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Abstract

A MAT learning algorithm is presented that infers the universal automaton for
a regular target language, using a polynomial number of queries with respect
to that automaton. The universal automaton is one of several canonical char-
acterizations for regular languages Our learner is based on the concept of an
observation table, which seems to be particularly fitting for this computational
model, and we adapt the necessary notions and definitions from the literature
to the case of universal automata.
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1. Introduction

The area of Grammatical Inference (GI) is concerned with algorithms that
extrapolate from limited information to infer a formal description of an unknown
language. An important concept in this context is the convergence to a certain
partition of the target language, which is obtained by splitting and merging
sets (or, from the automaton perspective; states). In this paper, we present
an algorithm with the objective of inferring the universal automaton (UA) for
the target language, and in doing so we restrict our attention to automata in
which states are non-mergible by definition; see [15]. We may therefore adopt a
general strategy of iteratively dividing states until the conditions for the desired
type of description are met. The long-term memory [4] of our learner shall be an
observation table, which in its most general interpretation fits the characteristics
of universal automata more closely than those of any other kind of finite-state
automaton. This also means that our way of obtaining an automaton from an
observation table is distinctively different from earlier approaches such as [1, 2].
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When formalizing a learning task, the information source is of key impor-
tance. This can for instance be a finite set of positive examples, also known as
a text (the limits of this source are discussed by [1]), or a potentially infinite
sequence of positive and negative examples, known as an enumeration [14]. A
substantial amount of work has also been devoted to algorithms that learn by
querying an oracle. [1] introduced the notion of a minimal adequate teacher
(MAT) to allow for polynomial-time learning of regular languages. This is an
oracle capable of answering two types of queries, membership and equivalence
queries. Let L be the target language. An equivalence query (EQ) is of the form
“Is A a correct description of L?”, and is answered by the oracle either with a
simple ‘yes’, or with a counterexample in the symmetric difference of L(A) and
L (that is, with an element in c ∈ (L \L(A))∪ (L(A) \L)). Membership queries
(MQs), on the other hand, are of the type “Is w an element of L?” and are
answered with ‘yes’ or ‘no’. In the present article, we adopt the MAT model
and require the learner to return the target universal automaton after a finite
number of queries.

Whereas [1] focused on learning regular languages by presenting state-minimal
deterministic finite-state automata (DFA) as hypotheses to the teacher, our
learner builds universal automata (UA), which offer another kind of canoni-
cal description for regular languages. A survey of the theory of UA is found
in [17]. A third form of canonical description for regular languages is the resid-
ual finite-state automata (RFSA; see Denis et al. [12]). This type of FA has been
considered in the MAT model by Bollig et al. [2]. Interestingly, the hypotheses
presented by the RFSA learner in [2] are not always ensured to be state-minimal
RFSA but can seemingly be arbitrary non-deterministic automata (NFA); only
the final, correct hypothesis is guaranteed to be the canonical RFSA of the
target language.

2. Preliminaries

Before we continue, it is useful to revise some of the notions and notations
related to MAT learning, and to recall a number of technical devices that will
serve as our toolbox in the upcoming discussions.

2.1. Finite-State Automata

A finite-state automaton (FA) is a tuple A = 〈Σ, Q, I, F, δ〉 where

• Σ is a finite set of alphabet symbols,

• Q is the finite set of states,

• I ⊆ Q is the set of start or initial states,

• F ⊆ Q is the set of accepting states, and

• δ ⊆ Q× Σ×Q is the transition relation.
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From the transition relation δ, we derive the functions δ+ : Q×Σ∗ −→ 2Q and
δ∗ : Σ∗ −→ 2Q. Intuitively, δ+(q, w) is the set of all states that can be reached
from q on input w ∈ Σ∗, and δ∗(w) is the set of all states that can be reached
from an initial state on w. More formally, δ+ is given by δ+(q, ε) = {q} and,
for every w = w′a ∈ Σ+,

δ+(q, w) = {q′′ ∈ Q | ∃q′ ∈ δ+(q, w), q′′ ∈ Q : 〈q′, a, q′′〉 ∈ δ} .

We can now define δ∗ : Σ∗ −→ 2Q as

δ∗(w) =
⋃
q∈I

δ+(q, w) .

With every state q, we shall associate two sets of strings, Pq and Fq. Intu-
itively, Pq is the set of all strings that can end up in q (the past of q), and Fq is
the set of all strings that can lead from q into an accepting state (the future of
q). Again, more formally, for every state q ∈ Q, let Pq := {s ∈ Σ∗ | q ∈ δ∗(s)}
and Fq := {e ∈ Σ∗ | δ+(q, e) ∩ F 6= ∅}. A state q is reachable if Pq 6= ∅ and co-
reachable if Fq 6= ∅. An automaton is trim if all of its states are reachable and
co-reachable. By keeping only the states that are reachable and co-reachable
we obtain the trimmed version of an automaton; this can be easily done in
polynomial time and does not change the accepted language.

Note that unlike the classical definition of FA, the above definition allows for
multiple start states. This is motivated by the fact every state will be identified
with a pair 〈X,Y 〉 of strings, intuitively corresponding to the past and future
of that state. A state 〈X,Y 〉 will be classified as a start state whenever ε ∈ X,
which can be true for more than one such pair.

It will sometimes be useful to identify the automaton A with the membership
predicate for the language that it recognizes. Given w ∈ Σ∗, we thus write

• A(w) = 1 if δ∗(w) ∩ F 6= ∅,

• A(w) = 0 if δ∗(w) ∩Q 6= ∅ but δ∗(w) ∩ F = ∅, and

• A(w) = ∗ if δ∗(w) = ∅.

The language accepted by A is L(A) := {w ∈ Σ∗ | A(w) = 1}. A string
language is regular if it is accepted by an FA.

An FA A is total if, for every a ∈ Σ and q ∈ Q, there is a some 〈q, a, q′〉 ∈ δ.
Furthermore, A is a deterministic FA (abbreviated DFA) if 〈q, a, q′〉, 〈q, a, q′′〉 ∈
δ implies q′ = q′′, otherwise non-deterministic (an NFA). For DFA, we may
abbreviate δ∗(s) = {q} to δ∗(s) = q, and δ+(s, e) = {q} to δ+(s, e) = q without
risk of confusion. We also write L(w) = 1 if w ∈ L for w ∈ Σ∗ and L ⊆ Σ∗,
and L(w) = 0 if w /∈ L.

2.2. Factors of a Language and Universal Automata

Let Σ be an alphabet and L ⊆ Σ∗ be a language. A pair 〈X,Y 〉 with
X,Y ⊆ Σ∗ is a subfactor of L if X ·Y ⊆ L(where · denotes concatenation, lifted
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to sets in the usual way; for simplicity, often we omit the · operator, writing
concatenation as juxtaposition). A subfactor 〈X,Y 〉 is a factor of L if it is
maximal with respect to inclusion, in other words, if for every X ⊆ X ′ and
Y ⊆ Y ′, X ′Y ′ ⊆ L implies X ′ = X and Y ′ = Y . Henceforth, we denote by
fac(L) the set of all factors of L.

As shown by [17], a language L is regular if and only if fac(L) is finite. The
set Q = fac(L) can be viewed as the states of an FA UL = 〈Σ, Q, I, F, δ〉 with

• I = {〈X,Y 〉 ∈ fac(L) | ε ∈ X},

• F = {〈X,Y 〉 ∈ fac(L) | ε ∈ Y },

• 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δ if and only if XaY ′ ⊆ L.

This (unique!) automaton is called the universal automaton of L.
Note that for 〈X,Y 〉 ∈ fac(L), the set X determines Y and vice versa via,

for example, Y =
⋂

x∈X x−1L. The bijection has several interesting implica-
tions [17], e.g.:

〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δ ⇐⇒ Xa ⊆ X ′ ⇐⇒ aY ′ ⊆ Y .

2.3. Observation tables

We will now introduce the central data structure of our learning algorithm.
Let L ⊆ Σ∗ be the target language. A triple T = 〈S,E, obs〉 consisting of two
non-empty finite sets S,E ⊆ Σ∗ and a function obs : S × E −→ {0, 1} is an
observation table for L if

• S is prefix-closed,

• E is suffix-closed,

• obs is a total function with

obs(s, e) =

{
1 if se ∈ L is confirmed,

0 if se /∈ L is confirmed.

