that

• e is a positive context for s if obs(s, e) = 1,

• e is a negative context for s if obs(s, e) = 0, and that

• e is a separating context for s and s′ if obs(s, e) 6= obs(s′, e).

For s ∈ TΣ, let row(s) := {〈e, obs(s, e)〉 | e ∈ E}. Also, row(X) := {row(s) |
s ∈ X} for a set X ⊆ TΣ, and row(s)(e) := obs(s, e) for s ∈ TΣ and e ∈ E.
We say that two rows r1, r2 ∈ row(TΣ) are obviously different and denote
it by r1 <> r2 if there is a context e ∈ E with r1(e) 6= r2(e). We also say
that two trees s1, s2 ∈ TΣ are obviously different and denote it by s1 <> s2

if row(s1) <> row(s2). For row(s1) = row(s2) we also write s1 ≈ s2.

According to criteria proper to the respective type of learner the set S
labeling the rows of the table is divided into two sets red and blue with
red ∪ blue = S and red ∩ blue = ∅. Intuitively, for a pure query learner
red contains the elements the learner has already processed and set down to
represent the constituents of his current hypothesis whereas blue contains
elements the learner has already “in sight” and intends to consider next.
During the learning process, elements are moved successively from blue to
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red and blue is filled up with further trees. A learner from membership
queries and a positive sample fills the set red with elements derived from
the sample once at the beginning and does not change it anymore whereas
the set blue is left empty throughout the process.

Let us fix an observation table T = 〈S,E, obs〉 with S = red ∪ blue
for the rest of this section.

Definition 8 T is closed if ∀s ∈ blue : ∃s′ ∈ red : ¬(s <> s′).
T is consistent if, for all f(s1, . . . , sn), f(s′1, . . . , s

′
n) ∈ S and 1 ≤ i ≤ n,

si ≈ s′i implies f(s1, . . . , sn) ≈ f(s′1, . . . , s
′
n).

From T we can construct an FTA AT = 〈Σ, QT , FT , δT 〉 defined by

• QT := row(red),

• FT := {q ∈ QT | q(�) = 1}, and

• δT := {〈f, q1 · · · qn, q〉 | q1, . . . , qn, q ∈ QT ∧
∃s1, . . . , sn, f(s1, . . . , sn) ∈ S :

∀i ∈ {1, . . . , n} : ¬(qi <> row(si)) ∧
¬(q <> row(f(s1, . . . , sn)))}.

It follows directly from the definition of δT and of consistency that if T is
consistent then AT is deterministic. As S is subtree-closed, if T is closed
then there is no q ∈ QT with Lq = ∅, i.e., all states can be reached.

Definition 9 We say that AT is T -consistent if, for all s ∈ S and e ∈ E,
we have AT (e[[s]]) = 1 ⇔ obs(s, e) = 1.

In any DFTA A, for each state q the set Lq of trees ending up in q
is a subset of some equivalence class under the relation ≡L(A) whereas in
a non-deterministic FTA the set Lq may intersect several of those classes.
Abstractly speaking, all learning algorithms appearing in this article can
be conceived to start out with a provisional set of equivalence classes and
then to try and converge to the partition induced by ≡L on TΣ by splitting
up these classes according to the obtained information, which effectively
translates into inferring a state-minimal DFTA AL for L where for each
state q the set Lq corresponds exactly to an equivalence class of L and no
class is represented twice. The sets S and E were so named to indicate that
the rows of S are candidates for states in a DFTA for L and that E contains
experiments proving that two elements of S belong to distinct classes and
should represent different states.

Finally, the finite samples that are given to a learner can have certain
useful properties. Definition 10 is taken in a modified form from [5]:
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Definition 10 A finite set X+ ⊆ Subt(L) is representative for L if for
every transition 〈f, q1 · · · qn, q〉 ∈ δ◦ there is f(s1, . . . , sn) ∈ Subt(X+) with
δ∗◦(si) = qi for 1 ≤ i ≤ n.

Intuitively, X+ is representative for L if every transition of A◦L is needed to
assign states to all trees in X+. Equivalently, for every tree f(t1, . . . , tn) ∈
Subt(L) there is f(s1, . . . , sn) ∈ Subt(X+) such that si ≡L ti for 1 ≤ i ≤ n.

Definition 11 A finite set C ⊆ CΣ is separative for L if for all t, t′ ∈ TΣ

with ¬(t ≡L t′) there is e ∈ C such that ¬(e[[t]] ∈ L⇔ e[[t′]] ∈ L).

Thus, a set is separative for L if for each pair of equivalence classes χ, χ′ ∈ EL
with χ 6= χ′ it features a context by which the equality can be disproven.

3 Two settings, two canonical representations

In Subsection 3.1 we will describe two algorithms that infer a state-minimal
DFTA for the target language in two different settings based on the learners
given in [17] and [5]. In Subsection 3.2 we will attempt to reproduce those
results for the canonical state-minimal RFTA.

Let L be the regular target tree language over some finite ranked alphabet.
Let the table T = 〈S,E, obs〉 with S = red ∪ blue maintained by the
respective learner always be defined by the current values of its components
which we assume to be visible as global variables throughout all procedures.
We also assume that the learner is given the smallest alphabet Σ such that
L ⊆ TΣ. A common procedure needed by all learners is UPDATE which
fills in the cells of the table with the aid of a membership oracle O:

procedure UPDATE

1 for s ∈ S do
2 for e ∈ E do
3 if O(e[[s]]) = 1 then obs(s, e) := 1; else obs(s, e) := 0.

3.1 The deterministic case

We consider two settings: In both settings the learner has access to a mem-
bership oracle. In addition, in one setting the learner is given a finite subset
of the target language once at the beginning whereas in the other the learner
has access to an equivalence oracle instead.

3.1.1 MQs and a positive sample

The algorithm ALTEX [5], given in our own modified version below, relies
on a single check-and-mend mechanism: It builds an initial observation table
from the given sample and checks if the table is consistent. While this is
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Input: A set X+ ⊆ TΣ, a membership oracle O. Output: A DFTA.

1 S := Subt(X+); E := Cont(X+); red := S; blue := ∅; UPDATE;

2 while T is not consistent do
3 find f(s1, . . . , sn), f(s′

1, . . . , s
′
n) ∈ S, e ∈ E, j ∈ {1, . . . , n} with

4 ∀i ∈ {1, . . . , n} : si ≈ s′
i ∧

5 obs(f(s1, . . . , sn), e) = 1 ∧ obs(f(s′
1, . . . , s

′
n), e) = 0 ∧

6 O(e[[f(s1, . . . , sn)�
j ]][[s′

j ]]) = 0;
7 E := E ∪ {e[[f(s1, . . . , sn)�

j ]]}; UPDATE;

8 return AT .

Figure 2: Our modified ALTEX

not the case the learner finds suitable elements causing an inconsistency
in the table and from them constructs new separating contexts which are
then added to E. The process stops when the table is consistent, and the
learner returns the FTA represented by the resulting table as the solution.
As consistency implies determinism the output is bound to be a DFTA.

We observe that there is a problem with the original version in [5]: The
authors claim that in each loop execution their algorithm adds a new sepa-
rating context to E. This is only true when certain inconsistencies fulfilling
additional conditions are processed (see below). As a consequence, we must
either transform their while-loop into a for-loop processing the inconsisten-
cies found in the initial table one by one, or check in each execution if the
inconsistency is suitable. Both corrections preserve the learner’s polynomial
complexity but increase its degree. We have chosen the second option, and
the corrected code is displayed in Figure 2.

Assume the sample X+ to be representative for L. If X+ is representative
for L then the set S = Subt(X+) must be as well, i.e., all equivalence classes
of L and all transitions between them are represented in S. The following
lemma is essential for the learner’s progress because its claim constitutes a
necessary condition to ensure that as long as the table is not consistent we
can derive a separating context for two elements representing two different
equivalence classes directly from the table itself (i.e., that the search in lines
3–6 will always succeed). It is a reformulated version of a corresponding one
from [5], and the proof can be found in Appendix A.1. Let us call a pair
of trees s, s′ ∈ S deceiving if s ≈ s′ but ¬(s ≡L s′). We will say that an
inconsistency is simple if it involves just one deceiving pair of direct subtrees
as defined in the text of Lemma 2, and multiple otherwise.

Lemma 2 As long as T is not consistent it contains a simple inconsistency,
i.e, there are f(s1, . . . , sn), f(s′1, . . . , s

′
n) ∈ S with si ≈ s′i for all i with 1 ≤

i ≤ n and ¬(f(s1, . . . , sn) ≈ f(s′1, . . . , s
′
n)) such that there is an index j ∈

{1, . . . , n} with ¬(sj ≡L s′j) but sk ≡L s′k for all other k ∈ {1, . . . , n} \ {j}.
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Why does it work? Why are simple inconsistencies essential?

We will give some semi-formal explanations for the termination and correct-
ness of our version of ALTEX, and also for the problems arising with the
original version in [5], in preparation of the discussion of the residual case.
Then we will prove the algorithm formally.

For the following explanations, recall that EL is the set of all equivalence
classes of L under ≡L, and let us define an L-transition as an expression
ε := f(χ1, . . . , χn) with f ∈ Σn for some n ≥ 1, χj = {�} for some index j ∈
{1, . . . , n} and χi ∈ EL for all i ∈ {1, . . . , n} \ {j} such that there is χ ∈ EL
with ε[[χ]] ⊆ Subt(L), where ε[[χ]] denotes the set

{f(t1, . . . , tn) ∈ TΣ | tj ∈ χ ∧ ∀i ∈ {1, . . . , n} \ {j} : ti ∈ χi}.

Observe that an L-transition can be naturally represented by a context that
is obtained by instantiating χj by � and each χi in ε for i ∈ {1, . . . , n} \ {j}
with an arbitrary tree from χi.
The application of ε to a tree s ∈ Subt(L) is the set ε[[[s]L]]. The behaviour of
ε[[[s]L]] with respect to a context e ∈ CΣ is the truth value of e[[ε[[[s]L]]]] ⊆ L.
We say that s has the L-transition ε (or that ε is an L-transition of s) if
ε[[[s]L]] ⊆ Subt(L). In terms of the canonical DFTA A◦L = 〈Σ, Q◦, F◦, δ◦〉
(without a failure state) this corresponds to the existence of a transition
〈f, q1 · · · qn, q〉 ∈ δ◦ with qj = [s]L and qi = χi for all i ∈ {1, . . . , n} \ {j}.
The behaviour of ε[[[s]L]] with respect to e is the truth of δ+

◦ (q, e) ∩ F◦ 6= ∅.

From here on, assume X+ to be representative for L. While the table is
not consistent it cannot represent the target automaton AL since AL is de-
terministic. Moreover, the authors of [5] show that with X+ representative,
as long as T is not consistent the FTA AT recognizes a subset of L.

An inconsistency in the table caused by two elements t = f(s1, . . . , sn)
and t′ = f(s′1, . . . , s

′
n) in S with si ≈ s′i for all i ∈ {1, . . . , n} but ¬(t ≈ t′)

implies that there must be at least one deceiving pair sj , s′j for some index
j ∈ {1, . . . , n} for which there is a separating context exactly of depth d+ 1
where d is the depth of some context e′ ∈ CΣ fulfilling obs(t, e′) = 1 and
obs(t′, e′) = 0. However, the actual ability of the learner to construct such
a separating context for sj and s′j from the (finite!) table fundamentally
relies on Lemma 2 which in turn relies on X+ being representative for L.
Lemma 2 implies that for each multiple inconsistency the table also features
a simple inconsistency for each deceiving pair in it.

