
Forschungsberichte Mathematik/Informatik
Fachbereich IV, Universität Trier

Clique-width of full bubble model graphs

Daniel Meister and Udi Rotics

Report No. 13-1 April 2013





Clique-width of full bubble model graphs

Daniel Meister
∗

Udi Rotics
†

Abstract

A bubble model is a 2-dimensional representation of proper interval graphs. We consider
proper interval graphs that have bubble models of specific properties. We characterise the
maximal such proper interval graphs of bounded clique-width and of bounded linear clique-
width and the minimal such proper interval graphs whose clique-width and linear clique-
width exceed the bounds. As a consequence, we can efficiently compute the clique-width
and linear clique-width of the considered graphs.

1 Introduction

Clique-width is a graph width parameter with applications in efficient graph algorithms [3, 4, 20].
Clique-width generalises treewidth in the sense that graphs of bounded treewidth also have
bounded clique-width [5], but graphs of bounded clique-width may have unbounded treewidth.
A simple example for the latter relationship are the complete graphs, whose clique-width is at
most 2 and whose treewidth is proportional to the number of vertices. Next to their applicational
importance, width parameters in general are also and necessarily studied with a focus on their
theoretical aspects. The basic questions are about the complexity of recognising graphs of
bounded width and about the structure of graphs of bounded width. In this paper, we address
these basic questions for clique-width and full bubble model graphs.

Clique-width is a graph parameter that is difficult to deal with. Despite its strong and
important applications, only little is known about its properties. It was shown that computing
the clique-width for general graphs is hard [6], but no hardness result for restricted graph classes
is known. Graphs of clique-width at most 2 can be recognised efficiently and their structural
properties are fully known [5]. This is due to the fact that graphs of clique-width at most 2 are
exactly the cographs, which are the graphs that do not have a chordless path on four vertices
as an induced subgraph. Cographs are well-studied and many of their properties are known
[1]. In particular, the maximal graphs of clique-width at most 2 and the minimal graphs of
clique-width more than 2 are known, the latter being only the chordless path on four vertices.
The situation changes for larger bounds on the clique-width. Graphs of clique-width at most 3
can be recognised efficiently [2], however, little is known about their structure. And no efficient
algorithm is known for recognising graphs of bounded clique-width for any bound larger than 3.
In fact, not even a moderately exponential-time algorithm is known for computing the clique-
width of a graph.
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The situation is not better for restricted versions of the problem. Currently, there are only
two positive results known for computing the clique-width for graph classes of unbounded clique-
width: for square grids and for path powers. The clique-width of an n× n-grid is exactly n+ 1
[10], for n ≥ 3. This also means that there is exactly one such graph for each value of the clique-
width, and the n× n-grid is the unique maximal square grid of clique-width at most n+ 1, and
the n×n-grid is the unique minimal square grid of clique-width at least n+1. The clique-width
of path powers has a more complex description, and it is fully known [14]. A k-path power is
the kth power of a chordless path. The clique-width of a k-path power on sufficiently many
vertices is exactly k+2. The clique-width of k-path powers on small numbers of vertices can be
related to the independence number. As a result, there are two types of maximal path powers
of clique-width at most k, and their is a unique minimal path power of clique-width at least k.

Another restriction for clique-width is its linear variant linear clique-width. Briefly, the
relationship between clique-width and linear clique-width can be understood in similarity to the
relationship between treewidth and its linear variant pathwidth. Also linear clique-width has
been studied [7, 18, 12]. As for the recognition problem, graphs of linear clique-width of at
most up to 3 can be recognised efficiently [8, 12], and no efficient algorithm for larger bounds
is known. The structure of graphs of linear clique-width at most 2 is fully known [8, 12], and
a description of graphs of linear clique-width at most 3 is known [12], that can be used to
characterise maximal graphs of linear clique-width at most 3. As for minimal graphs of linear
clique-width more than 3, some results are known [12, 13], but no full characterisation of the
graphs of linear clique-width at most 3 by forbidden induced subgraphs is known.

In this paper, we study the basic questions for a class of proper interval graphs. We will give
efficient algorithms for computing the clique-width and the linear clique-width of the considered
graphs, and we fully characterise the minimal and maximal graphs for given clique-width and
linear clique-width bounds. Hereby, we extend the previous results for path powers. We briefly
sketch our considered graph class. Proper interval graphs admit a characterisation through a
2-dimensional model, the so-called bubble model [11]. The bubble model is a representation for
graphs that places the vertices in a grid-like structure, and the edges are implicit. We consider
such proper interval graphs that have a bubble model with a special closure property.

Our results present a first real picture of the structure of graphs of bounded clique-width.
As already mentioned, previous comparable results were only known for graphs of clique-width
at most 2. We also and implicitly establish the proper interval graphs as a fundamental graph
class for studying clique-width. A result to support this is by Lozin, who studied questions
about minimal graph classes of unbounded clique-width [17].

The challenges in this paper are manifold. The main technical results of this paper are lower
and upper bounds on the clique-width and linear clique-width of special proper interval graphs.
Usually, upper bounds are easier to obtain than lower bounds, and this is also the case here. The
challenge about upper bounds is to present these bounds in a “readable” and “understandable”
form. There is no established language and technique to construct upper-bound results. Simi-
larly, and much more demanding, is the development of lower-bound results. Our lower bounds
are obtained by studying situations and classifying them by applying combinatorial arguments.
There is no catalogue of situations that can be applied here. A major goal of our study, that
goes beyond the mere results, is to develop techniques for proving such lower bounds and to
provide a more detailed picture of the two width parameters.

2



Organisation of the paper. Section 2 presents the graph-theoretic background, definitions and
notations, and clique-width and linear clique-width and related notions and results. Especially,
a characterisation of clique-width and linear clique-width is presented, that will be the basis
for the lower-bound proofs. In Section 3, we consider proper interval graphs, characterisations,
and the bubble model. We define classes of proper interval graphs, for which we will give
upper bounds on their clique-width or linear clique-width in Section 4. In Sections 5 and 6,
we show our lower bounds for two classes of proper interval graphs, that are two out of three
classes of minimal graphs to exceed clique-width bounds. The third such class are the minimal
path powers. Finally, in Section 7, we combine the obtained lower- and upper-bound results to
a complete characterisation of the clique-width and linear clique-width of our proper interval
graphs. This characterisation directly implies a simple and efficient algorithm for computing
the clique-width and linear clique-width of our proper interval graphs.

2 Graph preliminaries and clique-width

The graphs in this paper are simple, finite, undirected. A graph G is an ordered pair (V,E)
where V = V (G) is the vertex set of G and E = E(G) is the edge set of G. Edges are denoted
as uv. Let u, v be a vertex pair of G with u 6= v. If uv is an edge of G then u and v are adjacent
in G, and u is a neighbour of v in G, and vice versa. If uv is not an edge of G then u and v

are non-adjacent in G. The neighbourhood of a vertex u of G, denoted as NG(u), is the set of
the neighbours of u in G, and NG[u] =def NG(u) ∪ {u} is the closed neighbourhood of u in G.
A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a set X of vertices of
G, the subgraph of G induced by X, denoted as G[X], has vertex set X, and for each vertex
pair u, v from X with u 6= v, uv is an edge of G[X] if and only if uv is an edge of G. By G \X,
we denote the induced subgraph G[V (G) \X] of G, and by G−x for x a vertex of G, we denote
the induced subgraph G \ {x} of G. A clique of G is a set of vertices that are pairwise adjacent
in G, and a maximal clique of G is a clique of G that is not contained in any other clique of G.

Let G be a graph. Let u, v be a vertex pair of G. A u, v-path of G is a sequence (x0, . . . , xr) of
pairwise different vertices of G where x0 = u and xr = v and xixi+1 ∈ E(G) for every 0 ≤ i < r.
If for every vertex pair u, v of G, there is a u, v-path of G, we call G connected; otherwise, if
there is a vertex pair u, v of G such that there is no u, v-path of G, G is called disconnected.
The connected components of G are the maximal connected induced subgraphs of G.

An important graph operation throughout the paper is the disjoint union of two graphs. Let
G and H be two vertex-disjoint graphs, which means that V (G)∩V (H) = ∅. The disjoint union
of G and H, denoted as G⊕H, is the graph (V (G) ∪ V (H), E(G) ∪ E(H)).

2.1 Clique-width, linear clique-width and expressions

These definitions are relevant mainly for the upper-bound constructions of Section 4.

Let k be an integer with k ≥ 1. Consider the following inductive definition of k-expressions
and linear k-expressions:

(1) for o ∈ {1, . . . , k} and u a vertex name, o(u) is a k-expression and a linear k-expression
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(2) for α a k-expression and s, o ∈ {1, . . . , k} with s 6= o, ηs,o(α) and ρs→o(α) are k-expressions;
if α is a linear k-expression then ηs,o(α) and ρs→o(α) are linear k-expressions

(3) for α and δ vertex-disjoint k-expressions, (α⊕ δ) is a k-expression

(4) for δ a linear k-expression and o ∈ {1, . . . , k} and u a vertex name that does not occur in
δ, (o(u)⊕ δ) is a linear k-expression.

Observe that linear k-expressions are k-expressions of restricted form. A k-labelled graph is an
ordered pair (G, ℓ) where G is a graph and ℓ : V (G) → {1, . . . , k} is a mapping assigning a label
from {1, . . . , k} to each vertex of G; the vertices of (G, ℓ) are the vertices of G. By [(G, ℓ)], we
denote the graph G. A k-expression defines a k-labelled graph. Let α be a k-expression. The
k-labelled graph defined by α is denoted as val(α) and is inductively defined as follows:

(1) if α = o(u) then val(α) is the k-labelled graph with the single vertex u and u has label o

(2) if α = ηs,o(δ) where δ is a k-expression then val(α) is obtained from val(δ) by adding all
missing edges between the vertices with label s and the vertices with label o

(3) if α = ρs→o(δ) where δ is a k-expression then val(α) is obtained from val(δ) by assigning
label o to all vertices that have label s

(4) if α = (γ ⊕ δ) where γ and δ are k-expressions then val(α) is the disjoint union of val(γ)
and val(δ); this means, for val(γ) = (G, ℓ) and val(δ) = (G′, ℓ′), val(α) = (G⊕G′, ℓ ∪ ℓ′).

The graph that is defined by α is [val(α)], and we say that α is a k-expression for a graph G if
G = [val(α)], and we say that α is a linear k-expression for G if α is a linear k-expression and
G = [val(α)].

Let G be a graph. The clique-width of G, denoted as cwd(G), is the smallest integer k such
that G has a k-expression. And the linear clique-width of G, denoted as lcwd(G), is the smallest
integer k such that G has a linear k-expression. Since linear k-expressions are k-expressions,
it clearly holds that cwd(G) ≤ lcwd(G). In this algebraic context, it is important to remark
that we only consider non-empty graphs, i.e., our considered graphs have vertices, so that the
smallest integer k indeed exists. It is known that clique-width and linear clique-width are
monotone for induced subgraphs. So, for H an induced subgraph of G, cwd(H) ≤ cwd(G) and
lcwd(H) ≤ lcwd(G).

We will prove lower and upper bounds on the clique-width and linear clique-width of graphs.
For proving upper bounds, the following notion will be important. Let k be an integer with
k ≥ 1, and let α be a k-expression. A label i with i ∈ {1, . . . , k} is called inactive in α if for all
ηs,o in α, s 6= i and o 6= i, and for all ρs→o in α, s 6= i. Informally, we can say that i is inactive
in α if i is not used to create edges. Note that i(u) can appear in α and i is an inactive label in
α, namely, if u has no neighbours in [val(α)].

We will make use of the following simplifications for denoting expressions. Let k be an integer
with k ≥ 1. Let s ∈ {1, . . . , k} and let A ⊆ {1, . . . , k} with s 6∈ A and where A = {a1, . . . , ar}.
Instead of writing ηs,a1(· · · ηs,ar(δ) · · · ), we will simply write ηs,A(δ). Analogously, we will shorten
sequences of ρ-operations by writing, as an example, ρ2→3→4(δ) instead of ρ2→3(ρ3→4(δ)), which
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can be seen as “label shift” operations. Here, it is important to note that the corresponding
ρ-operations are applied from right to left.

We partition expressions into parts, that we define informally. Let k be an integer with
k ≥ 1, and let α, γ and δ be k-expressions. Assume that α can be written as β(γ ⊕ δ) or β(δ).
We call δ a beginning of α and β an end of α. Note that an end is not a k-expression, but it can
extend k-expressions.

Clique-width has some invariance properties, that are useful for the characterisation of graphs
of bounded clique-width and for computing the clique-width of a graph. For a graph G and a
vertex pair u, v of G with u 6= v, u and v are true twins of G if NG(u)∪{u} = NG(v)∪{v}. The
true-twin relation is an equivalence relation on the vertex set, and the maximal sets of pairwise
true twins of a graph can be computed in linear time.

Lemma 2.1 ([5]). Let G be a graph.

1) The clique-width of G is equal to the maximum clique-width of the connected components
of G.

2) If G has clique-width at least 2 then adding true twins to G does not increase the clique-
width.

A consequence of Lemma 2.1 is that it suffices to consider connected graphs without true
twins. We only mention here that linear clique-width does not have such nice general invariance
properties, which can already be seen on graphs built from induced paths [13]: adding true twins
may increase the linear clique-width, and the linear clique-width of a disconnected graph may
be strictly larger than the linear clique-width of each of its connected components.

2.2 Clique-width characterisation, and useful results

These definitions and results are relevant mainly for the lower-bound proofs of Sections 5 and 6.

2.2.1 Groups and supergroups

Let G be a graph and let H be a subgraph of G. Let u, v be a vertex pair of G where u is a
vertex of H and uv is an edge of G. If uv 6∈ E(H), we say that uv is non-visible in H and v is
a non-visible neighbour of u in H with respect to G. The set of the non-visible neighbours of u
in H with respect to G is denoted as nonVisH⊆G(u); if the context G is clear, we may shortly
write nonVisH(u). Observe the following easy properties: nonVisH(x) ⊆ NG(x), and if x and y

are vertices of H then y ∈ nonVisH(x) if and only if x ∈ nonVisH(y). The following two notions
are important in the context of clique-width.

Definition 2.2 ([14]). Let G be a graph and let H be a subgraph of G. Let X be a set of vertices
of H.

1) X is called a group of H with respect to G if every vertex pair u, v from X satisfies the
group condition: nonVisH⊆G(u) = nonVisH⊆G(v).

2) X is called a supergroup of H with respect to G if every vertex pair u, v from X satisfies
the supergroup condition: nonVisH⊆G(u) ⊆ NG(v).
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It is important to remember throughout the paper that subsets of groups and supergroups
are also groups and supergroups; this is a direct consequence of the definitions.

Let G be a graph. We call (B,C) a partial partition of V (G) if B ⊆ V (G) and C ⊆ V (G)
and B ∩ C = ∅. In particular, B and C may be empty sets. The following results are easy but
important facts about groups and supergroups.

Lemma 2.3 ([14]). Let G be a graph, let (B,C) be a partial partition of V (G), and let H =def

G[B]⊕G[C]. The following is the case with respect to G.

1) Every group of H is a supergroup of H.

2) Every supergroup of H that is a subset of B is a group of G[B].

3) Every group of G[B] is a group of H.

A direct consequence of Lemma 2.3 is the fact that the notions of groups and supergroups
coincide on induced subgraphs.

Another easy property of supergroups is shown in the next lemma.

Lemma 2.4. Let G be a graph and let H be a subgraph of G. Let A ⊆ V (H). If A is a
supergroup of H with respect to G then H[A] = G[A].

Proof. Assume that there is a vertex pair u, v from A such that uv ∈ E(G) and uv 6∈ E(H).
Note that uv is a non-visible edge of H with respect to G, so that v ∈ nonVisH⊆G(u). Since
v 6∈ NG(v), the vertex pair u, v does not satisfy the supergroup condition, and thus, {u, v} is not
a supergroup of H with respect to G. It follows that A is not a supergroup of H with respect
to G.

We will often argue that two vertices cannot be contained in the same supergroup, by pro-
viding a witness. Let G be a graph and let H be a subgraph of G. For a vertex triple u, v, y of
G where u and v are vertices of H, we say that y s-distinguishes u and v in H if one of the two
cases applies: (1) y ∈ nonVisH⊆G(u) and y 6∈ NG(v) or (2) y ∈ nonVisH⊆G(v) and y 6∈ NG(u).
Note this important example: if v ∈ nonVisH(u) then v s-distinguishes u and v, since v 6∈ NG(v).

Lemma 2.5 ([14]). Let G be a graph and let H be a subgraph of G. For every vertex pair u, v

of H, {u, v} is a supergroup of H if and only if there is no vertex of G that s-distinguishes u

and v in H.

