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Abstract

We introduce a class of digraphs that generalizes the well-known class of arc-
series-parallel-digraph. The new class is shown to be effectively recognizable, and
a characterization by forbidden subgraphs is given. We argue that the forbidden
subgraphs represent the structural features of finite automata that cannot be en-
coded by regular expressions, i.e., those causing an exponential blowup upon con-
verting automata to expressions.

1 Motivation

A fundamental results in the theory of formal languages is the equivalent descrip-
tive power of regular expressions and finite automata, as originally shown by Kleene
[Kle56]. This brings up the problem of converting between the two representations, as
regular expressions, being linear entities, are easily readable by humans, whereas finite
automata are preferable on the machine level. Such conversions should go beyond mere
proof-of-concept-constructions, i.e., it is desirable tooptimize actual computations wrt.
to time and/or memory. We take a quick look at some conversions for either direction.

Everyday use, notably pattern-matching, renders the conversion from expressions to
automata the prevalent one. An established and intuitive paradigm in this translation is
to interpret the parse of an expression as the structural information of a graph underly-
ing an equivalent automaton [OF61, Tho68, SSS88, GF08b]; see Watson [Wat94] for
a survey of such and other approaches. To the author’s knowledge, the only work as
yet asking for structural properties of automata constructed this way is by McNaughton
[McN], although the discussion remains on an intuitive level. To quote:

[. . . ] although every regular expression can be transformedinto a graph that has
the same structure, the converse is not true. I will not definehere precisely what I
mean by the structure of a regular expression or graph, and hope that my point is
made on an intuitive level. (p.35)

In contrast, the conversion of automata to expressions seems to be relevant mostly in
the academical domain. It is generally performed via state-elimination, an algorithm
originally proposed by Brzozowski & McCluskey [BJ63]. The size (and ’readability’)
of expressions generated by this method is highly dependentthe chosen elimination-
ordering. That aside, an exponential blowup cannot be avoided in the general case
whatsoever, as was shown by Ehrenfeucht & Zeiger [EZ74]. Even so, no efficient gen-
eral procedure is known that provides elimination-orderings resulting in outputs that
are minimal wrt. to input-size. Still, several heuristics have been proposed in order
to get reasonably good elimination-sequences [DM04, HW07,GF08a, AH09]; these
approaches all rely on graph-theoretic properties of the input-automaton. In the (infor-
mal) spirit of above citation, it is worth noting that the automata which are drawn upon
to compare the efficiency of such heuristics always show structural properties which
admit no obvious corresponding regular expression.

The present work takes on above questions on a rigorous and formally sound graph-
theoretic basis. As was already addressed, there is a structural and a quantitative aspect
to this: we will concentrate on developing the structural theory of graphs that are in
some sense equivalent to regular expressions; questions about efficiency will be treated
only superficially.
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2 Preliminaries

The graphs we consider are directed and may contain loops andmultiple arcs. These
are in general calleddirected pseudographs, we will refer to them as justgraphs. For-
mally, a graph is a 4-tupleG = (V, A, t, h) whereV andA are finite disjoint sets,
called theverticesresp. arcs of G, while t andh are maps fromA to V . If G is not
given explicitly, letG = (VG, AG, tG, hG). The image ofa ∈ AG undertG resp.hG

is called thetail resp.headof a in G. If t(a) = x andh(a) = y, we say thata leavesx
andentersy, or thata is anxy-arc. For brevity, we write anxy-arca asa = xy and/or
a = xy ∈ A. Tail and head are referred to as theendpointsof an arc. Distinct arcs
of a graph with coinciding head and tail are calledparallel. An xx-arc is anx-loop or
just loop. An arc that is not a loop isproper. The set of arcs entering, resp. leaving
x in G are denotedI(x), resp.O(x); the in-degreeof x in G is d−

G(x) = | I(x)| and
its out-degreein G is d+

G(x) = |O(x)|. A constrictionof G is a proper arca = xy
whered+

G(x) = 1 = d−
G(y). A vertexx ∈ VG is simple, if d−

G(x) ≤ 1 andd+
G(x) ≤ 1.

Throughout this work,F, G andH denote graphs, whilex, y andz denote vertices, and
subscripts are omitted, if the graph they should indicate isunderstood.

F is a subgraphof G, denotedF ⊆ G, if VF ⊆ VG, AF ⊆ AG andtF andhF are
the appropriate restrictions oftG resp.hG; we say thatG containsF . If F andG are
subgraphs ofH anda = xy ∈ AH with x ∈ VF andy ∈ VG, thena is called an
(F, G)-arc, as well as an(x, G)- or an(F, y)-arc ofH .

A pathof lengthn is a graph onn+1 vertices andn arcs s.t. every arc is a constriction;
let Pn denote the path of lengthn and note thatP0, called theempty path, is well-
defined. Every pathP contains exactly one vertexx with d−

P (x) = 0 and one vertexy
with d+

P (y) = 0, P is then called a path fromx to y, or anxy-path;x andy are called
theendpointsof P , while the remaining vertices are itsinternalvertices. Two paths are
internally disjoint, if their sets of internal vertices are disjoint. Acycleis a graph onn
vertices andn arcs s.t. every arc is a constriction. A graph containing anxy-path for
all x, y ∈ VG is calledstrong.