3. Tables of subsets

The following ideas, which only require some basic set theory, are funda-
mental for our approach. We could have stated them in more concrete terms,
but this abstract approach is better to convey the basic ideas. Similar notions
have been developed in Clark [8], Courcelle et al. [10].

We consider a universe U × V and a target T ⊆ U × V . By letting U = 2U

and V = 2V , we create a frame U×V. An element (X,Y ) ∈ U×V is a subfactor
of T if X × Y ⊆ T . A subfactor (X,Y ) of T is a factor if, for every subfactor
(X ′, Y ′) of T , X ⊆ X ′ and Y ⊆ Y ′ imply that X = X ′ and Y = Y ′.
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A set C ⊆ U×V is a cover with respect to T if, for every (x, y) ∈ T , there is
some (X,Y ) ∈ C with x ∈ X and y ∈ Y . A cover C ⊆ U×V is a subfactor cover
(or a factor cover) if each (X,Y ) ∈ C is a subfactor (or a factor, respectively).1

The reasoning behind these definitions is as follows: Consider an alphabet Σ,
take U = Σ∗, V = Σ∗, and let L be the target language of some learning process.
The language L then defines an infinite target table TL given by (u, v) ∈ TL iff
uv ∈ L. The condition X × Y ⊆ TL is now clearly equivalent to X · Y ⊆ L. In
the formal language terminology introduced in Section 2, 〈X,Y 〉 is a (sub)factor
of L iff (X,Y ) is a (sub)factor of TL, while a (sub)factor cover corresponds to a
set of (sub)factors {〈Xi, Yi〉 | i ∈ J} of L with

⋃
i∈J Xi · Yi = L.

By repeatedly appealing to the axiom of choice, the following assertion is
easily seen:

Lemma 1. Let C ⊆ U ×V and let T ⊂ T ′ ⊆ U × V be two targets. If C is a
cover (subfactor cover) with respect to T , then there is some cover (subfactor
cover) C′ ⊆ U×V with respect to T ′, extending C in the sense that C ⊆ C′.

It is tempting to claim the same for factor covers, but unfortunately it does
not hold. This is witnessed by U = {1}, V = {a, b}, T = {(1, a)}, and T ′ =
T ∪ {(1, b)}. Here, {U × {a}} is a factor cover of T , but U × {a} is not a factor
of T ′, so no cover of T ′ can both contain U × {a} and be a factor cover of T ′.
As we shall see, it is possible to obtain a result corresponding to Lemma 1 also
for factor covers, but this requires additional notation.

To this end, let us fix a sub-universe S × E of U × V such that S ⊆ U and
E ⊆ V . This restriction induces a sub-frame S × E, with S = 2S ⊆ U and
E = 2E ⊆ V. Again, let T ⊆ U × V be our target, and assume that C ⊆ U×V
is a cover with respect to T . The cover and target induced by S × E is then

C|S×E = {(X ∩ S, Y ∩ E) | (X,Y ) ∈ C},

and T |S×E = T∩(S×E), respectively. The names are justified by the elementary
Lemma 2.

Lemma 2. Let C be a cover with respect to T . Then C|S×E is a cover with
respect to T |S×E. Moreover, if C is a subfactor cover then C|S×E is a subfactor
cover, as well.

Proof. Assume that C|S×E is not a cover with respect to T |S×E . Then there is
an element (x, y) ∈ S×E not covered by C|S×E . However, as C is a cover, there
is some (X,Y ) ∈ C with (x, y) ∈ X×Y . Clearly, (x, y) ∈ (X ∩S)× (Y ∩E), i.e.,
we have found some element from C|S×E , namely (X ∩ S, Y ∩ E), that covers
(x, y), contradicting our assumption. The “moreover-part” is trivial.

1[10] would have termed a subfactor cover with respect to T a rectangular decomposition
of the relation T for obvious geometric reasons; we did not use that terminology because
“decomposition” hints at some non-overlapping set system, which would point to the wrong
direction.
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Still, even if C is a factor cover then this need not be the case for C|S×E . We
again support our claim on an example.

Example 1. Let U × V with U = {1, 2, 3, 4} and V = {a, b, c} be a universe
and

T = {(1, a), (1, b), (1, c), (2, a), (2, b), (3, b), (4, a)}

be our target. Furthermore, let S×E be a sub-universe with S = {1, 2} and E =
{a, b}. Then, the target induced by S×E is T |S×E = {(1, a), (1, b), (2, a), (2, b)}.
It is easy to see that the only factor cover with respect to T |S×E is {S × E}. If
we look at the factor cover C = {{1} × V, {1, 2, 4} × {a}, {1, 2, 3} × {b}} of T
then its restriction C|S×E = {{1} × E,S × {a}, S × {b}} is clearly not a factor
cover of T |S×E. However, by Lemma 2, it is a subfactor cover of T |S×E.

For the reverse direction, where we enlarge rather than restrict the domain,
it is possible to embed smaller factor covers into larger ones. We introduce a
further notion that becomes important in this context. Let T be a target with
the universe U × V .

• For X ⊆ U , (X,V [X]) denotes the right-maximal subfactor induced by X,
i.e., V [X] is the largest subset of V such that (X,V [X]) is a subfactor of
T , i.e., X × V [X] ⊆ T .

• For Y ⊆ V , (U [Y ], Y ) analogously denotes the left-maximal subfactor
induced by Y .

Lemma 3.

• For X ⊆ U , (X,V [X]) is a subfactor with V [X] = {v ∈ V | ∀x ∈ X :
(x, v) ∈ T}.

• For Y ⊆ V , (U [Y ], Y ) is a subfactor with U [Y ] = {u ∈ U | ∀y ∈ Y :
(u, y) ∈ T}.

• For X ⊆ U , (U [V [X]], V [X]) is a factor, called the factor induced by X.

• For Y ⊆ V , (U [Y ], V [U [Y ]]) is a factor, called the factor induced by Y .

Let C ⊆ U×V be a factor cover with respect to the target T .

Lemma 4. If C is a factor cover with respect to T |S×E then there is a factor
cover C′ with respect to T such that C ⊆ C′|S×E. This fact is testified by the
embedding f : C→ C′, (X,Y ) 7→ (U [Y ], V [U [Y ]]) which satisfies X ⊆ U [Y ] and
Y ⊆ V [U [Y ]].

Proof. For (X,Y ) ∈ C, by definition U [Y ] is the maximal subset of U with
U [Y ]×Y ⊆ T . Similarly, V [U [Y ]] is the maximal subset of V for which U [Y ]×
V [U [Y ]] ⊆ T . Since C is a factor cover with respect to T |S×E , we conclude that
X ⊆ U [Y ] and Y ⊆ V [U [Y ]]. The existence of a factor cover C′ extending f(C)
now follows along the lines of Lemma 1.
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Remark 1. Let us comment on the previous proof: It is worth noticing here that
the definition of f using U [Y ] and V [U [Y ]] is not completely symmetric. We
could have chosen to define f ′ : C→ C′, (X,Y ) 7→ (U [V [X]], V [X]); this would
work out equally well, with minor adjustments to the upcoming proofs. However,
the mapping f ′ would look different compared to f in concrete examples. For
instance, let U = V = {1, 2} and T = {(1, 1), (1, 2), (2, 1)} with S = E = {1}.
Then, {{(1, 1)}} is a factor cover of T |S×E = {(1, 1)}. The maximal subset of
U for which U [Y ] × Y ⊆ T is U [Y ] = {1, 2}. Then, V [U [Y ]] would equal {1}.
Hence, f is defined by {(1, 1)} 7→ {(1, 1), (2, 1)}. The factor cover C′ extending
f(C) would be {{((1, 1), (2, 1)}, {(1, 1), (1, 2)}}. If we would have chosen to use
f ′, this would yield {(1, 1)} 7→ {(1, 1), (1, 2)} instead. Also note that it would be
simply wrong to try a symmetric definition like: “Consider (X,Y ) 7→ (XY , YX),
where XY is the maximal subset of U for which XY × Y ⊆ T and YX is the
maximal subset of U for which X × YX ⊆ T”; in our example, we would have
XY = U and YX = V , which would give the set XY × YX = U × V which is not
even a subfactor.