Let G be a graph and let H be a subgraph of G. A maximal group of H is a group of H
that is not contained in any other group of H, all with respect to G. It is important to observe
that the group condition of Definition 2.2 is an equivalence relation, and the maximal groups of
H therefore define a partition of V (H).

2.2.2 Clique-width characterisation

Clique-width and linear clique-width can be characterised through labelled partition trees, that
are based on rooted binary trees. We repeat the necessary definitions: (1) a tree on a single
node u is a rooted binary tree with root u, and (2) for T ′ and T ′′ vertex-disjoint rooted binary
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trees with roots b and c, respectively, and for a a new node, T =def (V (T ′ ⊕ T ′′) ∪ {a}, E(T ′ ⊕
T ′′) ∪ {ab, ac}) is a rooted binary tree with root a, and the nodes b and c are the children of a
in T . Every node of a rooted binary tree with a child is an inner node, and every node without
a child is a leaf. Observe that every inner node has exactly two children, and the root is an
inner node, unless the tree consists of one node only. Node names of rooted binary trees are
highlighted by underlines, to distinguish them from vertex names of the studied graphs.

We label the nodes of rooted binary trees by special partitions of subgraphs of graphs. Let
G be a graph and let H be a subgraph of G. Let A and B be sets of vertices of H. We call
A and B compatible in H with respect to G if at least one of the two cases applies: (1) there
is no vertex pair u, v of H with u ∈ A and v ∈ B and v ∈ nonVisH⊆G(u) or (2) y ∈ NG(x)
for all vertex pairs x, y of H with x ∈ A and y ∈ B. A compatible supergroup partition for
H with respect to G is a partition of V (H) into supergroups of H with respect to G, and the
supergroups are pairwise compatible in H with respect to G.

Definition 2.6 ([14]). Let k be an integer with k ≥ 1. Let G be a graph. A k-supergroup tree
for G is a rooted binary tree T whose nodes are labelled with partitions of subsets of V (G) such
that the following conditions are satisfied for every node a of T :

1) if a is a leaf of T :
the label of a in T is {{x}} for x some vertex of G

2) if a is the root node of T :
the label of a in T is a partition of V (G)

3) if a is an inner node of T :
let b and c be the children of a in T and let {A1, . . . , Ap}, {B1, . . . , Bq} and {C1, . . . , Cr}
be the labels of respectively a, b and c in T ; then, the following conditions are satisied:

a) p ≤ k

b) (B1 ∪ · · · ∪Bq) ∩ (C1 ∪ · · · ∪ Cr) = ∅

c) {B1, . . . , Bq, C1, . . . , Cr} is a partition-refinement of {A1, . . . , Ap}

d) {A1, . . . , Ap} is a compatible supergroup partition for G[B1∪· · ·∪Bq]⊕G[C1∪· · ·∪Cr].

It follows from the definition of supergroup trees that there is a bijection between the leaves
of T and the vertices of G. A partition-refinement is a partition consisting of subsets of partition
classes.

By ΣT (a), we denote the union of the supergroups in the partition that is assigned to
node a in T . In other words, if {A1, . . . , Ap} is the partition that is assigned to a in T then
ΣT (a) = A1 ∪ · · · ∪ Ap. Note here that we will always and implicitly associate the assigned
partition labels with T .

Let k be an integer with k ≥ 1. A k-supergroup caterpillar tree is a k-supergroup tree where
each inner node has a child that is a leaf.

Theorem 2.7 ([14]). Let k be an integer with k ≥ 1. Let G be a graph.

1) cwd(G) ≤ k if and only if G has a k-supergroup tree.

2) lcwd(G) ≤ k if and only if G has a k-supergroup caterpillar tree.
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2.2.3 Restrictions to induced subgraphs

We will prove our lower-bound results also be arguing about groups and supergroups in induced
subgraphs. The following definitions and results provide the technical means.

Lemma 2.8. Let G be a graph, let H be a subgraph of G, and let F ⊆ V (G). Let A be a
supergroup of H with respect to G. Then, A \ F is a supergroup of H \ F with respect to G \ F .

Proof. Let A′ =def A \ F and G′ =def G \ F and H ′ =def H \ F . Let u, v be a vertex pair
from A′, and we verify the supergroup condition for u, v. Observe that NG′(v) = NG(v) \ F

and nonVisH′⊆G′(u) = nonVisH⊆G(u)\F , and since nonVisH⊆G(u) ⊆ NG(v) by assumption, we
directly conclude that u, v indeed satisfies the supergroup condition.

Lemma 2.8 is often applied to show bounds on the number of maximal groups. This often-
applied application is exemplified in the proof of the following direct consequence of Lemma 2.8.
We give a full proof of this consequence, also in order to provide more intuition about the
technical notions and arguments.

Corollary 2.9. Let G be a graph, and let H be an induced subgraph of G. Let B ⊆ V (H). The
number of maximal groups of H[B] with respect to H is bounded from above by the number of
maximal groups of G[B] with respect to G.

Proof. Let F =def V (G) \ V (H). Note that H = G \ F and H[B] = G[B] \ F . Let A be a
group of G[B] with respect to G. Due to the first statement of Lemma 2.3, A is a supergroup of
G[B] with respect to G. Since A = A \ F , A is a supergroup of H[B] with respect to H due to
Lemma 2.8, and thus, A is a group of H[B] with respect to H due to the second statement of
Lemma 2.3. Thus, every group of G[B] with respect to G is a group of H[B] with respect to H.
In particular, every maximal group of G[B] with respect to G is a group of H[B] with respect
to H, so that each maximal group of H[B] with respect to H is the union of maximal groups of
G[B] with respect to G, and the claim follows.

Let t be an integer with t ≥ 1. Let G be a graph and let X ⊆ V (G). Let T be a t-
supergroup tree for G. We define the reduced supergroup tree, that shall be the restriction of
T to the induced subgraph G[X] of G. We define the reduced supergroup tree inductively by
associating reduced supergroup trees with the nodes of T . So, let a be a node of T and let
{A1, . . . , Ap} be the assigned partition:

• if a is a leaf of T :

if A1 ⊆ X then the X-reduced supergroup tree of T at a has a single node and the node
label is {A1}, and if A1 6⊆ X then the X-reduced supergroup tree of T at a is an empty
tree (recall that p = 1 and |A1| = 1)

• if a is an inner node of T :
let b and c be the children of a in T , and let Tb and Tc be the X-reduced supergroup trees
of T at respectively b and c;

if Tc is an empty tree then the X-reduced supergroup tree of T at a is Tb, if Tc is not an
empty tree and Tb is an empty tree then the X-reduced supergroup tree of T at a is Tc, and
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if Tb and Tc are not empty trees then the X-reduced supergroup tree of T at a is obtained
from the disjoint union of Tb and Tc by adding a and making a adjacent to b and to c and
by labelling a with {(A1 ∩X), . . . , (Ap ∩X)} \ {∅}.

The X-reduced supergroup tree of T is the X-reduced supergroup tree of T at the root of T . The
following lemma is easy and straightforward to prove, and we give it without an explicit proof.
The proof mainly relies on Lemma 2.8 and the fact that the compatibility property extends to
induced subgraphs.

Lemma 2.10. Let t be an integer with t ≥ 1. Let G be a graph. Let T be a t-supergroup tree
for G. Let X ⊆ V (G). The X-reduced supergroup tree of T is a t-supergroup tree for G[X].

We will apply Lemma 2.10 to prove lower bounds by arguing about structural properties of
supergroup trees of induced subgraphs.

3 Proper interval graphs and the bubble model

We define proper interval graphs and the bubble model. We define classes of proper interval
graphs that will be the studied graphs in this paper.

3.1 Proper interval graphs and bubble models

A proper interval graph is a graph whose vertices can be assigned closed intervals of the real line of
unit length such that vertices are adjacent if and only if their assigned intervals have a non-empty
intersection [21]. Proper interval graphs are interval graphs, chordal graphs and cocomparability
graphs. Proper interval graphs are widely studied and they have several characterisations [1, 9].
One characterisation is by vertex orderings. A proper interval ordering for a graph G is a
vertex ordering σ for G, where σ = 〈x1, . . . , xn〉, satisfying for every index triple i, j, k with
1 ≤ i < j < k ≤ n that xixk ∈ E(G) implies xixj ∈ E(G) and xjxk ∈ E(G). A graph is a
proper interval graph if and only if it has a proper interval ordering [16].

Most characterisations of proper interval graphs reflect their linear structure, and this lin-
ear structure is often the foundation of efficient algorithms on proper interval graphs. In case
of clique-width, a different, a 2-dimensional model seems more suitable. A bubble model for a
graph G is a 2-dimensional structure B = 〈Bi,j〉1≤j≤s,1≤i≤rj that satisfies the following condi-
tions:

• ∅ ⊆ Bi,j ⊆ V (G) for every i, j with 1 ≤ j ≤ s and 1 ≤ i ≤ rj

• B1,1, . . . , Brs,s are pairwise disjoint and (B1,1 ∪ · · · ∪Brs,s) = V (G)

• for every vertex pair u, v of G, where u ∈ Bi,j and v ∈ Bi′,j′ with 1 ≤ j ≤ j′ ≤ s:
uv ∈ E(G) if and only if either (1) j = j′ or (2) j + 1 = j′ and i > i′.

We call s the size of the bubble model B, and the sets Bi,j are the bubbles.
Bubble models fully represent graphs, since they contain all vertices, and the edges are

completely characterised. A graph is a proper interval graph if and only if it has a bubble model

9



Figure 1: The left side shows a graph, that is represented by the bubble model on the right
side. The vertices on the left are arranged as they appear in the bubble model on the right. The
bubble model contains empty and non-empty bubbles, and every non-empty bubble contains
exactly one vertex. The bubble model also satisfies additional technical assumptions except for
the non-emptyness of Brj ,j , that are all empty here.

[11], which means that the vertices of the graph can be placed in bubbles so that the edge set
is exactly determined through the model. An example of a proper interval graph and a bubble
model representation is given in Figure 1. Note that we will use the convention that Bi,j is the
bubble in row i and column j.

Let B = 〈Bi,j〉1≤j≤s,1≤i≤rj be a bubble model for a graph G. As a technical observation, note
that s = 0 means that G has no vertex. Also note that rj = 0 is possible. For an index j with
1 ≤ j ≤ s, the bubbles B1,j , . . . , Brj ,j form a column of B, and each vertex from B1,j ∪ · · ·∪Brj ,j

appears in column j of B, and each vertex of G has a corresponding column index. In our paper,
we only consider non-empty graphs, so that we can henceforth assume s ≥ 1 for each considered
bubble model. Furthermore, it is no restriction to assume that the first and the last column of
a bubble model contain vertices, which means that r1 ≥ 1 and rs ≥ 1. Finally, we will assume
for every 1 ≤ j ≤ s that rj ≥ 1 implies Brj ,j 6= ∅. If we represent a bubble model by drawing
all empty and non-empty bubbles then the bubble model of Figure 1 does not satisfy the last
technical assumption about Brj ,j 6= ∅. We will allow such easy relaxations in our drawings for
the sake of readability.

In this paper, we study proper interval graphs that have bubble models of special properties.

Definition 3.1. Let G be a proper interval graph.

1) Let B = 〈Bi,j〉1≤j≤s,1≤i≤rj be a bubble model for G. We call B a full bubble model if the
following is satisfied for every index pair i, j with 1 ≤ j ≤ s and 1 < i ≤ rj:
if Bi,j 6= ∅ then Bi−1,j 6= ∅.

2) A full bubble model graph is a graph that has a full bubble model.

Observe that the bubble model of Figure 1 is not a full bubble model, since it has empty
bubbles “above” non-empty bubbles. We only mention here that there are proper interval graphs
without full bubble models. In fact, the graph of Figure 1 has no full bubble model. By adding
vertices to a proper interval graph and thereby filling empty bubbles, it is not difficult to see
that every proper interval graph is an induced subgraph of a full bubble model graph. Full
bubble model graphs can be recognised in linear time and a full bubble model for a full bubble
model graph can be computed in linear time [15].
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The objective of this paper is to compute the clique-width and linear clique-width of full
bubble model graphs, where our main focus is on the clique-width. We can therefore restrict our-
selves to connected full bubble model graphs without true twins, in accordance with Lemma 2.1.
At the end of the paper, we will briefly discuss the extension of our linear clique-width results to
disconnected graphs; the situation for true twins is complex [13]. The following lemma describes
a necessary condition on full bubble models for connected full bubble model graphs without true
twins.

Lemma 3.2. Let G be a full bubble model graph with full bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj .
If G is connected then rj ≥ 2 for every 1 ≤ j < s, and if G has no true twins then |Bi,j | = 1 for
every 1 ≤ j ≤ s and 1 ≤ i ≤ rj.

Proof. If rj ≤ 1 then no vertex from B1,1 ∪ · · · ∪ Br1,1 ∪ B1,2 ∪ · · · ∪ Brj ,j has a neighbour in
B1,j+1 ∪ · · · ∪ Brs,s. By our assumptions about bubble models, Br1,1 and Brs,s are not empty,
and thus, G is disconnected. If there is an index pair i, j with |Bi,j | ≥ 2 then the vertices in Bi,j

are pairwise adjacent and have the same neighbours in G outside of Bi,j , so that the vertices in
Bi,j are pairwise true twins.

Since we want to restrict to full bubble model graphs without true twins, we will hence-
forth assume |Bi,j | = 1 for every considered bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj . We will
index the vertices as bi,j , with the meaning of Bi,j = {bi,j}. We will therefore also write B
as 〈bi,j〉1≤j≤s,1≤i≤rj . This indexation will be a major means to specify vertices. We will ex-
tend these notations and write 〈b1,j , . . . , brj ,j〉 to explicitly name column j of B, or, analogously,
〈b1,j , . . . , bp,j〉 with 1 ≤ p ≤ rj for a “beginning” of column j of B. Since bubble models are very
visual, we believe that all used terminology about bubble models is straightforward understand-
able by the reader, even if not explicitly and fully defined.

As a final remark, we want to mention that Lemma 3.2 does not yield a characterisation
of full bubble models without true twins. Graphs with bubble models satisfying the lemma
may have true twins. Excluding these true twins and completing the necessary condition into a
characterisation is possible but technical, and unnecessary here.

3.2 Special classes of full bubble model graphs

A basic class of full bubble model graphs are path powers. Let k and n be integers with k ≥ 1
and n ≥ 1, let G be a graph on n vertices, and let Λ = 〈u1, . . . , un〉 be a vertex ordering for
G. We call Λ a k-path layout for G if for every 1 ≤ i < j ≤ n, ui and uj are adjacent in G if
and only if j − i ≤ k. A k-path power is a graph that has a k-path layout, and a path power is
an l-path power for some integer l. Path powers are full bubble model graphs; an example of a
4-path power on seventeen vertices and two representing bubble models are depicted in Figure 2.
It will be important that a k-path power on at most k + 1 vertices is a complete graph, and
each maximal clique of a k-path power on at least k + 1 vertices has size k + 1. Furthermore,
the vertices of a maximal clique of a k-path power appear consecutively in each k-path layout
for the graph. Observe that the 1-path powers are exactly the induced paths. We will consider
graphs that are built from path powers for proving our lower and upper clique-width and linear
clique-width bounds.
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u1 u17

u1

u17

u1

u17

Figure 2: The top graph is a 4-path power on seventeen vertices. It has three pairwise disjoint
maximal cliques, that have size 5, and two vertices do not belong to the three maximal cliques.
The left below figure is a full bubble model for the graph. The right below figure is also a bubble
model for the graph, however not a full bubble model.

Our upper clique-width and linear clique-width bounds will be obtained from considering
“maximal” full bubble model graphs. We define these graphs in the following, through bubble
models. Let B = 〈bi,j〉1≤j≤s,1≤i≤rj be a full bubble model. Let p, q be an index pair with
1 ≤ p ≤ q ≤ s and let d be an integer with d ≥ 1. We say that [p, q] is a rectangle of B of depth d

if rp = · · · = rq = d and if either p = 1 or rp−1 6= d and if either q = s or rq+1 6= d; the size of a
rectangle [p, q] is q−p+1, i.e., the number of comprised columns. Note that rectangles may have
size 1. Observe that a rectangle of depth d is a (d − 1)-path power. We may also understand
rectangles as a part of B. We will use [p, q] and 〈bi,j〉p≤j≤q,1≤i≤rj as being equivalent; we shortly
denote 〈bi,j〉p≤j≤q,1≤i≤rj as B[p, q].

Every bubble model admits a unique partition into rectangles. Let [p1, q1], . . . , [pt, qt] be the
rectangles of the full bubble model B. We assume that p1 = 1 and qi+1 = pi+1 for every 1 ≤ i < t

and qt = s, i.e., the rectangles are ordered from left to right according to their appearance in B.
Then, we can write B as 〈B[p1, q1], . . . ,B[pt, qt]〉. We call 〈B[p1, q1], . . . ,B[pt, qt]〉 the rectangle
partition of B. We will apply the rectangle partition notion to describe full bubble models, by
specifying the rectangle partitions. Since our full bubble models should satisfy the conditions
of Lemma 3.2, i.e., each bubble contains at most one vertex, the correspondence between full
bubble models and their rectangle partitions is straightforward.