Changing the point of view, such a simple inconsistency can be seen as
a comparison of the behaviour with respect to the contexts in E when the
same L-transition (represented by e2 in the proof of Lemma 2) is applied
to the members of a deceiving pair sj , s′j – with the outcome that there is
a difference. Note that as X+ is representative for L the set S contains all
L-transitions of sj , i.e., all possible first steps from [sj ]L towards acceptance
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in AL, and E contains a positive context for each of those L-transitions.
This means that if an inconsistency involving two trees t, t′ retrieved by the
checks in lines 3–5 is indeed simple then the learner can pick the L-transition
represented by f(s1, . . . , sn)�

j (and f(s′1, . . . , s
′
n)�
j ) and any separating con-

text for t and t′ to construct a separating context for sj and s′j . In other
words, if we have chosen the right index j then any separating context for t
and t′ will fulfil the condition in line 6 and the learner is sure to add a new
separating context to E in line 7. However, if the inconsistency is multiple
then this is not ensured since in that case we do not compare the effect of
applying the same L-transition to sj and s′j . This is why the algorithm as
given in [5] may not terminate if in the while-loop the same inconsistency is
chosen over and over again without eliminating it. Therefore we search for
a suitable context e and index j in lines 3–6 right away, especially making
sure that the context added to E would indeed be separating in line 6.
Clearly, when all simple inconsistencies are resolved there cannot remain any
multiple inconsistencies in the table either. Since the set S is never modified
only a finite number of rows in the table can be identical, and obviously by
no addition to the elements of E can this number be increased. Thus, in
our version the termination of the while-loop is ensured.

However, the mere achievement of consistency in a table constructed
from some positive sample of L would not suffice to ensure its correctness:
First of all, if the set of contexts labeling the columns of the final table is
to be separative for L then we have yet to verify that for any pair of trees
s, s′ ∈ Subt(L) fulfilling ¬(s ≡L s′) but s ≈ s′ in the initial table there
is a corresponding inconsistency which will then be resolved at some point
during the process. The truth of this statement also relies on the condition
that X+ be representative for L and is shown by induction over the depth
of separating contexts in the proof of Theorem 1 below. The basic idea of
this induction is inspired by the original one in [1] for the simpler case of
deterministic finite-state string automata in the same setting.

Theorem 1 If X+ is representative for L then ALTEX terminates and re-
turns a DFTA which is isomorphic to A◦L.

Proof. Assume that ALTEX performs m executions of the while-loop in
total, and let Tk = 〈Sk, Ek, obs〉 be the table obtained after k executions
for k ≥ 0. Clearly we have Sk′−1 = Sk′ and Ek′−1 ( Ek′ for all k′ with
1 ≤ k′ ≤ m. Note that the definition of the relation symbol ≈ differs de-
pending on the current set Ek – we will write ≈k for disambiguation.

When the while-loop terminates, (a) Tm is consistent due to the termination
criterion, and (b) the set Em is separative for L, i.e., for any t, t′ ∈ TΣ with
¬(t ≡L t′) there is a context e ∈ Em with obs(t, e) 6= obs(t′, e).

(b): First of all, observe that if t′ /∈ Subt(L) then either t ∈ Subt(L) or t
cannot fulfil ¬(t ≡L t′). In the former case, as X+ is representative for L
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and as we have X+ ⊆ L there is s ∈ S0 with s ≡L t and e ∈ Cont(X+) = E0

with obs(s, e) = obs(t, e) = 1, and thus ¬(t ≈m t′) is ensured.

Let t, t′ ∈ Subt(L). As X+ is representative for L there are s, s′ ∈ S0 with
s ≡L t and s′ ≡L t′. We prove (b) by induction over separating contexts.

If s ∈ L but s′ /∈ L then the claim is true since we have � ∈ Cont(X+) = E0.
If the canonical DFTA A◦L contains a transition 〈f, q1 · · · qn, q〉 ∈ δ◦ with
qj = [s]L for some j ∈ {1, . . . , n} but no 〈f, q′1 · · · q′n, q′〉 ∈ δ◦ with q′j = [s′]L
then the claim holds as well due to the fact that X+ is representative for
L and X+ ⊆ L which implies that there is e ∈ Cont(X+) = E0 and
e1, e2 ∈ CΣ with e = e1[[e2]] and e2 = f(s1, . . . , sn)�

j and [si]L = qi for
all i ∈ {1, . . . , n} \ {j} such that obs(s, e) = 1 and obs(s′, e) = 0.

Remark Intuitively stated, if two elements do not share any L-transition
featuring the same root symbol then they cannot be deceiving a priori. ♦

For the remaining cases, let es ∈ CΣ be a separating context for s and s′

with cdp(es) = d+1 for some d ≥ 0, and choose k ≤ m such that we already
have ¬(sk ≈k s′k) for all sk, s′k ∈ Sk with ¬(sk ≡L s′k) for which there is a
separating context ek ∈ CΣ with cdp(ek) ≤ d. Moreover, assume s ≈k s′.
Let there be a transition 〈f, q1 · · · qn, q〉 ∈ δ◦ with qj = [s]L for some j ∈
{1, . . . , n}. Since we have s ≈k s′ there is a context e ∈ Cont(X+) ⊆ Ek and
e1, e2 ∈ CΣ such that e = e1[[e2]] and e2 = f(s1, . . . , sn)�

j with qi = [si]L for
i ∈ {1, . . . , n}\{j} fulfilling obs(s, e) = obs(s′, e) = 1. With Cont(X+) ⊆ Ek
we also have e1 ∈ Ek. Since e is a positive context both for s and s′ there are
f(t1, . . . , tn), f(t′1, . . . , t

′
n) ∈ Sk with tj ≡L s and t′j ≡L s′ and ti ≡L si ≡L t′i

for i ∈ {1, . . . , n} \ {j}. We have ¬(f(t1, . . . , tn) ≈k f(t′1, . . . , t
′
n)) by the

induction assumption which implies that Tk must be inconsistent, i.e., there
must be e′ ∈ Ek with obs(f(t1, . . . , tn), e′) 6= obs(f(t′1, . . . , t

′
n), e′).

Hence, as long as there is a pair t, t′ ∈ Subt(L) with ¬(t ≡L t′) but t ≈ t′

the table cannot be consistent. By Lemma 2, as long as the table is not con-
sistent one can derive a context from it that eliminates an identity between
two rows of S. ALTEX will find such a context and add it to E. Since S is
finite there can be only a finite number of such pairs and thus the while-loop
terminates. As X+ is representative for L and Sm = Subt(X+), on exiting
the while-loop Em must be separative for all of L.
The claim of Theorem 1 follows directly from the fact that X+ is represen-
tative for L and the definition of AT (also see Section 3.2.2 in [27]). �

Naturally, the complexity of ALTEX crucially depends on the given sample.

Let m+ :=
∑
t∈X+

|t| be the size of all trees in X+ added up, which is also the

maximal cardinality of Subt(X+) and of Cont(X+). Let ρ be the maximal
rank in Σ with Σρ 6= ∅. Assume X+ to be representative for L. Then ρ is
bounded by m+, and the index IL is bounded by ρ and thus by m+ as well.
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The initial table can contain at most m+ elements in S and at most m+

elements in E. In each loop execution we add a single context to E. This
implies that the number of MQs needed to successively fill the final table
is bounded by m+ · 2m+ ∈ O(m+

2). Moreover, an additional MQ is asked
in line 6. Finding suitable elements may require |S|2 · 2m+ · ρ ∈ O(m+

4)
executions of that MQ, and as the loop itself is executed at most m+ times,
the overall number of additional MQs caused by the executions of that loop
is bounded by a function in O(m+

5). However, we observe that most cases
fulfil ρ � m+ and also |Subt(X+)| � m+, and that in line 3 we restrict
ourselves to elements from S with the same root symbol.

Note that the authors of [5] do not try to identify the deceiving pair of
subtrees in an inconsistency but add contexts for all indices in {1, . . . , n}.
We prefer to keep the table small and have shifted the query complexity of
filling their table to the search for a suitable index j in the loop. This is
unrelated to the issue of the missing check which we have added in line 6.

Remark As it is, our learner cannot reliably check equivalence under ≡L.
However, we can eliminate the problem of identifying inconsistencies as sim-
ple and moreover significantly reduce the learner’s complexity by imposing
an even stronger condition on the given positive sample.
We define mSubt(X+) := {s ∈ Subt(X+) | ∀s′ ∈ Subt(X+) ∩ [s]L : s � s′}
for some total ordering relation � on trees and we formulate the condition

(A) Σ(mSubt(X+)) ∩ Subt(L) ⊆ Subt(X+).

In connection with representativeness, this condition ensures that if two non-
equivalent elements t, t′ ∈ TΣ share an L-transition then the application of
that L-transition to each of those trees is represented in S using the same
subtrees at least once, and thus for each deceiving pair sj , s′j in the table we
can find a pair of trees in S representing the results of applying the exact
same L-transition to [sj ]L and [s′j ]L, respectively. In other words, we can find
a simple inconsistency where the non-deceiving pairs are not only equivalent
but represented by the same trees. Note that we could even weaken condition
(A) by merely requiring the existence of an arbitrary subset of Subt(X+)
containing at least one representative for each equivalence class χ ∈ EL with
χ ⊆ Subt(L) and fulfilling (A) instead of mSubt(X+) but we have chosen
the set of minimal access trees for convenience.
We can then define a modified version of ALTEX that relies on condition (A)
and searches for two trees s = f(s1, . . . , sn) and s′ = f(s′1, . . . , s

′
n) in S with

sj ≈ s′j for some j and si = s′i for all i ∈ {1, . . . , n}\{j} but ¬(s ≈ s′). This
obviously represents a simple inconsistency and we can pick an arbitrary
separating context for s and s′ in order to construct a separating context for
sj and s′j without having to ask any additional MQs. The number of MQs
is thus reduced to the at most 2m+

2 needed to fill in the cells of the table.
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3 while T is not consistent do
4 find f(s1, . . . , sn), f(s′

1, . . . , s
′
n) ∈ S and e ∈ E such that

5’ ∃j ∈ {1, . . . , n} : sj ≈ s′
j ∧ ∀i ∈ {1, . . . , n} \ {j} : si = s′

i ∧
6 obs(f(s1, . . . , sn), e) = 1 ∧ obs(f(s′

1, . . . , s
′
n), e) = 0;

8 E := E ∪ {e[[f(s1, . . . , sn)�
j ]]}; UPDATE;

Condition (A) is inspired by a similar one in [32] where a learner (RPNI)
learns from a positive and a negative sample without being allowed to ask
MQs at all which implies that the learner has to rely on equivalence classes
always being represented by the same trees as well. ♦

3.1.2 MQs and EQs

The algorithm inferring the state-minimal DFTA for a regular tree language
from MQs and EQs given in [17] stays quite close to Angluin’s LSTAR [2]
for strings but adds some improvements for practical complexity.

Let the equivalence oracle Oeq return the undefined tree � if the learner’s
hypothesis is correct. The learner starts out with an initial table T0 defined
by red = {a} for some arbitrary a ∈ Σ0, blue = Σ(red), and E = {�}.
Provided that an EQ for AT0 is answered in the negative the learner enters
a loop in which it first establishes closedness and consistency by successively
promoting elements from blue to red and/or adding suitable elements to
the table. When the table is both closed and consistentAT is a state-minimal
DFTA for L(AT ), see [17]. If an EQ for this DFTA is still answered in the
negative then the learner uses the given counterexample to modify the table
in such a way that the learning process can be continued. The code of this
learning algorithm is displayed in Figure 3.

It is easy to see that the learner will always succeed in establishing a
closed table after less than IL executions of the inner while-loop since there
can be at most IL distinct rows. As soon as the table is closed the learner
checks for consistency. Considering the difficulties addressed in the previous
section, let us give some explanations why in this setting the learner will
always be able to establish consistency as well although we cannot be sure
that at this stage the sets S and E have the same favourable properties as
when they are derived from a representative sample of L.