With Lemma 4 fresh in mind, let us return to our running example:

Example 2. (cont’d) Starting from the factor cover C′ = {S × E} of T |S×E,
we can use the embedding f in the proof of Lemma 4, which has a fixed-point
on S × E, to find the cover K = C ] C′ = {{1} × V, {1, 2, 4} × {a}, {1, 2, 3} ×
{b}, S × E} of T . Note that both K and C are factor covers of T , even though one
is a proper subset of the other. This shows that factor covers are not necessarily
unique, and that they need not contain the same number of elements. Also, the
claimed (rather trivial) inclusion C′ ⊆ K|S×E may be strict.

If we increase T slightly, setting T ′ = T ∪ {(2, c)} and using the same re-
stricting set S×E we would then get K = {{1, 2, 4}×{a}, {1, 2, 3}×{c}, S × V }.
Moreover, f(S × E) = S × V .

Lemma 5 will play an important rôle in the later analysis of our learning algo-
rithm.

Lemma 5. The embedding f : C → C′, (X,Y ) 7→ (U [Y ], V [U [Y ]]) given in
Lemma 4 is injective and satisfies X = U [Y ] ∩ S and Y = V [U [Y ]] ∩ E.

Proof. Assume the contrary, i.e., that there are (X,Y ) and (X ′, Y ′) such that
(U [Y ], V [U [Y ]]) = (U [Y ′], V [U [Y ′]]). In a sense, the mapping f is defined in
two steps, first computing the first component from Y and then computing
the second component from U [Y ]. Let us treat the first of these steps. By
Lemma 4, X is extended towards U [Y ] satisfying U [Y ] × Y ⊆ T . Observe
that, since (X,Y ) was a factor of T |S×E , (U [Y ] \X) ∩ S = ∅ (†). Analogously,
(U [Y ′] \X ′) ∩ S = ∅. Clearly, (U [Y ], V [U [Y ]]) = (U [Y ′], V [U [Y ′]]) implies that
U [Y ] = U [Y ′] and hence that U [Y ]∩ S = U [Y ′]∩ S, which implies X = X ′ due
to (†). A similar argument applies for the second step, yielding Y = Y ′. This
proves the claim.

A related result is the following one.
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Lemma 6. If (Xi, Yi), i ∈ {1, . . . , r}, are factors of a target T over a uni-
verse U × V then so are (

⋂r
i=1Xi, V [

⋂r
i=1Xi]) with

⋃r
i=1 Yi ⊆ V [

⋂r
i=1Xi] and

(U [
⋂r

i=1 Yi],
⋂r

i=1 Yi) with
⋃r

i=1Xi ⊆ U [
⋂r

i=1 Yi], provided that the intersections
are not empty.

Recall that for some set Z, Z[·] is the induced-operator that we have intro-
duced above. It is natural to think that

⋃r
i=1 Yi = V [

⋂r
i=1Xi], but the following

example proves that this is not always the case.

Example 3. Let U = {ε, a, aa, b} and V = {ε, a, b, bb} be finite languages over
Σ = {a, b}. Let

T = {(a, ε), (aa, ε), (ε, a), (a, a), (aa, a), (b, a), (b, b), (ε, bb), (aa, bb)}.

The factors of this target are: F1 = ({ε, a, aa, b}, {a}), F2 = ({a, aa}, {ε, a}),
F3 = ({aa}, {ε, a, bb}), F4 = ({ε, aa}, {a, bb}), F5 = ({b}, {a, b}). Let Fi =
(Xi, Yi). Note that, since the Fi are factors, U [Yi] = Xi and V [Xi] = Yi.
Consider more concretely F2 = (X2, Y2) and F4 = (X4, Y4). Then, X2 ∩X4 =
{aa} = X3. Hence, V [X3] = Y3 = Y2 ∪ Y4. On the other hand, Y2 ∩ Y4 = {a} =
Y1, while V [Y1] = X1 = {ε, a, aa, b} is a proper superset of X2∪X4 = {ε, a, aa}.

In the following sections, T will be alternatively interpreted as the (learning)
target and as the observation table of a learning process. In the latter context,
it is also interesting to note that the sets U and V of the previous example are
prefix-closed and suffix-closed, respectively.

Proof. (of Lemma 6) We will prove the assertion for the case r = 2; for r > 2,
an easy induction argument shows the claim. By symmetry, it is sufficient to
show that (X1 ∩X2, V [X1 ∩X2]) is a factor, provided that X1 ∩X2 6= ∅.
• Due to Lemma 3, (X1 ∩X2, V [X1 ∩X2]) is a subfactor.

• Consider some arbitrary y ∈ Y1 ∪ Y2, i.e., y ∈ Y1 or y ∈ Y2. Without
loss of generality, assume that y ∈ Y1. As (X1, Y1) is a subfactor, for each
x ∈ X1, (x, y) ∈ T . Hence, y ∈ V [X1 ∩ X2]. So, Y1 ∪ Y2 ⊆ V [X1 ∩ X2]
follows.

• By definition of V [X1 ∩X2] again, there is no y /∈ V [X1 ∩X2] satisfying
∀x ∈ X1 ∩X2 : (x, y) ∈ T .

• Assume that there is some x /∈ X1∩X2 with ∀y ∈ V [X1∩X2] : (x, y) ∈ T .
As x /∈ X1 ∩X2, x /∈ X1 or x /∈ X2. Without loss of generality, consider
the first case. We know that, for all y ∈ V [X1 ∩ X2], (x, y) ∈ T . As
Y1 ⊆ V [X1 ∩ X2] by the second item, for all y ∈ Y1, (x, y) ∈ T . This
implies x ∈ X1, as (X1, Y1) is a factor, contradicting our assumption.

Remark 2. Notice that the set of factors fac(T ) of a target T has a natural
partial order (or lattice) structure imposed on it by letting (X;Y ) ≤ (X ′, Y ′) if
X ⊆ X ′ (which is equivalent to the condition Y ′ ⊆ Y ). The reader can verify
this with Example 3, where we find F3 ≤ F2 ≤ F1, F2 ≤ F4 and F5 ≤ F1.
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4. Properties of hypotheses

In this section, we establish the connection between observation tables and
universal automata. We begin by defining the factors of an observation table,
to be contrasted with the previously defined factors of a language.

Definition 1 (Factors (of a table)). Let T = 〈S,E, obs〉 be an observation
table. A subfactor of T is a pair 〈X,Y 〉 with X ⊆ S and Y ⊆ E such that for
all s ∈ X and all e ∈ Y we have obs(s, e) = 1. Analogously, a factor of T is a
subfactor 〈X,Y 〉 of T such that for every subfactor 〈X ′, Y ′〉 of T with X ⊆ X ′

and Y ⊆ Y ′, we have 〈X,Y 〉 = 〈X ′, Y ′〉. The set of all factors of T is denoted
by fac(T ).

Note that in contrast to the classical representation of observation tables in-
troduced above, there is a more general interpretation – clearly, any observation
table corresponds to some subset T ⊆ S × E, and the reader can easily verify
that the according notions of (sub)factors as discussed in Section 3 coincide.
For instance, the target T from Example 3 can be viewed as belonging to the
following observation table:

ε a b bb
ε 0 1 0 1
a 1 1 0 0
aa 1 1 0 1
b 0 1 1 0

More generally, any T ⊆ S × E corresponds to an observation table, provided
that S is a prefix-closed finite language over some alphabet Σ, E is some suffix-
closed finite language over Σ, and that the table entries are consistent with
concatenation, i.e., whenever xy = x′y′ for some words x, x′ ∈ S and y, y′ ∈ E,
then (x, y) ∈ T if and only if (x′, y′) ∈ T .

To differentiate between the notion of factors based on Cartesian products
discussed in Section 3 and the one based on the concatenation product, we use
parentheses (, ) in the first case and pointed brackets 〈, 〉 in the second one.

