UNIVERSITAT TRIER

Series-Parallel Graphs with Loops
Graphs Encoded by Regular Expressions

Stefan Gulan
FB 1V, Informatik
gulan@uni-trier.de

TRIERERFORSCHUNGSBERICHTE
INFORMATIK / MATHEMATIK

No. 10-2

April 2010



Abstract

We introduce a class of digraphs that generalizes the welvk class of arc-
series-parallel-digraph. The new class is shown to betafédg recognizable, and
a characterization by forbidden subgraphs is given. Weeatgat the forbidden
subgraphs represent the structural features of finite aattommat cannot be en-
coded by regular expressions, i.e., those causing an expahislowup upon con-
verting automata to expressions.

1 Motivation

A fundamental results in the theory of formal languages & ¢luivalent descrip-
tive power of regular expressions and finite automata, agnaily shown by Kleene
[KIe5g]. This brings up the problem of converting betweea tilvo representations, as
regular expressions, being linear entities, are easilyaiele by humans, whereas finite
automata are preferable on the machine level. Such conwarshould go beyond mere
proof-of-concept-constructions, i.e., it is desirablepdimize actual computations wrt.
to time and/or memory. We take a quick look at some convesdioreither direction.

Everyday use, notably pattern-matching, renders the e¢eimrefrom expressions to
automata the prevalent one. An established and intuitiveédd@m in this translation is
to interpret the parse of an expression as the structum@inrdtion of a graph underly-
ing an equivalent automaton [OE61, Thbo8, SS$E88, GF08b]\Watson [[Wat94] for

a survey of such and other approaches. To the author’s kdgejehe only work as
yet asking for structural properties of automata consgaithis way is by McNaughton
[McN], although the discussion remains on an intuitive leife quote:

[...] although every regular expression can be transformexa graph that has
the same structure, the converse is not true. | will not defare precisely what |
mean by the structure of a regular expression or graph, ape that my point is
made on an intuitive level. (p.35)

In contrast, the conversion of automata to expressionsséeive relevant mostly in
the academical domain. It is generally performed via stditeination, an algorithm
originally proposed by Brzozowski & McCluskey [BJ63]. Thees(and readability’)
of expressions generated by this method is highly depertierthosen elimination-
ordering. That aside, an exponential blowup cannot be adoid the general case
whatsoever, as was shown by Ehrenfeucht & Zeiger [EZ74]nBSee no efficient gen-
eral procedure is known that provides elimination-ordgsinesulting in outputs that
are minimal wrt. to input-size. Still, several heuristi/b been proposed in order
to get reasonably good elimination-sequentes [DNI0Z4, HVEHO8a /AHOD]; these
approaches all rely on graph-theoretic properties of thatiautomaton. In the (infor-
mal) spirit of above citation, it is worth noting that the antata which are drawn upon
to compare the efficiency of such heuristics always showcstral properties which
admit no obvious corresponding regular expression.

The present work takes on above questions on a rigorous analty sound graph-
theoretic basis. As was already addressed, there is agtabahd a quantitative aspect
to this: we will concentrate on developing the structura&dty of graphs that are in
some sense equivalent to regular expressions; questionsefficiency will be treated
only superficially.



2 Preliminaries

The graphs we consider are directed and may contain loopmaitigple arcs. These
are in general calledirected pseudographese will refer to them as jusgraphs For-
mally, a graph is a 4-tupl&/ = (V, A,t,h) whereV and A are finite disjoint sets,
called theverticesresp. arcs of G, while ¢t andh are maps fromd to V. If G is not
given explicitly, letG = (Vg, Ag, ta, ha). The image ot € A undertq resp.hg
is called theail resp.headof a in G. If t(a) = x andh(a) = y, we say that leavesr
andentersy, or thata is anxzy-arc. For brevity, we write amy-arca asa = zy and/or
a = xy € A. Tail and head are referred to as #medpointsof an arc. Distinct arcs
of a graph with coinciding head and tail are calfgtallel. An zx-arc is anx-loop or
just loop. An arc that is not a loop fmoper. The set of arcs entering, resp. leaving
x in G are denoted(x), resp. O(z); thein-degreeof = in G is d;(z) = |I(z)| and
its out-degreen G is d5(x) = |O(z)|. A constrictionof G is a proper are = zy
wheredf(z) = 1 = dg(y). A vertexz € Vg issimple if dg(z) < 1 anddf(z) < 1.
Throughoutthis workF, G and H denote graphs, while, y andz denote vertices, and
subscripts are omitted, if the graph they should indicatsniderstood.

F'is asubgraphof GG, denotedF’ C G, if Vi C Vi, Ap C Ag andtp andhp are
the appropriate restrictions of resp.hq; we say thati containsF. If F' andG are
subgraphs off anda = 2y € Ay with 2 € Vg andy € Vg, thena is called an
(F, G)-arc, as well as atx, G)- or an(F, y)-arc of H.