New graphs will be derived from given ones by means of severalbasic operations; we
generally call both the operation and the graph it derives bythe same name.
Thesubdivision, of an arca in G is the replacement ofa with P2 with the same orienta-
tion asa. Formally, the subdivision ofa in G, for a = xy ∈ AG, is the graphH satisfy-
ing VH = VG ⊎ z, AH = AG \ {a}⊎{a1, a2}, tH = tG \ {(a, x)}⊎{(a1, x), (a2, z)},
andhH = hG \ {(a, y)} ⊎ {(a1, z), (a2, y)}. More generally, a subdivision ofG, re-
ferred to as aDG, is any graphH s.t. there are graphsG1, . . . , Gn whereG = G1,
Gi+1 is the subdivision of an arc inGi andGn = H .
The split of a vertexx in G is the replacement ofx with two vertices that separate
the arcs enteringx from those leavingx. Formally the split ofx in G is the graphH
satisfyingVH = VG \ {x} ⊎ {xi, xo}, AH = AG ∪ (xi, xo), tH = tG \ {(a, x) | a ∈
AG} ∪ {(a, xo) | (a, x) ∈ tG}, andhH equivalently.
Themergeof two verticesx, y ∈ VG is their identification by replacing them with one
new vertexz and redirecting all arcs entering or leavingx or y to enter or leavez.

A graphG is two-terminal, if there ares, t ∈ VG s.t. everyx ∈ VG lies on some
st-path ofG. The verticess andt are respectively called thesourceandsinkof G; we
write G = (G, s, t) to express thatG is two-terminal with sources and sinkt. A two-

2



PSfrag replacements

xx yy z
s
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⇒

(b) parallel expansion
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ℓ
⇒

(c) loop expansion

Figure 1: Expanding anxy-arc, resp. the containing graph.

terminal graph(G, s, t) is ahammock, if d−
G(s) = d+

G(t) = 0. Let x andy be vertices
of (G, s, t): x dominatesy in G, if x lies on everysy-path inG, andx co-dominates
y if x lies on everyyt-path. Furthermore,x guardsa vertexy, if x dominates and
co-dominatesy; alsox guards an arca = yz, if x guards bothy andz. Note that in
particular, every vertex guards itself and anx-loop is guarded byx. More generally,x
guards a subgraphF of (G, s, t) if x guards every arc and/or vertex ofF .

3 Series-Parallel-Loop - Graphs

Throughout this paper, we consider three graph-transformations, which are intended
to represent the operators occurring in regular expression: concatenation, sum and
iteration. This should serve as a motivation and reminder, as we will not consider
language-theoretic aspects before Sec. 5.

Definition 1. The relations
s
⇒,

p
⇒ and

ℓ
⇒ are defined on graphs as follows: LetG be a

graph anda = xy ∈ AG, then

i) G
s
⇒ H if H is the subdivision ofa in G

ii) G
p
⇒ H if H = (VG, AG ⊎ a1, tG ⊎ {(a1, x)}, hG ⊎ {(a1, y)}).

iii) G
ℓ
⇒ H if a is a constriction andH is obtained by mergingx andy in G.

We say thatH is derived fromG by means ofseries-, parallel- or loop-expansion, if

G
s
⇒ H , G

p
⇒ H or G

ℓ
⇒ H , respectively. The changes fromG to H upon expansion

are strictly local, as sketched in Fig. 1. We writeG ⇒ H if the particular type of
relation is irrelevant, andG ⇒⋆ H if H is derived fromG by a (possibly empty)
sequence of expansions.

Definition 2. The classSPL is generated by⇒ from P1 as follows

• P1 ∈ SPL; we callP1 theaxiomof SPL

• Let G ∈ SPL, thenH ∈ SPL if G
s
⇒ H or G

p
⇒ H , or if G 6= P1 and

G
ℓ
⇒ H

The step-wise construction of an spl-graph is shown in Fig. 2. It is easily seen that
every spl-graph is two-terminal. Excluding the axiom from beingℓ-expanded is done
for technical reasons: this restriction guarantees that every spl-graph is a hammock.
Note that the acyclic spl-graphs coincide with the arc-series-parallel graphs introduced
by Valdes et al. [VTL81]; we will resort to their results on several occasions and
elaborate on properties ofSPL only that arise from its non-acyclic members.
To decide whether(G, s, t) is an spl-graph, the natural choice is a set of operations dual
to expansions; we express them again as relationally. Some care must be taken with
the removal of loops — this causes the new relations to be restricted to hammocks.

3



s
⇒

s
⇒

p
⇒

ℓ
⇒

Figure 2: Constructing an spl-graph fromP1 by a sequence of expansions.

Definition 3. The relations
s
⇐,

p
⇐ and

ℓ
⇐ are defined on hammocks follows: LetG =

(G, s, t) be a hammock, then

i) G
s
⇐ H , if somex is simple inG with incident arcsa1 = yx anda2 = xz

andH satisfiesVH = VG \ {x}, AH = AG \ {a1, a2} ⊎ {a}, tH = tG \
{(a1, y), (a2, x)} ⊎ {(a, y)}, andhH = hG \ {(a1, x)(a2, z)} ⊎ {(a, z)}.

ii) G
p
⇐ H , if G contains distinctxy-arcsa1, a2, andH = (VG, AG \ {a2}, tG \

{(a2, x)}, hG \ {(a2, y)}).

iii) G
ℓ

⇐ H , if a is anx-loop inG s.t. x does not guard any arc besidesa, andH is
the split ofx in G \ {a}.

If G
c

⇐ H for c ∈ {s, p, ℓ} we say thatG c-reducesto H and call both the replacement
operation(s) inG yieldingH andH itself ac-reductionof G. As with expansions, we
write justG ⇐ H , if the particular type of reduction is not important, andG ⇐⋆ H if
H can be derived fromG by a sequence of reductions.

Clearly, due to⇐ being defined on hammocks only, reduction is not the proper dual of
expansion; however, even when restricted to hammocks we have

s
⇐ = (

s
⇒)−1 and

p
⇐ = (

p
⇒)−1 but

ℓ
⇐ ( (

ℓ
⇒)−1,

i.e. ℓ-reducibility fromG to H impliesℓ-expandability fromH to G but not vice versa.
The latter is due to the fact that ifℓ-expansion introduces an loopa = xx, x might
guard some arc besidesa, so a dual reduction is not guaranteed. Conveniently, this
does not happen withinSPL, which is a consequence of the following

Proposition 3.1. Let (G, s, t) be an spl-graph containing a cycleC. Then there is
exactly one vertexv ∈ VC that guardsC.