Remark 3. Observe that if L 6= ∅, then 〈X,Y 〉 ∈ fac(L) implies X 6= ∅ and
Y 6= ∅. An analogous statement is true for observation tables that contain a
non-zero entry. As observation tables containing only zero entries would lead to
the empty language as a hypothesis, and as this will be checked in the very first
step in the learning algorithm that we will present, we can henceforth assume
that X 6= ∅ and Y 6= ∅ for all 〈X,Y 〉 ∈ fac(T ).

Definition 2 (Automaton associated to a table). Let T be an observation
table for a language L. The associated automaton derived from T is AT =
〈Σ, QT , IT , FT , δT 〉 with

• QT = fac(T ),

• IT = {〈X,Y 〉 ∈ QT | ε ∈ X},
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• FT = {〈X,Y 〉 ∈ QT | ε ∈ Y }, and

• for every a ∈ Σ and 〈X,Y 〉, 〈X ′, Y ′〉 ∈ QT , we have 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈
δT if and only if X · {a} · Y ′ ⊆ L.

From AT , we obtain the associated hypothesis HT = 〈Σ, QT , IT , FT , δT 〉 as the
trimmed version of AT .

In the following, HT will be the hypothesis that our learner presents to
the teacher, while the condition X · {a} · Y ′ ⊆ L in the construction of AT

is checked via membership queries to the teacher. Since we allow such queries
during the synthesis process, we are guaranteed to find AT for any observation
table T . This sets our algorithm apart from previous MAT learners which
require additional properties in their observation tables such as consistency and
closedness before synthesizing an automaton. There are examples of observation
table T where AT 6= HT (Appendix 7.2).

Remark 4. For a ∈ Σ we define T ◦ a := 〈S,E, obsa〉 such that

obsa(s, e) =

{
1 if sae ∈ L is confirmed,

0 if sae /∈ L is confirmed.

The definition of AT necessitates these auxiliary tables, and an efficient imple-
mentation should save the information thus gathered to economize with mem-
bership queries. This may speed up the computation but has no bearing on the
correctness of the algorithm.

Definition 3. AT is strongly reachable if, for all a ∈ Σ and 〈X ′, Y ′〉 ∈ QT and
all xa ∈ X ′, there is some 〈X,Y 〉 ∈ QT with x ∈ X and 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈
δT . Analogously, we can define strong co-reachability.

Lemma 7. If AT is strongly reachable then it is trim, i.e., AT = HT .

Proof. We only prove that every state of AT is reachable, as co-reachability can
be seen by a similar argument. The proof is by induction on the length of the
shortest words w(q) ∈ X of state q = 〈X,Y 〉. If |w(q)| = 0, then ε ∈ X, i.e., q
is an initial state and hence reachable. Assume that the claim is true for all q
with |w(q)| ≤ n. Consider some state q = 〈X,Y 〉 with |w(q)| = n + 1. Hence,
w(q) = xa. As AT is strongly reachable, there is some state p = 〈W,Z〉 with
x ∈W and 〈p, a, q〉 ∈ δT . Hence, q is reachable.

We will need an even slightly stronger notion in what follows.

Definition 4. An observation table T = 〈S,E, obs〉 for a language L ⊆ Σ∗ is
stable if

1. for every s, s′ ∈ S such that there is ae ∈ ΣE with L(sae) > L(s′ae), there
is e′ ∈ E such that L(se′) > L(s′e′); and

2. for every e, e′ ∈ E such that there is sa ∈ SΣ with L(sae) > L(sae′), there
is s′ ∈ S such that L(s′e) > L(s′e′).
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Note that this is similar to Angluin’s consistency condition in her LSTAR
algorithm.

Lemma 8. If T is stable then AT is strongly reachable and strongly co-reachable.

Proof. To show that AT is strongly reachable, we proceed as follows. Let
〈X ′, Y ′〉 be a factor of T such that there is a string xa ∈ X ′. Let 〈X,Y 〉
be a factor of T such that x ∈ X and X is of minimal size. As S is prefix-closed,
this factor exists. If (〈X,Y 〉, a, 〈X ′, Y ′〉) ∈ δT then we are done. Otherwise,
there are z ∈ X and y′ ∈ Y ′ such that L(zay′) = 0. Since L(xay′) = 1, there is
y′′ ∈ E such that L(xy′′) > L(zy′′), so by adding y′′ to Y we reduce the size of
X while keeping x ∈ X, thus contradicting the minimality assumption.

To show that AT is strongly co-reachable, we can argue symmetrically.

We propose the procedure MakeStable(T ): Look for s, s′ ∈ S such that there
is ae ∈ ΣE with L(sae) > L(s′ae) but there is no e′ ∈ E with L(se′) > L(s′e′).
Add ae to E and fill up the table with MQs. Symmetrically, strings can be
added to S.

Lemma 9. Every time we add an element from S ·Σ to S, or from Σ ·E to E
in order to make T stable, the number of factors in T increases.

Proof. Sketch. Suppose we add e′ to E due to Condition 1 in Definition 4.
Every factor 〈X,Y 〉 of T with s ∈ X also had s′ ∈ X since no element in Y
can prevent it from being so. By adding e′ to E, 〈X,Y 〉 splits into 〈X,Y 〉 and
〈X ′, S[X ′]〉 with X ′ := {s ∈ X | se′ ∈ L}. A similar argument holds when we
enlarge S instead.

As we will make sure that any hypothesis automaton our learner conjectures
is from a stable observation table T , we assume stability for all tables in the
remainder of this section. This also implies that fac(T ) is the state set of any
automaton AT we consider.

The next lemma may be expected but needs a non-trivial induction argu-
ment.

Lemma 10. Let 〈X,Y 〉 ∈ QT . Then X = P〈X,Y 〉 ∩ S and Y = F〈X,Y 〉 ∩ E.

Proof. We only prove X = P〈X,Y 〉∩S since the part for the future set of 〈X,Y 〉
follows from a symmetrical argument.

Let 〈X,Y 〉 ∈ QT . We have to prove the following two assertions:

1. If w ∈ X then w ∈ P〈X,Y 〉 ∩ S, and

2. If w ∈ P〈X,Y 〉 ∩ S then w ∈ X.

The proof is by induction on the length of w. As the induction base, consider
w = ε.

1. Since ε ∈ X implies 〈X,Y 〉 ∈ IT we have ε ∈ P〈X,Y 〉 by definition of
P〈X,Y 〉.

11



2. If ε ∈ P〈X,Y 〉 ∩ S then 〈X,Y 〉 must be an initial state of AT , as our
automata do not have transitions on the empty word. By definition, this
means that ε ∈ X.

Now, assume the claim to hold for all states and for all words w of length
up to n. Consider some w with |w| = n + 1. Hence, w = ua ∈ S for some
u ∈ Σn and a ∈ Σ. The remainder of the proof is as follows for the respective
directions:

1. Consider w = ua ∈ X. As AT is strongly reachable (Lemma 8), there
is a table factor 〈X ′, Y ′〉 with u ∈ X ′ and 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT . By
the induction hypothesis, u ∈ P〈X′,Y ′〉 ∩ S since S is prefix-closed. As
〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT , w ∈ P〈X,Y 〉 ∩ S.

2. Assume w ∈ P〈X,Y 〉 ∩ S. Let 〈X ′, Y ′〉 be a state that can be passed when
leading w = ua into 〈X,Y 〉, with 〈〈X ′, Y ′〉, a, 〈X,Y 〉〉 ∈ δT . By the choice
of 〈X ′, Y ′〉, u ∈ P〈X′,Y ′〉 ∩ S since S is prefix-closed. By the induction
hypothesis, u ∈ X ′. By the definition of δT , in particular for all y ∈ Y ,
we find that obsa(u, y) = 1. Since w = ua, obs(w, y) = 1 for all y ∈ Y .
As 〈X,Y 〉 is a table factor, we conclude that w ∈ X.

We now turn our attention to a notion of consistency well-known in Learning
Theory but less frequently addressed explicitly in Grammatical Inference:

Definition 5. A is T -consistent if A(se) = obs(s, e) for every 〈s, e〉 ∈ S × E.

Lemma 11. The automaton AT is T -consistent.