All tables constructed by this learner fulfil the condition blue = Σ(red).
An inconsistency caused by two trees t = f(s1, . . . , sn) and t′ = f(s′1, . . . , s

′
n)

in S with si ≈ s′i for all i ∈ {1, . . . , n} but ¬(t ≈ t′) implies that there must
be at least one deceiving pair sj , s′j for some j ∈ {1, . . . , n} for which there
is a separating context of depth d+ 1 where d is the depth of some context
e ∈ CΣ with obs(t, e) = 1 and obs(t′, e) = 0. Necessarily, si, s′i ∈ red for all
i ∈ {1, . . . , n}. How do we find a separating context for at least one deceiving
pair? Consider the following argument from [17]: There must be an index
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Input: Oracles Oeq and O. Output: A DFTA.

1 red := {a} for some a ∈ Σ0; blue := Σ(red); E := {�}; UPDATE;

2 c := Oeq(AT );
3 while c 6= � do
4 while T is not closed ∨ T is not consistent do
5 if T is not closed then
6 find s ∈ blue such that ∀s′ ∈ red : s <> s′; red := red ∪ {s};
7 blue := blue \ {s}; blue := blue ∪ Σ(red); UPDATE;

8 else find f(s1, . . . , sn), f(s′
1, . . . , s

′
n) ∈ S, e ∈ E, j ∈ {1, . . . , n}

9 such that ∀i ∈ {1, . . . , n} \ {j} : si = s′
i ∧ sj ≈ s′

j ∧
10 obs(f(s1, . . . , sn), e) = 1 ∧ obs(f(s′

1, . . . , s
′
n), e) = 0;

11 E := E ∪ {e[[f(s1, . . . , sn)�
j ]]}; UPDATE;

12 if c := Oeq(AT ) 6= � then red := red ∪ MINIMIZE(c);

13 blue := (blue \ red) ∪ Σ(red); UPDATE;

14 return AT .

procedure MINIMIZE(c)

15 find s ∈ blue such that ∃e ∈ CΣ : e[[s]] = c;

16 if ∃s′ ∈ red : ¬(s <> s′) ∧ O(c) = O(e[[s′]]) then return MINIMIZE(e[[s′]]);
17 else return s.

Figure 3: Learning DFTA from MQs and EQs

k ∈ {1, . . . , n} and a context e′ with obs(f(s1, . . . , sk, s
′
k+1, . . . , s

′
n), e′) 6=

obs(f(s1, . . . , sk−1, s
′
k, . . . , s

′
n), e′), otherwise we would have t ≈ t′ by letting

k run from 1 to n.1 The important point here is that all those trees created
from t and t′ by shifting the index k are also in S due to blue = Σ(red)
and that e′ ∈ E, and hence one of those pairs f(s1, . . . , sk, s

′
k+1, . . . , s

′
n),

f(s1, . . . , sk−1, s
′
k, . . . , s

′
n) forms a simple inconsistency in the table, which

moreover can be trivially identified as simple since all pairs of direct subtrees
except one are identical. Thus, we can retrieve the necessary ingredients for a
context reliably separating that pair sk, s′k directly from the table by picking
the separating context e′ and building e′[[f(s1, . . . , sk−1,�, s′k+1, . . . , s

′
n)]].

Note that we do not even need an additional MQ to check if that context is
indeed separating because the situation here has the same effect as condition
(A) for the corrected ALTEX in the previous subsection.

Thus, as long as there are new equivalence classes within the reach of a
single symbol, the learner continues building a representative sample on its
own. Only if this is no longer the case the learner asks for a counterexample
(line 12). On the receipt of a counterexample c we could either add Subt(c)

1This is the easiest way to formulate the argument but may mislead the intuition.
Observe that when building t′ from t by successively replacing a direct subtree si by s′

i in
any order, there must be a consecutive pair of stages disrupting the ≈-relation.
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to red or Cont(c) to E. The authors of [17] have developed a third option
which serves to eliminate the influence of unnecessarily large counterexam-
ples and which is here called procedure MINIMIZE. Basically, MINIMIZE
simulates a parse of c by the current hypothesis automaton: It recursively
replaces blue subtrees by red ones with the same row provided that the
property of being a counterexample stays preserved. As soon as there is no
such red element we know that the blue subtree is not yet represented as
an equivalence class in red and can add it. All three methods either result
in a new state directly or at least in a new inconsistency (see Appendix A.2).
MINIMIZE is based on the principle of contradiction backtracing which was
described by Shapiro in [34]. For more details, see [17] and [18].

Thus, with the help of counterexamples in order to bridge gaps spanning
more than one symbol, the learner successively builds a table in which each
equivalence class of the target language L has exactly one representative in
red, and distinct equivalence classes have distinct rows. The authors of [17]
show that the algorithm terminates after at most IL executions of the outer
loop and returns the total state-minimal DFTA A•L for L.

The running time of this learner is bounded by O((ILρ + ζ)IL3) where
ζ is the size of the biggest counterexamples received and ρ is the greatest
rank in Σ with Σρ 6= ∅, see [17].

3.1.3 Discussing complexity aspects

First of all, we observe that polynomial learning of a class of languages does
not make sense without reference to a specific class of language descriptions
because otherwise the learner’s search cannot be adequately bounded.
In [13], de la Higuera discusses several notions of polynomial learnability, of
which the most basic one can be summarized as follows.

Definition 12 Let the underlying alphabet be fixed. A sample is polynomial
with respect to a description if it is polynomial in size with respect to

• the number of states for DFA, and

• the number of rules multiplied by the longest rule for CFGs.

Definition 13 A class of descriptions is polynomially characterizable with
respect to some learner if for each member of the class there is a polynomial
sample that allows the learner to identify the target description correctly.

Recall that in the case of trees we have defined the size of a sample as the
total number of nodes in it. The algorithm ALTEX described in Subsection
3.1.1 can identify a regular tree language L from a representative sample in
a polynomial number of steps with respect to the size of the sample. How-
ever, although such a sample can be built in polynomial time with respect
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to the number of states in A◦L,2 there are cases where the minimal size of
such a sample is exponential with respect to the number of states in A◦L.
The authors of [5] demonstrate this using the language containing a single
k-ary tree of height l for k, l ∈ N where all inner nodes are labeled with a
and all leaves with b. This tree has kl leaves and the state-minimal DFTA
is 〈{a, b}, {q1, . . . , ql, qF }, {qF }, δ〉 with Σl = {a} and Σ0 = {b} and δ con-
taining the transitions 〈b, 〈〉, q1〉 and 〈a, qi · · · qi, qi+1〉 for 1 ≤ i ≤ l − 1 and
〈a, ql · · · ql, qF 〉. The size of the minimal representative sample is kl+1 − 1.
Hence, state-minimal DFTA are not polynomially characterizable with re-
spect to ALTEX in the sense of Definition 13.

The authors of [5] also remark that several distinct regular languages can
have identical representative samples (see Appendix A.3 for an example) and
observe that from this point of view it is not surprising that regular string
languages are not learnable from positive data only, as shown by Gold [21].
Hence, for ALTEX it is vital to decompose the given trees and reassemble the
parts, and then to be able to verify the membership status of the resulting
trees with respect to the target language via membership queries. Note that
we can use the MQs and EQs learner to build a representative input sample
for ALTEX, namely S[[E]]∩L for the final table 〈S,E, obs〉, which moreover
would cause ALTEX to terminate immediately and successfully. Also note
that we would not even have to intersect S[[E]] with L since for ALTEX any
superset of a representative sample works equally well (due to MQs).

The authors of [17] observe that the behaviour of their MQs and EQs
learner can only be considered as polynomial if the rank ρ is fixed and not
taken as an input parameter. The exponential component stems from the
complexity of filling up blue with all possible one-symbol extensions of red.
The learner ALTEX is spared this difficulty by the fact that it receives a
representative sample and does not have to maintain a set blue. Trivially,
if we would indicate the complexity of the MQs and EQs learner in terms
of the number of possible(!) transitions given the number of states in the
target automaton, the difficulty would disappear. This seems appropriate
when one considers that Definition 13 also refers to the number of rules in
a CFG and not to the number of nonterminals in it. There is an important
parallel between CFGs and FTA which distinguishes them from DFA: In
both formats, one side of each rule or transition may involve more than one
component, i.e., nonterminal or state. However, we remark that since we
are learning our descriptions based on the notion of syntactic equivalence,
in contrast to the case of CFGs in general, in the case of FTA the number
of options for the right-hand side is still finite.

2This building process rather depends on the number of transitions than on the number
of states but since an FTA with |Q| states has at most |Σ| · |Q|ρ+1 transitions there can
be no exponential gap between those two numbers.

19



We also remark that while ALTEX directly returns the not necessarily
total automaton A◦L for L, the MQs and EQs learner returns the total A•L
and would have to eliminate a possible failure state ex post. However, there
is at most one failure state in A•L and thus this issue does not relate to the
discussion of polynomial versus exponential behaviour.

3.2 The residual case

The following section presents tools and notions that serve to relate obser-
vation tables and RFTA, staying as close as possible to the case of DFTA.

3.2.1 Relating observation tables and RFTA

Definition 14 For two trees s, s′ ∈ TΣ with s−1L * s′−1L and a context
e ∈ CΣ, we call e an excluding context for s and s′ if e ∈ s−1L but e /∈ s′−1L.

Definition 15 A finite set C ⊆ CΣ is exclusive for L if for all t, t′ ∈ TΣ

with t−1L * t′−1L there is e ∈ C such that e ∈ t−1L \ t′−1L.
A finite set C ⊆ CΣ is p-exclusive for L if for each γ ∈ PL there is e ∈ C
such that e ∈ γ but e /∈

⋃
{γ′ ∈ CL | γ′ ( γ}.

A set is exclusive for L if for each pair of residual languages γ, γ′ of L with
γ * γ′ it features a context by which the inclusion can be disproven. A set
is p-exclusive for L if for every prime residual language γ of L it features a
context e by which it is possible to prove that γ is indeed prime.

For the following definitions (based on [7] where the string case is treated),
we fix an observation table T = 〈S,E, obs〉 with S = red ∪ blue.

Definition 16 Let max (X) := x ∈ X ⊆ {0, 1} such that ∀x′ ∈ X : x′ ≤ x.
For r1, r2 ∈ row(TΣ) and R ⊆ row(TΣ), we define a join operation by

r1 t r2 := {〈e, x〉 | e ∈ E ∧ x = max ({r1(e)} ∪ {r2(e)})}, and⊔
R := {〈e, x〉 | e ∈ E ∧ x = max ({r(e) | r ∈ R})}.

For two rows r, r′ ∈ row(TΣ) we say that r is covered by r′, and denote it by
r v r′, if r(e) = 1 implies r′(e) = 1 for all e ∈ E. For two trees s, s′ ∈ TΣ, if
row(s) v row(s′) then we also write s v s′. A row r ∈ row(S) is composed
if there are rows r1, . . . , rn ∈ row(S) \ {r} such that r =

⊔
{r1, . . . , rn}. If r

is not composed and there is at least one e ∈ E with r(e) = 1 then r is said
to be prime. For a set X ⊆ TΣ, we define PX := {r ∈ row(X) | r is prime}.

Definition 17 T is R-closed if it fulfils Pblue ⊆ Pred.
T is R-consistent if, for all f(s1, . . . , sn), f(s′1, . . . , s

′
n) ∈ S and 1 ≤ i ≤ n,

si v s′i implies f(s1, . . . , sn) v f(s′1, . . . , s
′
n).