We define our graph classes by specifying rectangle partitions. Let k be an integer with
k ≥ 3. A k-model is a full bubble model B whose rectangle partition 〈B1, . . . ,Bt〉 has at least
two rectangles, i.e., t ≥ 2, and there is an integer d with d > k such that 〈B1, . . . ,Bt〉 satisfies
the following conditions:

• Bt−1 is a rectangle of size k and depth d, and
Bt is a rectangle of size 1 and depth 1
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• for every index i with 1 ≤ i ≤ t− 2,
Bi is a rectangle of depth k or is a rectangle of depth d and size at most k − 1.

Note that the definition of rectangles implies that the depths of the rectangles B1, . . . ,Bt−1

alternate between k and d. We will distinguish between these two types of rectangles. A
rectangle of depth k is shallow, and a rectangle of depth d is deep. Then, the rectangles of a
k-model alternate between deep and shallow rectangles, and the parity of t determines whether
the first rectangle, B1, is deep or shallow. Recall that shallow rectangles are (k−1)-path powers
and deep rectangles are (d− 1)-path powers.

We use k-models as a base class and define further special full bubble models. Let B be a
k-model with the rectangle partition 〈B1, . . . ,Bt〉.

1) If the deep rectangles among B1, . . . ,Bt−2 have size at most k−2 then B is an open k-model.

2) If t ≥ 6 and B1 and Bt−3 are deep rectangles of size (k−1) and the deep rectangles among
B2, . . . ,Bt−4 have size at most k − 2 then 〈B1, . . . ,Bt−3〉 is a short-end k-model.

3) A k-model with small separators is obtained from B by deleting vertices from shallow
rectangles in the following way:

(1) for every 2 ≤ i ≤ t − 2, if Bi = B[p, q] is a deep rectangle of size (k − 1) then delete
bk,p−1 and b3,q+1, . . . , bk,q+1;

(2) let a be with 2 ≤ a ≤ t−2 such that Ba is a shallow rectangle and the deep rectangles
among B2, . . . ,Ba have size at most k−2, let Ba = B[p, q], and choose b with p ≤ b ≤ q

and k′ with k′ ≥ 1 and k′ + ⌊k
′

2 ⌋ ≤ k: delete bk′+2,b, . . . , bk,b.

When constructing a k-model with small separators, note that vertices that are about to be
deleted may have already been deleted. Such can occur, for instance, when two deep rectangles
of size (k − 1) are separated by a shallow rectangle of size 1. Schematic drawings of the four
defined models are shown in Figure 3.

We will show that open k-models, short-end k-models and k-models with small separators
represent the maximal full bubble model graphs of clique-width at most k+1 and open k-models
and short-end k-models represent the maximal full bubble model graphs of linear clique-width
at most k + 1. The upper bounds are proved by defining expressions for shallow and deep
rectangles, and these expressions will be combined into expressions for the whole graph. As
a final remark, note that a rectangle of size 1 represents a complete graph, that contains true
twins. Even though we excluded the existence of true twins, we allow deep rectangles of size 1 in
our k-models, and therefore true twins in the represented graphs, in order to avoid unnecessary
case distinctions.

4 Clique-width upper bounds for k-model graphs

In Subsection 3.2, we defined classes of bubble models. In this section, we show upper bounds
on the clique-width and on the linear clique-width of graphs having such bubble models. These
upper bounds will be obtained from special expressions for shallow and deep rectangles, that
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k-model

open k-model, with a shallow first rectangle

short-end k-model

k-model with small separators

Figure 3: The figure illustrates the structure of k-models and the derived special classes. The
rectangle partition of the k-model, on the top, has twelve rectangles, that alternate between
shallow and deep. The vertex deletion for k-models with small separators is illustrated for a
deep rectangle of size (k − 1), the fourth deep rectangle from the left, and deletion in shallow
rectangles is applied to the left two shallow rectangles. For a k-model with small separators,
only one of the two shallow rectangles may be selected.

are shown in the first part of this section, and combining these expressions, which is done in the
second part of this section. The constructions repeat, apply and extend ideas from [15].

4.1 Particular linear expressions for shallow and deep rectangles

We consider shallow and deep rectangles separately. We begin with shallow rectangles. Recall
that a shallow rectangle of a k-model is a (k − 1)-path power. The expression is built on a
(k − 1)-path layout, by creating the vertices from right to left. For a brief description of the
construction, consider the situation in Figure 4: the currently newly created vertex has label 2,
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2 3 4 5 6 1 1 1 1 1 1 1 1 1 1

Figure 4: The figure illustrates the typical situation in a linear expression for a 4-path power.
The vertices with label 1 have already received all neighbours, the vertex with label 2 is the
newly created vertex, and the vertices with labels 3, 4, 5, 6 are the already created neighbours of
the new vertex.

its already created neighbours have labels 3, 4, 5, 6, and the vertices with label 1 have received
all their neighbours already. For the correspondence between path layouts and bubble models
for path powers, re-consult Figure 2.

Lemma 4.1 (Shallow rectangles). Let k and n be integers with k ≥ 2 and n ≥ k. Let G be
a (k − 1)-path power on n vertices with (k − 1)-path layout 〈v1, . . . , vn〉. Then, G has a linear
(k + 1)-expression α with inactive label 1 such that the following two conditions are satisfied:

• α begins with α′ = 3(vn−k+2)⊕ (· · · ⊕ (k + 1)(vn) · · · )

• in val(α): vi has label i+ 2 for every 1 ≤ i < k and vk, . . . , vn have label 1.

Proof. The desired expression first defines G[{vn−k+2, . . . , vn}]. If k = 2 then αn−k+2 = αn =def

α′, if k = 3 then αn−k+2 = αn−1 =def ηk,{k+1}(α
′), and if k ≥ 4 then

αn−k+2 =def η3,{4,...,k+1}(η4,{5,...,k+1}(· · · ηk,{k+1}(α
′) · · · )) .

Observe that label 1 is inactive in αn−k+2. Next, we add the other vertices of G by following
the given path layout. For i an index with 1 ≤ i ≤ n− k + 1, we define αi by extending αi+1:

αi =def ρ2→3→4→···→k→(k+1)→1(η2,{3,...,k+1}(2(vi)⊕ αi+1)) .

It is not difficult to verify that [val(αi)] is equal to G[{vi, . . . , vn}] for every 1 ≤ i ≤ n − k + 1,
particularly since vi+1, . . . , vi+k−1 are the neighbours of vi in G[{vi, . . . , vn}]. So, α =def α1 is a
desired expression for G.

The result of Lemma 4.1 is slightly more general than necessary for a result about shallow
rectangles, since the path powers of Lemma 4.1 may have arbitrary numbers of vertices, and the
number of vertices of a rectangle is a multiple of its depth. In fact, our application of the lemma
to shallow rectangles will make use of this more general result. This completes the consideration
of shallow rectangles.

We turn to the consideration of deep rectangles. Deep rectangles are also path powers, and
we can therefore apply the construction of Lemma 4.1 to obtain linear expressions. However,
the number of used labels will correspond to the depth of the rectangle. Instead, we want
linear expressions using few labels, whose number is bounded in the size of the rectangle. We
distinguish between three cases about deep rectangles, and the three cases are determined by
the size of the rectangles: we consider deep rectangles of size k, of size k− 1 and of size at most
k−2. The expressions to be constructed have similarities and their specialities. The constructed
expressions need to ensure their applicability in the construction of expressions for k-models.
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Figure 5: The three figures illustrate the construction of Lemma 4.2. With d = 9 and k = 5, the
left-side figure illustrates the different indexations of the vertices: b1,1 = v1, b9,1 = v9, b1,2 = v10
and b1,6 = vn. The vertex set is partitioned into a lower- and an upper set, that are indicated
by the two areas of different grey. The three figures illustrate three typical situations during the
construction of a linear expression.

Lemma 4.2 (Deep rectangles of size k). Let d and k be integers with d > k > 1, and let
n =def kd+1. Let G be a (d− 1)-path power on n vertices with (d− 1)-path layout 〈v1, . . . , vn〉.
Then, G−v1 has a linear (k + 1)-expression α such that in val(α): vi has label i + 2 for every
2 ≤ i < k and vk, . . . , vd have label 3 and vd+1, . . . , vn have label 1.

Proof. Let 〈bi,j〉1≤j≤s,1≤i≤rj be a full bubble model for G where vi = bi,1 for every 1 ≤ i ≤ d

and s = k + 1 and r1 = · · · = rs−1 = d and rs = 1; such a bubble model clearly exists and is
straightforward to construct; consider the left-side figure of Figure 5 for an illustration. Using
the vertex names of the bubble model, the given (d− 1)-path layout for G may also be written
as 〈b1,1, . . . , bd,1, b1,2, . . . , bd,k, b1,k+1〉. The desired linear expression for G−b1,1 is defined in two
steps. We partition the vertex set of G−b1,1 into a “lower” and an “upper” set. In the first
step, we treat the lower-set vertices, and in the second step, we treat the upper-set vertices. The
construction is illustrated by the three figures of Figure 5, and the two sets are indicated by the
two differently shaded areas in the figures.

We treat the lower-set vertices. Let A1 =def {1} and Aj =def {j − 1, j} for 2 ≤ j ≤ k. We
use A1, . . . , Ak as label sets, representing the neighbours of a new vertex. Let i, j be an index
pair with 2 ≤ i ≤ d and 1 ≤ j ≤ k and i+ j ≥ k+1. Observe that bi,j is a lower-set vertex. Let
αd,k =def k(bd,k) for the beginning, and let

αi,j =def ρ(k+1)→j(ηk+1,Aj
((k + 1)(bi,j)⊕











αi+1,1))) , if j = k and k ≤ i < d

αi+1,k−i))) , if j = k and i < k

αi,j+1))) , if 1 ≤ j < k

The vertices are added row-wise bottom-to-top, and within a row from right to left; this ordering
is defined through the expression that is extended. The left-side figure of Figure 5 shows a typical
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situation during the construction: the vertex with label 6 is the one currently to be added, and
its neighbours are exactly the vertices with labels 2 and 3, i.e., with labels from A3. The middle
figure of Figure 5 shows the situation after completing the first step, which means, after adding
all lower-set vertices. The final obtained expression is α2,k−1. Recall that k ≥ 2. This completes
the first step.

We treat the upper-set vertices. We add the vertices by following the diagonals, as it is
indicted in the right-side figure of Figure 5. First, we add the vertices b1,k and b1,k+1, which is
a special situation. Let

α1,k =def ρ(k+1)→k(ηk+1,k((k + 1)(b1,k+1)⊕ ηk+1,Ak
((k + 1)(b1,k)⊕ α2,k−1))) .

It is important to note that no vertex of val(α1,k) with label k has a non-visible neighbour. Now,
we define the diagonals. For 3 ≤ t ≤ k, let D(t) =def {bi,j : i + j = t} = {bt−1,1, . . . , b1,t−1}.
Observe that the vertices from D(3)∪ · · · ∪D(k) are exactly the vertices of G−b1,1 that are not
of val(α1,k). We add these remaining vertices in this order: D(k), . . . , D(3). For every 3 ≤ t ≤ k,
we assume that there is a linear (k+1)-expression δt such that val(δt) has the following column
properties:

• the vertices from D(3)∪· · ·∪D(t) are exactly the vertices of G−b1,1 that are not of val(δt)

• the vertices of columns t, . . . , k + 1 have label t

• for every 1 < j < t, bt−j+1,j , . . . , bd,j have label j
(these are the vertices of column j that are not in D(3) ∪ · · · ∪D(t)), and

bk,1, . . . , bd,1 have label 1, and bi,1 has label i+ 2 for every t ≤ i < k

(these are the vertices of column 1 that are not in D(3) ∪ · · · ∪D(t)).

Observe that no vertex of val(δt) has label (t + 1), and all other labels are assigned to some
vertex of val(δt). Choosing δk =def α1,k, an expression having the column properties exists for
the case of t = k.

The continuation of the construction begins with δt, and we add b1,t−1. For 4 ≤ t ≤ k, let:

α1,2 =def ρ4→3→2(η4,{1,2,5,...,k+1}(4(b1,2)⊕ δ3))

α1,t−1 =def ρ(t+1)→t→(t−1)(ηt+1,At−1
((t+ 1)(b1,t−1)⊕ δt)) .

Observe about α1,2, . . . , α1,k−1 that b1,t−1 of val(α1,t−1) is the unique vertex with label t, and
label (t+ 1) is not assigned to any vertex of val(α1,t−1). We prove the existence of the claimed
expressions δ3, . . . , δk−1 by adding the remaining diagonal vertices.

Let t be with 3 ≤ t ≤ k, and let i, j be an index pair with 2 ≤ i < k and 1 ≤ j ≤ k − 1 and
i+ j = t. Note that bi,j ∈ D(t). Assume that αi−1,j+1 is already defined and that bi−1,j+1 is the
unique vertex of val(αi−1,j+1) with label t, and no vertex of val(αi−1,j+1) has label (t+ 1), and
val(αi−1,j+1) has the column properties for all other vertices. Then, where j ≥ 3, let:

αi,1 =def ρt→2(ηt+1,A1∪{t+2,...,k+1}∪{t}((t+ 1)(bi,1)⊕ αi−1,2))

αi,2 =def ρ(t+1)→t→3(ηt+1,A2∪{t+2,...,k+1}∪{t}((t+ 1)(bi,2)⊕ αi−1,3))

αi,j =def ρ(t+1)→t→(j+1)(ηt+1,Aj∪{t}((t+ 1)(bi,j)⊕ αi−1,j+1)) .
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Figure 6: The three figures illustrate the construction of Lemma 4.3, using d = 8 and k = 6:
before adding b2,6 in the left-side figure, when adding b2,6 in the middle figure, and when adding
b1,6 in the right-side figure.

Carefully analysing the defined expressions shows that val(αi,1), where i = t−1, has the column
properties, and thus, we can choose δt−1 as αi,1 = αt−1,1.

The final constructed expression is α2,1. It remains to relabel vertices to satisfy the conditions
of the lemma. So, we obtain the desired expression as α =def ρ2→1→3(α2,1) . This completes the
construction and the proof.

Lemma 4.3 (Deep rectangles of size k − 1). Let d and k be integers with d > k > 2, and let
n =def (k−1)d+2. Let G be a (d−1)-path power on n vertices with (d−1)-path layout 〈v1, . . . , vn〉.
Then, G−v1 has a linear (k + 1)-expression α with inactive label 1 such that the following two
conditions are satisfied:

• α = α′(2(vn)⊕ α′′), and label 1 is inactive in α′

• in val(α): vi has label i + 2 for every 2 ≤ i ≤ k − 2 and vk−1, . . . , vd have label 3 and
vd+1, . . . , vn have label 1.

Proof. The construction is very similar to the one from Lemma 4.2. Let 〈bi,j〉1≤j≤k,1≤i≤rj be a
full bubble model for G, where b1,1 = v1 and b1,k = vn−1 and b2,k = vn. By a simple modification
of the first-step construction about the lower-set vertices in the proof of Lemma 4.2, there is a
linear (k + 1)-expression α′′ such that G[V ([val(α′′)])] = [val(α′′)], i.e., α′′ defines the induced
subgraph of G−v1 on the lower-set vertices, and in val(α′′):

• b1,k−1 has label 1, and b2,k−1 has label 2, and b3,k−1, . . . , bd,k−1 have label (k + 1)

• for every 1 ≤ j ≤ k − 2, bk−j,j , . . . , bd,j have label (j + 2).

The result of α′′ is illustrated in the left-side figure of Figure 6. Next, let

α1,k =def ρ(k+1)→1(ρ2→1(η2,k+1(2(b1,k)⊕ ρ2→(k+1)(η2,k+1(2(b2,k)⊕ α′′))))) ,

and the result of α1,k, before applying the last two ρ-operations, is illustrated in the middle and
right-side figure of Figure 6.

The final expression is obtained analogous to the construction for the upper-set vertices in
the proof of Lemma 4.2.
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Figure 7: The figure illustrates the construction of a linear expression for deep rectangles, as it
is defined in the proof of Lemma 4.4. We consider a rectangle of size 5 and of depth 11, and the
value of the parameter k is 7. To construct the expression, the rectangle is partitioned into three
areas, which are indicated in the central figure part by different shades of grey. In a first step,
the vertices of the middle part are created, in a column-wise manner, the columns from right
to left and within a column from bottom to top. A typical situation during the construction
is depicted. In a second step, the vertices of the lower part are created, row-wise from top to
bottom and within a row from left to right. In a third step, the upper-part vertices are created,
by following the diagonals.