Proof. The axiomP1 of SPL satisfies the claim, so assumeG ∈ SPL does, and let
G ⇒ H . Clearly,H inherits the claimed property fromG if G

s
⇒ H or G

p
⇒ H .

In caseG
ℓ
⇒ H , let a = xy be the constriction ofG allowing for expansion and let

l = zz be the loop that emerges from it. The cycle given byl is guarded byz alone.
For each cycleC of H beside that,G contains a cycleC′; by assumptionC′ is guarded
by exactly oneq ∈ VC′ . If a /∈ AC′ , thenC andC′ are the same cycles andC is also
guarded byq in H alone. Otherwise, ifq ∈ {x, y} thenz guardsC in H and if q is
distinct fromx andy, it still guardsC.

The intuition of Prop. 3.1 is that every cycle in an spl-graphcontains a vertex that serves
both as ’entry’ and ’exit’ of this cycle. This is crucial in proving that spl-reducibility is
equivalent to -membership.

Theorem 3.2. G ∈ SPL iff G ⇐⋆ P1
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Proof. ObviouslyG ∈ SPL if G can be reduced toP1, since the reversed sequence
of reductions is an expansion-sequence. Sufficiency is shown by induction. The claim
holds forP1, so assume thatG ∈ SPL can be reduced and letG ⇒ H . We attend

to ℓ-expansion only, the other cases are trivial. So letG
ℓ
⇒ H with a = uv being the

relevant constriction ofG and l = xx be the loop introduced inH . Assume thatx
guards some distinct arca′ = yz in H , thenG contains a cycle that defies Prop. 3.1,

contrary to the assumptionG ∈ SPL. Therefore,x is no guard andH
ℓ

⇐ G a valid
reduction; since by assumptionG ⇐⋆ P1, we findH ⇐⋆ P1, which completes the
proof.

While Thm. 3.2 implies that membership ofG in SPL can be decided by reducing
G to the axiom-graph, it does not hint at how to do so. Actually,there is no need for
a strategy, since the reduction-system exhibits unique normal-forms. To see this, we
first show that reductions are locally confluent (see e.g. [Ohl02] for an introduction to
confluence-properties of abstract rewriting systems).

Lemma 3.3. LetG be a hammock. ThenG ⇐ H1 andG ⇐ H2, implies the existence
of a hammockJ , satisfyingH1 ⇐⋆ J andH2 ⇐⋆ J .

Proof. Let G
ci⇐ Hi for ci ∈ {s, p, ℓ}. If c1, c2 ∈ {s, p}, the claim reduces to the

equivalent property provided by Valdes et al. [VTL81] for acyclic digraphs; the gen-
eralization to non-acyclic hammocks is trivial. So letc1 = ℓ, and letl = xx be the
relevant loop inG. We assume that the subgraph ofG that allows forG

c2⇐ H2 con-

tains an arc incident tox — otherwise,G
ℓ

⇐ H1 andG
c2⇐ H2 take place in different

regions ofG and can be applied in any order, yielding the same graph.

• c2 = s: Let y be the simple vertex to be removed, thenG contains anxy- and a
yz-arc (or azy- and ayx-arc, which is symmetric). Applicability ofℓ-reduction
implies thatx is not a gate, soz 6= y. Also,x will not become a gate inH2 due to
s-reduction. Therefore, l-reduction is applicable toa in H2, whereass-reduction
is applicable toy in H1.

• c2 = p: Let G
p
⇐ H2 be valid due to parallelyz-arcs inG. Since we assume

thatℓ-reduction is applicable toG in l, there is no loop parallel tol, i.e., at least
one ofy, z is distinct fromx. Other than that, the argument is trivial.

• c2 = ℓ: If the two loops inG that permit the reductions share the vertexx, they
are either parallel or identical. If they are parallel,ℓ-reduction is not applicable

anyway, forx guards the ’other’ loop. SinceG
ℓ

⇐ H1 andG
ℓ

⇐ H2 are valid
reductions, the loops must be identical, soH1 = H2 = J and the statement is
trivial.

Each reduction decreases the number of arcs or loops, while none introduces loops —
hence every sequence of reductions eventually terminates.Any graph derived fromG
by exhaustive reduction is callednormal-formof G and denotedR(G). Since reduc-
tions are locally confluent and terminating, we apply a well-known result from rewrit-
ing, namely Newman’s Lemma [New42, Ohl02], with the following consequence.

Corollary 3.4. LetG be a hammock, thenR(G) is unique, hence

G ∈ SPL iff R(G) = P1

A graphG that coincides with its normal-form,G = R(G), is calledreduced.
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4 Forbidden-Subgraph - Characterization ofSPL

We adapt the notion of topological minors that is well-knownfor undirected graphs,
(see e.g. [Die06]) to our needs.

Definition 4. An embeddingof F in G is an injectione : VF → VG satisfying that if
a = xy ∈ AF , thenG contains ane(x)e(y)-pathPa, and thatPa andPa′ are internally
disjoint for distincta, a′ ∈ AF .

If an embedding ofF in G exists, we callF a minor of G realizedby the embedding.
We writeF 4 G if F is a minor ofG. If F 4 G does not hold thenG is F -free; if M
is a set of graphs andG is F -free for everyF ∈ M, thenG isM-free. It is easily seen
that subdivisions allow for an equivalent characterization of minors:

Proposition 4.1. F 4 G iff G contains aDF

Let F 4 G be realized bye andx ∈ VF , we calle(x) a pegof F in G wrt. e; if G
ande are known, we omit mentioning them. Observe that the in-/out-degree of a vertex
does not exceed the in-/out-degree of its peg:

Proposition 4.2. If e realizesF 4G, thend−
F (x)≤d−

G(e(x)) andd+
F (x)≤d+

G(e(x)).