Proof. Let 〈s, e〉 ∈ S × E with obs(s, e) = 1. There is a factor 〈X,Y 〉 =
〈S[{e}], E[S[{e}]]〉 such that s ∈ X and e ∈ Y . Assuming that T is stable,
by Lemma 10, X = P〈X,Y 〉 ∩ S and Y = F〈X,Y 〉 ∩ E, so 〈X,Y 〉 ∈ δ∗T (s) and

δ+T (〈X,Y 〉, s) ⊆ FT , and consequently AT (se) = 1.
For the opposite direction, assume that there is an accepting run of AT on

se. After having read all of s, AT must be in some state 〈X,Y 〉 from which it
can continue to an accepting state. We thus know that s ∈ P〈X,Y 〉 ∩S and that
e ∈ F〈X,Y 〉 ∩ E. By Lemma 10, s ∈ X and e ∈ Y , and since 〈X,Y 〉 is a factor,
this yields obs(s, e) = 1.

So, in the following we can assume that AT is T -consistent. This will be an
important property when we prove the correctness of our inference algorithm.
Moreover, we can establish the following lemma.

Lemma 12. If the states 〈X,Y 〉, 〈X1, Y1〉, . . . , 〈Xr, Yr〉 ∈ QT are such that the
language F〈X,Y 〉 fulfils F〈X,Y 〉 ⊆

⋃r
i=1 F〈Xi,Yi〉 then we have Y ⊆

⋃r
i=1 Yi.

Proof. If the claim were wrong then there would be some w ∈ Y ⊆ E not
contained in any of the Yi. However, since Lemma 10 tells us that Y ⊆ F〈X,Y 〉,
there must be some F〈Xi,Yi〉 containing w. Pick some arbitrary v ∈ Xi. As
vw ∈ XiF〈Xi,Yi〉, we have vw ∈ L(AT ) due to Lemma 10 which proves that
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Xi ⊆ P〈Xi,Yi〉. By T -consistency, obs(v, w) = 1. As v was arbitrary, this
shows that obs(v, w) = 1 for all v ∈ Xi. Hence, 〈Xi, Y

′
i 〉 ∈ fac(T ) for some

Yi ∪ {w} ⊆ Y ′i , contradicting our assumption of 〈Xi, Yi〉 ∈ QT .

Another important property of observation tables is closedness. In our
framework, this corresponds to the notion of saturation.

Definition 6. An observation table T for the language L is saturated if for
every pair of table factors 〈X,Y 〉, 〈X ′, Y ′〉 with XaY ′ ⊆ L, there is some x ∈ X
such that xa ∈ X ′ and there is some y ∈ Y ′ such that ay ∈ Y .

Lemma 13. Let T be a saturated observation table. For every natural number
r and choice of r table factors 〈Xi, Yi〉, i ∈ {1, . . . , r}, it holds that

r⋂
i=1

P〈Xi,Yi〉 6= ∅ if and only if

r⋂
i=1

Xi 6= ∅ .

Proof. The “if” direction is immediate from Lemma 10.
Therefore, let x be a string of minimal length that is witness to the fal-

sity of the opposite direction of the lemma (so the lemma holds for every
proper prefix of x). We note that x cannot be the empty string because
a state 〈X,Y 〉 is in δ∗T (x) if and only if it is an initial state, which it is
if and only if ε ∈ X. Therefore, let x = ua for some string u ∈ Σ∗

and symbol a ∈ Σ, and let {〈Xi, Yi〉 | i ∈ {1, . . . , r}} = δ∗T (x). Moreover,
let 〈Wi, Zi〉 with i ∈ {1, . . . , r} be a selection of factors in δ∗T (u) such that
{〈〈Wi, Zi〉, a, 〈Xi, Yi〉〉 | i ∈ {1, . . . , r}} ⊆ δT . By Lemma 6 and the mini-
mality of x, the factor 〈W,Z〉 = 〈

⋂r
i=1Wi, E[

⋂r
i=1Wi]〉 exists and since W is a

subset of every Wi the set {〈〈W,Z〉, a, 〈Xi, Yi〉〉 | i ∈ {1, . . . , r}} is contained in
δT . Definition 6 now lets us pick an arbitrary w ∈ W such that wa ∈ Xj for
some j ∈ {1, . . . , r}, and because of WaYi ⊆ L for every Yi, the maximality of
the factors and the containment of wa ∈ Xj ⊆ S, we have wa ∈ Xi for every
i ∈ {1, . . . , r}. This obviously contradicts our assumption concerning x.

We propose the following procedure, which we call MakeSaturated(T ):

For j ← 0 to |QT | do:
for every state 〈X,Y 〉 that contains an x ∈ X of length j as a shortest word:
for every state 〈X′, Y ′〉 and letter a with xa /∈ X′, add xa to X′.

Clearly, adding words to X ′ amounts in extending S. We proceed simi-
larly with conflicts on the second component. Observe that, as we add longer
and longer words, no state could have been overlooked by this procedure as
inductively we guarantee the containment of words of length j in states 〈X,Y 〉
reachable in j steps; moreover, we could visualize its work (on the first compo-
nent) as proceeding from the initial states (for j = 0) further and further down
through the automaton, and we will reach all states by the assumed stability
of T , see Lemma 8. Conversely, the conflicts on the second component let the
algorithm work from the final states backwards and will again reach all states
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by the assumed stability of T , see Lemma 8. As can be seen in the example
in Appendix 7.3, MakeSaturated can cause the number of states to increase,
which is of course working towards our target.

Lemma 14. Let T = 〈S,E, obs〉 be an observation table for L and let T ′ =
〈S′, E′, obs ′〉 be the observation table resulting from MakeSaturated(T ). Pro-
vided that the procedure always terminates, T ′ is a saturated observation table
for L.

Proof. Consider two factors p = 〈X,Y 〉 and q = 〈X ′, Y ′〉 of T ′ with XaY ′ ⊆ L.
Our procedure MakeSaturated(T ) guarantees that among the shortest strings
in X, there is some x with xa ∈ X ′. By a symmetric argument, among the
shortest strings in Y , there is some y with ay ∈ Y ′.

We will ensure termination when presenting our learner but will assume it
for now. We are now going to state the main result of this section.

Theorem 1. AT is the universal automaton for L(AT ).

We prove this by two lemmata. The first, Lemma 15, shows that the states
of AT satisfy the defining property of universal automata. This is sufficient for
the claim, as the second, Lemma 16, shows that the states correspond to factors
of the language recognized by AT .

Lemma 15. For states 〈X,Y 〉, 〈X ′, Y ′〉 ∈ QT and the symbol a ∈ Σ, the tran-
sition 〈〈X,Y 〉, a, 〈X ′, Y ′〉 ∈ δT if and only if P〈X,Y 〉 · {a} · F〈X′,Y ′〉 ⊆ L(AT ).

Proof. The “only if” direction follows from the definition of δT , and of the past
and future languages of a state.

The “if” direction is shown as follows. Due to Lemma 10, X ⊆ P〈X,Y 〉 and
Y ′ ⊆ F〈X′,Y ′〉. Hence, X · {a} · Y ′ ⊆ L(AT ). Due to the T -consistency of AT ,
for all s ∈ X and all e ∈ Y ′ we have obsa(s, e) = 1, meaning that sae ∈ L.
Hence, 〈〈X,Y 〉, a, 〈X ′, Y ′〉〉 ∈ δT .

Lemma 16. For all q ∈ QT , the pair 〈Pq,Fq〉 is a factor of L(AT ).

Proof. To prove the claim, we can assume T = 〈S,E, obs〉 to be saturated by
Lemma 14. In the following, let q = 〈X,Y 〉. Clearly, 〈Pq,Fq〉 is a subfactor
of L(AT ). To violate maximality, there is some s /∈ Pq with {s} · Fq ⊆ L(AT )
or some e /∈ Fq with Pq{e} ⊆ L(AT ). By symmetry, it is sufficient to discuss
the first of these cases. So, we will prove by induction on the length of s that
whenever we have {s} · Fq ⊆ L(AT ) we also have s ∈ Pq.

Assume then that {s} · Fq ⊆ L(AT ), from which we obtain {s} · Y ⊆ L(AT )
by applying Lemma 10. If s = ε then Fq ⊆ L, and hence q is an initial state
and ε is trivially in Pq. This proves the base case of the induction.