Closedness implies R-closedness whereas R-consistency implies consistency.
Let us consider a small example to clarify the definitions given above.
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� f(�, b) f(a,�)
red a 0 1 0

b 1 1 1
f(a, a) 1 0 0

blue f(a, b) 1 1 0
f(b, b) 1 0 0

Figure 4: An example for an observation table and relations in it

Example 1 In the small observation table given in Figure 4,

• row(f(a, b)) is the only one that is not prime because it can be com-
posed from row(a) and row(f(a, a)) or row(f(b, b)),

• row(b) covers all others, row(f(a, b)) covers row(a), row(f(a, a)) and
row(f(b, b)), and row(f(a, a)) and row(f(b, b)) cover each other.

Moreover, this table is R-closed because the only prime row in row(blue),
row(f(b, b)), is also an element of row(red) due to the fact that there is
f(a, a) ∈ red with row(f(a, a)) = row(f(b, b)) but it is not R-consistent
because row(b) covers row(a) but row(f(b, b)) does not cover row(f(a, b)).

From T we can derive an FTA RT = 〈Σ, QT , FT , δT 〉 defined by

• QT := Pred,

• FT := {r ∈ QT | r(�) = 1}, and

• δT := {〈f, q1 · · · qn, q〉 | q1, . . . , qn, q ∈ QT ∧
∃s1, . . . , sn, f(s1, . . . , sn) ∈ S :

∀i ∈ {1, . . . , n} : qi = row(si) ∧
q v row(f(s1, . . . , sn))}.

If T is R-consistent then the following holds: Consider s1, . . . , sn, s
′
1, . . . , s

′
n

∈ Pred with si ≈ s′i for 1 ≤ i ≤ n. Clearly, we have si v s′i and s′i v si. For
any f ∈ Σn, if the trees s = f(s1, . . . , sn) and s′ = f(s′1, . . . , s

′
n) are also in S

then due to the R-consistency of T we have s v s′ and s′ v s and hence s ≈ s′
as well such that row(s) and row(s′) cover the same (prime) rows, i.e., states
in QT . Conversely, if T is not R-consistent then different instantiations of
s1, . . . , sn as representatives of q1, . . . , qn within the definition of δT may
contribute different subsets of {q ∈ QT | 〈f, q1 · · · qn, q〉 ∈ δT }.

R-closedness is needed to establish all prime rows of T as states in QT .
In conjunction with R-closedness, R-consistency is a necessary (albeit not
sufficient) condition if we want to ensure that the derived automaton RT is
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Input: A set X+ ⊆ TΣ, a membership oracle O. Output: An FTA.

1 S := Subt(X+); E := Cont(X+); red := S; blue := ∅; UPDATE;

2 while T is not R-consistent do
3 find f(s1, . . . , sn), f(s′

1, . . . , s
′
n) ∈ S and e ∈ E such that

4 ∃j ∈ {1, . . . , n} : sj v s′
j ∧ ∀i ∈ {1, . . . , n} \ {j} : si ≈ s′

i ∧
5 obs(f(s1, . . . , sn), e) = 1 ∧ obs(f(s′

1, . . . , s
′
n), e) = 0 ∧

6 O(e[[f(s1, . . . , sn)�
j ]][[s′

j ]]) = 0;
7 E := E ∪ {e[[f(s1, . . . , sn)�

j ]]}; UPDATE;

8 for s ∈ S do
9 if row(s) /∈ PS ∧ ∃f(t1, . . . , tn) ∈ S : ∃j ∈ {1, . . . , n} : ∃e ∈ E :
10 tj ≈ s ∧ O(e[[f(t1, . . . , tn)�

j ]][[s]]) = 1 ∧ ∀s′ ∈ S \ {s} :
11 (s′ v s ∧ ¬(s′ ≈ s)) ⇒ O(e[[f(t1, . . . , tn)�

j ]][[s′]]) = 0 then
12 E := E ∪ {e[[f(t1, . . . , tn)�

j ]]}; UPDATE;

13 return RT .

Figure 5: The algorithm RESI

an RFTA that recognizes the target language L. A first intuitive explanation
runs as follows: As can be inferred from the presentation of the residual
learning algorithms below, if the learning process succeeds then the covering
relationv between the rows of T and the subset relation between the residual
languages of L defined by the row labels coincide. An R-inconsistency reveals
that some rows in T are still wrongly covered by others. As a consequence,
due to the use of v in the definition of δT there may be trees t ∈ TΣ for which
δ∗T (t) contains states q such that Cq does not constitute any residual language
actually included in t−1L, i.e., there may be contexts e ∈ Cq withRT (e[[t]]) =
1 but e[[t]] /∈ L. Thus, R-consistency serves to prevent overgeneralization.

3.2.2 MQs and a positive sample – RESI

In this section we present a learning algorithm that tries to learn a regular
tree language L ⊆ TΣ from MQs and a finite positive sample of L based on
the notion of residual languages and returns an FTA. If the given sample
is representative then the FTA is isomorphic to RL. RESI is of polynomial
complexity due to a technique based on the one used in Subsection 3.1.1 but
which we have adapted to and verified for the more intricate residual case.
The code of RESI is displayed in Figure 5.

Assume X+ to be representative for L. Then due to the correspondence
between the equivalence classes and the residual languages of L we can prove
the following lemma by modifying the proof of Lemma 2. Lemma 3 implies
that as long as the table is not R-consistent we can derive an excluding
context for two individual candidates directly from the table itself (i.e., that
the search in lines 3–6 will always succeed). See Appendix A.1 for the proof.
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Let us now call a pair of trees s, s′ ∈ S deceiving if s v s′ but s−1L * s′−1L.
We will say that an R-inconsistency is simple if it involves just one deceiving
pair and only genuinely equivalent pairs otherwise (as defined in Lemma 3).

Lemma 3 As long as T is not R-consistent, there are trees f(s1, . . . , sn),
f(s′1, . . . , s

′
n) ∈ S with si v s′i for all i with 1 ≤ i ≤ n and ¬(f(s1, . . . , sn) v

f(s′1, . . . , s
′
n)) such that there is an index j ∈ {1, . . . , n} with sj−1L * s′j

−1L
but sk ≡L s′k for all other k ∈ {1, . . . , n} \ {j}.

An R-inconsistency in the table caused by two trees t = f(s1, . . . , sn) and
t′ = f(s′1, . . . , s

′
n) in S with si v s′i for all i ∈ {1, . . . , n} but ¬(t v t′) implies

by Lemma 1 that there must be at least one deceiving pair sj , s′j for some
index j ∈ {1, . . . , n} for which there is an excluding context of depth d + 1
where d is the depth of some context e′ ∈ E fulfilling obs(t, e′) = 1 and
obs(t′, e′) = 0. The ability of RESI to construct such a context from T relies
on Lemma 3 which implies that for each R-inconsistency the table features
a simple R-inconsistency for each of the deceiving pairs.

The rest of the argument runs parallel to the deterministic case as well:
In order to add an excluding context in each loop execution we have to com-
pare the effects of applying the same L-transition to a deceiving pair. Hence,
RESI searches for a constellation that looks like a simple R-inconsistency,
i.e., trees t = f(s1, . . . , sn), t′ = f(s′1, . . . , s

′
n) ∈ S with sj v s′j for some

j ∈ {1, . . . , n} and si ≈ s′i for all i ∈ {1, . . . , n}\{j} but ¬(t v t′). However,
like the ALTEX learner RESI has to check in addition if there is e ∈ E such
that e[[f(s1, . . . , sn)�

j ]] is actually excluding for sj , s′j since it might also be
the case that f(s1, . . . , sn)�

j does not represent a suitable L-transition of sj
due to the fact that some of the other pairs are not equivalent – and for the
same reason the pair sj , s′j might not be deceiving at all.

On the other hand, if the R-inconsistency retrieved in lines 4–5 is simple
then the condition in line 6 will be fulfilled and RESI adds an excluding
context to E in line 7. Clearly, when all simple R-inconsistencies are resolved
there cannot remain any other R-inconsistencies in the table either. Since S
is never modified there is only a finite number of possible covering relations
between rows in the table, and by no addition to E can this number be
increased. Thus, the termination of the while-loop is ensured.

As in the deterministic case, if the set of contexts labeling the columns
of the final table is to be exclusive for L then we have yet to verify that
for any pair of trees s, s′ ∈ Subt(L) fulfilling s−1L * s′−1L but s v s′ in
the initial table there is a corresponding R-inconsistency which will then be
resolved at some point during the process. This is shown by induction over
the depth of excluding contexts in the proof of Theorem 2.

Moreover, even if E is exclusive for L after the while-loop has been exited
E may not be p-exclusive for L and hence the FTA derived from the table
at that point may not be isomorphic to RL. Therefore we add an additional

23



loop in lines 8–12 in order to retrieve all (non-prime) s ∈ S for which we can
find a suitable representative of an L-transition that has been applied to s in
S and a matching positive context in E which when combined into another
context and added to E cause the row of s to become prime in the table.
Note that if E is exclusive for L then it is also separative for L which implies
that we can translate the ≈-relation into the ≡L-relation and that thus any
L-transition found in line 10 for some ti with ti ≈ s is an L-transition of s.
If s−1L is indeed a prime residual language of L then s has an L-transition ε
such that for all contexts e ∈ CΣ with e[[ε[[[s]L]]]] ⊆ L we have e[[ε[[[s′]L]]]] * L
for all trees s′ ∈ TΣ with s′−1L ( s−1L. As X+ is representative for L the
set S contains a tree representing ε[[[s]L]], and E contains a positive context
for that tree. As a consequence, RESI is sure to add enough contexts such
that when the for-loop is exited there is an exact one-to-one correspondence
between prime rows in the table and prime residual languages of L.

Theorem 2 If X+ is representative for L then RESI terminates and returns
an FTA which is isomorphic to RL.

Proof. See Appendix A.1.

Complexity:
Again, let m+ be the sum of the sizes of all trees in X+. The initial table
contains at most m+ elements in S and at mostm+ elements in E. In a worst
case we may have to eliminate the covering relation between the rows of each
pair of trees in S, and thus the number of while-loop executions needed to
make E exclusive for L is bounded by m+

2. In each execution of the while-
loop a single context is added to E. In order to make E also p-exclusive for
L we may have to extend E by another set of contexts whose cardinality is
bounded by m+. We assume that the results of MQs are stored so that no
query has to be asked twice. This implies that the number of MQs needed to
successively fill the final table is bounded by m+(m+ +m2

+ +m+) ∈ O(m3
+).

Moreover, we ask an additional MQs in line 6. Finding suitable elements
may require |S|2 · 2m+ · ρ ∈ O(m+

4) executions of that MQ, and thus the
overall number of additional MQs caused by the executions of the while-
loop is bounded by a function in O(m+

6). Furthermore, another two MQs
are asked in lines 10–11. During the for-loop the size of E is bounded by
2m+ +m+

2, and thus the overall number of additional MQs caused by the
executions of the for-loop is bounded by |S|3 · ρ · (2m+ +m+

2) ∈ O(m+
6).