A pathof lengthn is a graph om + 1 vertices andh arcs s.t. every arc is a constriction;
let P,, denote the path of length and note thaP,, called theempty pathis well-
defined. Every patl contains exactly one vertexwith d(z) = 0 and one vertey
with d5(y) = 0, P is then called a path from to y, or anzy-path;z andy are called
theendpoint®of P, while the remaining vertices are itgernal vertices. Two paths are
internally disjoint if their sets of internal vertices are disjoint.cicleis a graph om
vertices and: arcs s.t. every arc is a constriction. A graph containing-gspath for
all z,y € Vi is calledstrong

New graphs will be derived from given ones by means of sewssit operations; we
generally call both the operation and the graph it derivethbysame name.
Thesubdivisionof an ara: in G is the replacement ef with P, with the same orienta-
tion asa. Formally, the subdivision af in G, fora = zy € Ag, is the graph satisfy-
ingVyg =VeWz, Ay = Ag\{a}W{a1, a2}, tg = tc\{(a,2)} W{(a1, ), (az, 2)},
andhy = he \ {(a,y)} W {(a1, 2), (a2,y)}. More generally, a subdivision @, re-
ferred to as @G, is any graphH s.t. there are graphs,,...,G, whereG = Gy,
Gi+1 is the subdivision of an arc i&; andG,, = H.

The split of a vertexz in G is the replacement of with two vertices that separate
the arcs entering from those leaving:. Formally the split ofx in G is the graphH
satisfyingVy = Vo \ {z} W{z;, 20}, Ay = Ag U (25, 2,), tu = tc \ {(a,z) | a €
Act U{(a,z,) | (a,z) € tg}, andhy equivalently.

Themergeof two verticese, y € Vi is their identification by replacing them with one
new vertexz and redirecting all arcs entering or leavin@r y to enter or leave.

A graphG is two-termina] if there ares,t € Vi s.t. everyz € Vi lies on some
st-path of G. The vertices andt are respectively called treurceandsinkof G; we
write G = (G, s, t) to express thafi is two-terminal with source and sinkt. A two-
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Figure 1: Expanding arcy-arc, resp. the containing graph.

terminal grapi(G, s, t) is ahammockif dg(s) = df,(t) = 0. Letz andy be vertices
of (G, s,t):  dominateg in G, if x lies on everysy-path inG, andxz co-dominates
y if x lies on everyyt-path. Furthermorey guardsa vertexy, if = dominates and
co-dominateg; alsox guards an ara = yz, if x guards bothy andz. Note that in
particular, every vertex guards itself and:atoop is guarded by.. More generallyy
guards a subgraph of (G, s, t) if = guards every arc and/or vertex bf

3 Series-Parallel-Loop - Graphs

Throughout this paper, we consider three graph-transfiioms which are intended
to represent the operators occurring in regular expressioncatenation, sum and
iteration. This should serve as a motivation and remindenve will not consider

language-theoretic aspects before Ekc. 5.

Definition 1. The relations>, & and% are defined on graphs as follows: l@te a
graph andi = zy € Ag, then

i) G2 Hif His the subdivision of. in G

iy G& Hif H= (Vg,AgWay,tq W {(a1,z)},ha W {(a1,9)}).

i) G L Hif ais a constriction and/ is obtained by merging andy in G.

We say that is derived fromG by means okeries, parallel- or loop-expansion, if

G H G2 HorG L H, respectively. The changes frafmto H upon expansion
are strictly local, as sketched in FIg. 1. We write = H if the particular type of
relation is irrelevant, and? =* H if H is derived fromG by a (possibly empty)
sequence of expansions.

Definition 2. The classSPL is generated by from P4 as follows
e P, € SPL; we callP; theaxiomof SPL

o LetG € SPL, thenH € SPLifG 2 HorG & H,orif G # P, and
4
G=H

The step-wise construction of an spl-graph is shown in[Higlt2s easily seen that
every spl-graph is two-terminal. Excluding the axiom frosirtg /-expanded is done
for technical reasons: this restriction guarantees thatyespl-graph is a hammock.
Note that the acyclic spl-graphs coincide with the arcesegarallel graphs introduced
by Valdes et al. [[VIL8L]; we will resort to their results onveeal occasions and
elaborate on properties 6fP L only that arise from its non-acyclic members.

To decide whethe(G, s, t) is an spl-graph, the natural choice is a set of operationis dua
to expansions; we express them again as relationally. Samgencust be taken with
the removal of loops — this causes the new relations to begtst to hammocks.
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Figure 2: Constructing an spl-graph frola; by a sequence of expansions.

Definition 3. The relations<, < and<: are defined on hammocks follows: L@t—
(G, s,t) be a hammock, then

i) G < H, if somez is simple inG with incident arcsa; = yz anday = 2
and H satisfiesVy = Vo \ {2z}, Ag = Ag \ {a1,a2} W {a}, tg = ta \
{(a1,y), (a2, 2)} W {(a,y)}, andhy = he \ {(a1, z)(az, 2)} W {(a,2)}.

iy G <& H, if G contains distinctey-arcsay, as, andH = (Vg, Ag \ {as}, ta \

{(a25 x)}a ha \ {(a27y)})'

i) G £ H, if ais anz-loop in G s.t. z does not guard any arc besidesandH is
the split ofz in G\ {a}.

If G < H forc € {s,p, {} we say thati c-reducego H and call both the replacement
operation(s) inG yielding H and H itself ac-reductionof G. As with expansions, we
write justG < H, if the particular type of reduction is not important, add=* H if

H can be derived frond by a sequence of reductions.

Clearly, due to= being defined on hammocks only, reduction is not the propairafu
expansion; however, even when restricted to hammocks we hav
and L= (&) but £ o),

=

&= ()
i.e. £-reducibility fromG to H implies{-expandability fromH to G but not vice versa.
The latter is due to the fact that ffexpansion introduces an loep= zz, x might
guard some arc besides so a dual reduction is not guaranteed. Conveniently, this
does not happen withi§P L, which is a consequence of the following

Proposition 3.1. Let (G, s, t) be an spl-graph containing a cycle. Then there is
exactly one vertex € V¢ that guardsC'.