For the inductive step, assume the claim to be true for all s of length up to
n and consider some s = ua of length n+ 1. Let δ∗T (s) = {〈Xi, Yi〉 | 1 ≤ i ≤ r}
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for some r ∈ N. As {s} · Fq ⊆ L(AT ), we have δT (s) 6= ∅ and moreover
Fq ⊆

⋃r
i=1 F〈Xi,Yi〉. By Lemma 12 this yields

Y ⊆
r⋃

i=1

Yi .

Let us consider certain factors of T in sequence:

• For every i ∈ {1, . . . , r}, let 〈Zi,Wi〉 ∈ δ∗T (u) and 〈〈Zi,Wi〉, a, 〈Xi, Yi〉〉 ∈
δT .

• For every i ∈ {1, . . . , r}, let X ′i = S[Yi ∩ Y ] ⊇ X ′i ∪X and Y ′i = Yi ∩ Y .
Since Yi and Y overlap, this factor exists, and as Yi ∩ Y ⊆ Yi, we have
〈〈Zi,Wi〉, a, 〈X ′i, Y ′i 〉〉 ∈ δT .

• Let 〈Z,W 〉 fulfil Z =
⋂r

i=1 Zi and W = E[
⋂r

i=1 Zi] ⊆
⋃r

i=1Wi. Since
u ∈

⋂r
i=1 P〈Zi,Wi〉, the intersection Z =

⋂r
i=1 Zi is not empty, as T is

saturated and due to Lemma 13. Moreover, these are factors by Lemma 6.
Furthermore, 〈〈Z,W 〉, a, 〈X,Y 〉〉 ∈ δT , as we have that zay ∈ L for every
z ∈ Z and y ∈ Y .

Now, {u} · F〈Z,W 〉 ⊆ L(AT ), and thus u ∈ P〈Z,W 〉 by the induction hypothesis.
In combination with 〈〈Z,W 〉, a, 〈X,Y 〉〉 ∈ δT , we obtain s ∈ P〈X,Y 〉.

This concludes the proof of Theorem 1, which constitutes the backbone of
our learning algorithm, which we are going to present in the following section.

5. Inference algorithm

We propose the following learning algorithm for the inference of universal
automata within the MAT model. We assume that the target alphabet Σ is
given to the learner in advance.

Initialization. The learner starts out with an initial table T0 = 〈S0, E0, obs0〉,
defined by S0 = E0 = {ε}.

Loop. The table Ti is completed using MQs, and made stable and saturated
using MakeStable and MakeSaturated. The synthesized automaton ATi

is passed to the teacher through an EQ. If the teacher accepts ATi
as

the universal automaton for the target language L, then the algorithm
terminates successfully. Otherwise, the learner recieves a counterexample
wi. In this case, it adds all prefixes of wi to Si and all suffixes to Ei,
before reentering the loop with the updated table Ti+1.

We give an example runs of our learner in Appendix 7.1.
This algorithm satisfies a number of properties which we state in a sequence

of lemmata. First of all, recall that due to Lemma 11 the learner’s hypothesis
automaton AT is always T -consistent. Furthermore, we have:
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Lemma 17. Either L(AT0) = ∅ or there is some subset A ⊆ Σ such that
L(AT0) = A∗.

Proof. When constructing T0, the algorithm checks if ε ∈ L via an MQ. If ε /∈ L
then the automaton AT0 will have an empty state set Q0 and no transitions. If
ε ∈ L then AT0 will have a singleton state set Q0. In that case we also have
I0 = F0 = Q0. Upon building the transitions of AT0

, the algorithm first checks
if any a ∈ Σ is in the target language L (via MQs) and adds loop transitions to
the only state accordingly. If L∩Σ = ∅, no loop transitions are added, which is
reflected by the case A = ∅ in the formulation of the claim.

The languages mentioned in Lemma 17 are exactly those that can be ac-
cepted by any universal automaton with at most one state, which shows that
our algorithm would need only one equivalence query for the corresponding
target automata.

Lemma 18. For each i ≥ 0, if ATi+1 is presented as a hypothesis, then there is
an injective embedding fi : Qi → Qi+1 with the property that whenever 〈X,Y 〉 7→
〈X ′, Y ′〉 then X = X ′∩Si and Y = Y ′∩Ei. A similar statement is true for the
intermediate automata obtained before calling MakeStable or MakeSaturated.

Proof. The proof makes use of notation from Section 3. First, observe that
Ti = Ti+1|Si×Ei

. Clearly, Qi = fac(Ti) is a factor cover of Ti. Hence, Lemmas 4
and 5 provide an injective embedding into some factor cover of Ti+1 which is
clearly contained in Qi+1 = fac(Ti+1). The claimed properties X = X ′∩Si and
Y = Y ′ ∩ Ei translate from Lemma 5.

Lemma 19. For each i ≥ 0, if the automaton ATi+1 is presented as a hypothesis

and if the embedding fi : Qi → Qi+1 is bijective then f−1i : Qi+1 → Qi is
an automaton morphism. Moreover, the induced mapping di : δTi+1

→ δTi
is

injective.

Proof. To avoid a special case, observe that since our algorithm always makes
progress in the sense of changing its hypothesis between two rounds, no set of
states and no set of transitions considered in this lemma can be empty, as the
only possibility to obtain the empty language or the language {ε} as a hypothesis
would be with AT0

; we refer to Lemma 17. It remains to show that, whenever
there is an a-transition from q to p in ATi+1 then there is an a-transition between

the corresponding states f−1i (q) and f−1i (p). More concretely, we know that
q, p ∈ fac(Ti+1), i.e., q = 〈Xq, Yq〉 and p = 〈Xp, Yp〉. Moreover, Lemma 5
explains that f−1i (q) = q′ = 〈X ′q, Y ′q 〉 with X ′q = Xq ∩ Si and f−1i (p) = p′ =
〈X ′p, Y ′p〉 with X ′p = Xp ∩ Ei. By definition, 〈q, a, p〉 ∈ δTi+1

if xay ∈ L for
all x ∈ Xq and all y ∈ Yp. Hence, we have xay ∈ L for all x ∈ X ′q and
y ∈ Y ′p , so that 〈q, a, p〉 ∈ δTi+1 implies 〈q′, a, p′〉 ∈ δTi as claimed. Clearly,
di : 〈q, a, p〉 7→ 〈q′, a, p′〉 ∈ δTi is injective since fi is a bijection.

Let UL be the universal automaton for the target language L with state set
Q = fac(L). The following assertion can be seen by the same arguments as in
the proof of Lemma 18.
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Lemma 20. For each i ≥ 0, if ATi+1 is presented as a hypothesis then there
exists an injective embedding fi : Qi → Q with the property that whenever
〈X,Y 〉 7→ 〈X ′, Y ′〉 then X = X ′ ∩ Si and Y = Y ′ ∩ Ei.

Theorem 2. The algorithm converges to the target automaton UL after at most
max{1, |Σ|n3} many equivalence queries, where n is the number of states of UL.

Proof. Due to Lemma 20, any hypothesis automaton has at most as many states
as UL. Moreover, Lemma 18 shows that ni ≤ ni+1, where nj = |Qj | is the num-
ber of states of the jth hypothesis. This together with Theorem 1 and the fact
that universal automata are unique up to renaming of states shows that the
learning algorithm will finally yield the target automaton UL. In the follow-
ing reasoning, let mj denote the number of transitions of the jth hypothesis.
Clearly, mj ≤ |Σ|n2j . Since we always have ATj 6= ATj+1 due to the received
counterexamples, we can observe two kinds of progress: The first kind is when
nj < nj+1. Since nj+1 ≤ n, this kind of progress can occur at most n times. The
second is when nj = nj+1 but mj > mj+1. This case is due to Lemma 19. Since
mj ≤ |Σ|n2j ≤ |Σ|n2, the second kind of progress can occur at most |Σ|n2 times.
When combined, the two observations yield the claimed rate of convergence.