Remark As in the deterministic case, we can define a modified version of
RESI that relies on condition (A) from Subsection 3.1.1 and searches for
two trees s = f(s1, . . . , sn) and s′ = f(s′1, . . . , s

′
n) in S with sj v s′j for

some j and si = s′i for all i ∈ {1, . . . , n} \ {j} but ¬(s v s′). This obviously
represents a simple R-inconsistency and we can pick an arbitrary excluding
context for s and s′ in order to construct an excluding context for sj and s′j
without having to ask any additional MQs in the while-loop.
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Moreover, we do not need additional MQs in the for-loop in order to identify
and mark the representatives of prime residual languages of L either: Define
mr(S) := {s ∈ S | ∀s′ ∈ S : s′ ≈ s ⇒ s � s′}. Since we rely on E being
separative for L after the while-loop has been exited we assume that the ≈-
relation and the ≡L-relation coincide and that hence the set mr(S) contains
exactly one minimal access tree for each equivalence class χ ∈ EL with
χ ⊆ Subt(L), and that each element of mr(S) is a minimal access tree for
some equivalence class of L. Since we also rely on condition (A), for each
s ∈ mr(S) we look for a concrete tree e′[[s]] ∈ S as a representative for the
application of some L-transition ε to s and a positive context e for e′[[s]] such
that for all other s′ ∈ mr(S) with s′ v s either e′[[s′]] is not in S, which due
to our conditions implies that s′ does not have the L-transition ε at all, or
we have obs(s′, e′) = 0, which implies that e is not a positive context for
any representative of ε[[s′]]. If s is prime then such an L-transition exists
and the table contains a suitable tree e′[[s]] and a positive context e for e′[[s]],
and obviously the addition of the context e[[e′]] to E causes the row of s to
become prime in the table.

2 while T is not R-consistent do
3 find f(s1, . . . , sn), f(s′

1, . . . , s
′
n) ∈ S and e ∈ E such that

4’ ∃j ∈ {1, . . . , n} : sj v s′
j ∧ ∀i ∈ {1, . . . , n} \ {j} : si = s′

i ∧
5 obs(f(s1, . . . , sn), e) = 1 ∧ obs(f(s′

1, . . . , s
′
n), e) = 0;

7 E := E ∪ {e[[f(s1, . . . , sn)�
j ]]}; UPDATE;

8’ for s ∈ mr(S) do
9’ if ∃f(t1, . . . , tn) ∈ mr(S)∪(Σ(mr(S))∩S) : ∃j ∈ {1, . . . , n} : ∃e ∈ E :
10’ tj = s ∧ obs(f(t1, . . . , tn), e) = 1 ∧
11’ ∀s′ ∈ mr(S)\{s} : s′ v s ⇒ obs(f(t1, . . . , tn)�

j [[s′]], e) 6= 1 then
12 E := E ∪ {e[[f(t1, . . . , tn)�

j ]]}; UPDATE;

Again, the only MQs needed are now those that serve to fill the table. ♦

3.2.3 MQs and EQs – MATRES

In [7], Bollig et al. have given an algorithm inferring RFSA for strings from
MQs and EQs which stays as close as possible to Angluin’s learner LSTAR
[2] for DFA. We reproduce the switch from the deterministic to the residual
approach for the tree case by presenting an algorithm that infers the canon-
ical RFTA for a regular tree language in the same setting and is designed to
stay as close as possible to the MQs and EQs learner from Subsection 3.1.2.
The code of MATRES is displayed in Figure 6.

Given the definition of R-closedness, lines 4–6 are straightforward and
can be compared to the corresponding lines in Figure 3. For R-consistency,
we can argue in a similar way as before as well: All tables constructed by
this learner fulfil blue = Σ(red). An R-inconsistency caused by two trees
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Input: Oracles Oeq and O. Output: An FTA.

1 red := {a} for some a ∈ Σ0; blue := Σ(red); E := {�}; UPDATE;

2 c := Oeq(RT );
2 while c 6= � do
3 while T is not R-closed ∨ T is not R-consistent do
4 if T is not R-closed then
5 find s ∈ blue such that row(s) ∈ PS \ Pred; red := red ∪ {s};
6 blue := blue \ {s}; blue := blue ∪ Σ(red); UPDATE;

7 else find f(s1, . . . , sn), f(s′
1, . . . , s

′
n) ∈ S, e ∈ E, j ∈ {1, . . . , n}

8 such that ∀i ∈ {1, . . . , n} \ {j} : si = s′
i ∧ sj v s′

j ∧
9 obs(f(s1, . . . , sn), e) = 1 ∧ obs(f(s′

1, . . . , s
′
n), e) = 0;

10 E := E ∪ {e[[f(s1, . . . , sn)�
j ]]}; UPDATE;

11 if c := Oeq(RT ) 6= � then E := E ∪ Cont(c); red := red ∪ Subt(c);
12 blue := (blue \ red) ∪ Σ(red); UPDATE;

13 return RT .

Figure 6: The algorithm MATRES

t = f(s1, . . . , sn) and t′ = f(s′1, . . . , s
′
n) in S with si v s′i for all i ∈ {1, . . . , n}

but ¬(t v t′) implies that there must be a deceiving pair sj , s′j for some index
j ∈ {1, . . . , n}. Once again, we certainly have ¬(f(s1, . . . , sk, s

′
k+1, . . . , s

′
n) v

(f(s1, . . . , sk−1, s
′
k, . . . , s

′
n)) for some k ∈ {1, . . . , n}, as otherwise we would

have t v t′ by letting k run from 1 to n. All the trees created from t and t′

by shifting k are also elements of S due to blue = Σ(red), and hence some
pair f(s1, . . . , sk, s

′
k+1, . . . , s

′
n), f(s1, . . . , sk−1, s

′
k, . . . , s

′
n) forms an obviously

simple R-inconsistency in the table and has an excluding context e ∈ E.
Thus, we can retrieve an excluding context for sk, s′k from the table, namely
e[[f(s1, . . . , sk−1,�, s′k+1, . . . , s

′
n)]]. As in Subsection 3.1.2, the situation here

can be compared to the effects of condition (A).

Remark While filling up blue preserves the obvious differences between
rows in red (which is the only relevant aspect for the deterministic case),
this may cause the row of a tree that has been promoted to red because its
row was prime at the time to become composed again. This means that we
cannot even be sure which of the elements in red will represent states of
our final hypothesis and which will not before the process is completed. ♦

When T is R-closed and R-consistent the learner asks an EQ for RT .
On the receipt of a counterexample c the learner adds all contexts that can
be derived from c to E in order to create new states and/or to eliminate at
least one more covering relation between rows of the table (see the proof of
Theorem 4 below). Note that this may include covering relations between
an individual row and a join of several rows, with the consequence that the
individual row becomes prime. We also remark on the following facts:

26



• In the residual case, we have to add at least all those contexts of c that
introduce a new distinction into the table due to the now admissible
non-determinism in the learner’s hypothesis.

• In the residual case, adding any number of subtrees of c to S would
not ensure termination, as already shown for the special case of strings
in [7]. This is due to the fact that even if all equivalence classes were
represented by distinct rows in the table there might still be incorrect
covering relations between them, which may cause the counterexample
to stay a counterexample.

• Nonetheless, we add Subt(c) to red in order to achieve red-composure
for E, since it is a precondition of Theorem 3 and serves to ensure that
our learner returns exactly the canonical RFTA.

• We could have refrained from adding the inconsequential contexts in
Cont(c) to E and we could have used a modified version of MINIMIZE
replacing blue subtrees by red ones with the same row as long as the
property of being a counterexample stays preserved, in order to reduce
the size of the table and to achieve a better average performance. The
option above has been chosen for conceptual simplicity.

As soon as the while-loop has been exited MATRES returns the FTA RT .
In order to show the correctness of MATRES we need some more lemmata
and a theorem which have been proven in [27] (the proofs can be found in
Appendix A.1). We fix an R-closed, R-consistent table T = 〈S,E, obs〉.

Theorem 3 Assume T to fulfil the following three conditions.

(1) E is red-composed, i.e.,
for all e ∈ E and all s ∈ Subt(e), if s ∈ TΣ then s ∈ red,

(2) T is saturated, i.e., blue = Σ(red), and

(3) RT is T -consistent.

Then RT is a state-minimal saturated RFTA.

Lemma 4 We have q v row(s) for all s ∈ S and all q ∈ δ∗T (s).

Lemma 5 For all q ∈ QT and all e ∈ Cont(E) we have q(e) = 1 ⇔ e ∈ Cq.

Lemma 6 For all q, q′ ∈ QT we have q v q′ ⇔ Cq ⊆ Cq′.

Lemma 7 For all s ∈ S with row(s) ∈ QT we have row(s) ∈ δ∗T (s).

Let ζ be the size of the biggest counterexamples received, and let ρ be
the maximal rank in Σ. The proof below has been adapted from [7] to trees.
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Theorem 4 On termination MATRES has asked a number of EQs bounded
by IL2, filled a number of cells bounded by (ζIL + (ζIL)ρ|Σ|) · ζIL2 via MQs,
and returns an FTA which is isomorphic to RL.

Proof. First of all, the output FTA is the state-minimal saturated RFTA
for L by Theorem 3 since the components of T obviously fulfil conditions
(1) and (2), and RT recognizes L and thus ensures condition (3) due to the
fact that the last EQ must have been answered in the positive.

We show that MATRES terminates, and that it asks at most IL2 EQs.

Define values α := |row(S)|, β := |row(red)|, π := |PS |, and
ι := |{〈r, r′〉 | r, r′ ∈ row(S) ∧ r v r′ ∧ r <> r′}|, i.e., ι is the number of
row pairings such that the second row strictly covers the first.

We examine how these values evolve during a run of our algorithm. Clearly,
the values of α, β, and π cannot increase above IL. Moreover, α and β can
never decrease as we do not delete elements of S or E, and no subsequent
extension of the table can make two distinct rows identical again. Each new
distinction causes at least one of those values to change. We will show that
none of those values can change infinitely often and that each EQ leads to
a new distinction of at most IL2 possible ones.

If T is not R-closed then after an execution of the inner while-loop where
line 5 is entered β increases by 1. Simultaneously, α may increase by some
measure k > 0 due to line 6, and the value of ι may increase by at most k
times the old value of α (the maximal number of strict covering relations
between new rows and old rows) plus k(k − 1)/2 (the maximal number of
strict covering relations between new rows).
If T is not R-consistent then after an execution of the inner while-loop where
line 7 is entered β stays unchanged. However, α may increase by some mea-
sure k′ > 0, and ι may increase by at most k′ times the old value of α plus
k′(k′ − 1)/2 (see above). If α does not increase then this means that any
pair of elements s, s′ ∈ S with s ≈ s′ in the old table still fulfils s ≈ s′ in the
new table. Thus, no new strict covering relation can have been introduced
and ι cannot increase. However, since in that loop execution we have added
a context to E eliminating a covering relation (recall the argument above)
ι must decrease by at least 1.

When the inner while-loop terminates the current table T = 〈S,E, obs〉 is
R-closed and R-consistent, and the learner submits an EQ for RT . If this
results in a counterexample c 6= � then MATRES constructs a new table
T ′ = 〈S′, E′, obs〉 with S′ = S ∪ Subt(c) and E′ = E ∪ Cont(c). Either α
increases or it does not. If α increases by some measure k′′ > 0 then ι may
increase by at most k′′ times the old value of α plus k′′(k′′ − 1)/2.
If α does not increase then ι cannot increase either (as explained in the pre-
vious paragraph). We add Cont(c) to E. Note that T ′ must be R-consistent
as the introduction of an R-inconsistency would entail an increase of α.
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If c is a positive counterexample: Observe that for each symbol a ∈ Σ0 and
context e ∈ E with e[[a]] ∈ L the tree e[[a]] is accepted by RT due to the
fact that δ∗T (a) = {q ∈ QT | q v row(a)} and Lemma 5. Thus, if we had
Cont(c) ⊆ E then RT would accept c. Therefore, adding Cont(c) to E must
change the values of ι and/or π: Suppose that both values stay unchanged.
Then RT and RT ′ would be isomorphic since α has not changed either.
However, as we have Cont(c) ⊆ E′ the FTA RT ′ must correctly accept c
whereas RT rejects it, a contradiction to our assumption.
If c is a negative counterexample: The fact that c is wrongly accepted by RT
implies that there is a context e′ ∈ Cont(c) and some state q ∈ QT such that
e′ ∈ Cq but q(e′) = 0. Moreover, we have q(e) = 0 ⇒ e /∈ Cq for all e ∈ E
due to the “⇐”-direction in Lemma 5. Again, adding Cont(c) to E must
change the values of ι and/or π: Suppose that both stay unchanged. Then
RT and RT ′ would be isomorphic since α has not changed either. However,
as we have e′ ∈ E′ the automaton RT ′ must correctly reject c by Lemma 5
whereas RT accepts it, a contradiction to our assumption.
Therefore, ι decreases or π increases or both.