Proof. The axiomP, of SPL satisfies the claim, so assuree SPL does, and let
G = H. Clearly, H inherits the claimed property fro¥ if G = H orG % H.

In caseG % H, leta = zy be the constriction o7 allowing for expansion and let
I = zz be the loop that emerges from it. The cycle given/liy guarded by: alone.
For each cycl€' of H beside that(Z contains a cycl€”; by assumptio®’ is guarded
by exactly one; € Voo If a ¢ A, thenC andC’ are the same cycles addis also
guarded by; in H alone. Otherwise, iff € {z,y} thenz guardsC in H and ifq is
distinct fromz andy, it still guardsC. O

The intuition of Prod-3]1 is that every cycle in an spl-graphtains a vertex that serves
both as 'entry’ and 'exit’ of this cycle. This is crucial inqring that spl-reducibility is
equivalent to -membership.

Theorem 3.2.G € SPLIiff G «* Py



Proof. ObviouslyG € SPL if G can be reduced t84, since the reversed sequence
of reductions is an expansion-sequence. Sufficiency is slogwnduction. The claim
holds forP, so assume tha¥ € SPL can be reduced and |é&t = H. We attend

to ¢-expansion only, the other cases are trivial. Set H with a = wv being the
relevant constriction of¥ and! = zx be the loop introduced i#/. Assume that
guards some distinct ar¢ = yz in H, thenG contains a cycle that defies Pr¢pl]3.1,

contrary to the assumpticdd € SPL. Thereforeyx is no guard and? £ G avalid
reduction; since by assumptigih <* P4, we find H <* Py, which completes the
proof. O

While Thm.[Z2 implies that membership 6f in SPL can be decided by reducing
G to the axiom-graph, it does not hint at how to do so. Actudligre is no need for
a strategy, since the reduction-system exhibits uniqumabforms. To see this, we
first show that reductions are locally confluent (see €.gI0@)Hor an introduction to
confluence-properties of abstract rewriting systems).

Lemma 3.3. LetG be a hammock. Thed < H; andG < H,, implies the existence
of a hammock, satisfyingH; <* J and Hy <* J.

Proof. Let G € H; for ¢; € {s,p,¢}. If c1,co € {s,p}, the claim reduces to the
equivalent property provided by Valdes et dl._[VT1.81] fowalic digraphs; the gen-
eralization to non-acyclic hammocks is trivial. So tgt= ¢, and letl = xx be the
relevant loop inG. We assume that the subgraphthat allows forG £ H, con-

tains an arc incident to — otherwise ¢ £ H, andG € H, take place in different
regions ofG and can be applied in any order, yielding the same graph.

e ¢y = s: Lety be the simple vertex to be removed, thgrtontains arcy- and a
yz-arc (or azy- and ayx-arc, which is symmetric). Applicability of-reduction
implies thatr is not a gate, se # y. Also, x will not become a gate i/, due to
s-reduction. Therefore, I-reduction is applicable o H-, whereas-reduction
is applicable taq; in H;.

e co = p: LetG <£ H, be valid due to parallejz-arcs inG. Since we assume
that/-reduction is applicable t6' in [, there is no loop parallel th i.e., at least
one ofy, z is distinct fromz. Other than that, the argument is trivial.

e ¢y = (: If the two loops inG that permit the reductions share the vertexhey
are either parallel or identical. If they are paralleleduction is not applicable

anyway, forz guards the 'other’ loop. Sincé' £ H, andG £ H, are valid
reductions, the loops must be identical, 39 = H, = J and the statement is
trivial.

O

Each reduction decreases the number of arcs or loops, wdrile imtroduces loops —
hence every sequence of reductions eventually terminAtgsgraph derived fronty
by exhaustive reduction is calletbrmal-formof G and denote®(G). Since reduc-
tions are locally confluent and terminating, we apply a Welbwn result from rewrit-
ing, namely Newman’s LemmBNew4Z, Ohl02], with the follogiconsequence.

Corollary 3.4. LetG be a hammock, theR(G) is unique, hence
GeSPL iff R(G)=P1
A graphG that coincides with its normal-forny = R(G), is calledreduced



4 Forbidden-Subgraph - Characterization of SPL

We adapt the notion of topological minors that is well-knofen undirected graphs,
(see e.g.[[Die06)) to our needs.

Definition 4. An embeddingf F in G is an injectione : Vr — Vi satisfying that if
a = zy € A, thenG contains ar(z)e(y)-path P,, and thatP?, andP,. are internally
disjoint for distincta,a’ € Ap.

If an embedding o in G exists, we callF” aminor of G realizedby the embedding.
We write F' < G if F'is a minor ofG. If I' < G does not hold thedy is F-free if M
is a set of graphs an@d is F-free for everyl’ € M, thenG is M-free. Itis easily seen
that subdivisions allow for an equivalent characterizatbminors:

Proposition 4.1. F' < G iff G contains aDF

Let F' < G be realized by andx € Vi, we calle(z) apegof F in G wrt. ¢; if G
ande are known, we omit mentioning them. Observe that the in-ftmgree of a vertex
does not exceed the in-/out-degree of its peg:

Proposition 4.2. If e realizesF < G, thend . (z) <dg (e(x)) anddf(z) <df(e(w)).