Lemma 4.4 (Deep rectangles of size at most k − 2). Let d, k and q be integers with d > k >

k−2 ≥ q ≥ 1, and let n =def qd+k. Let G be a (d−1)-path power on n vertices with (d−1)-path
layout 〈v1, . . . , vn〉. Then, G−v1 has a linear (k+1)-expression α with inactive label 1 such that
the following two conditions are satisfied:

• α begins with δ′ = 3(vn−k+2)⊕ (· · · ⊕ (k + 1)(vn) · · · )

• in val(α): vi has label i+2 for every 2 ≤ i < k and vk, . . . , vd have label 3 and vd+1, . . . , vn
have label 1.

Proof. The construction of the desired expression is similar to the construction of Lemma 4.2
in parts. It is nevertheless more complex due to the requirements about the beginning of the
expression and the value of n. Let 〈bi,j〉1≤j≤s,1≤i≤rj be a full bubble model for G with bi,1 = vi
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for 1 ≤ i < k. Note that s = q + 1 and r1 = · · · = rs−1 = d and rs = k. The major construction
steps are illustrated in the accompanying Figure 7.

We partition the vertex set of G−v1 into three parts: an upper set, a middle set and a
lower set. The three sets are indicated by the three differently shaded areas in Figure 7. The
construction will take the middle-set vertices first, then the lower-set vertices, and then the
upper-set vertices. After the second step, when the middle- and lower-set vertices are added,
the situation will resemble the situation after the first step of the construction for Lemma 4.2.
Again, vertices from the same column will receive the same label, and we will call this label the
“standard label” of the column. For every 1 ≤ j ≤ q+1, let aj =def (k− q)+ j. Since k− q ≥ 2
due to the assumptions of the lemma, a1 ≥ 3 and aq+1 = k + 1. Label aj will be the standard
label for column j.

The first step takes the middle-set vertices, column-wise, from right to left. We define
expressions δi,j . Let δ2,q+1 =def η3,{4,...,k+1}(η4,{5,...,k+1} · · · (ηk,{k+1}(δ

′)) · · · ) , and observe that
[val(δ2,q+1)] is equal to G[{vn−k+2, . . . , vn}], and bk,q+1 = vn has label aq+1 in val(δ2,q+1). Let
j be a column index with 1 ≤ j ≤ q. Note that the vertices of column j in the middle set are
bq−j+3,j , . . . , bk,j . Let i be a row index with q − j + 3 ≤ i ≤ k. We want to add vertex bi,j , and
we assume that an expression δi+1,j for the case of i < k or an expression δq−j+2,j+1 for the case
of i = k is already defined. We assume about val(δi+1,j) or val(δq−j+2,j+1): the non-neighbours
of bi,j have their respective standard label and the neighbours of bi,j have labels 3, . . . , aj+1 − 1.
Then, let

δi,j =def ρ2→3→4→···→aj→aj+1
(η2,{3,...,aj}(2(bi,j)⊕

{

δq−j+2,j+1)) · · · )) , if i = k

δi+1,j)) · · · )) , if i < k .

The final expression for the middle-set vertices is δq+2,1. We list two column properties about
val(δq+2,1):

• for 2 ≤ j ≤ q + 1, the vertices of column j have their standard label aj , and
bq+2,1, . . . , bk−1,1 have label respectively 3, . . . , a1−1, and the other vertices from column 1
have label a1

• no vertex has label 1 or 2.

In case of val(δq+2,1), “the other vertices from column 1” only applies to bk,1. This completes
the construction of the first step and for the middle-set vertices.

For the second step, we consider the vertices from the lower set. The construction is like the
first step of the construction in the proof of Lemma 4.2 in reverse order. It takes the vertices
row-wise top-to-bottom, and within a row from left to right. Let βk,q =def δq+2,1. Let i and j

be indices with k + 1 ≤ i ≤ d and 1 < j ≤ q. Let

βi,1 =def ρ2→a1(η2,{3,...,a1}∪{a2}(2(bi,1)⊕ βi−1,q))

βi,j =def ρ2→aj (η2,{aj ,aj+1}(2(bi,j)⊕ βi,j−1)) .

The final expression for the middle-set and lower-set vertices is βd,q. Observe that [val(βd,q)] is
equal to the subgraph of G−v1 induced by the middle- and lower-set vertices. It is necessary and
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useful to observe that val(βd,q) also has the above listed two column properties. This completes
the construction of the second step.

For the third step, we consider the upper-set vertices. The construction is reminiscent
of the second step of the construction in the proof of Lemma 4.2. Let t be an integer with
3 ≤ t ≤ q + 2, and let i, j be an index pair with 1 ≤ j ≤ q + 1 and 1 ≤ i ≤ q + 1 and i+ j = t.
Let At =def {3, . . . , a1 − 1} ∪ {at, . . . , aq+1}. Note that At = {k − q + t, . . . , k + 1}, for the case
of q = k− 2, or At = {3, . . . , k− q, k− q+ t, . . . , k+1}, for the case of q ≤ k− 3. We define αi,j

so that bi,j in val(αi,j) has label at−1 and val(αi,j) for all the other vertices has the following
column properties:

• vertices from columns t− 1, . . . , q + 1 except bi,j have label 1, and
vertices from columns 2, . . . , t− 2 have their respective standard labels a2, . . . , at−2

• bk,1, . . . , bd,1 have label a1, and bt,1, . . . , bk−1,1 have pairwise different labels from At.

Let αq+2,1 =def βd,q. With j ≥ 3, let

α1,2 =def ρ2→a2→1(η2,A3∪{a1,a2}(2(b1,2)⊕ α3,1))

α1,j =def ρ2→aj→1(η2,{aj−1,aj}(2(b1,j)⊕ αj+1,1)) .

If q = 1 then α3,1 = βd,q = βd,1, and the construction is (almost) completed. Otherwise, q ≥ 2,
and we add the other vertices of a diagonal. With j ≥ 3 and i ≥ 3 and t ≥ 3 for αt−1,1 and
t ≥ 4 for αt−2,2, let

α2,j =def ρ2→at−1→1(η2,{aj−1,aj ,at−1}(2(b2,j)⊕ α1,j+1))

αi,j =def ρ2→at−1→aj+1
(η2,{aj−1,aj ,at−1}(2(bi,j)⊕ αi−1,j+1))

αt−2,2 =def ρ2→at−1→a3(η2,At∪{a1,a2,at−1}(2(bt−2,2)⊕ αt−3,3))

αt−1,1 =def ρ2→at−1→a2(η2,At∪{a1,at−1}((2(bt−1,1)⊕ αt−2,2)) .

It is straightforward verified that the defined expressions have the requested column properties.
This completes the construction of the third step.

The (almost) final expression for G−v1 is α2,1. With the column properties for α2,1, it is
not difficult to see that α2,1 is indeed a linear (k + 1)-expression for G−v1 with the desired
properties, except for the labels of the vertices from the first column: the vertices b2,1, . . . , bk−1,1

have pairwise different labels, but the assignment may differ from the requested one, and the
vertices bk,1, . . . , bd,k have label a1, which may not be label 3. So, it remains to change these
labels, by using the unassigned label 2. This completes the construction.

4.2 The composition lemma and the upper-bound results

In the preceding subsection, we showed the existence of special linear expressions for path
powers, that relate to shallow and deep rectangles of k-models. In this subsection, we combine
these expressions into expressions for the three types of full bubble models that we defined in
Section 3.
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We begin with a technical result that facilitates the composition of expressions for smaller
graphs into expressions for larger graphs. Let F and H be two (arbitrary) graphs. The union
of F and H is denoted as F + H and is the graph on vertex set V (F ) ∪ V (H) and with edge
set E(F )∪E(H). The disjoint union of two graphs is a special case of the union, where the two
graphs must be vertex-disjoint.

Lemma 4.5. Let k be an integer with k ≥ 1. Let G be a connected graph and let F and H

be induced subgraphs of G such that G = F + H. Let S =def V (F ) ∩ V (H), and assume that
S = {u1, . . . , ur}.

Let δ be a linear k-expression for H, let ℓ1, . . . , ℓr be labels from {1, . . . , k} such that u1, . . . , ur
have label respectively ℓ1, . . . , ℓr in val(δ), and let β be a linear k-expression for F . Assume that
β and δ satisfy the following conditions:

• β = β′(ℓ1(u1)⊕ · · · ⊕ (ℓr−1(ur−1)⊕ ℓr(ur)) · · · ) or
β = β′(ℓ1(u1)⊕ · · · ⊕ (ℓr−1(ur−1)⊕ (ℓr(ur)⊕ β′′)) · · · )

• the vertices from V (H) \ S have label 1 in val(δ)

• label 1 is inactive in β′.

Then, β′(δ) or β′(δ ⊕ β′′) is a k-expression for G, and β′(δ) is a linear k-expression.

Proof. Since δ is a linear k-expression and β′ is an end of a linear k-expression, it is straightfor-
ward to see that β′(δ) is a linear k-expression. Let α =def β

′(δ) or α =def β
′(δ⊕ β′′), depending

on whether β′′ is defined or not. For the following arguments, we will not need to properly
distinguish between the two cases and simply assume the latter case with a possible “empty”
expression β′′. Observe the following simple observations:

• since the vertices from V (H) \ S have label 1 in val(δ), and since label 1 is inactive in β′,
the vertices from V (H) \ S have label 1 in val(α), and
[val(α)][V (H) \ S] = [val(δ)][V (H) \ S] = H \ S

• the vertices of F \ S are not vertices of H, so that
[val(β)][V (F ) \ S] = F \ S and [val(α)][V (F ) \ S] = F \ S

• [val(δ)][S] = H[S] and [val(β)][S] = F [S] and H[S] = G[S] = F [S], and thus,
[val(α)][S] = G[S].

So, [val(α)] coincides with G on the three induced subgraphs G[S], F \S and H\S. In particular,
each vertex of G is a vertex of [val(α)]. It remains to check the edges. It is important to note that
no vertex of F \ S is adjacent to a vertex of H \ S, which is a consequence of the assumptions
of the lemma. So, let u, v be a vertex pair of G with u ∈ S and v 6∈ S. If v is a vertex of
H then uv ∈ E(G) if and only if uv ∈ E(H), if and only if uv ∈ E([val(δ)]), if and only if
uv ∈ E([val(α)]). For the latter equivalence, it is most important to recall that the vertices of
H\S have label 1 in val(δ) and label 1 is inactive in β′. So, non-adjacent vertex pairs ofH cannot
become adjacent through an operation of β′. Similarly, if v is a vertex of F then uv ∈ E(G) if
and only if uv ∈ E(F ), if and only if uv ∈ E([val(β)]), if and only if uv ∈ E([val(α)]). Thus,
[val(α)] = G.
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The set S of Lemma 4.5 is a separator of G. We will prove the main result of this section,
upper bounds on the clique-width and linear clique-width for the three special classes of proper
interval graphs, by splitting the graphs on separators and combining expressions for smaller
graphs into expressions for larger graphs.

We need to distinguish between linear expressions and expressions that may not be linear. We
consider open k-models and analogous models obtained from k-models with small separators.
An open k-model with small separators is obtained from a k-model B by first applying the
vertex deletion about the deep rectangles of size k − 1 and then deleting the first rectangle
of B. Alternatively, we can say that an open k-model with small separators is obtained from
a k-model with small separators by deleting the first rectangle and re-inserting the deleted
vertices bk′+2,b, . . . , bk,b.

Lemma 4.6. Let k be an integer with k ≥ 3. Let G be a proper interval graph on at least two
vertices, and let B = 〈bi,j〉1≤j≤s,1≤i≤rj be a bubble model for G.

1) Assume that B is an open k-model. Then, G−b1,1 has a linear (k + 1)-expression α such
that in val(α): b2,1, . . . , bk−1,1 have label respectively 4, . . . , k + 1 and bk,1, . . . , br1,1 have
label 3 and the other vertices have label 1.

2) Assume that B is an open k-model with small separators and the first rectangle of B is not
a deep rectangle of size k−1. Then, G−b1,1 has a (k+1)-expression α such that in val(α):
b2,1, . . . , bk−1,1 have label respectively 4, . . . , k + 1 and bk,1, . . . , br1,1 have label 3 and the
other vertices have label 1.

3) Assume that B is an open k-model with small separators and the first rectangle of B is a
deep rectangle of size k− 1. Then, G−b1,1 has a (k+ 1)-expression α such that in val(α):
b2,1, . . . , bk−2,1 have label respectively 4, . . . , k and bk−1,1, . . . , br1,1 have label 3 and the other
vertices have label 1.

Proof. We prove the result by induction on the rectangle partition of B. For the proof, we will
distinguish between deep rectangles and rectangles that are not deep. In case of open k-models,
the latter are clearly the shallow rectangles. In case of open k-models with small separators, also
rectangles of size 1 and depth 2 or k − 1 need to be considered. We simplify the proof and the
cases by joining such rectangles. A shallow pseudo-rectangle is the combination of consecutive
rectangles of B that are not deep. We can say that the rectangles between two consecutive
deep rectangles form a shallow pseudo-rectangle. In case of open k-models, the shallow pseudo-
rectangles are the shallow rectangles. In case of open k-models with small separators, a shallow
pseudo-rectangle may be the combination of up to three rectangles of depth at most k. In the
proof, we use some informal terminology, whose meanings should be clear without a proper
definition.

Let 〈B1, . . . ,Bt〉 be the pseudo-rectangle partition of B. Since G has at least two vertices,
t ≥ 2 clearly holds. Let d be the depth of the deep rectangles. If t = 2 then G is a (d− 1)-path
power on kd + 1 vertices, and the desired linear (k + 1)-expression exists due to Lemma 4.2.
Note that the expression is valid for the three cases, and the third case does not apply. We
henceforth assume t ≥ 3. We consider the three cases of the lemma simultaneously and discuss
the differences when they are important.
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We consider B1. Recall that B1 is a deep rectangle or a shallow pseudo-rectangle. Let q be
such that B1 = B[1, q], and let M be the set of the vertices in B1, i.e., M = {b1,1, . . . , brq ,q}.
We apply the induction hypothesis to G \ M in the following way, by distinguishing between
three situations. If B is an open k-model then 〈B2, . . . ,Bt〉 is an open k-model for G \ M . If
B is an open k-model with small separators and B1 is a deep rectangle of size at most k − 2
or a shallow pseudo-rectangle then 〈B2, . . . ,Bt〉 is an open k-model with small separators for
G \ M . And if B is an open k-model with small separators and B1 is a deep rectangle of
size k − 1 then rq+1 = 2, and 〈B2, . . . ,Bt〉 can be obtained from an open k-model with small
separators by deleting vertices from the first column. In all situations, we can apply the induction
hypothesis and obtain appropriate (k + 1)-expressions: there is a (linear) (k + 1)-expression δ

for G \ (M ∪ {b1,q+1}) such that one of the following three is the case in val(δ):

1) b2,q+1 has label 2 and the other vertices have label 1

2) b2,q+1, . . . , bk−1,q+1 have label respectively 4, . . . , k+1 and bk,q+1, . . . , brq+1,q+1 have label 3
and the other vertices have label 1

3) b2,q+1, . . . , bk−2,q+1 have label respectively 4, . . . , k and bk−1,q+1, . . . , brq+1,q+1 have label 3
and the other vertices have label 1.

The second situation is the “standard” situation and directly corresponds to the induction
hypothesis. The first situation is the case if B1 is a deep rectangle of size k − 1, and we obtain
the expression by deleting the unnecessary vertices. The third situation is the case if B2 is a
deep rectangle of size k − 1, in particular, B must be an open k-model with small separators.
Note that B1 is a shallow pseudo-rectangle in the third situation. We distinguish between the
two cases about B1, whether it is a deep rectangle or a shallow pseudo-rectangle.

First case: B1 is a shallow pseudo-rectangle
Note that B2 is a deep rectangle, and a (k+1)-expression δ for G \ (M ∪{b1,q+1) of the required
properties exists due to the induction hypothesis. Recall that δ is a linear (k + 1)-expression if
G \M has an open k-model. Let

δ′ =def ρ2→3→1(η2,{3,...,k+1}(2(b1,q+1)⊕ δ)) ,

which is a (linear) (k + 1)-expression for G \ M such that in val(δ′): b1,q+1, . . . , bk−2,q+1 have
label respectively 3, . . . , k and bk−1,q+1 has label (k+1) or 1 and the other vertices have label 1.