In summary we observe that after each extension of the table, either (a) β is
increased or (b) α is increased by some measure k > 0 and simultaneously ι
is increased by at most kα+k(k−1)/2 or (c) α stays the same and ι does not
increase but ι decreases or π increases. Recall that the values of α, β, and π
cannot increase beyond IL. When α and β cannot increase anymore then ι
decreases or π increases and hence MATRES terminates. Furthermore, we
have shown that each EQ leads to a change of at least one of the values α,
ι, or π. Since each of those changes indicates a new distinction of at most
IL

2 possible ones between rows the number of EQs is bounded by IL2.

Concerning MQs, we fill a table containing at most mS = ζIL + (ζIL)ρ|Σ|
elements in S and mE = ζIL

2 elements in E since for each distinction be-
tween two rows of the table at most ζ elements were added to E and, given
that the distinction had to be obtained via an EQ, also to S. �

Remark The authors of [7] show that for many example runs their learner
needs a much smaller number of EQs than in the worst case given above
(IL2) and even than Angluin’s theoretically superior learner LSTAR [2] (IL).
This is due to the fact that we do not need all equivalence classes in order
to represent the canonical residual automaton. ♦

A very simple example run for our learners can be found in Appendix A.4.
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4 Discussion

For the four learners studied above, the most important mechanism in order
to make progress is the elimination of inconsistencies of the respective kind.
During the learning process, the strategy of the learners for MQs and a finite
sample is solely based on that operation whereas the learners for MQs and
EQs use closure and counterexamples in between in order to introduce more
elements into the table, thereby creating more inconsistencies (which in a
broader sense includes obvious differences), the resolution of which will then
reliably cause them to make progress towards the target.

The importance of consistency and closedness stems from the fact that
they can be directly linked to specific properties of the underlying descrip-
tions we are trying to learn, i.e., deterministic or residual automata in which
all states are reachable. For an MQs and EQs learner, it is crucial that be-
tween EQs the learner must be able to compute its next hypothesis in a
polynomially bounded number of steps with respect to IL. An eligible stra-
tegy to ensure this seems to make sure that any hypothesis fulfils essential
properties of the agreed canonical description before submitting it to the
teacher – even if the oracle would also answer an EQ for an arbitrary FTA.

We remark that in the deterministic case the eventuality of inconsisten-
cies can be avoided altogether, for example if we choose to process counter-
examples by simply adding the contexts that can be derived from them to E
such that the only way to promote elements to red is by closure, with the
outcome that all red elements are pairwise obviously different at any time
(see [27]). This is possible because in the case of DFTA a single representa-
tive for each state in red is enough. In the residual case the table cannot be
guaranteed to be R-consistent a priori: For the representation of an RFTA
we generally have to allow and even need rows covering other rows in S and
hence the preconditions for an R-inconsistency are given.

This brings us to the second most important mechanism for the poly-
nomial progress of our learners, the acquisition of suitable candidates for
states in S. This is also a point where one can hide a lot of exponentiality.
The learners for MQs and a sample enjoy the luxury of having a representa-
tive sample built for them by the teacher, and if the number of steps needed
to build the sample or its size are exponential with respect to IL then this is
“none of the learner’s concerns” – the learner’s complexity is specified with
respect to the size of the given sample. Learners for MQs and EQs have to
be more prudent: They fill up blue with new elements but only ever care
to look one symbol further (an operation which is already exponential with
respect to the maximal rank ρ), and if they cannot make progress anymore
then they recur to a counterexample. Again, the size of the counterexample
is none of the learner’s concerns although it may be or even may have to
be exponential with respect to IL, and its size is taken mitigatingly into
account when specifying the learner’s worst case complexity.
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Also mind the potentially exponential gap in size between the canonical
deterministic and the canonical residual automaton. This is usually solved
by indicating the complexity of learners for residual automata with respect
to IL as well, and not to the number of states in the target automaton. As
far as we know, this “trick” has been used in order to achieve polynomiality
by all results for non-deterministic automata so far, also see [35]. However,
there is a new result [6] co-written by the author for the inference of universal
string automata from MQs and EQs in polynomial time with respect to the
size of the target automaton, which can be exponentially smaller than the
corresponding DFA. Universal automata are yet another kind of canonical
description for regular languages based on the substructure-context relation,
and our result is based on the tool of an observation table as well.

In [27], we have also presented a learner for the inference of the canonical
RFTA in a third setting not involving any queries, namely from a positive
and a negative sample where the latter serves to control overgeneralization.
In order to ensure the learner’s success, the two finite samples have to fulfil
certain properties which are even more restrictive than representativeness –
however, in this setting the given positive sample does not even have to be
fully representative for the target language as in general we do not need all
equivalence classes to represent the canonical RFTA. For similar reasons, an
MQs and EQs learner may even benefit from the absence of certain repre-
sentatives since they may introduce misleading covering relations. Although
the learner does not know which of the representatives in the current table
are indispensable and which are not, due to the powerful device of an EQ
the learner is notified immediately in case of success. As a consequence, in
many individual cases the residual learner will terminate after having asked
even less queries than its deterministic archetype (also see [7]).

The issue of polynomial inferability can be raised beyond regularity: An
entire series of approaches towards the inference of context-free grammars
(CFGs) based on the substructure-context relation has been developed by
Alexander Clark and his coauthors, see [9, 10, 11, 36]. In the case of CFGs
we face the problem that in general the number of equivalence classes under
the Myhill-Nerode relation is infinite. However, positive results can still be
achieved if each nonterminal of the target CFG can be characterized by some
finite set of substructures or of contexts. In [37], we have been able to show
that those approaches carry over to context-free tree grammars.
A learner that infers a CFG from MQs and EQs in polynomial time with
respect to the size of the target grammar provided that each nonterminal
in the CFG generates some equivalence class of the corresponding language
(and can thus be characterized by the finite set of contexts that separate it
from all other nonterminals) has been given in [9]. The authors remark that
the complexity of a consistency check cannot be bounded polynomially as
it may introduce strings of exponential length into the table but also that
the check can be omitted since non-determinism is an admissible property
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of the target CFG. However, for less restrictive characterizations polynomial
results for MQs and EQs seem to be difficult to obtain, and we conjecture
that this can be explained by the lack of polynomial characterizability as
well, although the exact correlations remain yet to be spelled out.
In [27], we also sketch an algorithm for the inference of a context-free tree
grammar (based on a draft with Alexander Clark and Ryo Yoshinaka for the
string case) from a positive and a negative finite sample. We emphasize that
this is possible without reference to a canonical description – as long as the
sample is built with reference to the learner’s inference strategy, and as long
as the complexity of this building process is not taken into account.

We conclude that in order to obtain polynomial learning results beyond
deterministic finite-state string automata we need to control the effects of
the shift from strings to trees, which seems to introduce what we may call
a vertical exponentiality (and reflects the relationship between the depth of
a tree and the number of its leaves), and from deterministic automata to
non-deterministic automata and to context-free grammars, which seems to
introduce what we could call a horizontal exponentiality (and reflects the
relationship between the equality of sets and the subset relation).

We remark that since strings can be seen as a special case of trees, our
paper covers the setting represented by a dash in Figure 1. We also remark
that other data structures than the observation table have been developed
in order to improve the average complexity, see for example [19].
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A Appendix

A.1 Proofs

Lemma 2 As long as T is not consistent it contains a simple inconsistency,
i.e, there are f(s1, . . . , sn), f(s′1, . . . , s

′
n) ∈ S with si ≈ s′i for all i with 1 ≤

i ≤ n and ¬(f(s1, . . . , sn) ≈ f(s′1, . . . , s
′
n)) such that there is an index j ∈

{1, . . . , n} with ¬(sj ≡L s′j) but sk ≡L s′k for all other k ∈ {1, . . . , n} \ {j}.

Proof. We prove this by a contradiction. Assume e ∈ CΣ to be a context
such that e[[s]] ∈ L and e[[s′]] /∈ L for some s, s′ ∈ S with s ≈ s′ but
¬(s ≡L s′) (which must exist due to the fact that T is not consistent and to
the definition of ≡L) and the depth cdp(e) to be minimal. The fact that e
cannot be in E but � is implies e 6= � and thus there are contexts e1, e2 ∈ CΣ

with e1[[e2]] = e and e2 = f(s1, . . . , sn)�
j for some trees s1, . . . , sn ∈ TΣ,

f ∈ Σn, and n ≥ 1. Clearly, cdp(e1) < cdp(e). Since we require the depth of
e to be minimal the context e1 cannot fulfil the role of a separating context
for any pair of trees t, t′ ∈ S with t ≈ t′ but ¬(t ≡L t′).
As e[[s]] = e1[[e2[[s]]]] is in L we know that e2[[s]] is in Subt(L), and as X+ is
representative for L there is an element t = f(t1, . . . , tn) ∈ S with ti ≡L si for
all i ∈ {1, . . . , n}\{j} and tj ≡L s and t ≡L e2[[s]]. Since t ∈ Subt(X+) there
is a context e3 ∈ Cont(X+) ⊆ E such that e3[[t]] ∈ X+ ⊆ L. Moreover, the
context e3[[e4]] with e4 = f(t1, . . . , tn)�

j is also in Cont(X+) ⊆ E. Obviously,
e3[[e4[[s]]]] ∈ L and obs(s, e3[[e4]]) = 1. The precondition s ≈ s′ implies that
we also have obs(s′, e3[[e4]]) = 1 and e3[[e4[[s′]]]] ∈ L.
Note that e4[[s′]] ≡L e2[[s′]] and hence e2[[s′]] must be a subtree of L as well.
The fact that e is separating for s and s′ entails ¬(e2[[s]] ≡L e2[[s′]]). Again,
as X+ is representative for L there is t′ = f(t′1, . . . , t

′
n) ∈ S with t′i ≡L ti for

all i ∈ {1, . . . , n} \ {j} and t′j ≡L s′ and t′ ≡L e2[[s′]]. In contradiction to the
claim, let us suppose f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n). In that case the context

e1 would fulfil the role of a separating context for the pair t, t′ with t ≈ t′

but ¬(t ≡L t′) since with t ≡L e2[[s]] and t′ ≡L e2[[s′]] we have e1[[t]] ∈ L but
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e1[[t′]] /∈ L. However, this would violate the assumption that the depth of e
fulfilling such a role be minimal and thus the claim is proven. �

Lemma 3 As long as T is not R-consistent, there are trees f(s1, . . . , sn),
f(s′1, . . . , s

′
n) ∈ S with si v s′i for all i with 1 ≤ i ≤ n and ¬(f(s1, . . . , sn) v

f(s′1, . . . , s
′
n)) such that there is an index j ∈ {1, . . . , n} with sj−1L * s′j

−1L
but sk ≡L s′k for all other k ∈ {1, . . . , n} \ {j}.