Let F 4 G be realized bye, abypassof F in G wrt. e is a path frome(x) to e(y), s.t.
xy is not an arc ofF . An embedding ofF in G is bare, if G contains no bypass ofF
wrt. to the embedding; we then writeM ⊑ G. Note thatF 4 G might well be realized
by various — in particular bare and non-bare — embeddings. Based on Prop. 4.1, we
also call aDF in G bare, ifG contains no bypass wrt. to the embedding realizing this
DF .

The existence of anxy-path is invariant under spl-expansion and -reduction, ifx andy
are not subject to the operation.

Proposition 4.3. LetG ⇒ H or G ⇐ H and{x, y} ⊆ VG ∩ VH , thenG contains an
xy-pathiff H does.

We start by excluding a family of graphs as minors of spl-graphs. Call a graphbulky, if
it contains no loops, parallel arcs and simple vertices. LetB denote the class of bulky
graphs.

Lemma 4.4. EveryG ∈ SPL is B-free.

Proof. Since all vertices ofP1 are simple, Prop. 4.2 implies thatP1 is B-free. Assume
G ∈ SPL is B-free and letG ⇒ H . Consider anyF ∈ B: sinceF is free of parallel
arcs, and the existence of paths among vertices inVG∩VH is invariant under expansion
(Prop. 4.3),F 4 H implies that a peg ofF in H was introduced upon expansion.
Hence in caseG

p
⇒ H , F is not a minor ofH , i.e.,H is B-free. The same goes for

G
s
⇒ H : as the new vertex inH is simple, but no vertex ofF is, Prop. 4.2 implies that

H is F -free and thereforeB-free.
If G

ℓ
⇒ H , let a = xy be the relevant constriction ofG and l = zz the loop ofH

introduced by expansion. IfF 4 H is realized bye, thenz = e(q) for someq ∈ VF ,
as was discussed above. LetH ′ = H \ l: sinceF is free of loops,F 4 H ′ holds, too,
and sinceq is not simple inF , z is not simple inH ′. We actually findd−

H′(z) ≥ 2 and
d+

H′ (z) ≥ 2: if d−
H′(z) = 0, thenF 4 G is realized bye′, which is defined ase except
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Figure 3: Bulky graphs constitutingF .

thate′(q) = y — contradicting the assumption thatG is B-free. If d−
H′ (z) = 1, there

is exactly one arc enteringz in H . Let this bea′ = z′z, thenF 4 G is realized bye′′

which is ase except that, again,e′′(q) = y, contradicting our assumption. A symmetric
argument showsd+

H′ (z) ≥ 2. In fact, we have also shown thatq, of whichz is the peg,
has in- and out-degree at least two.
But sinced−

G(x) = d−
H′(z) and d+

G(y) = d+
H′(z), someF ′ ∈ B, constructed by

splittingq in F satisfiesF ′ 4 G — contradicting the assumption thatG is B-free.

The bulky graphs that are relevant for our purpose are given by F = {C,CR,N,Q},
shown in Fig. 3. Note that Valdes et al. proved that a an acyclic two-terminal graph is
arc-series-paralleliff it is N-free [VTL81].
The proof of Lem. 4.4 utilized that ifG is B-free andG ⇒ H , thenH is B-free. Put
differently, expansion does not introduce a ’bulky subdivision’ in H if none is present
in G. Likewise, it can be shown in general that ifH ⇐ G andH is notB-free, then
neither isH ; however, there is a catch: the bulky minors ofG need not be same as
those ofH . This already happens withF :

Lemma 4.5. If H ⇐ G for hammocksH andG, then

i) F 4 H iff F 4 G for F ∈ {C,CR,Q}

ii) N 4 H only if N 4 G, whereas
N 4 G only if (N 4 G ∨ C 4 G ∨ CR 4 G)

Proof. Actually,F 4 H iff F 4 G holds for allF ∈ F in case ofH
s
⇐ G (easy) and

H
p
⇐ G (trivial). So letH

ℓ
⇐ G with loop l = xx in H that allows for reduction, and

a = x1x2 as the constriction arising inG. First, we show thatF 4 H impliesF 4 G
for all F ∈ F . Lete realizeF 4 H ; if x is not a peg ofF in H , thene realizesF 4 G
as well. If on the other hand,x is a peg, note that everyq ∈ VF satisfiesd−

F (q) ≤ 1
or d+

F (q) ≤ 1; it is easily verified thate′ realizesF 4 G, wheree′(r) = e(r) for
r ∈ VF \ {q} ande′(q) = x1, if d+

F (q) ≤ 1 resp.e′(q) = x1 otherwise. Conversely,
starting fromF 4 G, we proceed by case distinction as in the claim.

i) If F 4 G for F ∈ {C,CR,Q}

ii) If N 4 G, we distinguish whether one or both ofx1, x2 are pegs ofN. If it
is only one,N 4 H is inferred similar to the converse direction; this is left to
the reader. However, if both vertices are pegs, observe that, due to the in- and
out-degrees of thexi, the constrictionx1x2 does not represent an arc ofN. By
the same argument, the construction can neither be anti-parallel to an arc ofN,
sox1 andx2 are pegs of the only two vertices ofN that are not adjacent. It now
easily follows thatx1 andx2 lie on a cycle ofG and further on aDC or DCR

(Fig. 4). So in this caseC or CR is a minor ofG, hence also ofH , as shown in
the previous item.
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Figure 4: The graphN emerges as a subgraph due toℓ-reduction of a hammock(H,s, t).
However, both sides haveC as a minor.

While Lem. 4.5 could be stated in greater detail wrt.N, our primary interest is inF as
a whole. Still,F -freeness of a hammock does not suffice for membership inSPL: for
example, the hammockΦ, shown in Fig. 5a, isF -free, but not included inSPL. The
additional graphs necessary for the sought characterization areΦ, Ψ, andΨR, shown
in Fig. 5.