Remark 5. An argument similar to the proof of Theorem 2, based on Lemma 18,
shows that the procedures MakeStable and MakeSaturated terminate, as they
will always either increase the number of states or add only a small number of
table entries a fixed number of times. More precisely, if we have a smart teacher
that never provides us with unnessarily long counterexamples, then the length of
any counterexample is bounded by the number n of states of the target automa-
ton. So, each update necessary after an equivalence query would add at most n
rows and n columns to the table. Due to Lemma 9, MakeStable allows a similar
estimate. MakeSaturated might add in the worst case n rows and n columns
per case (given by two factors p = 〈X,Y 〉 and q = 〈X ′, Y ′〉 such that XaY ′ ⊆ L
and xa /∈ X ′ for all x ∈ X), and there could be at most a quadratic number of
cases, as we would repair each case by selecting a smallest t ∈ X and adding ta
to X ′. So, at most a cubic number of rows and columns are added here. This
dominates the worst case, so that we can conclude that a cubic number of times,
at most a cubic number of rows and columns are added to the table. This shows
that there are at most O(n6) rows and columns in the observation table at the
termination of the learning algorithm, so that the table contains at most O(n12)
many entries, which also upper-bounds the total number of membership queries
ever made by the algorithm. Of course, if the teacher is not so smart, bigger
tables might occur.

6. Discussions, conclusions and future research

We have presented a novel MAT learner for regular languages. In this sec-
tion, we are going to explain some connections and differences to alternative
MAT learners and also point to directions of future research.
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6.1. Comparison with other MAT learners

To discuss similarities and differences to the famous LSTAR learner of [1],
we introduce some more notations. Let T = 〈S,E, obs〉 be an observation
table. For s ∈ S, let row [s] = {e ∈ E | obs(s, e) = 1}. Slightly abusing
the notation introduced in Sec. 3, 〈{s}, row [s]〉 is the factor induced by {s},
as row [s] = E[{s}] is the right-maximal subfactor of {s}. For row [s] 6= ∅,
let 〈S[row [s]], row [s]〉 be the row factor of s. Likewise, let col [e] = {s ∈ S |
obs(s, e) = 1} and 〈col [e], E[col [e]]〉 be the column factor of e. Let R and C
collect all row and column factors, respectively.

Remark 6. If 〈X,Y 〉 is any factor, then (X,Y ) ∈ R ∪ C. This also gives
an algorithm for computing fac(T ): As long as there exists some yet uncovered
(s, e) with obs(s, e) = 1, compute the row and column factor of s resp. e and
add them to the cover.

Remark 7. If LSTAR constructs a hypothesis from T , then the hypothesized
automaton has as state set R. By way of contrast, our algorithm’s hypothesis
automaton AT has state set fac(T ) = R ∪ C.

Another difference lies in the definition of a transition function for LSTAR.
Define row [s]a = {e ∈ E | obsa(s, e) = 1} for a ∈ Σ. We obtain a transition
〈s, a, s′〉 for s, s′ ∈ S and a ∈ Σ if row [s]a = row [s′]. If for all a ∈ Σ and all
s ∈ S there is some s′ ∈ S with row [s]a = row [s′] then we call T closed and all
states in the resulting automaton are reachable. If for all a ∈ Σ and all s, s′ ∈ S
with row [s] = row [s′] we have row [s]a = row [s′]a then we call T consistent and
the resulting automaton is deterministic. Note that this way of constructing an
automaton from an observation table surely differs from our method.

We compare a run of LSTAR and of our learner in the appendix, assuming
that the teacher gives the same counterexample to both learners whenever possi-
ble. We observe that our learner needs the same number of EQs as LSTAR does;
however, the purose of the EQ is different, as our learner somehow gathers the
information LSTAR gets by an EQ already when making the table saturated.
We leave it for future (implementation) work to compare the work of both
learners through experimental studies.

Another MAT learner which we could compare to ours is the learner for
residual finite-state automata (RFSA) in Bollig et al. [2]. The canonical RFSA
for a language L can also be exponentially more succinct than the state-minimal
DFA, and is as most as big. In this case, the derivation of an automaton from a
table is still based on the concept of rows but the notion of identity between rows
(equality between sets) is replaced by a covering relation (subset relation). In
case of successful learning, only equivalence classes of L that are strict supersets
of the union of all other classes they contain are admitted as states. So, in a
sense, this type of automata fit less well into our framework, discussing factors
of tables etc. However, it might be an idea to translate the mentioned covering
relation to our more general setting as a line of future research.
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6.2. Upper bounds on the number of equivalence queries

We underline that while Bollig et al. [2], Denis et al. [12], Yokomori [20] all
refer to the state-minimal deterministic automaton when indicating the (poly-
nomial) complexity of their respective learners for various kinds of special NFA,
we give an algorithm with polynomial runtime in terms of the non-deterministic
target automaton We conjecture that there is a close connection to the notion of
polynomial characterizability by [11] – this property is fulfilled by DFA but not
by NFA in general (modulo the complexity-theoretic assumption that P 6= NP )
[11], nor by residual finite-state automata [2] (also see [16] for more discussion).
We surmise that for universal automata it is again fulfilled, which would yield
a further explanation for our advantageous result.

6.3. Comments on distributional learning

Also note that our way of deriving an automaton from an observation table
differs from those in [1] or [2] for residual finite-state automata (RSFA) inasmuch
as we do not base it on rows alone (orginally formulated as sequences of 0s and
1s induced by the labeling sets) but on concrete subsets of the labeling sets,
along with the respective consequences. However, this approach is quite close
to the notion of distributional learning developed by Clark [6, 7] for context-free
grammars (a MAT learner for CFGs can be found in [8]).

Let us finally remark that also the framework developed by Clark in a series
of papers, e.g., Clark [5, 6, 9] fits into the framework developed in Sec. 3.
In its basic setting, Clark associates to each language L the set of subwords
Sub(L) = {u ∈ Σ∗ | ∃l, r ∈ Σ∗ : lur ∈ L} and the set of contexts C(L) =
{(l, r) ∈ Σ∗ × Σ∗ | ∃u ∈ Σ∗ : lur ∈ L}. Let U = Sub(Σ∗) and V = C(Σ∗).
Then, L again yields a target T = {(u, (l, r)) | lur ∈ L}. The lattice structure
mentioned in Remark 2 is central to Clark’s approach. To generalize the learning
strategies that we develop for universal automata towards such targets would
be a challenging question for future research.

6.4. Generalizing the setting: alternative learning scenarios and objects

As indicated in the last sections of [17], we may find that a generalization of
our approach towards the learning of subsets of monoids, not only free monoids,
is possible. We are only aware of text learning results for algebraic structures,
see [19]. We also encourage to further our approach to learning other structures
such as trees, matrices of symbols, or tuples of strings.

Alternatively, we can look into other learning models, taking universal au-
tomata as our target descriptions. For instance, see [13] for an alternative
universal automata learner from positive and negative examples relying on the
state merging paradigm.

The presentation of LSTAR in terms of our approach resembles [10]. In
particular, LSTAR factor covers are described by the row set R and hence
satisfy:
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Each (s, e) ∈ S×E with se ∈ L is covered by exactly one (X,E[X]) ∈
C(Q), where s uniquely determines X (equivalence class decomposi-
tion of S).

This coincides with what Courcelle et al. [10, Def. 1.4] call a deterministic decom-
position. They observe that there are always canonical (minimal) such decom-
positions and they also show that these naturally correspond to state-minimal
DFAs, i.e., the hypothesis space of the LSTAR algorithm, which provides an
alternative explanation of some of the results of [1]. These connections are in-
teresting, all the more so as [10] also provide applications of their approach to
certain kinds of top-down tree automata and to regular ω-languages. From a
formal-language point of view, this raises the question if objects like universal
automata exist in those contexts as well. From the viewpoint of Grammati-
cal Inference, developing MAT learning algorithms for such universal automata
would then be the challenge.

We hope to report on implementations of our algorithm soon, possibly inte-
grated within existing frameworks like LearnLib [18] or Libalf [3].
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Figure 1: First (non-empty) hypothesis of LSTAR

7. Appendix

7.1. A run of our learner and a run of LSTAR

We assume familiarity with Angluin’s learner LSTAR for DFA [1].
Let the target language be L = {a}{a, b}∗. LSTAR starts out with a table

ε
ε 0
a 1
b 0

and then closes it to obtain
ε

ε 0
a 1
b 0
aa 1
ab 1

which yields its first hypothesis as shown in Figure 1 with states p = 〈0〉 and
q = 〈1〉.