Proof. We prove this by a contradiction. Assume e ∈ CΣ to be a context such
that e[[s]] ∈ L and e[[s′]] /∈ L for some s, s′ ∈ S with s v s′ but s−1L * s′−1L
(which must exist due to the fact that T is not R-consistent and Lemma 1)
and the depth cdp(e) to be minimal. The fact that e cannot be in E but � is
implies e 6= � and thus there are contexts e1, e2 ∈ CΣ with e1[[e2]] = e and
e2 = f(s1, . . . , sn)�

j for some trees s1, . . . , sn ∈ TΣ, f ∈ Σn, and n ≥ 1.
Clearly, cdp(e1) < cdp(e). Since we require the depth of e to be minimal
the context e1 cannot fulfil the role of an excluding context for any pair of
trees t, t′ ∈ S with t v t′ but t−1L * t′−1L.
As e[[s]] = e1[[e2[[s]]]] is in L we know that e2[[s]] is in Subt(L), and as X+ is
representative for L there is an element t = f(t1, . . . , tn) ∈ S with ti ≡L si for
all i ∈ {1, . . . , n}\{j} and tj ≡L s and t ≡L e2[[s]]. Since t ∈ Subt(X+) there
is a context e3 ∈ Cont(X+) ⊆ E such that e3[[t]] ∈ X+ ⊆ L. Moreover, the
context e3[[e4]] with e4 = f(t1, . . . , tn)�

j is also in Cont(X+) ⊆ E. Obviously,
e3[[e4[[s]]]] ∈ L and obs(s, e3[[e4]]) = 1. The precondition s v s′ implies that
we also have obs(s′, e3[[e4]]) = 1 and e3[[e4[[s′]]]] ∈ L.
Note that e4[[s′]] ≡L e2[[s′]] and hence e2[[s′]] must be a subtree of L as well.
The fact that e is excluding for s and s′ entails e2[[s]]−1L * e2[[s′]]−1L. Again,
as X+ is representative for L there is t′ = f(t′1, . . . , t

′
n) ∈ S with t′i ≡L ti for

all i ∈ {1, . . . , n} \ {j} and t′j ≡L s′ and t′ ≡L e2[[s′]]. In contradiction to the
claim, let us suppose f(t1, . . . , tn) v f(t′1, . . . , t

′
n). In that case the context

e1 would fulfil the role of an excluding context for the pair t, t′ with t v t′ but
t−1L * t′−1L since with t ≡L e2[[s]] and t′ ≡L e2[[s′]] we have e1[[t]] ∈ L but
e1[[t′]] /∈ L. However, this would violate the assumption that the depth of e
fulfilling such a role be minimal and thus the claim is proven. �

Theorem 2 If X+ is representative for L then RESI terminates and returns
an FTA which is isomorphic to RL.

Proof. Assume that RESI performs m executions of the while-loop in total,
and let Tk = 〈Sk, Ek, obs〉 be the table obtained after k executions for k ≥ 0.
Clearly we have Sk′−1 = Sk′ and Ek′−1 ( Ek′ for all k′ with 1 ≤ k′ ≤ m.
Note that the definition of the relation symbol v differs depending on the
set Ek currently in question – we will write vk for disambiguation.
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When the while-loop terminates, (a) Tm is R-consistent due to the termina-
tion criterion, and (b) the set Em is exclusive for L, i.e., for any t, t′ ∈ TΣ

with t−1L * t′−1L there is e ∈ Em with obs(t, e) = 1 but obs(t′, e) = 0.

(b): First of all, observe that if t /∈ Subt(L) then there is no t′ ∈ TΣ such
that t−1L * t′−1L. If t′ /∈ Subt(L) then either t ∈ Subt(L) or t cannot fulfil
t−1L * t′−1L. In the former case, as X+ is representative for L and as we
have X+ ⊆ L there is s ∈ S0 with s ≡L t and e ∈ Cont(X+) = E0 with
obs(s, e) = obs(t, e) = 1, and thus ¬(t vm t′) is ensured.

Let t, t′ ∈ Subt(L). As X+ is representative for L there are s, s′ ∈ S0 with
s ≡L t and s′ ≡L t′. We prove (b) by induction over excluding contexts.

If s ∈ L but s′ /∈ L then the claim is true since we have � ∈ Cont(X+) = E0.
If the canonical DFTA A◦L contains a transition 〈f, q1 · · · qn, q〉 ∈ δ◦ with
qj = [s]L for some j ∈ {1, . . . , n} but no 〈f, q′1 · · · q′n, q′〉 ∈ δ◦ with q′j = [s′]L
then the claim holds as well due to the fact that X+ is representative for
L and X+ ⊆ L which implies that there is e ∈ Cont(X+) = E0 and
e1, e2 ∈ CΣ with e = e1[[e2]] and e2 = f(s1, . . . , sn)�

j and [si]L = qi for
all i ∈ {1, . . . , n} \ {j} such that obs(s, e) = 1 and obs(s′, e) = 0.

For the remaining cases, let es ∈ CΣ be an excluding context for s and s′

with cdp(es) = d+1 for some d ≥ 0, and choose k ≤ m such that we already
have ¬(sk vk s′k) for all sk, s′k ∈ Sk with sk

−1L * s′−1
k L for which there is

an excluding context ek ∈ CΣ with cdp(ek) ≤ d. Moreover, assume s vk s′.
Let there be a transition 〈f, q1 · · · qn, q〉 ∈ δ◦ with qj = [s]L for some j ∈
{1, . . . , n}. Since we have s vk s′ there is a context e ∈ Cont(X+) ⊆ Ek and
e1, e2 ∈ CΣ such that e = e1[[e2]] and e2 = f(s1, . . . , sn)�

j with qi = [si]L for
i ∈ {1, . . . , n}\{j} fulfilling obs(s, e) = obs(s′, e) = 1. With Cont(X+) ⊆ Ek
we also have e1 ∈ Ek. Since e is a positive context both for s and s′ there are
f(t1, . . . , tn), f(t′1, . . . , t

′
n) ∈ Sk with tj ≡L s and t′j ≡L s′ and ti ≡L si ≡L t′i

for i ∈ {1, . . . , n} \ {j}. We have ¬(f(t1, . . . , tn) vk f(t′1, . . . , t
′
n)) by the in-

duction assumption which implies that Tk must be R-inconsistent, i.e., there
must be e′ ∈ Ek with obs(f(t1, . . . , tn), e′) = 1 but obs(f(t′1, . . . , t

′
n), e′) = 0.

Hence, as long as there is a pair t, t′ ∈ Subt(L) with t−1L * t′−1L but t v t′
the table cannot be R-consistent. By Lemma 3, as long as the table is not
R-consistent one can derive a context from it that eliminates a covering re-
lation between two rows of S. RESI will find such a context and add it to E.
Since S is finite there can be only a finite number of such pairs and thus the
while-loop terminates. As X+ is representative for L and Sm = Subt(X+),
on exiting the while-loop Em must be exclusive for all of L.

Lines 10–15: For every t ∈ TΣ with t−1L ∈ PL the canonical DFTA A◦L fea-
tures a transition 〈f, q1 · · · qn, q〉 ∈ δ◦ with qj = [t]L for some j ∈ {1, . . . , n}
such that for no t′ ∈ TΣ with t′−1L ( t−1L there is 〈f, q′1 · · · q′n, q′〉 ∈ δ◦ with
qj = [t′]L and q′i = qi for i ∈ {1, . . . , n} \ {j}.
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As X+ is representative for L there is f(s1, . . . , sn) ∈ S with sj ≡L t and si ∈
qi for i ∈ {1, . . . , n} \ {j}, and there is e ∈ E with obs(f(s1, . . . , sn), e) = 1.
Obviously, the context e[[f(s1, . . . , sn)�

j ]] is such that it causes the row of s to
be prime when included in E. As Em is exclusive for L in the present table
the ≡L-relation and the ≈-relation coincide and RESI is able to construct
such a context and add it to E. Therefore, the final set E is also p-exclusive
for L and we obtain s ∈ PS ⇔ s−1L ∈ PL for all elements s ∈ S.
The claim of Theorem 2 follows from the fact that X+ is representative for
L and the definition of RT (for a more explicit explanation, see [27]). �

Theorem 3 Assume T to be R-closed and R-consistent and to fulfil:

(1) E is red-composed,

(2) T is saturated, i.e., blue = Σ(red), and

(3) RT is T -consistent.

Then RT is a state-minimal saturated RFTA.

Lemma 4 We have q v row(s) for all s ∈ S and all q ∈ δ∗T (s).

Proof. By induction over the depth of s. If s = a for some a ∈ Σ0 then the
claim follows directly from the definition of δT . Let s = f(s1, . . . , sn). Then
δ∗T (s) = {q ∈ QT | ∃〈f, q1 · · · qn, q〉 ∈ δT : ∀i ∈ {1, . . . , n} : qi ∈ δ∗T (si)}. Let
q ∈ δ∗T (s) and assume the claim to hold for s1, . . . , sn. By the definition of
δT there are trees s′1, . . . , s

′
n ∈ S and qi ∈ δ∗T (si) such that qi = row(s′i) for

1 ≤ i ≤ n and q v row(f(s′1, . . . , s
′
n)). By the induction assumption we have

qi v row(si). This yields s′i v si, and also f(s′1, . . . , s
′
n) v f(s1, . . . , sn) due

to the R-consistency of T and hence q v row(f(s1, . . . , sn)) = row(s). �

For Lemmata 5–6 assume that T fulfils conditions (1)–(3) as stipulated
in Theorem 3. Intuitively, Lemma 5 states the following: Provided that we
have reached a certain state of QT then RT correctly classifies the contexts
and their subcontexts in E. Recall that we had defined q(e) := obs(s, e) for
q ∈ row(TΣ), e ∈ E, and any s ∈ TΣ with row(s) = q.

Lemma 5 For all q ∈ QT and all e ∈ Cont(E) we have q(e) = 1 ⇔ e ∈ Cq.

Proof. Let q ∈ QT . We prove this by induction over the depth of e.
For e = � we have q(�) = 1 ⇔ q ∈ FT ⇔ � ∈ Cq, and the claim is shown.

Let e = e′[[e′′]] with e′, e′′ ∈ CΣ and e′′ = f(s1, . . . , sn) such that sj = � for
some j ∈ {1, . . . , n}, and assume the claim to hold for e′.
Let s ∈ S with row(s) = q. Note that we have ({s1, . . . , sn} \ {sj}) ⊆ S due
to condition (1) and e′′[[s]] ∈ S due to condition (2).
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“⇒”: Let q(e) = 1. Since RT is T -consistent there has to be a transition
〈f, q1 · · · qn, q′〉 ∈ δT with states q1, . . . , qn, q

′ ∈ QT such that qi ∈ δ∗T (si) for
i ∈ {1, . . . , n} \ {j} and qj ∈ δ∗T (s) and e′ ∈ Cq′ . Let s′1, . . . , s

′
n ∈ red with

row(s′i) = qi for 1 ≤ i ≤ n. We have f(s′1, . . . , s
′
n) ∈ S by condition (2),

s′i v si for all i ∈ {1, . . . , n} \ {j} and s′j v s due to Lemma 4, and q′ v
row(f(s′1, . . . , s

′
n)) due to the definition of δT . By condition (2) there is also

an element f(t′1, . . . , t
′
n) ∈ S with t′i = s′i for i ∈ {1, . . . , n} \ {j} and t′j = s

and we have row(f(s′1, . . . , s
′
n)) v row(f(t′1, . . . , t

′
n)) since T is R-consistent.

This entails q′ v row(f(t′1, . . . , t
′
n)) which in turn implies that there is a

transition 〈f, q′1 · · · q′n, q′〉 ∈ δT with q′i = qi for i ∈ {1, . . . , n} \ {j} and
q′j = q as well, and we can conclude that e′[[e′′]] = e is in Cq.

“⇐”: Let q(e) = 0. Choose states q1, . . . , qn ∈ QT with qi ∈ δ∗T (si) for i ∈
{1, . . . , n} \ {j} and qj = q, and let s′1, . . . , s

′
n ∈ red such that row(s′i) = qi

for i ∈ {1, . . . , n} \ {j} and s′j = s. We have f(s′1, . . . , s
′
n) ∈ S by condition

(2) and s′i v si for all i ∈ {1, . . . , n} \ {j} due to Lemma 4. Moreover, we
have row(f(s′1, . . . , s

′
n)) v row(e′′[[s]]) due to the R-consistency of T .