Assume that B2 is a deep rectangle of size k or of size at most k − 2. Note that the
second above situation is the case. Let S =def {b1,q+1, . . . , bk−1,q+1}, and let F =def G[M ∪ S].
The vertices from S have pairwise different labels from {3, . . . , k + 1} in val(δ′) and F is an
induced subgraph of a (k − 1)-path power F ′ on kq + (k − 1) vertices with the (k − 1)-path
layout 〈b1,1, . . . , bk,1, b1,2, . . . , bk,q, b1,q+1, . . . , bk−1,q+1〉 . Observe that V (F ′) ∩ V (G \ M) = S.
We apply Lemma 4.1 to F ′−b1,1 and obtain a linear (k + 1)-expression for F ′−b1,1, and by
applying Lemma 4.5 to F ′ and G \M , we directly conclude the existence of a (linear) (k + 1)-
expression for (F ′−b1,1)+ (G\M) of the desired form. If B1 is a shallow rectangle then F = F ′,
and we can conclude. If B1 is not a shallow rectangle then r1 = 2, and we obtain the desired
(k + 1)-expression by deleting the additional vertices of F ′.
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Assume that B2 is a deep rectangle of size k− 1. Then, the third above situation is the case.
We proceed analogous to the previous case, by choosing S′ =def {b1,q+1, . . . , bk−2,q+1}, and F ′

will be a (k − 1)-path power on qk + (k − 2) vertices.

Second case: B1 is a deep rectangle
Note that B2 is a shallow pseudo-rectangle, and B1 is a deep rectangle of size q. Assume q ≤ k−2.
Then, rq+1 = k−1 or rq+1 = k, and the former is only the case if B2 is a shallow pseudo-rectangle
of size 1 and B3 is a deep rectangle of size k − 1.

Let S =def {b2,q+1, . . . , brq+1,q+1}. Let F ′ be a (d − 1)-path power on qd + k vertices such
that G[M ∪ S] is an induced subgraph of F ′. Observe that F ′ = G[M ∪ S] if rq+1 = k, and F ′

has bk,q+1 as an additional vertex if rq+1 = k−1. We can apply Lemma 4.4 to F ′ and its (d−1)-
path layout 〈b1,1, . . . , bd,1, b1,2, . . . , bd,q, b1,q+1, b2,q+1, . . . , bk,q+1〉 , and by applying Lemma 4.5, we
obtain the desired (linear) (k + 1)-expression for G−b1,1.

Assume that B1 is a deep rectangle of size k − 1, i.e., q = k − 1. Then, rq+1 = 2 must hold,
and G[M ∪ {b1,q+1, b2,q+1}] satisfies the assumptions of Lemma 4.3. Let α = α′(2(b2,q+1)⊕ α′′)
be the linear (k+1)-expression for G[M ∪ {b1,q+1, b2,q+1}]−b1,1 according to Lemma 4.3. Then,
α′(δ ⊕ α′′) is a desired (k + 1)-expression for G−b1,1, that will not be linear.

We have constructed desired (k+1)-expressions for G−b1,1 from (linear) (k+1)-expressions
for induced subgraphs and iteratively combining them through Lemma 4.5. This completes the
proof.

The expressions of Lemma 4.6 will be central in the construction of appropriate expressions
for our considered graph classes, to obtain the upper-bound results. To make the lemma appli-
cable in further cases, we define a basic but useful index transformation on bubble models. We
describe the operation on “right-side open” k-models; the transformation itself is general and is
executable on every bubble model. Let k be an integer with k ≥ 3, and let G be a graph with
a k-model B = 〈bi,j〉1≤j≤s,1≤i≤rj . Let 〈B1, . . . ,Bt〉 be the rectangle partition of B. Note that
Bt−2 is a shallow rectangle of B. Let p, q be such that Bt−2 = B[p, q]. Note that 〈b1,q, . . . , bk,q〉
is column q of B. We consider F =def 〈B1, . . . ,Bt−2〉. Let H be the induced subgraph of G with
bubble model F . We show that H is an induced subgraph of a graph with an open k-model
whose first column begins as 〈bk,q, . . . , b1,q〉. The index transformation on F can be described
in four steps, and the four steps are illustrated in Figure 8. We begin with F and separate the
lower parts of the deep rectangles (step 1) and move these parts above and shift them by one
column to the right (step 2). It is important to observe and straightforward to verify that this
is still a bubble model for H, however it may not be a full bubble model anymore. Next, we
perform a half-circle rotation on the model (step 3), which is also equivalent to a horizontal and
then a vertical flip, and finally, we add new vertices and fix the new rectangle partition, and
obtain an open k-model for a graph that contains H as an induced subgraph (step 4).

Proposition 4.7. Let k be an integer with k ≥ 3. Let G be a proper interval graph.

1) If G has an open k-model then lcwd(G) ≤ k + 1.

2) If G has a short-end k-model then lcwd(G) ≤ k + 1.

3) If G has a k-model with small separators then cwd(G) ≤ k + 1.
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F

Figure 8: Taking a k-model and deleting the last two rectangles represents a graph that is an
induced subgraph of a graph with an open k-model, as the four index transformation steps show.
The two indicated vertices provide points of reference during the transformation.

Proof. We show that appropriate (k + 1)-expressions for G exist, by separately considering
the three different models. If G has an open k-model then the first statement of Lemma 4.6
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Figure 9: A linear (k + 1)-expression for a graph with a short-end k-model is obtained by
extending a linear (k + 1)-expression for a graph with an open (k + 1)-model. The figures
illustrate three intermediate situations during the extension, for the special case of k = 6: the
beginning in the left-side figure, adding the upper-set vertices in the middle figure, and before
adding the lower-set vertices in the right-side figure.

is applicable, and by adding the remaining vertex to the obtained expression, analogous to the
construction of δ′ in the proof of Lemma 4.6, we obtain a linear (k + 1)-expression for G, and
lcwd(G) ≤ k + 1 follows, which proves the first statement of the proposition.

We prove the second statement of the proposition. Let B = 〈bi,j〉1≤j≤s,1≤i≤rj be a short-end
k-model for G, and let 〈B1, . . . ,Bt〉 be the rectangle partition of B. Recall that Bt is a deep
rectangle of size k − 1 and Bt−1 is a shallow rectangle. Let H be the induced subgraph of G
defined by the restriction of B to 〈B1, . . . ,Bt−1〉, and let q =def s − k + 1. Then, 〈b1,q, . . . , bk,q〉
is the last column of Bt−1. Now, recall from the discussion preceding the proposition statement
that H is an induced subgraph of a graph F that has an open k-model F = 〈fi,j〉1≤j≤s′,1≤i≤r′j

such that 〈f1,1, . . . , fk−1,1, fk,1〉 = 〈bk,q, . . . , b2,q, b1,q〉. So, as shown for the first statement of
the proposition, F has a linear (k + 1)-expression δ such that in val(δ): f1,1, . . . , fk−1,1 have
label respectively 3, . . . , k+ 1 and the other vertices have label 1. Thus, H has a linear (k+ 1)-
expression δ′ such that in val(δ′): b2,q, . . . , bk,q have label respectively k+1, . . . , 3 and the other
vertices have label 1. Note that δ′ is obtained from δ simply by deleting the vertices of F that
are not vertices of H.

We extend δ′ by adding the remaining vertices of G. The remaining vertices of G are the
vertices that are not of H, which are the vertices in Bt. It is not difficult to verify that δ′ can
be extended by adding the vertices analogous to the construction of Lemma 4.2 but in reverse
order and neglecting the vertices from the two last columns k and k+1. This can be done using
k+1 labels and keeping label 1 as an inactive label (see Figure 9). We can conclude that G has
a linear (k + 1)-expression, and lcwd(G) ≤ k + 1 follows.

We prove the third statement of the proposition. Let B = 〈bi,j〉1≤j≤s,1≤i≤rj be a k-model
with small separators for G. We choose a column to split B into two parts. If rj ≥ k for every
1 ≤ j < s then let q be smallest possible with 1 ≤ q < s such that rq ≤ k. Otherwise, let q

be smallest possible with 1 ≤ q < s such that rq < k. Recall from the definition of k-models
with small separators that q does exist, especially since B has at least three rectangles. Let
C =def 〈bi,j〉1≤j≤q,1≤i≤rj and D =def 〈bi,j〉q<j≤s,1≤i≤rj . We can say that we split B at column q

into a left side and a right side, i.e., into C and D. Let F and H be the induced subgraphs of
G represented by respectively C and D. It is important to note that D is an open k-model with
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Figure 10: The six situations show the central idea of how to combine two graphs, as it is
done for k-models with small separators in the proof of the third statement of Proposition 4.7.
The numbers represent the labels of the vertices, and the line segments indicate the “closest”
neighbours.

small separators. Thus, H−b1,q+1 has a (k + 1)-expression δ that satisfies the second or third
statement of Lemma 4.6, depending on the size and depth of the first rectangle of D. It is also
important to note that F is an induced subgraph of a graph with an open k-model: since k ≥ 3
and rj ≥ k for every 1 ≤ j < q, the rectangle partition of C has at most one deep rectangle
of size more than k − 2, and this is the first rectangle, and it is of size k − 1. Let k′ =def rq.
Recall that 〈b1,q, . . . , bk′,q〉 is the last column of C, and column q of B, and k′ ≥ 2. Analogous
to the above construction for short-end k-models in the proof of the second statement of the
proposition, F has a (k+1)-expression β such that in val(β): b2,q, . . . , bk′,q have label respectively
k + 1, . . . , k − k′ + 3 and the other vertices have label 1.

Observe that no vertex of val(β) or val(δ) has label 2. Using the available label 2, we assign
new labels to the vertices of val(β) and val(δ). Let a =def ⌊

k′−1
2 ⌋ and a′ =def ⌈

k′−1
2 ⌉. Clearly,

k′ = a+ a′+1. Then, F and H−b1,q+1 have (k+1)-expressions respectively β′ and δ′ such that

• in val(β′):
b2,q, . . . , bk′,q have label respectively 2, . . . , k′ and the other vertices have label 1

• in val(δ′):
b2,q+1, . . . , ba+1,q+1 have label respectively k′ + 1, . . . , k′ + a, if a ≥ 1, and
ba+2,q+1, . . . , bk′−1,q+1 have label respectively a′ + 1, . . . , 3, and
bk′,q+1, . . . , brq+1,q+1 have label 2, and the other vertices have label 1.

Note here that (k′ − 1) − (a + 2) + 1 = k′ − a − 2 = a′ − 1, so that the labels of the vertices
of val(δ′) are well-defined. Also note that k′ + a ≤ (k′ − 1) + ⌊k

′−1
2 ⌋ + 1 ≤ k + 1 due to the

definition of k-models with small separators. The obtained labellings for small values of k′ are
illustrated in Figure 10.

We show that β′⊕ δ′ can be extended into a (k+1)-expression for G. It is important to note
that [val(β′⊕δ′)] is equal to F⊕(H−b1,q+1), and so, it remains to add the missing edges between

28



vertices of F andH−b1,q+1, and the last vertex b1,q+1. It is important to observe that the missing
edges are exactly between vertices from {b2,q, . . . , bk′,q} and {b2,q+1, . . . , bk′−1,q+1}, and between
b1,q+1 and the vertices from {b2,q, . . . , bk′,q}∪{b2,q+1, . . . , bk′−1,q+1}∪{bk′,q+1, . . . , brq+1,q+1}. We
consider the missing edges of the former type. For 2 ≤ i < k′, let di be the label of bi,q+1 in
val(δ′). Our final expression for G−b1,q+1 is:

α =def ηd2,{3,...,k′}(ηd3,{4,...,k′}(· · · ηdk′−1,{k
′}(β

′ ⊕ δ′) · · · )) .

We show that α is a (k + 1)-expression for G−b1,q+1. We first show that the operations are
valid, which means that we need to show that di 6∈ {i+1, . . . , k′} for 2 ≤ i ≤ k′ − 1. If i ≤ a+1
then di ≥ k′ + 1, and if i ≥ a + 2 then di ≤ i, since: di = k′ − i + 2 and a ≤ a′ ≤ a + 1 and
k′ = (a+ 1) + a′ ≤ (i− 1) + (a+ 1) ≤ 2i− 2. So, it remains to show that the added edges are
the correct edges. Since {b2,q, . . . , bk′,q} and {b2,q+1, . . . , bk′−1,q+1} are cliques of F +(H−b1,q+1)
and of G−b1,q+1, it suffices to consider the added edges between vertices of F and of H−b1,q+1.
We consider i with 2 ≤ i < k′ and ηdi,{i+1,...,k′}. If i ≤ a + 1 then bi,q+1 is the unique vertex
of label di in val(β′ ⊕ δ′), and the added edges are exactly the missing edges for bi,q+1. If
a+2 ≤ i ≤ k′− 1 then {i+1, . . . , k′} ⊆ {a+3, . . . , k′}, and since no vertex in val(δ′) has a label
from {a+ 3, . . . , k′}, which particularly follows from a′ + 1 < a+ 3, each added edge is incident
to a vertex of F , and thus, the (newly) added edges are exactly the missing edges for bi,q+1. We
conclude that α is indeed a (k + 1)-expression for G−b1,1.

For the final desired expression for G, it remains to add b1,q+1.

Corollary 4.8. Let k be an integer with k ≥ 3. Let G be a proper interval graph.

1) If G is an induced subgraph of a graph with an open k-model or with a short-end k-model
then lcwd(G) ≤ k + 1.

2) If G is an induced subgraph of a graph with a k-model with small separators then cwd(G) ≤
k + 1.

5 First clique-width lower-bound result

Let k be an integer with k ≥ 3, and let n =def (k−1)(k+1)+2. Observe that (k−1)(k+1)+2 =
k2+1. Let Λk = 〈v1, . . . , vn〉 be a sequence of n pairwise different vertices. The k-path power on
n vertices and with the k-path layout Λk is denoted as Rk. The graph Sk is obtained from Rk by
adding the four new vertices w1, w2, w3, w4 such that NSk

(w1) = {w2} and NSk
(w2) = {w1, v1}

and NSk
(w3) = {vn, w4} and NSk

(w4) = {w3}. An example, of S4, is depicted in Figure 11.
We analyse the supergroup trees for Sk and identify the (k + 1)-supergroup trees for Sk. As a
consequence, we will conclude that the linear clique-width of Sk is at least k + 2. We will also
consider further graphs, that are obtained from Sk by adding a single vertex, and show that
their clique-width is at least k + 2.

Most of our results will focus on the vertices of Rk, and it will be convenient to identify
the vertices of Rk by their names in a bubble model. Let 〈bi,j〉1≤j≤k,1≤i≤rj be a full bubble
model for Rk where b1,1 = v1 and b1,k = vn−1 and b2,k = vn. As an example for such a bubble
model, consider the left-side bubble model of Figure 2, that is a full bubble model for R4. For
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Figure 11: The graphs considered in Section 5 are obtained from k-path powers on k2+1 vertices
by attaching two paths of length 1. The figure shows the obtained graph for the case of k = 4.
The induced subgraph in the shaded area is R4.

1 ≤ j ≤ k− 1, let Kj =def {b1,j , . . . , bk+1,j} and Kk =def {b1,k, b2,k}; these are the vertices in the
columns of the bubble model. Throughout this section, we fix these and the above definitions.
It will be important to observe that the reverse of Λk is also a k-path layout for Rk. This fact
is often referred to by arguing on the “automorphic copy” of Rk or about “automorphically
equivalent” cases.

The approach to determining lower clique-width bounds is by counting maximal groups
and determining the size of supergroup partitions. We begin our analysis by showing a useful
property about the structure of supergroups of subgraphs of Sk. This result slightly extends
a similar result for path powers from [14]. Let X,Y ⊆ V (Sk). We say that Y is full in X if
Y ⊆ X, and we say that Y is empty in X if Y ∩ X = ∅. We say that X has a full maximal
clique of Rk if there is a maximal clique of Rk that is full in X, and we say that X has an empty
maximal clique of Rk if there is a maximal clique of Rk that is empty in X. Recall that the
maximal cliques of Rk are sets of k + 1 vertices that appear consecutively in Λk.

Lemma 5.1 ([14]). Let (B,C) be a partial partition of V (Sk) such that neither B nor C has a
full maximal clique of Rk. Let A be a supergroup of Sk[B] ⊕ Sk[C] containing a vertex of Rk.
Then, A ⊆ B or A ⊆ C, and A is a clique of Rk.

Proof. We repeat and extend the corresponding proof from [14]. Let H =def Sk[B] ⊕ Sk[C].
Suppose for a contradiction that A contains two vertices vp and vq of Rk, where 1 ≤ p < q ≤ n,
that are non-adjacent in H. Due to the supergroup condition of Definition 2.2, vp and vq are
non-adjacent also in Sk, and thus, q − p > k. If 1 ≤ p < k + 1 < n − k < q ≤ n then
{v1, . . . , vk+1} ⊆ B or {v1, . . . , vk+1} ⊆ C and {vn−k, . . . , vn} ⊆ B or {vn−k, . . . , vn} ⊆ C, and
B or C contains a full maximal clique of Rk. It is important to observe for this argument that
vk+1 cannot be adjacent to vq and vn−k cannot be adjacent to vp in Sk, which is the case, since
(n − k) − p ≥ (n − k) − k > k and q − (k + 1) ≥ (n − k + 1) − (k + 1) > k. If k + 1 ≤ p then
{vp−k, . . . , vp} ⊆ B or {vp−k, . . . , vp} ⊆ C, and analogously for q ≤ n− k. So, A ∩ V (Rk) must
be a clique of H, in particular, A ∩ V (Rk) ⊆ B or A ∩ V (Rk) ⊆ C, and it remains to consider
A ∩ {w1, w2, w3, w4}.