(a) Φ (b) Ψ (c) ΨR

Figure 5: Graphs that do not allow for a bare embedding in anyG ∈ SPL.

Lemma 4.6. EveryG ∈ SPL is free of bareΦ-, Ψ-, andΨR-minors

Proof. A bare embedding of one ofΦ, Ψ, orΨR would violate Prop. 3.1.

On the other hand, each may well be a minor of certain spl-graphs, as the reader is
invited to verify. In the absence ofF -minors an invariance-result akin to Lem. 4.5
holds for bare subdivisions of these three graphs.

Lemma 4.7. Let H be anF -free hammock and assumeH ⇐ G, thenF ⊑ H iff
F ⊑ G for F ∈ {Φ,Ψ,ΨR}.

Proof. SinceΦ, Ψ, andΨR all are free of parallel arcs, Prop. 4.3 provides the claim if
all pegs occur inVG∩VH ; in particular, nothing needs to be done forH

p
⇐ G. We only

prove the claim fully forΦ, the procedure is the same forΨ andΨR. In the following,
let H beF -free.
Let Φ ⊑ H be realized bye. If G

s
⇐ H removes a pegx = e(q), q is one of the two

simple vertices ofΦ; here, letq be the unique vertex withd−
Φ

(q) = 0 (the other case is
symmetric). Sinces-reduction is applicable due tox, an arca = yx exists inH , with
y also occurring inG. Let e′ be an embedding ofΦ in G, s.t.e′(q) = y ande′ ase for
the other vertices. Ife′ is bare, the claim follows forΦ ands-reduction, so assume it
is not. ThenG contains a bypass ofΦ wrt. e′, which is necessarily a pathleavingy,
otherwiseH would contain a bypass ofΦ wrt. e, contradicting the assumption thate
is bare. We findC 4 G, if the other endpoint of the bypass is the peg of the vertex in
Φ’s cycle that is not adjacent toq. If the bypass is frome′(q) to the peg of the vertex
with out-degree 0 inΦ, we getQ 4 G. In both cases Lem. 4.5 implies thatH is not
F -free, contradicting our assumption. Proving thats-reduction does not introduce new
bareDΦ’s is trivial.
Again letΦ ⊑ H be realized bye with pegx ∈ VH . ConsideringH

ℓ
⇐ G, let a = xx

be the loop that allows for reduction, and letx1x2 denote that constriction arising from
it. As in the proof of Lem. 4.5 our argument is based on the facts thata is irrelevant for
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Figure 6: Cases distinguished in Prop. 4.10 ifP1 (dashed) andP2 (dotted) are not internally
disjoint.

theDΦ in H and thatd−
G(x1) = d−

H\a
(x) andd+

G(x2) = d−
H\a

(x) hold. Since every
of Φ has either in- or out-degree≤ 1, we can construct an embeddinge′ of Φ in G by
assigning the role ofx to eitherx1 or x2.

In the remainder of this section, we will show that the properties proven in Lems. 4.4
and 4.6 are in fact sufficient for an characterization of spl-graphs via forbidden (bare)
minors. First off, we need some preliminary propositions.

Proposition 4.8. Let G be a reduced hammock with distinct arcsa1, a2 s.t. h(a1) =
v = t(a2). Thenv is incident to a third proper arc.

Proof. The vertexv is incident to a further arca3, otherwiseG could be s-reduced. If
a3 is a loop,v must be a gate; then however, arcs different from theai connectv to the
gated vertex.

Proposition 4.9. Letx andy be distinct vertices of a hammock(G, s, t). Then exactly
one of the following is true inG

1. x dominatesy

2. y dominatesx

3. for somez ∈ VG \ {x, y} there are internally disjointzx- andzy-paths inG

Proof. If neither vertex dominates to other, letPx andPy be two shortest paths from
s to x, resp.y. Sincex andy are distinct, so arePx andPy. Let z denote that ’last’
vertex, that occurs on both paths, then the subpaths ofPx andPy that start fromz,
satisfy the claim.

Proposition 4.10. Letx andy be distinct vertices of a strong graphG, then there is a
cycleC ⊆ G and distinctzx, zy ∈ VC , s.t.G contains anxzx- and ayzy-path that are
disjoint.

Proof. SinceG is strong, letP1 denote a shortestxy-path andP2 a shortestyx-path in
G. Consider the set of vertices belonging to both,Z = (VP1

∩ VP2
) \ {x, y}. If Z = ∅,

P1 andP2 form a cycle, and the claim follows forzx = x andzy = y; in this case,
both claimed paths are empty. IfZ = {z}, the claim follows forzx = x andzy = z,
or zx = x andzy = z; here one of the claimed paths is empty (Fig. 6a). Finally, if
|Z| ≥ 2, let zx andzy be distinct elements ofZ that are consecutive on thePi, i.e., no
otherz ∈ Z lies betweenzx andzy on P1, resp.P2. These vertices then satisfy the
claim.

Definition 5. A kebabis a connected graph consisting of three arc-disjoint subgraphs:
a strong componentB, called thebody, and two nonempty vertex-disjoint pathsS1 and
S2, called thespikesof the kebab.
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We further denote some unique vertices in a kebab: the endpoint of a spike that lies
outside the body is called thetip of that spike, the endpoint that connects the spike to
the body is called itspuncture. A spike that enters the body of a kebab is called an
in-spike, one that leaves the body is called anout-spike. If both spikes of a kebabK
enter (leave) the body,K is also called anin-kebab (out-kebab), if one enters and the
other leaves the body,K is called aninout-kebab.

Lemma 4.11. LetG be an spl-reduced hammock containing a kebab. ThenF 4 G for
someF ∈ F or Φ ⊑ G.

Proof. Let G = (G, s, t) be a reduced hammock, sinceG contains at least one kebab,
we choose a ’biggest’ kebabK ⊆ G as follows

1. the body ofK is arc-maximal inG, in the sense that no kebab ofG has a body
with more arcs thanK

2. the spikes ofK are inclusion-maximal inG, i.e. they are not ’sub-spikes’ of a
bigger kebab with the same body asK.