Let F' < G be realized by, abypasof F in G wrt. e is a path frome(z) to e(y), s.t.

2y isnotan arc of . An embedding of” in G is bare if G contains no bypass df

wrt. to the embedding; we then wrifed T G. Note thatF' < G might well be realized
by various — in particular bare and non-bare — embeddingse@an Prod 211, we
also call aDF' in G bare, ifG contains no bypass wrt. to the embedding realizing this
DF.

The existence of amy-path is invariant under spl-expansion and -reduction ahdy
are not subject to the operation.

Proposition 4.3. LetG = H or G <= H and{z,y} C Vs N Vg, thenG contains an
xy-pathiff H does.

We start by excluding a family of graphs as minors of spl-g=saCall a graploulky; if
it contains no loops, parallel arcs and simple vertices.B.eenote the class of bulky
graphs.

Lemma 4.4. EveryG € SPL is B-free.

Proof. Since all vertices oP are simple, Profi.4].2 implies thRy is B-free. Assume
G € SPLis B-free and lelG = H. Consider any’ € B: sinceF' is free of parallel
arcs, and the existence of paths among verticég:in Vy; is invariant under expansion
(Prop.[Z3B),F < H implies that a peg of” in H was introduced upon expansion.
Hence in cas& £ H, F is not a minor ofH, i.e., H is B-free. The same goes for
G = H: as the new vertex iitl is simple, but no vertex of is, Prop[ZP implies that
H is F-free and therefor8-free.

If G & H, leta = xy be the relevant constriction @ and! = zz the loop of H
introduced by expansion. ' < H is realized by, thenz = e(q) for someq € Vp,
as was discussed above. Lt = H \ I: sinceF is free of loopsF < H’ holds, too,
and sincey is not simple inF’, z is not simple inH’. We actually findd};, (z) > 2 and
df (2) > 2:if A (2) = 0, thenF < G is realized by’, which is defined as except
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Figure 3: Bulky graphs constitutingF.

thate’(¢q) = y — contradicting the assumption th@tis B-free. Ifd, (z) = 1, there

is exactly one arc enteringin H. Let this bed’ = 2’2, thenF < G is realized by”
which is asx except that, agair,’(¢) = y, contradicting our assumption. A symmetric
argument showd};, (z) > 2. In fact, we have also shown thgtof which z is the peg,
has in- and out-degree at least two.

But sinced;(r) = dj.(z) anddf(y) = dj.(2), someF’ € B, constructed by
splitting ¢ in F' satisfiesF” < G — contradicting the assumption thatis B-free. 0O

The bulky graphs that are relevant for our purpose are giyef b= {C, C¥ N, Q},
shown in Fig[B. Note that Valdes et al. proved that a an acyeib-terminal graph is
arc-series-paralléff it is N-free [VTL8]].

The proof of Lem[ZM utilized that if? is B-free andG = H, thenH is B-free. Put
differently, expansion does not introduce a 'bulky subglam’ in H if none is present
in G. Likewise, it can be shown in general thatif < G and H is not B-free, then
neither isH; however, there is a catch: the bulky minors@feed not be same as
those ofH. This already happens wit#:

Lemma 4.5. If H <« G for hammockd? and G, then
) FxHIiff FxG forFe{C,C} Q}

i) N < Honlyif N < G, whereas
N=<xGonyif NxGVC=<GVCRg@)

Proof. Actually, F < H iff F' < G holds for allF € F in case ofH < G (easy) and

H £ @ (trivial). So letH £ G with loop! = zz in H that allows for reduction, and
a = x1x9 as the constriction arising i@'. First, we show that’ < H impliesF < G
forall ' € F. LeterealizeF < H; if xisnota peg of’in H, thene realizesl’ < G
as well. If on the other hand; is a peg, note that every € Vp satisfiesd.(¢) < 1
ordi(q) < 1; itis easily verified that’ realizesF < G, wheree'(r) = e(r) for

r € Ve \ {¢} ande'(¢) = x1, if df(¢) < 1resp.€/(q) = =1 otherwise. Conversely,
starting fromF’ < G, we proceed by case distinction as in the claim.

i) If F<GforF e {C,C} Q}

i) If N < G, we distinguish whether one or both of, z, are pegs oiN. If it
is only one,N < H is inferred similar to the converse direction; this is left t
the reader. However, if both vertices are pegs, observedbatto the in- and
out-degrees of the;, the constriction:; 25 does not represent an arcI§t By
the same argument, the construction can neither be argilglato an arc ofiN,
sox; andxs are pegs of the only two vertices Bf that are not adjacent. It now
easily follows thatz; andz, lie on a cycle ofG and further on &C or DC®
(Fig.@). So in this cas€ or C! is a minor ofG, hence also off, as shown in
the previous item.

O
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However, both sides hav@ as a minor.

While Lem [Z5 could be stated in greater detail Nt our primary interest is itF as
a whole. Still,F-freeness of a hammock does not suffice for membershi{ig: for
example, the hammock, shown in Fig[Ba, isF-free, but not included iSPL. The
additional graphs necessary for the sought characterizate®, ¥, and¥?, shown
in Fig.[3.

e ) (e
(G4 (b) ¥ (c)wh

Figure 5: Graphs that do not allow for a bare embedding in &g SPL.