Suppose that H has a supergroup {y, z} with y ∈ V (Rk) and z ∈ {w1, w2, w3, w4}. Assume
that y ∈ B. Since every vertex in NRk

(y) \ (B ∪{v1, vn}) s-distinguishes y and z in H, it follows
that NRk

(y)\{v1, vn} ⊆ B, and B has a full maximal clique of Rk, a contradiction. Analogously
for y ∈ C.
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The structural supergroup result of Lemma 5.1 is the starting point of our analysis. We aim
at considering partial partitions without full maximal cliques of Rk, so that we precisely know
the structure of the supergroups. This motivates the next definitions.

Let F be a k-path power on at least k + 1 vertices, and let G be a graph that contains F

as an induced subgraph. Let T be a supergroup tree for G. Let a be an inner node of T with
b and c its children in T . We call a a maximal F -clique split node of T if ΣT (a) has a full
maximal clique of F and neither ΣT (b) nor ΣT (c) has a full maximal clique of F . We can say
that every maximal clique of F in ΣT (a) is split at a, since each maximal clique of F that is full
in ΣT (a) has a vertex in ΣT (b) and has a vertex in ΣT (c). The maximal Rk-clique split nodes
of supergroup trees for Sk describe the situations that we are going to study.

We describe the central properties for maximal clique split nodes. Let T be a supergroup
tree for Sk. Let a be a maximal Rk-clique split node of T with b and c its children in T . Observe
that (ΣT (b),ΣT (c)) is a partial partition of V (Sk) that satisfies the assumptions of Lemma 5.1.
Let H =def Sk[ΣT (b)]⊕ Sk[ΣT (c)]. Let A be a supergroup of H, and assume that A contains a
vertex of Rk. Lemma 5.1 shows the following: A contains only vertices of Rk, i.e., A ⊆ V (Rk),
and A contains no vertex from {w1, w2, w3, w4}, and A ⊆ ΣT (b) or A ⊆ ΣT (c), and A is a clique
of Rk. According to the second and third statement of Lemma 2.3, it follows that A is a group
of Sk[ΣT (b)] or of Sk[ΣT (c)] and of H. So, for analysing T , which mainly means that we need
to determine lower bounds on the size of supergroup partitions, we can focus on the maximal
groups of H. Recall here that the maximal groups of H define a unique partition of ΣT (a).

The main result of this beginning provides a first specification of the situations to study.
The following two results about supergroup trees and maximal groups of path powers are useful
and give already a strong restriction on the cases to consider.

Lemma 5.2 ([14]). Let G be a k-path power on at least 3k+1 vertices. Let T be a t-supergroup
tree for G with t ≥ 1. Assume that T has a maximal G-clique split node a with b and c its
children in T such that ΣT (b) and ΣT (c) have empty maximal cliques of G. Then, t ≥ k + 2.

Lemma 5.3 ([14]). Let B ⊆ V (Rk) be such that B has no full and no empty maximal clique of
Rk. For 1 ≤ j ≤ k − 1, let Lj =def Kj \ {b1,j , b2,j} and Mj =def Kj \ {b1,j}.

1) If Rk[B] has at most k − 1 maximal groups then B ⊆ L1 ∪ · · · ∪ Lk−1 and
(B ∩ L1), . . . , (B ∩ Lk−1) are the maximal groups of Rk[B].

2) If Rk[B]−vn has at most k − 1 maximal groups then B ⊆ M1 ∪ · · · ∪Mk−1 ∪ {vn}.

3) If B has a full clique of size k of Rk then Rk[B] has at least k maximal groups.

Corollary 5.4. Let T be a t-supergroup tree for Sk with t ≥ 1. Then, t ≥ k + 2, or T has a
maximal Rk-clique split node a with b and c its children in T such that ΣT (a) ⊆ V (Rk) and
ΣT (b) has no empty maximal clique of Rk and one of the following cases applies:

1) Sk[ΣT (b)] has exactly k maximal groups and |ΣT (c)| = 1

2) ΣT (b) ⊆
⋃k−1

j=1 Kj \ {b1,j , b2,j}, and
|ΣT (c) ∩ {b1,1, . . . , b1,k}| = 1 and |ΣT (c) ∩ {b2,1, . . . , b2,k}| = 1.
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Proof. Let T ′ be the V (Rk)-reduced supergroup tree of T . Due to Lemma 2.10, T ′ is a
t-supergroup tree for Rk.

By descending from the root node of T , it is not difficult to verify that T has indeed a
maximal Rk-clique split node a. Let b and c be the children of a in T ; let B =def ΣT (b) and
C =def ΣT (c), and let B′ =def B ∩ V (Rk) and C ′ =def C ∩ V (Rk). It is clear that B′ and
C ′ are non-empty, since B′ and C ′ contain vertices from a maximal clique of Rk. Then, there
are nodes a′, b′, c′ of T ′ with b′ and c′ the children of a′ in T ′ such that ΣT ′(b′) = B′ and
ΣT ′(c′) = C ′. Observe that a′ is a maximal Rk-clique split node of T ′. If B′ and C ′ have empty
maximal cliques of Rk then Lemma 5.2 is applicable to T ′, and we conclude t ≥ k + 2. As the
other case, B′ or C ′ has no empty maximal clique of Rk, and we assume that t ≤ k + 1.

Without loss of generality, we assume that B′ has no empty maximal clique of Rk. This
particularly implies that B has no empty maximal clique of Rk. We distinguish between three
cases about the number of maximal groups of Sk[B]. Let H =def Sk[B] ⊕ Sk[C]. Due to
Lemma 5.1, no supergroup of H with a vertex from B′ contains a vertex from C, and no
supergroup of H with a vertex from C ′ contains a vertex from B.

As the first case, assume that Sk[B] has at least k + 1 maximal groups: every supergroup
partition for H has at least k + 1 supergroups with vertices from B and at least one further
supergroup with vertices from C ′, and thus, every supergroup partition for H has size at least
k + 2, which contradicts our assumptions about t.

As the second case, assume that Sk[B] has exactly k maximal groups with vertices from B′:
every supergroup partition for H has at least k+1 supergroups with vertices from B′∪C ′. Since
H has a supergroup partition of size at most k+1, we can apply Lemma 5.1, and (B∪C) ⊆ V (Rk)
must hold. Furthermore, every supergroup partition for H has at most one supergroup with
vertices from C, which means that C is the unique maximal group of Sk[C]. Due to Lemma 5.1,
C is a clique of Rk, so that C ⊆ {vp, . . . , vp+k} for some suitable p. If p ≥ k + 1 then there
is a vertex from {vp−k, . . . , vp−1} that is not in C and s-distinguishes two vertices from C, and
if p ≤ k then p + k ≤ 2k < n − k, and there is a vertex from {vp+k+1, . . . , vp+2k} that s-
distinguishes two vertices from C, both cases yielding a contradicting to C being a supergroup
of H by application of Lemma 2.5. Thus, |C| = 1, and the first case of the corollary applies.

As the third case, assume that Sk[B] has at most k − 1 maximal groups with vertices from
B′. Then, Rk[B

′] has at most k− 1 maximal groups due to Corollary 2.9, and we can apply the
first statement of Lemma 5.3: B′ ⊆ (K1 ∪ · · · ∪Kk−1) \ {b1,1, b2,1, . . . , b1,k−1, b2,k−1} and Rk[B

′]
has exactly k−1 maximal groups and every clique of Rk[B

′] has size at most k−1. Since B′∪C ′

contains a maximal clique of Rk, it directly follows that C ′ contains at least two vertices, in
particular, |C ∩ {b1,1, . . . , b1,k}| ≥ 1 and |C ∩ {b2,1, . . . , b2,k}| ≥ 1.

Analogous to the preceding second case, if Rk[C
′] has exactly one maximal group, i.e., if

C ′ is a group of Rk[C
′], then |C ′| = 1, which is a contradiction. Thus, Rk[C

′] has at least two
maximal groups, and it follows that Sk[C] has at least two maximal groups with vertices of Rk.
So, every supergroup partition for H has at least k+1 supergroups with vertices of Rk, and our
assumptions about t ≤ k+1 and Lemma 5.1 show that Sk[C] has exactly two supergroups with
vertices of Rk and B ∪ C ⊆ V (Rk).

Suppose for a contradiction that |C ∩ {b1,1, . . . , b1,k}| ≥ 2 or |C ∩ {b2,1, . . . , b2,k}| ≥ 2. So,
|C| ≥ 3, and there are 1 ≤ p, q ≤ k such that {b1,p, b2,q} is a supergroup of H. Due to Lemma 5.1,
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{b1,p, b2,q} is a clique of Sk, so that p−1 ≤ q ≤ p. If q = p−1 then b1,p−1 and b2,p may s-distinguish
v1,p and b2,q = b2,p−1, so that {b1,p−1, b2,p−1, b1,p, b2,p} ⊆ C, and {b1,p−1}, {b2,p−1, b1,p}, {b2,p} are
contained in pairwise different maximal groups of Sk[C], which yields a contradiction. If q = p

then either p = 1 and w2 s-distinguishes b1,p = b1,1 = v1 and b2,p = b2,1 = v2 or p = k and
w3 s-distinguishes b1,k = vn−1 and b2,k = vn or 2 ≤ p ≤ k − 1 and b2,p−1 ∈ C and b1,p+1 ∈ C

and {b1,p, b2,p}, {b2,p−1}, {b1,p+1} are contained in pairwise different maximal groups of Sk[C],
yielding contradictions in each case. We conclude that the second case of the corollary applies.

The two cases of Corollary 5.4 are results of different kinds. The second case provides a
strong description of the structure of ΣT (a) and the partial partition of V (Sk) related to the
maximal Rk-clique split node a. Such a precise description of a situation can be used to prove
lower-bound results. The first case is less descriptive, since it eludes immediate consequences
about ΣT (b). The next subsection will deal with this case. As a particular result, we will prove
a structural result about ΣT (b) and we will identify the vertex from ΣT (c).

Before we continue in the next subsection, we end this preliminary part by giving an example
of the challenges and combinatorial complexity to deal with when proving lower clique-width
bounds. We consider the particular case of R3 and analyse supergroup trees for R3 that have
nodes of special properties.

Lemma 5.5. Let T be a t-supergroup tree for R3 with t ≥ 1. Let a be an inner node of T with
b and c its children in T .

Assume that ΣT (a) ⊆ {v2, v3, v4, v5, v6, v7, v8} and ΣT (b) has a full and no empty maximal
clique of R3. Then, v5 ∈ ΣT (b) and t ≥ 5.

Proof. We consider ΣT (b). Since ΣT (b) has a full maximal clique of R3 and ΣT (b) ⊂ ΣT (a) ⊆
{v2, v3, . . . , v8}, there is a largest index d with 5 ≤ d ≤ 8 such that {vd−3, . . . , vd} is a full
maximal clique of R3 in ΣT (b). Note that this particularly means v5 ∈ ΣT (b). By the choice of
d as being largest possible, vd+1 6∈ ΣT (b) directly follows.

We consider five cases about ΣT (b), that we depict in Figure 12, by using the bubble model
representation for R3. The three left-side cases correspond to the values of d with d = 5, d = 6
and d = 7, and the two right-side cases correspond to d = 8 and whether v4 is a vertex in ΣT (b).
In each of the five cases, the maximal groups of R3[ΣT (b)] are identified and indicated by the
rectangles. It turns out that R3[ΣT (b)] has five maximal groups in the second and forth case,
so that every supergroup partition for R3[ΣT (b)]⊕R3[ΣT (c)] has size at least 5, and thus, t ≥ 5
in these two cases.

We consider the other three cases. In each of these cases, R3[ΣT (b)] has four maximal groups.
Note about the first case that v7 or v8 is a vertex in ΣT (b), since otherwise, ΣT (b) would have
an empty maximal clique of R3. Let H =def R3[ΣT (b)]⊕R3[ΣT (c)]. We analyse the sizes of the
supergroup partition for H in the three remaining cases. We suppose for a contradiction that
t ≤ 4 holds, so that H must have a supergroup partition of size at most 4. Recall that R3[ΣT (b)]
has four maximal groups, so that H must have a supergroup for each vertex from ΣT (c) that
contains also a vertex from ΣT (b). We distinguish between two cases about the vertices from
ΣT (c). Let x, y be a vertex pair with x ∈ ΣT (c) and y ∈ ΣT (b) such that {x, y} is a supergroup
of H.

33



Figure 12: Depicted are the five situations, in a bubble model for R3, about R3[B] such that
v5 ∈ B and v1, v9, v10 6∈ B and B has a full and no empty maximal clique of R3. Recall that
v1 = b1,1 and v5 = b1,2 and v10 = b2,3. The grey vertices may or may not be contained in
B. The rectangles indicate the maximal groups in each case. These situations are analysed in
Lemma 5.5.

• Assume x ∈ {v2, v3}.
Since v1 6∈ ΣT (a), y ∈ {v2, v3, v4}, and x and y are adjacent in R3, a contradiction.

• Assume x ∈ {v6, v7, v8}.
Since v9 6∈ ΣT (a), y ∈ {v6, v7, v8}, and x and y are adjacent in R3, a contradiction.

We conclude that H has no supergroup partition of size at most 4, and t ≥ 5 follows.

We briefly interpret the result of Lemma 5.5. Since ΣT (b) has a full maximal clique of R3, a
is not a maximal R3-clique split node of T . So, if T is a 4-supergroup tree for R3 and T has an
inner node a with ΣT (a) ⊆ {v2, v3, v4, v5, v6, v7, v8} and ΣT (a) has a full and no empty maximal
clique of R3 then a must be a maximal R3-clique split node of T . As a final remark, observe
that this latter 4-supergroup tree T for R3 and a can only satisfy the first case of Corollary 5.4.

5.1 Structure and properties of maximal groups

We consider induced subgraphs of Rk. To be more precise, we consider sets B with B ⊆ V (Rk)
and the induced subgraph Rk[B] and study the maximal groups of Rk[B] with respect to Rk.
The main contribution of this subsection will be a precise description of the maximal groups. As
a consequence, we will be able to identify the vertex from ΣT (c) in the first case of Corollary 5.4.

We begin with an auxiliary result. Let B,X ⊆ V (Rk), and assume that X is non-empty. If
B ∩X is non-empty then the top vertex of X in B is the vertex x from B ∩X with x = vp for
an appropriate index p with 1 ≤ p ≤ n such that (B ∩X) ⊆ {vp, . . . , vn}. We can say that the
top vertex of X in B is the vertex from B ∩X with smallest index with respect to Λk. If B ∩X

is empty then X has no top vertex in B. Top vertices can be used to prove lower bounds on the
number of maximal groups and to determine the structure of maximal groups. The auxiliary
result about top vertices is an extention of an analogous result from [14], and we repeat and
exend the proof from [14] for the sake of completeness.

Lemma 5.6 ([14]). Let B ⊆ V (Rk) be such that B has no full maximal clique of Rk. The top
vertices of K1, . . . ,Kk in B appear in pairwise different maximal groups of Rk[B].

Proof. We apply Lemmas 2.5 and 2.3. Let 1 ≤ i < j ≤ k − 1, assume that B ∩ Ki and
B ∩Kj are non-empty, and we consider the top vertices of Ki and Kj in B. If b1,i 6∈ B then b1,i
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s-distinguishes the top vertices of Ki and Kj . If b1,i ∈ B then b1,i is the top vertex of Ki, and
then, each vertex from Kj \ B s-distinguishes b1,i and the top vertex of Kj . Recall that B has
no full maximal clique of Rk, so that Kj 6⊆ B.

We consider Kk. Let 1 ≤ i ≤ k − 1, and assume that B ∩ Ki and B ∩ Kk are non-empty.
If i ≤ k − 2 then each vertex from Ki \ B s-distinguishes the top vertices of Ki and Kk. If
i = k − 1 and b1,k−1 6∈ B then b1,k−1 s-distinguishes the top vertices of Kk−1 and Kk. Finally,
if i = k − 1 and b1,k−1 ∈ B and b1,k−1 and a vertex from Kk ∩ B form a group of Rk[B] and
{b2,k−2, . . . , bk+1,k−1} ⊆ B then B has a full maximal clique of Rk, a contradiction, so that
{b2,k−2, . . . , bk+1,k−2} \B is non-emtpy and contains a vertex that s-distinguishes b1,k−1 and the
vertex from Kk ∩B.