We distinguish whetherK is in an in-, an out- or an inout-kebab. The first and second
case are symmetric, so we elaborate on the first and the last only. Throughout the proof,
let B denote the body ofK, S1 andS2 the spikes, with tipst1 andt2, and puncturesp1

andp2, respectively.

1. K is anin-kebab (Fig. 7a).
Since(G, s, t) is a hammock, we apply Prop. 4.9 tot1 andt2 in G. The first two cases
of the proposition are symmetric, so we distinguish by the second and third case only.

(a) If t2 lies on everyst1-path, letP be a shortestt2t1-path inG. If P is disjoint with
B, thenP contains a segmentP ′ from S2 to S1, that yieldsC 4 G (Fig. 7b), proving
the claim. So letP go throughB, then the last segment ofP is a(B, t2)-path outside
B. By the choice ofK andP , it consist of a single arca = bt1 for b ∈ VB (Fig. 7c).
According to Prop. 4.8,t1 is incident to a further arca′, asG is reduced. Our choice
of K requires that the other endpointz of a′ lies inK, sinceB, S1 anda form a strong
component bigger thanB. It is now easy to see (from Fig. 7c), thatz ∈ VS2

yields
C 4 G (regardless ofa’s orientation), and thatz ∈ VB yieldsC 4 G or CR 4 G
(depending ona’s orientation), so letz ∈ VS1

\ {p1}. This leaves two possibilities: If
a′ = zt1 we findQ 4 G, with pegst1,p1,b andz (Fig. 7d). On the other hand,a′ = t1z
leads to a contradiction: SinceG is p-reduced, there is at least one vertexz′ between
t1 andz on S1; omitting thet1z

′-segment ofS1 lets us identify an in-kebab with tips
z′ andt2 and a body properly containingB (Fig. 7e), contradicting maximality ofB.

(b) Let G contain azt1-pathP1 and azt2-pathP2 which are internally disjoint. If
bothPi are disjoint withB, we findC 4 G with help of Prop. 4.10 (Fig. 7f, wherexi

denotes the first vertex onPi that is also inSi). If wlog. P1 intersectsB, let b denote
the last vertex onP1 that is inB andx the first vertex onP1 that is inVSi

\ {pi}. If
x 6= t1, we find a kebab inG with a body containingB, contradicting our choice of
K. As the claim was already proven forx = t1 (see Fig. 7c), the statement follows for
in-kebabs.

2. K is aninout-kebab, wlog with in-spikeS1.
Prop. 4.10 impliesΦ ⊑ K, realized by some embeddinge, and with the tips ofK

10
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Figure 7: Cases occurring in the proof of Lem. 4.11 forK being an in-kebab. Solid arrows
represent arcs, dashed arrows represent paths.

being pegs (Fig. 8a). If this is also true forG, we are done, so letP be a bypass ofΦ
wrt. e in G. Then one endpoint ofP is a tip ofK: assume it ist1 (the other case is
symmetric) and distinguish by the orientation ofP andP ’s other endpoint inK.

First assume thatP is a t1x-path: if x ∈ VB , Prop. 4.10 yieldsC 4 G (Fig. 8b); if
x ∈ VS2

, we findQ 4 G with pegst1, x, p1, andp2 (Fig. 8c). Since the definition of a
bypass impliesx /∈ VP1

, these are all subcases relevant for a bypass leavingt1.

Next, letP be anxt1-path: sinceS1 is maximal, the predecessor oft1 onP must be a
vertex ofK. If x ∈ VB we find a situation similar to that shown in Fig. 7c, only that
here,S2 is an out-spike. Still, reasoning is equivalent and therefore omitted. Ifx = t2,
i.e., G contains at2t1-arc (Fig. 8d), we apply Prop. 4.8 once more, finding new arcs
ai incident to eachti. Let zi denote the other endpoint ofai: regardless of theai’s
orientations, ifzi /∈ VK for eitheri, we find a bigger kebab (the details are left to the
reader), so assume bothzi lie in K. We need to distinguish by the locations of thezi

in VK = VS1
∪ VS2

∪ VB and the orientation of eitherai. First assumezi ∈ VSi
for

both i: if t1 = h(a1) or t2 = t(a2) we findQ 4 G; on the other hand, ift1 = t(a1)
andt2 = h(a2), then, becauseG is p-reduced, there are verticesz1 andz2 s.t. either
zi lies betweent(ai) andh(ai) on Si, resulting in a bigger kebab inG (Fig. 8e) thus
contradicting our assumption. Next, letzi ∈ VB \{p1, p2} and consider the orientation
of a1: if a1 = t1z1, we findC 4 G as in the case shown in Fig. 8b, whereas in case
a1 = z1t1, Prop. 4.10 impliesCR 4 G (Fig. 8f). A symmetric argument proves that
C or CR is a minor ofG, if z2 ∈ VB \ {p1, p2}. The remaining cases are those with
z1 ∈ VS2

andz2 ∈ VS1
simultaneously, they are left to the reader.

We can now give a forbidden-subgraph characterization of spl-graphs. Since Valdes et
al. [VTL81] showed that acyclic reduced hammocks that are not equal toP1 contain a
DN, we only proof the non-acyclic case. In the proof of the following lemma, we call
a cycleproper if it is not merely a loop.

Lemma 4.12. LetG 6= P1 be a reduced hammock with cycles. ThenF 4 G for some
F ∈ F or F ′ ⊑ G for someF ′ ∈ {Φ,Ψ,ΨR}.
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Figure 8: Cases occurring in the proof of Lem. 4.11 forK being an inout-kebab.