Lemma 4.6. EveryG € SPL is free of bare®-, ¥-, and¥R-minors
Proof. A bare embedding of one @, ¥, or ¥& would violate Prop=3]1. O

On the other hand, each may well be a minor of certain splfgraps the reader is
invited to verify. In the absence oF-minors an invariance-result akin to Lem. 4.5
holds for bare subdivisions of these three graphs.

Lemma 4.7. Let H be anF-free hammock and assunieé <« G, thenF C H iff
FCGforF e {®, ¥, ¥k}

Proof. Since®, ¥, and¥® all are free of parallel arcs, Prdp}4.3 provides the claim if
all pegs occur i NV ; in particular, nothing needs to be done fér< G. We only
prove the claim fully for®, the procedure is the same frand¥®. In the following,
let H be F-free.

Let ® C H be realized by. If G < H removes a peg = ¢(q), ¢ is one of the two
simple vertices ofP; here, lety be the unique vertex witlig (¢) = 0 (the other case is
symmetric). Since-reduction is applicable due tg an arca = yx exists inH, with

y also occurring inG. Lete’ be an embedding @b in G, s.t.¢'(q) = y ande’ ase for

the other vertices. ¢’ is bare, the claim follows fo® ands-reduction, so assume it
is not. ThenGG contains a bypass @ wrt. ¢/, which is necessarily a pathavingy,
otherwiseH would contain a bypass @ wrt. ¢, contradicting the assumption that

is bare. We findC < G, if the other endpoint of the bypass is the peg of the vertex in
®’s cycle that is not adjacent i If the bypass is frome’(¢) to the peg of the vertex
with out-degree 0 ifP, we getQ < G. In both cases Leni 4.5 implies th&t is not
F-free, contradicting our assumption. Proving thaeduction does not introduce new
bareD®’s is trivial.

Again let® C H be realized by with pega € V. Consideringd £ G, leta = xx

be the loop that allows for reduction, and dgtz, denote that constriction arising from
it. As in the proof of Lem[ZZ15 our argument is based on thesféwita is irrelevant for
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disjoint.

theD® in [ and thatd; (z1) = dj, ,(2) anddf(zz) = d;l\a(x) hold. Since every
of ® has either in- or out-degree 1, we can construct an embeddieigof ® in G by
assigning the role of to eitherz; or x,. O

In the remainder of this section, we will show that the praigsrproven in Lem$.414
and[Z® are in fact sufficient for an characterization ofgalphs via forbidden (bare)
minors. First off, we need some preliminary propositions.

Proposition 4.8. Let G be a reduced hammock with distinct arcs as S.t. h(a;) =
v = t(az). Thenv is incident to a third proper arc.

Proof. The vertexv is incident to a further aras, otherwise@ could be s-reduced. If
as is a loop,v must be a gate; then however, arcs different fromitheonnect to the
gated vertex. O

Proposition 4.9. Letx andy be distinct vertices of a hammo(k, s, t). Then exactly
one of the following is true iG+

1. z dominateg,
2. y dominates:
3. for somez € Vi \ {z,y} there are internally disjointz- and zy-paths inG

Proof. If neither vertex dominates to other, 1€} and P, be two shortest paths from
stox, resp.y. Sincex andy are distinct, so aré’, and P,. Let z denote that 'last’
vertex, that occurs on both paths, then the subpath®,aind P, that start fromz,
satisfy the claim. O

Proposition 4.10. Letz andy be distinct vertices of a strong gragh, then there is a
cycleC C G and distinctz,, z, € V¢, s.t.G contains ancz,- and ayz,-path that are
disjoint.

Proof. Sinced is strong, letP; denote a shortesty-path andP, a shortesyz-path in
G. Consider the set of vertices belonging to bdth+ (Vp, N Vp,) \ {z,y}. If Z =0,
P, and P, form a cycle, and the claim follows for, = = andz, = y; in this case,
both claimed paths are empty. 2f = {z}, the claim follows forz, = = andz, = z,
or z; = z andz, = z; here one of the claimed paths is empty (lEid. 6a). Finally, if
|Z| > 2, let z, andz, be distinct elements of that are consecutive on ttf#, i.e., no
otherz € Z lies betweerr, andz, on P, resp. . These vertices then satisfy the
claim. O

Definition 5. A kebabis a connected graph consisting of three arc-disjoint saytiugs:
a strong componer?, called thebody, and two nonempty vertex-disjoint patis and
S, called thespikesof the kebab.



We further denote some unique vertices in a kebab: the endpba spike that lies
outside the body is called ttig of that spike, the endpoint that connects the spike to
the body is called itpuncture A spike that enters the body of a kebab is called an
in-spike one that leaves the body is called @ut-spike If both spikes of a kebalxX
enter (leave) the bodyy is also called ain-kebab 6ut-kebab), if one enters and the
other leaves the body is called arinout-kebab.

Lemma 4.11. LetG be an spl-reduced hammock containing a kebab. Then G for
someF € For® C G.

Proof. LetG = (G, s,t) be a reduced hammock, sinGecontains at least one kebab,
we choose a 'biggest’ kebak C G as follows

1. the body ofK is arc-maximal inGG, in the sense that no kebab@fhas a body
with more arcs thaik’

2. the spikes of are inclusion-maximal ii©7, i.e. they are not 'sub-spikes’ of a
bigger kebab with the same body &S

We distinguish whethekK is in an in-, an out- or an inout-kebab. The first and second
case are symmetric, so we elaborate on the first and the lgsfldmoughout the proof,
let B denote the body oK', S; and.S, the spikes, with tips; andts, and punctures;
andps, respectively.