Our second result helps to describe the maximal groups of special induced subgraphs of Rk.
Let 〈d1, . . . , dr〉 be an index sequence with 1 ≤ d1 < · · · < dr ≤ n such that the following three
conditions are satisfied: (1) d1 ≤ k, and (2) n− k + 1 ≤ dr, and (3) di + k ≤ di+1 ≤ di + k + 1
for every 1 ≤ i < r. We call 〈d1, . . . , dr〉 a long step index sequence. Observe that r ≤ k + 1,
and if r = k + 1 then di+1 = di + k for every 1 ≤ i < r. We call 〈d1, . . . , dr〉 a forward long step
index sequence if d1 = 1, and we call 〈d1, . . . , dr〉 a backward long step index sequence if dr = n

For B ⊆ V (Rk), an index sequence 〈d1, . . . , dr〉 is B-empty if B ∩ {vd1 , . . . , vdr} = ∅. We are
interested in empty forward and backward long step index sequences.

Lemma 5.7. Let B ⊆ V (Rk). Let 〈d1, . . . , dr〉 be a B-empty forward long step index sequence.
For every 1 ≤ i < r, let Ai =def B ∩ {vj : di ≤ j ≤ di+1} and let Ar =def B ∩ {vdr , . . . , vn}.

1) Every group of Rk[B] is a subset of one of A1, . . . , Ar.

2) Assume that dr = n− 1. Let 1 ≤ l ≤ r. Assume that l ≤ r − 2 or Ar = ∅.
Every group of Rk[B ∪ {vdl}] is a subset of one of A1, . . . , Ar, {vdl}.

3) Assume that dr = n. Let 1 ≤ l ≤ r.
If 1 < l < r then every group of Rk[B ∪ {vdl}] is a subset of one of A1, . . . , Ar−1, {vdl}.
If l = 1 then every group of Rk[B ∪ {v1}] is a subset of one of A1 ∪ {v1}, A2, . . . , Ar−1.
If l = r then every group of Rk[B ∪ {vn}] is a subset of one of A1, . . . , Ar−2, Ar−1 ∪ {vn}.

Proof. We prove the first statement. Observe that A1, . . . , Ar are pairwise disjoint. Recall
that NRk

(v1) = {v2, . . . , vk+1}. Since k + 1 ≤ d2 ≤ k + 2, it follows that B ∩ NRk
(v1) = A1.

Analogously, B ∩ NRk
(vdi) = Ai−1 ∪ Ai for every 1 < i ≤ r. Since {vd1 , . . . , vdr} is empty in

B, every group of Rk[B] is a subset of B ∩NRk
(vdi) or B \NRk

(vdi) for every 1 ≤ i ≤ r. The
overlap structure of (B ∩NRk

(vd1)), (B ∩NRk
(vd2)), . . . , (B ∩NRk

(vdr)) shows the result of the
first statement.

For the proof of the second and third statement, we first consider the groups of Rk[B∪{vdl}]
that do not contain vdl . Let u, v be a vertex pair from B, and assume that w is a vertex that
s-distinguishes u and v in Rk[B]. If w 6= vdl then w s-distinguishes u and v also in Rk[B∪{vdl}].
So, let w = vdl , and we may assume u ∈ NRk

(vdl) and v 6∈ NRk
(vdl). Let p and q be such that

u ∈ Ap and v ∈ Aq. Note that l − 1 ≤ p ≤ l and that 1 ≤ q ≤ l − 2 or l + 1 ≤ q ≤ r. We
distinguish between three cases.
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• q ≤ l − 2

Then, q < p, and vdq is adjacent to v and non-adjacent to u in Rk, and
vdq s-distinguishes u and v in Rk[B ∪ {vdl}].

• p < q − 1 < q

Then, NRk
(vdq) ∩B = Aq−1 ∪Aq, and v ∈ NRk

(vdq) and u 6∈ NRk
(vdq), and

vdq also s-distinguishes u and v in Rk[B ∪ {vdl}].

• l + 1 ≤ q and q ≤ p+ 1, which means p = l and q = l + 1

If q < r then vdq+1
s-distinguishes u and v in Rk[B ∪ {vdl}].

If q = r then p = l = r−1, and u ∈ Ar−1 and v ∈ Ar must hold. In particular, Ar 6= ∅. This
contradicts dr = n of the third statement and the assumptions of the second statement,
so that q = r is in fact not possible.

It follows that every group of Rk[B ∪ {vdl}] that does not contain vdl is a group of Rk[B], and
we conclude according to the first statement.

Let D be the maximal group of Rk[B ∪ {vdl}] containing vdl . For the second statement,
observe that dr = n − 1 implies di+1 = di + k + 1 for every 1 ≤ i < r. It follows that vdl
is the only vertex of Rk[B ∪ {vdl}] without a non-visible neighbour from {vd1 , . . . , vdr} \ {vdl}
in Rk[B ∪ {vdl}], so that D = {vdl}. For the third statement, observe that dr = n implies
di+1 = di + k for every 1 ≤ i < r. If 1 < l < r then {vdl} = NRk

(vdl−1
) ∩ NRk

(vdl+1
),

and D = {vdl}. If l = 1 then vd2 = vk+1 is the unique non-visible neighbour of vd1 from
{vd2 , . . . , vdr}, and D ⊆ A1 ∪ {v1}, and if l = r then D ⊆ Ar−1 ∪ {vn}.

We will use empty long step index sequences to identify the maximal groups of induced
subgraphs of Rk by applying Lemma 5.7. It remains to prove that such index sequences actually
exist. And we even want to apply the second and third statement of Lemma 5.7, so that we
need to prove the existence of “nice” empty long step index sequences. We do this by the two
next results, that are strong results about the structure of maximal groups of special induced
subgraphs of Rk.

Lemma 5.8. Let B ⊆ V (Rk) be such that B has no full and no empty maximal clique of Rk

and v1, vn 6∈ B. If Rk[B] has at most k maximal groups then there is a B-empty backward long
step index sequence or B ∩ {b1,j : 1 ≤ j ≤ k} = ∅.

Proof. For 1 ≤ j ≤ k, let ∆j =def {b1,j , b2,j}. If B ∩ (∆2 ∪ · · · ∪∆k) = ∅ then the claim of the
lemma directly follows. Recall here that v1 6∈ B by the assumptions of the lemma, and b1,1 = v1.
Otherwise, there is a largest index t with 2 ≤ t ≤ k such that B ∩∆t 6= ∅.

Let Φ be the set of the top vertices of K1, . . . ,Kk in B. Since B has no empty maximal
clique of Rk, (B ∩ K1), . . . , (B ∩ Kk−1) are non-empty, and thus, k − 1 ≤ |Φ| ≤ k, depending
on whether (B ∩Kk) is empty or not. Due to Lemma 5.6, the vertices in Φ appear in pairwise
different maximal groups of Rk[B]. If |Φ| = k then each maximal group of Rk[B] contains a
vertex from Φ, and if |Φ| = k − 1 then there is at most one maximal group of Rk[B] without a
vertex from Φ. We will use the vertices from Φ to identify the maximal groups of Rk[B].

We are going to prove the lemma by induction. First, we prove two claims, for the induction
base.
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Claim 1. One of the three cases applies:

1) B ∩ {b1,1, . . . , b1,k} = ∅

2) t = k, and there are ck−1, ck with ck = 2 and 2 ≤ ck−1 ≤ 3 such that
B ∩ {bck−1,k−1, bck,k} = ∅

3) t < k, and there are ct, . . . , ck with ct = · · · = ck = 2 such that B ∩ {bct,t, . . . , bck,k} = ∅
and (B ∩Kt) \∆t is the unique maximal group of Rk[B] without a vertex from Φ.

Proof of claim. We distinguish between two cases. For the first case, we assume that b1,k ∈ B.
Note that this means t = k, and observe that |Φ| = k. So, every maximal group of Rk[B]
contains a vertex from Φ. Suppose for a contradiction that {b2,k−1, b3,k−1} ⊆ B. Note that b2,k
s-distinguishes b2,k−1 and b3,k−1. Let A be the maximal group of Rk[B] containing b3,k−1. Since
b2,k is a non-visible neighbour of b3,k−1 in Rk[B], it directly follows that A ⊆ NRk

(b2,k). Since A
must contain a vertex from Φ, this vertex can only be b1,k. Therefore, {b3,k−1, b1,k} is a group
of Rk[B]. Thus, {b4,k−2, . . . , bk+1,k−2, b1,k−1, b2,k−1} ⊆ B, so that B has a full maximal clique of
Rk, a contradiction. Thus, ck−1 and ck exist so that the second case applies.

Now, we assume that b1,k 6∈ B. Note that this means B ∩∆k = ∅, and so, t < k. Recall that
|Φ| = k−1. Also note that B∩(∆t+1∪· · ·∪∆k) = ∅ implies that B∩Kj for every t < j < k is the
union of maximal groups of Rk[B]. If B∩{b3,t, . . . , bk+1,t} = ∅ then {b3,t, . . . , bk+1,t, b1,t+1, b2,t+1}
is an empty maximal clique of Rk in B, which does not exist by our assumptions. Thus,
(B ∩Kt) \∆t 6= ∅. According to the choice of t, B ∩∆t 6= ∅, and thus, the top vertex of Kt in B

is from ∆t. And since b2,t+1 6∈ B, it follows that (B ∩Kt) \∆t is the union of maximal groups
of Rk[B], and none of these maximal groups contains a vertex from Φ, so that (B ∩ Kt) \ ∆t

must in fact be the unique maximal group of Rk[B] without a vertex from Φ. It directly follows
that (B ∩ Kt+1), . . . , (B ∩ Kk−1) are maximal groups of Rk[B]. If b2,t 6∈ B then we choose
ct =def · · · =def ck =def 2, and the third case applies.

As the other case, we assume that b2,t ∈ B. If b1,t ∈ B then b1,t is the top vertex of Kt in
B, and since B ∩∆t+1 = ∅, {b2,t} would be a maximal group of Rk[B] without a vertex from Φ,
a contradiction. Thus, b1,t 6∈ B, and {b2,t} is a maximal group of Rk[B]. If t = 2 then we can
conclude that the first case of the claim applies. Otherwise, t ≥ 3. Let A be a maximal group of
Rk[B] containing a vertex from {b2,t−1, . . . , bk+1,t−1}. Recall that B ∩ {b2,t−1, . . . , bk+1,t−1} = ∅
would mean that {b2,t−1, . . . , bk+1,t−1, b1,t} is an empty maximal clique of Rk in B. Observe
that b1,t is a non-visible neighbour of some vertex in A, so in fact of all vertices in A, so
that A ⊆ NRk

(b1,t), and therefore, A ⊆ B ∩ {b2,t−1, . . . , bk+1,t−1}. Also recall that A must
contain a vertex from Φ, which will be the top vertex of Kt−1 in B, and this means b1,t−1 6∈ B.
So, A = B ∩ Kt−1. We can repeatedly apply this argument and see that b1,t 6∈ B implies
b1,1, . . . , b1,t 6∈ B, so that the first case of the claim applies.

Claim 1 proves our induction base. If the first case of the claim applies then we can already
conclude the lemma. So, we assume that the first case does not apply, and therefore, the second
or third case of the claim applies. For the induction step, we assume that at least two indices
of a suitable index sequence have already been determined, and we show that the next index in
the sequence can be found.
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Claim 2. Let j be with 2 ≤ j ≤ k − 1 and j ≤ t.
Let c and c′ be with 2 ≤ c′ ≤ c ≤ k and c − 1 ≤ c′. Assume that j = t implies c′ = 2. Also
assume that bc,j , bc′,j+1 6∈ B. Then, {bc,j−1, bc+1,j−1} 6⊆ B.

Proof of claim. Suppose for a contradiction that {bc,j−1, bc+1,j−1} ⊆ B. Let A be the maximal
group of Rk[B] containing bc+1,j−1. If |Φ| = k then A contains a vertex from Φ, and if |Φ| = k−1
then A also contains a vertex from Φ, since A 6= (B∩Kt)\∆t. Since bc,j is a non-visible neighbour
of bc+1,j−1 in Rk[B], it follows that A ⊆ NRk

(bc,j). Thus, A contains the top vertex of Kj in B.
If b1,j−1 6∈ B then b1,j−1 s-distinguishes bc+1,j−1 and the top vertex of Kj , a contradiction, so
that b1,j−1 ∈ B must hold. Since b1,1 = v1 and v1 6∈ B, this implies j − 1 ≥ 2 and k ≥ 4, so that
Claim 2 is already proved for the case of k = 3. Note that b1,j−1 is the top vertex of Kj−1 in B.

If bc−1,j 6∈ B then bc−1,j , bc,j 6∈ B and {bc,j−1} is a maximal group of Rk[B], that contains
no vertex from Φ, which is not possible, so that bc−1,j ∈ B must hold. Let A′ be the maximal
group of Rk[B] containing bc−1,j . Note that A′ 6= (B ∩Kt) \∆t, which is obvious for j < t, and
if j = t then c− 1 ≤ 2 and therefore bc−1,j ∈ ∆t. Thus, A

′ contains a vertex from Φ.
Observe that A′ ⊆ NRk

(bc,j), and since bc−1,j and bc′,j+1 are non-adjacent in Rk, A
′ cannot

contain neighbours of bc′,j+1, and thus, A′ ⊆ Kj−1 ∪Kj . Furthermore, b1,j−1 is the top vertex
of Kj−1 in B, and we conclude that A′ contains the top vertex of Kj in B, and since also A

contains the top vertex of Kj in B, we obtain A = A′. In particular, {bc+1,j−1, bc−1,j} is a group
of Rk[B], and since j ≥ 3,

{bc+2,j−2, . . . , bk+1,j−2} ∪ {b1,j−1, . . . , bc−1,j−1} ∪ {bc,j−1, bc+1,j−1} ⊆ B ,

and B has a full maximal clique of Rk, a contradiction.

So, by repeatedly applying Claim 2 to already defined ck−1, ck or ct, . . . , ck from Claim 1, we
conclude that there are ck, . . . , c1 with 2 ≤ ck ≤ · · · ≤ c1 ≤ k+1 such that B∩{bc1,1, . . . , bck,k} =
∅. It remains to observe that there is a backward long step index sequence 〈d1, . . . , dk〉 or
〈d0, d1, . . . , dk〉 with vdi = bci,i for every 1 ≤ i ≤ k and d0 = 1.

Corollary 5.9. Let B ⊆ V (Rk) be such that B has no full and no empty maximal clique of Rk

and B has a full clique of size k of Rk and v1, vn 6∈ B and Rk[B] has at most k maximal groups.
Then, one of the following three cases applies:

1) B ∩ {b1,j : 1 ≤ j ≤ k} = ∅

2) B ∩ {b2,j : 1 ≤ j ≤ k} = ∅

3) B ∩ {vi·k+1 : 0 ≤ i ≤ k} = ∅.

Proof. For 0 ≤ i ≤ k, let ci =def ik + 1. If 〈c0, . . . , ck〉 is a B-empty forward long step index
sequence then the third case applies. For a contradiction, we suppose that none of the three cases
applies. This particularly means for 〈c0, . . . , ck〉 that there are a smallest and largest index p

and q so that vcp ∈ B and vcq ∈ B, and clearly, 0 < p ≤ q < k. We will obtain the contradiction
by showing that B cannot have a full clique of size k of Rk under these assumptions.