Proof. Let G be spl-reduced and not acyclic, thenG contains proper cycles. This is
because for a loopa = xx ∈ AG, x guards a distinct arca′ = yz, for G is ℓ-reduced.
If a′ is a loop, thenx = y = z, which can not be, asG is p-reduced. HenceG contains
anxy- and azx-path which form a proper cycle.
So letC ⊆ G be a minimal proper cycle with distinct verticesx1 andx2. By Prop. 4.8
eitherxi is incident to a further proper arcai = xiyi or ai = yixi. We find yi /∈
VC , otherwiseG could bep-reduced orai would be a chord toC, contradictingC ’s
minimality.
Now if y1 6= y2, G contains a kebab with bodyC and spikesa1 anda2, and Lem. 4.11
provides the statement. Ify1 = y2 we denote this vertex justy. If ai = yxi for bothi,
we getC 4 G while ai = xiy yieldsCR 4 G, and the claim follows. So assume wlog.
a1 = x1y anda2 = yx2, and leta3 = yz or a3 = zy be the additional arc incident
to y as assured by Prop. 4.8. Depending on the orientation ofa3, we findC 4 G or
CR

4 G, if z ∈ VC andΨ 4 G or ΨR
4 G otherwise. The first two cases yield

the claim, while the latter two do not, so we proceed withΨ 4 G, the other case is
symmetric. The part ofG ’found’ so far is sketched in Fig. 9a. If thisDΨ is bare in
G, the claim follows, so assumeG contains a bypass. Except one, all possibilities lead
immediately toC 4 G, CR 4 G or a kebab; the exception is anyz-path, on which we
elaborate.
Let P be theyz-bypass inG (Fig. 9b), once more Prop. 4.8 provides a new proper arc
a4 = zz′ or a4 = z′z. If z′ /∈ VP , we find a kebab (left to the reader), so assume
z′ ∈ VP . However,z′ 6= z sincea4 is not a loop; ifz′ = y, we finda4 = yz (sincea4

can not be parallel toa3), but thenP is a bypass with several arcs — so a kebab with
a final segment ofP and one ofa1, a2 as spikes is found. Finally, letz′ be an inner
vertex ofP and denote theyz′-segment ofP P1 and thez′z-segmentP2. Depending
on the orientation ofa4, eitherP2 anda4 form a cycle, orP1, a4 anda3 do (Fig. 9c),
and a kebab is immediately found in both cases.

We have thus found a characterization ofSPL by forbidden subgraphs.

Theorem 4.13. Let G be a hammock, thenG ∈ SPL iff G is F -free and noF ′ ∈
{Φ,Ψ,ΨR} is a bare minor ofG.

Proof. For G ∈ SPL, Lem. 4.4 implies thatG is F -free, and Lem. 4.6 states that
none of{Φ,Ψ,ΨR} is a bare minor ofG. Conversely, assumeG /∈ SPL, hence
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Figure 9: Cases occurring in the proof of Lem. 4.12. Solid arrows represent arcs, dashed arrows
represent paths. The arca4 in (c) is deliberately not drawn as an arrow.

R(G) 6= P1 by Cor. 3.4. By Valdes’ result and Lem. 4.12, we knowF 4 R(G) for
someF ∈ F and/orF ′ ⊑ R(G) for someF ′ ∈ {Φ,Ψ,ΨR}. If G = R(G), i.e.,G is
already reduced, the claim follows immediately; otherwise, induction on the length of
the reduction using Lems. 4.5 and 4.7 provides the statement.

5 SPL-Graphs and Regular Expressions

A regular expression(RE) over an alphabet is defined almost as usual: we allow forε, •,
+, and∗, but not∅ — by the canonical semantics, this allows to express any language
except the empty one. The set of REs overΣ is denotedreg(Σ). An extended finite
automaton(EFA) is a 5-tupleE = (Q, Σ, δ, I, F ), whose elements denote the set of
states, the alphabet, the transition relation, the initialand the final states, respectively.
These sets are all finite and satisfyQ∩Σ = ∅, δ ⊆ Q×reg(Σ)×Q, I ⊆ Q, andF ⊆ Q.
A configurationof E is a pairQ×Σ∗; the relation⊢ is defined on configurations ofE
as(q, ww′) ⊢ (q′, w′), if (q, α, q′) ∈ δ andw ∈ L(α). The language accepted byE is

L(E) = {w | (q0, w) ⊢∗ (qf , ε) for q0 ∈ I, qf ∈ F}

The family of languages accepted by EFAs is exactly that of regular languages. Two
EFAs accepting the same language are calledequivalent. We further considerfinite
automata(FAs) which are nondeterministic and may haveε-transitions. By the above
definition, an FAA = (Q, Σ, δ, I, F ) is an EFA satisfyingδ ⊆ Q × (Σ ∪ {ε}) × Q.

We treat EFA as graphs with REs as arc-labels and two distinguished sets of states;
to this end, letG(E) denote the graph underlyingE. Formally, the graph underlying
E = (Q, Σ, δ, I, F ) is defined byVG(E) = Q, AG(E) = δ, tG(E) : (q, α, q′) 7→ q,
andhG(E) : (q, α, q′) 7→ q′. As G(E) conveys only the graph-structural properties
of E, the information about labels and initial and final states isgenerally considered
separately.

Every EFA displays a compromise between the complexity of its transition-labels and
that of its underlying graph; REs and FAs represent the extremes in this tradeoff: an
RE can be considered as an EFA whose underlying graph is trivial, namelyP1, while
an FA is an EFA with trivial labels. Locally relaying information about a language
between the graph-structure of an EFA and its labels is the basis of several conversions
between REs to FAs. In the following, we investigate a few such conversions in either
direction, in particular comparing the sizes of the in- and outputs. We do not give a
precise definition ofsize, though, backed by the results of Ellul et al. [EKSW05], who
showed that all (reasonable) such measures relate linerarly to another.
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Figure 10: Replacement of a transition(q, ρ, q′) depending onρ.