1. K is anin-kebab (Fig.[7a).
Since(G, s, t) is a hammock, we apply Prdp.}.9¢pand¢, in G. The first two cases
of the proposition are symmetric, so we distinguish by theed and third case only.

(a) If o lies on everyst,-path, letP be a shortestt1-path inG. If P is disjoint with
B, thenP contains a segmemt’ from S, to Sy, that yieldsC < G (Fig.[ZB), proving
the claim. So let? go throughB, then the last segment &f is a (B, t,)-path outside
B. By the choice ofK” and P, it consist of a single are = bt; for b € Vp (Fig.[7d).
According to Prop[C4]8; is incident to a further are’, asG is reduced. Our choice
of K requires that the other endpoinbf ' lies in K, sinceB, S; anda form a strong
component bigger thaB. It is now easy to see (from Fig7c), thate Vg, yields
C < G (regardless ofi’s orientation), and that € V3 yieldsC < G or C}? < G
(depending om’s orientation), so let € Vg, \ {p1}. This leaves two possibilities: If
a’ = zt; we findQ < G, with pegst1,p1,b andz (Fig.[Zd). On the other hand, = t;2
leads to a contradiction: Sineg is p-reduced, there is at least one vertébetween
t; andz on S7; omitting thet; z’-segment ofS; lets us identify an in-kebab with tips
z" andt, and a body properly containing (Fig.[7&), contradicting maximality 8.

(b) Let G contain azt;-path P, and azts-path P, which are internally disjoint. If
both P; are disjoint withB, we findC < G with help of Prop[Z0 (Fid¥f, whete
denotes the first vertex af; that is also inS;). If wlog. P; intersectsB, letb denote
the last vertex orP; that is in B andx the first vertex onP; that is inVs, \ {p;}. If

x # t1, we find a kebab irG with a body containing3, contradicting our choice of
K. As the claim was already proven for= ¢, (see FiglZc), the statement follows for
in-kebabs.

2. K is aninout-kebab, wlog with in-spikes;.
Prop.[ZD impliesp C K, realized by some embeddirg and with the tips ofK

10
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Figure 7: Cases occurring in the proof of Lefi—4l11 f&r being an in-kebab. Solid arrows
represent arcs, dashed arrows represent paths.

being pegs (Fid—8a). If this is also true 6% we are done, so |&? be a bypass ob
wrt. e in G. Then one endpoint aP is a tip of K: assume it ig; (the other case is
symmetric) and distinguish by the orientation/éfand P’s other endpoint ink’.

First assume thaP is at,z-path: ifz € Vi, Prop[4dID yield€ < G (Fig.[BD); if
z € Vs,, we findQ < G with pegsty, =, p1, andp, (Fig.[Bad). Since the definition of a
bypass implies: ¢ Vp,, these are all subcases relevant for a bypass leaying

Next, let P be anxt;-path: sinceS; is maximal, the predecessor@fon P must be a
vertex of K. If x € V we find a situation similar to that shown in FIgl 7c, only that
here,S; is an out-spike. Still, reasoning is equivalent and theretonitted. Ifx = ¢o,
i.e., G contains at;-arc (Fig.[8d), we apply Prop.4.8 once more, finding new arcs
a; incident to eacht;. Let z; denote the other endpoint af: regardless of the;’s
orientations, ifz; ¢ Vi for eitheri, we find a bigger kebab (the details are left to the
reader), so assume bathlie in K. We need to distinguish by the locations of the
in Vx = Vg, U Vs, U Vg and the orientation of either;. First assume; € Vg, for
bothi: if ¢t; = h(aq) orta = t(az) we findQ < G; on the other hand, if; = ¢(a;)
andts = h(a2), then, becaus€ is p-reduced, there are vertices andz, s.t. either
z; lies betweert(a;) andh(a;) on S;, resulting in a bigger kebab i@ (Fig.[B&) thus
contradicting our assumption. Next, lete Vi \ {p1, p2} and consider the orientation
of ai: if a; = t121, we findC < G as in the case shown in Fg8b, whereas in case
a; = zt1, Prop[ZID implieC? < G (Fig.[Bl). A symmetric argument proves that
C or C*is a minor ofG, if 22 € Vi \ {p1,p2}. The remaining cases are those with
z1 € Vs, andzy € Vg, simultaneously, they are left to the reader.

O

We can now give a forbidden-subgraph characterizationledigphs. Since Valdes et
al. [VTL8T] showed that acyclic reduced hammocks that ateegaal toP; contain a
DN, we only proof the non-acyclic case. In the proof of the failog lemma, we call
a cycleproperif it is not merely a loop.

Lemma 4.12. LetG # P, be areduced hammock with cycles. Thiés G for some
F € ForF'C G forsomeF’ € {®, ¥, TR}

11
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Figure 8: Cases occurring in the proof of Lel4111 f§rbeing an inout-kebab.

(d) tot1-bypass / -arc HChxa

Proof. Let G be spl-reduced and not acyclic, théhcontains proper cycles. This is
because for a loop = zx € Ag, x guards a distinct are’ = yz, for G is ¢-reduced.

If o’ is aloop, them: = y = z, which can not be, a§ is p-reduced. Hencé&' contains
anzy- and azx-path which form a proper cycle.

So letC' C G be a minimal proper cycle with distinct vertices andz,. By Prop[43B
eithera; is incident to a further proper aig = z;y; or a; = y;a;. We findy; ¢

Ve, otherwiseGG could bep-reduced om; would be a chord t@”, contradictingC’s
minimality.