————————— (switch) —————————
Meanwhile, our learner starts out with a table

ε
ε 0

and derives from it the automaton 〈Σ, ∅, ∅, ∅, ∅〉. Observe that the table is stable,
as is any table with |S| = |E| = 1, and that it is saturated, as it has no table
factors at all. Let us say that the teacher reacts with the (shortest possible)
counterexample a. The learner builds a table

ε a
ε 0 1
a 1 1

This table has the factors p = 〈{ε, a}, {a}〉 and q = 〈{a}, {ε, a}〉. Clearly, this
table ist stable. We did not yet check for the saturation property. This amounts
in checking the following cases, looking in each positive case for a saturation
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witnesses, i.e., for every pair of table factors 〈X,Y 〉, 〈X ′, Y ′〉 with XaY ′ ⊆ L,
some strings x ∈ X and y ∈ Y must be found such that xa ∈ X ′ and ay ∈ Y .
(Of course, the same should hold for the letter b.)

• Consider 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{ε, a}, {a}〉. Clearly, {ε, a} · a · {a} ⊆ L is
true. x = ε is a saturation witness for xa ∈ X ′, but aY ′ = {aa}, so that
aY ′ ∩Y = ∅. The procedure MakeSaturated(T ) adds aa to E, so that we
obtain the following extended table:

ε a aa
ε 0 1 1
a 1 1 1

This table has the factors x = 〈{ε, a}, {a, aa}〉 and y = 〈{a}, {ε, a, aa}〉.
By construction, 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{ε, a}, {a, aa}〉 now has the re-
quired two saturation witnesses on a-transitions.

• Check 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{ε, a}, {a, aa}〉 on a b-transition. As ba ∈
{ε, a} · b · {a, aa} but ba /∈ L, the saturation condition is fulfilled. Ob-
serve that whenever (later) the state 〈X,Y 〉 = 〈X ′, Y ′〉 is extended (by
adding strings to X or Y , this saturation property will still hold, as the
same example would work. This also shows that there is no b-loop at the
corresponding state of the automaton.

• Check 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{a}, {ε, a, aa}〉 on an a-transition. Clearly,
{a}·a ·{ε, a, aa} ⊆ L is true. x = a is the only possible saturation witness,
with xa = aa /∈ X ′. Hence, MakeSaturated(T ) adds aa to S, so that we
obtain the following extended table:

ε a aa
ε 0 1 1
a 1 1 1
aa 1 1 1

We now study 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{a, aa}, {ε, a, aa}〉 on an a-transition.
Fortunately, y = ε is a saturation witness with ay = a ∈ Y ′.

• Look at 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{a, aa}, {ε, a, aa}〉 on a b-transition. As
{a, aa} · b · {ε, a, aa} ⊆ L, we have to dig a bit deeper. As neither ab
nor aab are in X ′, we have to add another row ab by MakeSaturated(T ),
yielding:

ε a aa
ε 0 1 1
a 1 1 1
aa 1 1 1
ab 1 1 1
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So we consider 〈X,Y 〉 = 〈X ′, Y ′〉 = 〈{a, aa, ab}, {ε, a, aa}〉 on a b-transition.
As neither of b or ba or baa is in Y , we add another column labeled b:

ε a aa b
ε 0 1 1 0
a 1 1 1 1
aa 1 1 1 1
ab 1 1 1 1

• We now consider 〈X,Y 〉 = 〈{ε, a, aa, ab}, {a, aa}〉 and 〈X ′, Y ′〉 = 〈{a, aa, ab},
{ε, a, aa, b}〉 on a-transitions. As X · a · Y ′ ⊆ L, we need saturation wit-
nesses. x = ε satisfies x ∈ X, xa = a ∈ X ′. y = ε satisfies y ∈ Y ′,
ay = a ∈ Y .

• We now consider 〈X,Y 〉 = 〈{ε, a, aa, ab}, {a, aa}〉 and 〈X ′, Y ′〉 = 〈{a, aa, ab},
{ε, a, aa, b}〉 on b-transitions. As b ∈ {ε, a, aa, ab} · b · {ε, a, aa, b}, the
premise X · b · Y ′ ⊆ L is not satisfied.

• We turn our attention to the two factors 〈X,Y 〉 = 〈{a, aa, ab}, {ε, a, aa, b}〉
and 〈X ′, Y ′〉 = 〈{ε, a, aa, ab}, {a, aa}〉 on a-transitions. As X · a · Y ′ ⊆ L,
we need saturation witnesses. x = a and y = a will do.

• Consider 〈X,Y 〉 = 〈{a, aa, ab}, {ε, a, aa, b}〉 and 〈X ′, Y ′〉 = 〈{ε, a, aa, ab},
{a, aa}〉 on b-transitions. As X · a · Y ′ ⊆ L, we need saturation witnesses.
While x = a is such a witness, we must (once more) call MakeSaturated(T )
which adds ba to E to ensure the existence of a saturation witness for the
second case.

Finally, we end up with the following table T :

ε a aa b ba
ε 0 1 1 0 0
a 1 1 1 1 1
aa 1 1 1 1 1
ab 1 1 1 1 1

So, finally we have a saturated table, which corresponds to a DFA AT with
states
p = 〈{ε, a, aa, ab}, {a, aa}〉 and
q = 〈{a, aa, ab}, {ε, a, aa, ba}〉.
As we have seen in our reasoning concerning saturation, AT has the following
transitions:

• 〈p, a, p〉, 〈p, a, q〉,

• 〈q, a, q〉, 〈q, b, q〉, 〈q, a, p〉, 〈q, b, p〉.

The according automaton graph is depicted in Figure 2. As there are a- and
b-transitions leading into p and q, the automaton is strongly reachable and is in
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Figure 2: First (non-empty) hypothesis of our learner

p

a, b

q

b

r

a, b

a

Figure 3: Second hypothesis of LSTAR

fact the hypothesis presented by our learning algorithm. As this hypothesis is
correct, the learning process terminates.

————————— (switch) —————————

Conversely, LSTAR is not yet ready. Let the next given counterexample be
ba. LSTAR reacts to the counterexample ba by building a closed table

ε a ba
ε 0 1 0
a 1 1 1
b 0 0 0
aa 1 1 1
ab 1 1 1
ba 0 0 0
bb 0 0 0

and obtains the FA shown in Figure 3 with states p = 〈0, 1, 0〉, q = 〈1, 1, 1〉, and
r = 〈0, 0, 0〉, which is the state-minimal total DFA for L. Omitting the trash
state r, we arrive at Figure 4, which is obviously a subautomaton of the last
(correct) hypothesis of our learner.
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Figure 4: Eliminating trash states in the second hypothesis of LSTAR
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Figure 5: The (non-trim) automaton AT

7.2. An example for AT 6= HT

The language L contains all strings except those that have a 0 in the following
table TL.

ε a b bb
ε 0 1 0 1
a 1 1 0 0
aa 1 1 0 1
b 0 1 1 0

Let us consider a table T for L as follows:

ε a b
ε 0 1 0
a 1 1 0
b 0 1 1

We have factors q = 〈{ε, a, b}, {a}〉 and p = 〈{a}, {ε, a}〉 and r = 〈{b}, {a, b}〉.
The automaton AT is given in Figure 5. We find that the factor r is not reach-
able. As a consequence, AT would not accept bb and is thus not T -consistent.
However, we remark that in a run of our learner no intermediate stage would
yield such a table. The learner starts out with T0:

ε
ε 0
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then gets for example the (shortest) counterexample a and builds T1:

ε a
ε 0 1
a 1 1

The automaton AT1 is exactly the trimmed version of AT we have derived from
the “problematic table” T . Mind that AT1 already contains b-transitions as the
learner checks them via MQs. However, bb is not yet in the table and can be
given as a counterexample.

7.3. MakeSaturated can introduce new states

Let us revisit the example from Sec.7.1 again. If we consider the language
L′ = {a}{a, b}∗ \ {a3}, then our learning algorithm could behave as described
with L = {a}{a, b}∗ up to the point when the first time MakeSaturated will
add some column. This would now lead to the following table:

ε a aa
ε 0 1 1
a 1 1 0

Clearly, we now have three table factors.
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