5.1 Expressions to Automata

The method given by Ott & Feinstein [OF61] is a rewriting-system on EFAs, where
each rule replaces a transition according to its label; these rules are denoted⊳•, ⊳+,
and⊳∗, as shown in Fig. 10.
Givenα ∈ reg(Σ), the EFAA0

α = ({q0, qf}, Σ, {(q0, α, qf )}, {q0}, {qf}), serves as
the starting-point of the conversion; the algorithm then constructs a sequence of EFAs
An

α, s.t.Ai
α ⊳c Ai+1

α holds for somec ∈ {•, +, ∗}. Any such sequence terminates in an
FA, denoted justAα.

Lemma 5.1. EveryAα satisfiesG(Aα) ∈ SPL.

Proof. Clearly,G(A0
α) = P1 ∈ SPL, so assumeG(Ai

α) ∈ SPL and letAi
α ⊳c Ai+1

α

for somec ∈ {•, +, ∗}. The graph underlyingAi
α is s-expanded uponAi

α⊳•Ai+1
α andp-

expanded uponAi
α ⊳+Ai+1

α . ForAi
α ⊳∗Ai+1

α we find thatG(Ai+1
α ) can be derived from

G(Ai
α) by twos-expansion, followed by anℓ-expansion, i.e.,G(Ai

α)
s
⇒

s
⇒

ℓ
⇒ G(Ai+1

α ).
HenceG(An

α) ∈ SPL wheneverAn
α exists, and sinceAα = Ak

α for somek, the
statement follows.

Most methods that construct FAs from REs by manipulating graphs1 work in a bottom-
up-manner on the parse of the input. However each can be formulated in a top-down-
manner, lending themselves to structural investigation asin Lem. 5.1. This reveals that
the constructions by Sippu & Soisalon-Soininen [SSS88] andby Ilie & Yu [IY03] both
yield FAs with spl-structure, whereas those by Thompson [Tho68] and Gulan & Fer-
nau [GF08b] do not. Thompson’s construction instroduces aDQ for every Kleene-star
in the input-expression; the construction by Gulan & Fernauintroduce aDN for cer-
tain products of sums. However, Thompson’s method ’plays itsafe’ by introducing an
excessive amount ofε-transitions connecting the subautomata — the bareDΦs result
from this. The three other cited works gradually improve on Thompson’s construc-
tion and each other wrt. lowering the size of the constructedautomaton; in particular,
Gulan & Fernau proved that their construction attains an optimal ratio between in- and
output-sizes. Interestingly enough, theDNs allowed by their construction make for the
only structural difference compared to the FAs provided by Ilie & Yu’s method — this
already suggests thatN-substructures allow for a certain conciseness of FAs as com-
pared to regular expressions. In fact, a result by Korenblit& Levit [KL03] implies that
DNs in the graph underlying an FA causes a quadratic blowup in the size of equivalent
expressions.

1as opposed to algebraic methods, e.g. by derivatives [Brz64]; see [Wat94]
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5.2 Automata to Expressions

An EFA E is callednormalized, if G(E) is a hammock; this is equivalent to requir-
ing thatE contains exactly one initial stateq0 and one final stateqf , and that every
state lies on some path fromq0 to qf . Any EFA can be transformed into an equiva-
lent normalized EFAÂ by removing the states and transitions that do not lie on some
(I, F )-path, followed by adding a new initial stateq0 and a final stateqf with appropri-
ateε-transitions toI, resp. fromF .

By augmenting the spl-reductions with labels, we get yet another rewriting-system on
EFAs that is to be used with normalized EFAs only. The rules,⊲•, ⊲+, and⊲∗, are shown
in Fig. 11, however, we restrict the applicability of star-reduction of a normalized EFA
E to cases which allow forℓ-reduction of the hammockG(E).
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Figure 11: Labeled spl-reductions

The duplication of labels / subexpressions, which motivates the heuristics for state-
elimination, is completely avoided by labeled spl-reduction. For this reason, it also is
weaker than state-elimination, since⊲• — the only rule actually eliminating states — is
not applicable in the general case. On the other hand, letRl(A) denote any EFA that
is constructed by arbitrary but exhaustive application of labeled spl-reduction tôA for
some FAA. We get

Lemma 5.2. Rl(A) is unique modulo associativity and commutativity of labels.

This is due to local confluence of spl-reduction, which carries over to labeled reduc-
tion. HenceRl(A) is a regular expression (in the sense of being an EFA with trivial
graph-structure)iff G(Â) ∈ SPL. For such FAs it is trivial to establish linear upper
bounds on the size of the resulting RE depending on the size ofthe input FA. Applying
the elimination-heuristic proposed by Han & Wood [HW07] to such fully reducible
automata withn states provides these expressions in timeO(n2); this generalizes a
result by Moreira & Reis who investigated optimal reduction-sequences on automata
with (acyclic) series-parallel structure [MR09].

Regarding Lem. 5.1, it can also be shown that labeled reduction allows to convert an FA
constructed by Ott & Feinstein’s method back to the RE it originated from — if some
simplifications of REs, like the removal ofε from products, are allowed for. Given
that the graph underlying someminimalFA of a language is an spl-graph, we can then
convert back an forth between a minimal FA and a minimal expression.

6 Concludision

The classSPL reflects the structural properties of graphs that can be encoded by reg-
ular expressions and vice versa: serial arcs are equivalentto products, parallel arcs are
equivalent to sums, and loops are equivalent to iterations.Based on this, we argued
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(informally) that the sizes of expressions and their equivalent finite automata with spl-
structure are linearly related. The forbidden-subgraph characterization ofSPL has an
interesting implication considering the contrapositive of above argument: Given an ar-
bitrary automatonA, an exponential blowup cannot be avoided in the size of an expres-
sion equivalent toA; this study suggests that this blowup is caused by{C,CR,N,Q}

and{Φ,Ψ,ΨR} being (bare) minors of̂A.
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