Now if i1 # y2, G contains a kebab with body and spikes:; andas, and Lem[Z711
provides the statement. 4f = y» we denote this vertex just If a; = yx; for bothi,

we getC < G while a; = x;y yieldsC? < G, and the claim follows. So assume wlog.
a1 = x1y andas = yxo, and letas = yz or ag = zy be the additional arc incident
to y as assured by Prop#.8. Depending on the orientatien ofve findC < G or

CR < G,if z € Vg and¥ < G or ¥R < @ otherwise. The first two cases yield
the claim, while the latter two do not, so we proceed with< G, the other case is
symmetric. The part oy 'found’ so far is sketched in Fig.Pa. If thidW is bare in

G, the claim follows, so assunt& contains a bypass. Except one, all possibilities lead
immediately toC < G, C? < G or a kebab; the exception is gn-path, on which we
elaborate.

Let P be theyz-bypass inG (Fig.[B1), once more Prop.3.8 provides a new proper arc
ag = zz' oray = 2'z. If 2/ ¢ Vp, we find a kebab (left to the reader), so assume
2" € Vp. However,z’ # z sinceay is not a loop; ifz’ = y, we finday = yz (sinceay

can not be parallel tas), but thenP is a bypass with several arcs — so a kebab with
a final segment of” and one ofu;, as as spikes is found. Finally, let be an inner
vertex of P and denote thgz’-segment of? P, and thez’'2-segment?. Depending

on the orientation ofi4, either , anda, form a cycle, orP;, a4 andas do (Fig.[8¢),
and a kebab is immediately found in both cases. O

We have thus found a characterizationS§? £ by forbidden subgraphs.

Theorem 4.13. Let G be a hammock, the@ € SPL iff G is F-free and nol”’ &
{®, ¥, ¥R} is a bare minor of.

Proof. For G € SPL, Lem.[Z3% implies that7 is F-free, and Lem[Z]6 states that
none of {®, ¥, ¥} is a bare minor ofz. Conversely, assum@ ¢ SPL, hence

12



a AN a N 7N
// \ // \ ’ \
as | ! as I !

Y | !

z
A I \ !
\ ’ \ // (l4
- o
ar \11/ P.__ ar \1’1/ P1 7

@r=<xaG (b) yz-bypass ofr (c) ays = zz'orz'z

Figure 9: Cases occurring in the proof of Lef1-24112. Solid arrows regmearcs, dashed arrows
represent paths. The adgg in (c) is deliberately not drawn as an arrow.

R(G) # Py by Cor.[33. By Valdes’ result and Leli 4112, we knéw< R(G) for
someF € F and/orF’ C R(G) for someF’ € {®, ¥, ¥R} If G = R(G), i.e.,G is
already reduced, the claim follows immediately; otherwisduction on the length of
the reduction using LemE._3.5 alid14.7 provides the statement O

5 SPL-Graphs and Regular Expressions

A regular expressiofRE) over an alphabet is defined almost as usual: we allow; for
+, and*, but notr — by the canonical semantics, this allows to express anyulane
except the empty one. The set of REs o¥eis denotedeg(X). An extended finite
automaton(EFA) is a 5-tupleE = (@, X, 4, I, F'), whose elements denote the set of
states, the alphabet, the transition relation, the indral the final states, respectively.
These sets are all finite and sati§fy’> = 0,6 C Q xreg(X)xQ, I C Q,andF C Q.

A configurationof E is a pair@ x >*; the relatiornt is defined on configurations @f
as(q,ww’) F (¢',w"),if (¢,,¢") € 6 andw € L(«). The language accepted fyis

L(E) :{’LU | (q()vw) '7* (qfae) forqo 617 qf GF}

The family of languages accepted by EFAs is exactly that gifile languages. Two
EFAs accepting the same language are cadigdivalent We further considefinite
automata(FAs) which are nondeterministic and may haviansitions. By the above
definition, an FAA = (Q, X, 4,1, F) is an EFA satisfying C Q x (X U {e}) x Q.

We treat EFA as graphs with REs as arc-labels and two digshgd sets of states;
to this end, letG(E) denote the graph underlying. Formally, the graph underlying
FE = (Q,E,é, 1, F) is defined byVG(E) = Q, AG(E) = 4, tG(E) : (q,a,q’) — q,
andhgp) : (¢,@,q¢") — ¢'. As G(E) conveys only the graph-structural properties
of F, the information about labels and initial and final stategeserally considered
separately.

Every EFA displays a compromise between the complexitysafr&nsition-labels and
that of its underlying graph; REs and FAs represent the mdegein this tradeoff: an
RE can be considered as an EFA whose underlying graph ialtmhamelyP,, while

an FA is an EFA with trivial labels. Locally relaying inforrian about a language
between the graph-structure of an EFA and its labels is this bseveral conversions
between REs to FAs. In the following, we investigate a fewhstanversions in either
direction, in particular comparing the sizes of the in- andpats. We do not give a
precise definition osize though, backed by the results of Ellul et &_[EKSWO05], who
showed that all (reasonable) such measures relate lipéoashother.
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5.1 Expressions to Automata

The method given by Ott & Feinsteih [OH61] is a rewritingigys on EFAs, where
each rule replaces a transition according to its label;ethiakes are denoted,, <,
and«,, as shown in Fid0.