If there is no row r ∈ Pred with r v row(f(s′1, . . . , s
′
n)) then clearly there is

no transition 〈f, q1 · · · qn, q′〉 ∈ δT for any q′ ∈ QT . If there is r ∈ Pred with
r v row(f(s′1, . . . , s

′
n)) then there exists a transition 〈f, q1 · · · qn, r〉 ∈ δT .

Obviously, row(s)(e) = 0 implies row(e′′[[s]])(e′) = 0, which in turn entails
row(f(s′1, . . . , s

′
n))(e′) = 0 and r(e′) = 0. We obtain e′ /∈ Cr by the induction

assumption. Since q1, . . . , qn were chosen arbitrarily except for qj = q we
can deduce q′(e′) = 0 and e′ /∈ Cq′ for all states q′ that are reachable from q
via the symbol f , and consequently e cannot be an element of Cq. �

Lemma 6 For all q, q′ ∈ QT we have q v q′ ⇔ Cq ⊆ Cq′.

Proof: Let q, q ∈ QT and s, s′ ∈ S with row(s) v q and row(s′) v q′.

“⇒”: Let q v q′. Choose e ∈ Cq. For e = � we have q(�) = 1 which implies
q′(�) = 1 due to q v q′ and thus q′ ∈ FT and � ∈ Cq′ .

Now let e = e′[[e′′]] with e′, e′′ ∈ CΣ and e′′ = f(s1, . . . , sn) and sj = � for
some j ∈ {1, . . . , n}. Note that e′′[[s]], e′′[[s′]] ∈ S by condition (2).
We have e′[[e′′]] ∈ Cq and thus there is a transition 〈f, q1 · · · qn, q′′〉 ∈ δT with
q1, . . . , qn, q

′′ ∈ QT such that qi ∈ δ∗T (si) for i ∈ {1, . . . , n} \ {j} and qj = q
and e′ ∈ Cq′′ . Let s′1, . . . , s

′
n ∈ red with row(s′i) = qi for i ∈ {1, . . . , n}.

We have f(s′1, . . . , s
′
n) ∈ S by condition (2), s′i v si for all i ∈ {1, . . . , n} \

{j} and s′j v s due to Lemma 4, and q′′ v row(f(s′1, . . . , s
′
n)) due to the

definition of δT . By condition (2) there is f(t′1, . . . , t
′
n) ∈ S with t′i = s′i for

i ∈ {1, . . . , n} \ {j} and t′j = s′. Moreover, we have row(f(s′1, . . . , s
′
n)) v

row(f(t′1, . . . , t
′
n)) due to the fact that T is R-consistent and q v q′. This

entails q′′ v row(f(t′1, . . . , t
′
n)) which in turn implies the existence of a trans-

ition 〈f, q′1 · · · q′n, q′′〉 ∈ δT with q′i = qi for i ∈ {1, . . . , n} \ {j} and q′j = q′,
and we can conclude that e′[[e′′]] = e is in Cq′ as well.
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The inclusion Cq ⊆ Cq′ follows from the fact that e was chosen arbitrarily.

“⇐”: Let ¬(q v q′). By the definition of v there must be a context e ∈ E
with q(e) = 1 but q′(e) = 0. We obtain e ∈ Cq and e /∈ Cq′ by Lemma 5,
which immediately proves Cq * Cq′ . �

Lemma 7 For all s ∈ S with row(s) ∈ QT we have row(s) ∈ δ∗T (s).

Proof. Suppose row(s) /∈ δ∗T (s). We get a contradiction as follows.
We have q v row(s) and Cq ⊆ Crow(s) for all q ∈ δ∗T (s) by Lemmata 4 and 6.
As row(s) is prime there is e ∈ E such that row(s)(e) = 1 but row(s′)(e) = 0
for all s′ ∈ Pred with s′ v s and s′ <> s. As we have assumed that row(s)
is not in δ∗T (s) itself this implies that e cannot be in Cq′ for any q′ ∈ δ∗T (s) by
Lemma 5, and hence RT would not accept e[[s]]. However, this contradicts
condition (3) requiring RT to be T -consistent, and the claim is shown. �

The Proof of Theorem 3 can now be concluded as follows.

We abbreviate L(RT ) to LR. First we show that RT is an RFTA by proving
the stronger claim Crow(s) = s−1LR for all s ∈ S with row(s) ∈ QT :

“⊆”: We have row(s) ∈ δ∗T (s) by Lemma 7, which implies Crow(s) ⊆ s−1LR.

“⊇”: We have q v row(s) and Cq ⊆ Crow(s) for all q ∈ δ∗T (s) by Lemmata 4
and 6, which yields s−1L ⊆ Crow(s), and thus Crow(s) = s−1LR.

It remains to show that s−1LR is prime to ensure the state-minimality ofRT :
We have Crow(s′) ⊆ Crow(s) for all s′ ∈ Pred with s′ v s by Lemma 6 and
s−1LR )

⋃
{s′−1LR ⊆ CΣ | s′ ∈ Pred \ {s} : s′ v s} due to the fact that

there is a context e ∈ E such that row(s)(e) = 1 but row(s′)(e) = 0 for all
s′ ∈ Pred with s′ v s and s′ <> s.

Finally, RT is saturated by condition (2) and hence isomorphic to RLR . �

A.2 Four different ways of using a counterexample

There are various options of how to “milk” a counterexample. We compare
four of them: Let T = 〈S,E, obs〉 with S = red ∪ blue, and let c be some
counterexample for AT . Each of the following methods allows the creation
of at least one more distinct red row in T in at most one more step:

a. Join Subt(c) to red.

b1. Join Cont(c) to E.

b2. Find s ∈ blue and e ∈ CΣ with c = e[[s]] and join
Cont(c) \ {e[[s′]] ∈ CΣ | s′ ∈ Cont(s)} to E.
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c. (Procedure MINIMIZE) If there is s ∈ blue and e ∈ CΣ with c = e[[s]]
but no r ∈ red with ¬(r <> s) such that e[[r]] is a counterexample
for AT as well then add s to red. Otherwise find s′ ∈ blue, e′ ∈ CΣ,
and r′ ∈ red with c = e′[[s′]] and ¬(r′ <> s′) such that e′[[r′]] is also a
counterexample for AT and repeat the procedure with input e′[[r′]].

(a): Either such a row is created directly if E already contains a suitable
separating context, or the table must become inconsistent. To see the latter,
assume that no element of Subt(c) is obviously different from all red ones.
As the automaton derived from the new table including the set Subt(c) can
evidently assign a different state to the counterexample c than AT although
no new distinct row representing a separate state has been created this au-
tomaton must be non-deterministic, and the new table inconsistent. This
would be repaired by the consistency check in one of the following loop exe-
cutions by adding to E a separating context for two red elements that have
not been obviously different before, thus creating another distinct row.
(c): Suppose MINIMIZE returns s ∈ blue, then consider (a) and the fact
that s ∈ Subt(c). Remark: As T is closed there is r ∈ red with ¬(r <> s)
but e[[s]] is a counterexample for some e ∈ CΣ whereas e[[r]] is not. Con-
sequently s and r should represent distinct states such that the context e
leads to an accepting state from one of them but there is no such accepting
state for the other. We add s to red but we could also have added e to E
since e obviously separates r and s. This is the option chosen in [27].
(b1)/(b2): Consider (c) and the fact that the context alternatively added to
E in (c) is an element of Cont(c) \ {e[[s′]] ∈ CΣ | s′ ∈ Cont(s)} ⊆ Cont(c)
for some s ∈ blue and e ∈ CΣ with c = e[[s]]. �

Remark: Method (b1) introduces all separating contexts that can be derived
from c into the table at once but this may also lead to redundant columns.
The string equivalent of method (a) is the one used in the original descrip-
tion of LSTAR by Angluin [2]. Method (b1) was suggested for strings in a
footnote in [30]. Method (b2) is based on the reflection that there is at least
one suitable context in Cont(c) that does not have an element of Cont(s) as
a subtree and thus we can avoid creating redundant columns by excluding
contexts with subtrees in Cont(s) from the set that we join to E. Method (c)
has been first described in [17] and is based on the technique of contradiction
backtracing developed by Shapiro [34].
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A.3 An example for an identical representative sample

Let A = 〈{a, b, c}, {q1, q2, q3, q4, qF }, {qF }, δ〉 with δ =

{〈a, q2q3, qF 〉, 〈b, q2, q1〉, 〈b, q1, q2〉, 〈b, 〈〉, q1〉, 〈c, q4, q3〉, 〈c, q3, q4〉, 〈c, 〈〉, q3〉}.

We have L(A) = {a(b2k+2, c2l+1) | k, l ∈ N} where xm for x ∈ {b, c} denotes
a non-branching tree of the form x(x(. . . x(x) . . .)) with x occurring m times,
i.e., each tree recognized by A must contain an even number of b’s greater
than 0 and an uneven number of c’s.

Let A′ = 〈{a, b, c}, {q1, q2, qF }, {qF }, δ′〉 with

δ′ = {〈a, q1q2, qF 〉, 〈b, q1, q1〉, 〈b, 〈〉, q1〉, 〈c, q2, q2〉, 〈c, 〈〉, q2〉}.

We have L(A′) = {a(bk, cl) | k, l ∈ N}.

The set {a(b(b), c(c(c)))} is representative for both L(A) and L(A′).

A.4 A simple example run

Let the target language be L = {a(b2k+2, c2l+1) | k, l ∈ N}. The canonical
RFTA for L is isomorphic to the canonical DFTA, that is, the FTA A in
Appendix A.3 above. Consider the representative sample {a(b(b), c(c(c)))}.
Both ALTEX and RESI build from it the table

� e1 e2 e3 e4 e5

b 0 0 0 1 0 0
c 0 0 0 1 0 1
b(b) 0 1 0 0 0 0
c(c) 0 0 0 0 1 0
c(c(c)) 0 0 0 1 0 1

a(b(b), c(c(c))) 1 0 0 0 0 0

where we have e1 = a(�, c(c(c))), e2 = a(b(�), c(c(c))), e3 = a(b(b),�),
e4 = a(b(b), c(�)), and e5 = a(b(b), c(c(�))).
This table has five distinct rows which correspond to the five states of the
target automaton. Moreover, the table is both consistent and R-consistent,
so both ALTEX and RESI immediately return the corresponding automaton
as their final and correct solution.

The learners for MQs and EQs would both start out with a table

�
b 0
c 0
b(b) 0
c(b) 0
a(b, b) 0

42



which is trivially closed, consistent, R-closed, and R-consistent, and repre-
sents the all-rejecting automaton. Upon the receipt of the positive counter-
example a(b(b), c(c(c))) both learners could add all subtrees of the example
to red and all contexts that can be derived from it to E and would obtain

� e1 e2 e3 e4 e5

b 0 0 0 1 0 0
c 0 0 0 1 0 1
b(b) 0 1 0 0 0 0
c(c) 0 0 0 0 1 0
c(c(c)) 0 0 0 1 0 1

a(b(b), c(c(c))) 1 0 0 0 0 0
b(c) 0 0 0 0 0 0

a(b(b), c) 1 0 0 0 0 0

where in the blue part we show only one representative b(c) of the failure
state and the only other row not representing a failure state.
This table has six distinct rows of which all are prime, the table is consistent
and R-consistent and represents the total version of the target automaton A
which is also saturated. Hence, the next EQ will be answered in the positive
and both learners terminate successfully.

Bigger examples are rather space-consuming – we refer the reader to [5]
and [18] where they may run our learners RESI and MATRES on the regular
tree languages given in Section 5 and on page 175, respectively.
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