Givena € reg(X), the EFAAS = ({q0,qr}, 2, {(q0, @, q7)}, {q0}. {qr}), serves as
the starting-point of the conversion; the algorithm thenstaucts a sequence of EFAs
A7, st AL <. ALH holds for some: € {., +, }. Any such sequence terminates in an
FA, denoted just4,,.

Lemma 5.1. Every A, satisfies7(A,) € SPL.

Proof. Clearly,G(A%) = Py € SPL, so assumé&/(A%) € SPL and let4?, <. Ai!
forsomec € {., +, *}. The graph underlying’, is s-expanded upor’ <. A**! andp-
expanded upod? <, At For A! <, AL we find thatG'(A%) can be derived from
G/(Al) by two s-expansion, followed by afiexpansion, i.e G(A%) S35 G(A1).
HenceG(A") € SPL wheneverA” exists, and sincel, = AF for somek, the
statement follows. O

Most methods that construct FAs from REs by manipulatinglyghwork in a bottom-
up-manner on the parse of the input. However each can be fatr@duin a top-down-
manner, lending themselves to structural investigatian asm.[5]. This reveals that
the constructions by Sippu & Soisalon-Soininen [SS$S88]mnidie & Yu [[YO3] both
yield FAs with spl-structure, whereas those by Thomp§orobEh and Gulan & Fer-
nau [GE08b] do not. Thompson'’s construction instroducB€¥for every Kleene-star
in the input-expression; the construction by Gulan & Ferimoduce aDN for cer-
tain products of sums. However, Thompson’s method ’'plagafié’ by introducing an
excessive amount aftransitions connecting the subautomata — the hades result
from this. The three other cited works gradually improve droihpson’s construc-
tion and each other wrt. lowering the size of the construatgdmaton; in particular,
Gulan & Fernau proved that their construction attains amugltratio between in- and
output-sizes. Interestingly enough, thé&Ns allowed by their construction make for the
only structural difference compared to the FAs providedligy& Yu's method — this
already suggests th&i-substructures allow for a certain conciseness of FAs as com
pared to regular expressions. In fact, a result by Koreghlievit [KLO3] implies that
DN in the graph underlying an FA causes a quadratic blowupeisiite of equivalent
expressions.

1as opposed to algebraic methods, e.g. by derivatives [IRre6d [Wardh]
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5.2 Automata to Expressions

An EFA E is callednormalized if G(E) is a hammock; this is equivalent to requir-
ing that £ contains exactly one initial statg and one final statg;, and that every
state lies on some path frog to ¢¢. Any EFA can be transformed into an equiva-
lent normalized EFAA by removing the states and transitions that do not lie on some
(I, F)-path, followed by adding a new initial stagg and a final state; with appropri-
atee-transitions tal, resp. fromZ.

By augmenting the spl-reductions with labels, we get yetlagrarewriting-system on
EFAs that is to be used with normalized EFAs only. The rulgs;,, and>,, are shown
in Fig.[Td, however, we restrict the applicability of staduction of a normalized EFA
E to cases which allow fof-reduction of the hammook (E).

[e3

- O‘+£Z (¢4 ¥
o )i ap L D+ e o \O/' T, @ .(

o — =0 1m0 Dy o —Fme 8 /'.\ Dy
(a) product-reduction (b) sum-reduction (c) star-reduction

Figure 11: Labeled spl-reductions

The duplication of labels / subexpressions, which motiwvdbe heuristics for state-
elimination, is completely avoided by labeled spl-redaictiFor this reason, it also is
weaker than state-elimination, singe— the only rule actually eliminating states — is
not applicable in the general case. On the other hand,let) denote any EFA that
is constructed by arbitrary but exhaustive applicatiorabeled spl-reduction td for
some FAA. We get

Lemma 5.2. R;(A4) is uniqgue modulo associativity and commutativity of labels

This is due to local confluence of spl-reduction, which esrover to labeled reduc-
tion. HenceR,;(A) is a regular expression (in the sense of being an EFA withatriv
graph-structureiff G(E) € SPL. For such FAs it is trivial to establish linear upper
bounds on the size of the resulting RE depending on the siteeafiput FA. Applying
the elimination-heuristic proposed by Han & Wodd [HWO07] teck fully reducible
automata withn states provides these expressions in tith@?); this generalizes a
result by Moreira & Reis who investigated optimal reducts@guences on automata
with (acyclic) series-parallel structulle [MR09].

Regarding Len{Bl1, it can also be shown that labeled restuatiows to convert an FA
constructed by Ott & Feinstein’s method back to the RE itiodted from — if some
simplifications of REs, like the removal effrom products, are allowed for. Given
that the graph underlying someinimal FA of a language is an spl-graph, we can then
convert back an forth between a minimal FA and a minimal esgioa.

6 Concludision
The classSPL reflects the structural properties of graphs that can bedsttby reg-

ular expressions and vice versa: serial arcs are equival@nbducts, parallel arcs are
equivalent to sums, and loops are equivalent to iterati@ased on this, we argued
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(informally) that the sizes of expressions and their edaivifinite automata with spl-
structure are linearly related. The forbidden-subgragnatterization o§P L has an

interesting

implication considering the contrapositif@bove argument: Given an ar-

bitrary automatom, an exponential blowup cannot be avoided in the size of aresxp
sion equivalent to4; this study suggests that this blowup is caused 6yC?, N, Q}
and{®, ¥, &} being (bare) minors of..
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