We apply Lemma 5.8 to Rk[B] and the automorphic copy of Rk[B]: since the first and second
case of the corollary do not apply by our assumptions, there are B-empty forward and backward
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 13: The four figures illustrate the result of Corollary 5.9 and the proof of it, when
applied to R3[B]. On the top, we consider B = {v2, v3, v5, v6, v8, v9}, and 〈1, 4, 7, 10〉 is a
B-empty forward long step index sequence. The three below situations consider sets B for
B ⊆ {v2, . . . , v9} where v4 6∈ B or v7 6∈ B. In these three situations, none of the three cases of
Corollary 5.9 applies, and B does not have a full clique of size 3 of Rk.

long step index sequences 〈e0, . . . , ek−1〉 and 〈d1, . . . , dk〉, respectively. Note that ek−1 < n and
d1 > 1. Also note that ci ≤ ei for every 0 ≤ i ≤ k − 1 and di ≤ ci for every 1 ≤ i ≤ k. And
since vcp ∈ B and vcq ∈ B, it follows that cp < ep and dq < cq, and therefore ci < ei for every
p ≤ i ≤ k − 1 and di < ci for every 1 ≤ i ≤ q. Thus, di < ei for every 1 ≤ i ≤ k − 1. We extend
this inequality to ei−1 < di < ei < di+1 for every 1 ≤ i ≤ k − 1, by observing for 1 ≤ i ≤ k:

ci−1 ≤ ei−1 ≤ ci−1 + (i− 1) and ci−1 + i = ci − (k − i) ≤ di ≤ ci ,

so that indeed ei−1 < di.
We prove the contradiction. Let M be a maximal clique of Rk. Then, there is an index a

with 1 ≤ a ≤ n − k such that M = {vi : a ≤ i ≤ a + k}. Recall that the vertices of maximal
cliques of Rk appear consecutively in Λk. Since e0 = 1 and dk = n, there is an index s with
0 ≤ s ≤ k−2 such that es ≤ a < ds+1 or ds+1 ≤ a < es+1. Since ek−1 ≥ n−k+1, a < ek−1 must
hold. If es ≤ a < ds+1 then, with ds+1 < es+1 ≤ es + (k+1), it follows that {ves , vds+1

} ⊆ M or
{vds+1

, ves+1
} ⊆ M , and thus, |M ∩ {vd1 , . . . , vdk , ve0 , . . . , vek−1

}| ≥ 2. If ds+1 ≤ a < es+1 then
{vds+1

, ves+1
} ⊆ M or {ves+1

, vds+2
} ⊆ M , and |M ∩{vd1 , . . . , vdk , ve0 , . . . , vek−1

}| ≥ 2. It directly
follows with the assumption about B that |M ∩ B| ≤ k − 1, and thus, B has no full clique of
size k of Rk that is a subset of M . We conclude that B has no full clique of size k of Rk, the
desired contradiction.

The result of Corollary 5.9 is our major technical tool, that provides a good description of the
maximal groups. To illustrate the deduction of the contradiction in the proof of Corollary 5.9,
consider the four situations of Figure 13 for the smallest case of R3[B]. The top situation
illustrates the case when 〈1, 4, 7, 10〉 is a B-empty forward long step index sequence. The three
other cases illustrate the possible situations when 〈1, 4, 7, 10〉 and 〈1, 5, 9〉 and 〈2, 6, 10〉 are not
B-empty long step index sequences, the situations that are proved to imply the contradiction.
For the three situations, it is easy to check that B does not have a full clique of size 3 of Rk.

39



Figure 14: The two figures illustrate the situations in S5 when the bubbles corresponding to the
vertices in respectively Ψ and Ψ′ are empty. It is important to note that the two situations are
automorphically equivalent.

5.2 First part of analysis of supergroup trees

We are going to analyse supergroup trees and classify them according to their maximal Rk-
clique split nodes. In this subsection, we consider supergroup trees whose maximal Rk-clique
split nodes are in accordance with the first or second case of Corollary 5.9. We define two sets
of vertices:

Ψ =def {b1,j : 1 ≤ j ≤ k} ∪ {w3}

Ψ′ =def {b2,j : 1 ≤ j ≤ k} ∪ {w2} .

We are going to study partial partitions (B,C) of V (Sk) such that B ∩ Ψ = ∅ or B ∩ Ψ′ = ∅
and corresponding supergroup trees. For an illustration of the two situations, consider the two
bubble models of Figure 14: the empty bubbles represent the vertices from respectively Ψ and
Ψ′, so that B will be a set of the remaining vertices. Since Ψ and Ψ′ are automorphically
equivalent, the cases of B∩Ψ = ∅ and B∩Ψ′ = ∅ are automorphically equivalent, and it suffices
to consider only one of the two situations in fact. We will therefore concentrate on Ψ. The
main result of this section is a classification of the (k + 1)-supergroup trees for Sk that have a
maximal Rk-clique split node corresponding to Ψ.

We analyse the supergroup trees mainly by determining lower bounds on the size of super-
group partitions. For determining such lower bounds, we will study partial partitions (B,C) of
V (Sk) so that Sk[B] has at least k + 1 maximal groups. Since no supergroup of Sk[B] ⊕ Sk[C]
can contain vertices from different maximal groups of Sk[B] due to Lemma 2.3, the size of every
supergroup partition for Sk[B]⊕ Sk[C] is at least the number of maximal groups of Sk[B]. So,
if Sk[B] has k+1 maximal groups and Sk[B]⊕Sk[C] has a supergroup partition of size at most
k+1 then every vertex from C must be in a supergroup with a vertex from B. In our analyses,
we will use this observation to capture and catch the situations. Let y be a vertex from C. For
z a vertex from B, we call {y, z} a y-cac supergroup of Sk[B]⊕Sk[C] if {y, z} is a supergroup of
Sk[B]⊕ Sk[C] and z ∈ V (Rk).

Lemma 5.10. Let (B,C) be a partial partition of V (Sk), and assume that B has no empty
maximal clique of Rk. Let H =def Sk[B]⊕ Sk[C]. Let y be a vertex from C ∩ V (Rk). If H has
a y-cac supergroup then y ∈ {v1, . . . , vk} or y ∈ {vn−k+1, . . . , vn}.

Proof. Let z be a vertex from B ∩ V (Rk) and assume that {y, z} is a supergroup of H. Let
p, q be the indices with 1 ≤ p, q ≤ n such that y = vp and z = vq. Since y and z must be

40



Figure 15: The four bubble models for S4 represent the analysed situations. The analysed
situations rely on properties about S4[B] for B ⊆ V (S4), and it is distinguished between b2,k ∈ B,
which is the case in the left-side figure, and b2,k 6∈ B, which is the case in the three right-side
figures. In all figures, an empty bubble for vertex x means x 6∈ B, if vertex x is black then
x ∈ B, and if vertex x is grey then x ∈ B or x 6∈ B. The rectangles indicate unions of maximal
groups of R4[B ∩ V (R4)].

non-adjacent in Sk, it holds that |p− q| ≥ k + 1. Assume that p < q. If k < p < p+ k < q then
each vertex from {vp−k, . . . , vp−1} may s-distinguish y and z in H, so that {vp−k, . . . , vp−1} ⊆ C

must hold. However, {vp−k, . . . , vp} is a maximal clique of Rk, so that C has a full maximal
clique of Rk, and therefore, B has an empty maximal clique of Rk, a contradiction. Thus, p ≤ k,
which means that y ∈ {v1, . . . , vk}.

The other case, when q < p, analogously implies y ∈ {vn−k+1, . . . , vn}.

We will apply Lemma 5.10 to learn about the vertices that are contained in C. Let (B,C) be a
partial partition of V (Sk) that satisfies the assumptions of the lemma. Let H =def Sk[B]⊕Sk[C].
We will apply the result only in case that every vertex from C has a cac supergroup in H. Recall
that {v1, . . . , vk} = {b1,1, . . . , bk,1} and {vn−k+1, . . . , vn} = {b4,k−1, . . . , b2,k}. It follows that C

has this form: C ⊆ {b1,1, . . . , bk,1}∪{b4,k−1, . . . , b2,k}∪{w1, w2, w3, w4}. As a direct consequence
for our coming proofs, it suffices to consider only very special vertices to obtain desired results.

We are going to analyse the supergroup trees for Sk that correspond to Ψ. We consider partial
partitions of very restricted form and determine the sizes of compatible supergroup partitions.
Before we begin with the formal analysis, we briefly describe the analysed situations with an
example about S4. Consider the bubble models for S4 in Figure 15. The four figures describe
different sets B, subsets of V (S4), where B ∩Ψ = ∅. The left-side figure represents sets B that
contain vertex b2,k. By the result of Lemma 5.7, the groups of S4[B] containing only vertices of
R4 respect the columns. The three other figures represent the possible situations when b2,k is
not a vertex from B. We analyse these situations in Lemma 5.12, for the case when b2,k 6∈ B,
and Lemma 5.13, for the case when b2,k ∈ B. The main consequence of these results about Ψ
will be given in Corollary 5.14.

We begin with an auxiliary result about b1,1-cac supergroups.

Lemma 5.11. Let (B,C) be a partial partition of V (Sk), and assume that B has no empty
maximal clique of Rk and |B∩Ψ∩V (Rk)| = 1 and b1,1 ∈ C. Let H =def Sk[B]⊕Sk[C]. Assume
that H has an x-cac supergroup for every vertex x from C. Then, w1 ∈ C, and {b1,1, b1,2} and
{w1, b1,2} are the unique b1,1-cac and w1-cac supergroups of H.

Proof. Since B has no empty maximal clique of Rk, B ∩ K1 is non-empty, and the vertices
in B ∩K1 are non-visible neighbours of b1,1 in H. Let {b1,1, z} be a b1,1-cac supergroup of H.
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Then, z ∈ K1 ∪K2, and since b1,1 and z must be non-adjacent in Sk, z ∈ K2 follows. If b1,2 6∈ B

then b1,2 s-distinguishes b1,1 and z, and H has no b1,1-cac supergroup, so that b1,2 ∈ B must
hold. Recall that b1,2 ∈ Ψ, so that |B∩Ψ∩V (Rk)| = 1 by the assumptions of the lemma implies
B ∩Ψ ∩ V (Rk) = {b1,2}, and it follows that b1,3 6∈ B, and thus, b1,3 s-distinguishes b1,1 and the
vertices from {b2,2, . . . , bk+1,2}, so that z = b1,2 must hold. We conclude that {b1,1, b1,2} is the
only b1,1-cac supergroup of H.

Next, observe that w2 6∈ C means that w2 s-distinguishes b1,1 and b1,2 in H, so that w2 ∈ C.
If w1 6∈ C then w1 s-distinguishes w2 and each vertex from B, and H cannot have a w2-cac
supergroup, a contradiction, so that w1 ∈ C. Let {w1, z

′} be a w1-cac supergroup of H. Since
B ∩Ψ ∩ V (Rk) = {b1,2}, it follows that each vertex from (B \ {b1,2}) ∩ V (Rk) has a non-visible
neighbour from V (Rk) in H, so that z′ 6∈ (B \ {b1,2}), and thus, z′ = b1,2 must hold, and we
conclude that {w1, b1,2} is the only w1-cac supergroup of H.

Let (B,C) be a partial partition of V (Sk), and let H =def Sk[B]⊕Sk[C]. Assume that Sk[B]
has at least k + 1 maximal groups. Then, every supergroup partition for H has size more than
k + 1 or every maximal group of Sk[B] is contained in exactly one supergroup of the partition.
In the latter case, we can say that the supergroups in the supergroup partition do not “split”
the maximal groups of Sk[B]. We use this observation for the following notion, that we slightly
extend to sets of vertices of H. Let A ⊆ B ∪C. We say that A is a non-splittable supergroup of
H if for every supergroup partition {A1, . . . , Ar} for H of size at most k + 1, there is 1 ≤ i ≤ r

such that A ⊆ Ai. Of course, if Sk[B] has at least k+1 maximal groups and H has a supergroup
partition of size at most k + 1 then Sk[B] has exactly k + 1 maximal groups and each group of
Sk[B] is a non-splittable supergroup of H. The non-splittable supergroup notion is particularly
interesting for supergroups containing vertices from B and from C.

As the first case, we consider sets that do not contain b2,k. We show for a t-supergroup tree
for Sk that t ≥ k + 2 or T has a node satisfying a very special condition, that we call the limit.
Let (B,C) be a partial partition of V (Sk). We say that (B,C) satisfies the limit condition if
the following is satisfied:

• Rk[B ∩ V (Rk)] has exactly k + 1 maximal groups

• B ∩Ψ = {b1,k−1} and {b2,k, w3, w4} ⊆ C, and
if k = 3 then B \ {w1, w2} = {b2,1, b3,1, b4,1, b1,2, b2,2, b3,2, b4,2}

• {bk−1,1, bk+1,1} and {b2,k−1, b2,k} are non-splittable supergroups of Sk[B]⊕ Sk[C].

We will later see that the limit condition precisely describes the (k+1)-supergroup trees for Sk.

Lemma 5.12. Let h be an integer with 1 ≤ h ≤ k − 1 and let Φ =def {b2,j : h < j ≤ k}. Let
B ⊆ V (Sk), and assume that B ∩ (Ψ∪Φ) = ∅ and b2,h ∈ B and B has no empty maximal clique
of Rk. Let x ∈ Ψ ∩ V (Rk).

Let T be a t-supergroup tree for Sk with t ≥ 1. Assume that T has an inner node a with b

and c its children in T such that ΣT (b) = B ∪ {x} and ΣT (c) ∩ (Ψ ∪ Φ) 6= ∅. Then, t ≥ k + 2,
or T is not a supergroup caterpillar tree and (ΣT (b),ΣT (c)) satisfies the limit condition.

Proof. Let B′ =def B ∩ V (Rk). We determine the maximal groups of Rk[B
′ ∪ {x}] and

Sk[B∪{x}]. For an illustration, simultaneously consider the three right-side figures of Figure 15.

42



Observe that b1,k ∈ Ψ and b2,k ∈ Φ and therefore b1,k, b2,k 6∈ B. Let Aj =def B ∩ Kj for
every 1 ≤ j ≤ k − 1. Clearly, B′ = A1 ∪ · · · ∪ Ak−1. Observe that the second statement
of Lemma 5.7 is applicable to Rk[B

′ ∪ {x}], so that A1, . . . , Ak−1, {x} are unions of maximal
groups of Rk[B

′∪{x}]. And since b2,h+1 6∈ (B ∪{x}), no group of Rk[B
′∪{x}] contains vertices

from Ah ∩ {b1,h, b2,h} and Ah ∩ {b3,h, . . . , bk+1,h}. Recall that Ah ∩ {b1,h, b2,h} = {b2,h}, and
since B has no empty maximal clique of Rk and b1,h+1, b2,h+1 6∈ B, it follows that A′

h =def

Ah ∩ {b3,h, . . . , bk+1,h} is non-empty. Thus, each group of Rk[B
′ ∪ {x}] is a subset of one of

A1, . . . , Ah−1, A
′
h, Ah+1, . . . , Ak−1, {b2,h}, {x}, and all these are non-empty sets. It follows that

Rk[B
′ ∪ {x}] has at least k+ 1 maximal groups, and so, Sk[B ∪ {x}] has at least k+ 1 maximal

groups due to Corollary 2.9.
Let H =def Sk[ΣT (b)] ⊕ Sk[ΣT (c)]. If every supergroup partition for H has size at least

k + 2 then t ≥ k + 2. Otherwise, H has a supergroup partition of size at most k + 1. This
particularly means that Sk[ΣT (b)] has exactly k + 1 maximal groups, which also implies that
Rk[ΣT (b) ∩ V (Rk)] has exactly k + 1 maximal groups. Furthermore, each maximal group of
Sk[ΣT (b)] contains one of A1, . . . , Ah−1, A

′
h, Ah+1, . . . , Ak−1, {b2,h}, {x} as a subset. It follows

that H has a v-cac supergroup for each vertex v from ΣT (c), in particular, for each vertex v

from ΣT (c)∩ (Ψ∪Φ). We consider four cases and show a contradiction in each case or that the
limit condition is satisfied.

As the first case, assume that b1,1 ∈ ΣT (c). Observe that Lemma 5.11 is applicable, and
w1, b1,1 ∈ ΣT (c) and {b1,1, b1,2} and {w1, b1,2} are the unique b1,1-cac and w1-cac supergroups of
H. Since H has a supergroup partition A of size k+1, the supergroup in A containing b1,2 must
contain b1,1 and w1, so that {w1, b1,1, b1,2} is a supergroup of H. However, the vertices from A1

s-distinguish w1 and b1,1 in H, a contradiction.
As the second case, assume that b1,k ∈ ΣT (c) and b2,k 6∈ ΣT (c). Let {b1,k, z} be a b1,k-cac

supergroup of H. Since b2,k is a non-visible neighbour of b1,k, z ∈ {b3,k−1, . . . , bk+1,k−1}, and
then, b1,k and z are adjacent in Sk, a contradiction.

As the third case, assume that w3 ∈ ΣT (c) and b2,k 6∈ ΣT (c). If w4 6∈ ΣT (c) then w4 s-
distinguishes w3 and each vertex from B′ ∪ {x}, and H cannot have a w3-cac supergroup, so
that w4 ∈ ΣT (c). Let {w3, z} be a w3-cac supergroup of H. Since b2,k is a non-visible neighbour
of w3 in H, z ∈ {b3,k−1, . . . , bk+1,k−1, b1,k}. If b1,k 6∈ B′ ∪ {x} then b1,k s-distinguishes w3 and z,
a contradiction, so that b1,k ∈ ΣT (b) must hold, and therefore, x = b1,k and b1,k−1 6∈ ΣT (b), and
thus, b1,k−1 s-distinguishes w3 and each vertex from Ak−1, so that z = b1,k. This means that
{b1,k, w3} is the only w3-cac supergroup of H. Observe that each vertex from A1 ∪ · · · ∪ Ak−1

has a non-visible neighbour in H from V (Rk). Since H has a w4-cac supergroup, it follows that
{b1,k, w4} must be the only w4-cac supergroup of H. Then, {b1,k, w3, w4} must be a supergroup
of H, however, b2,k s-distinguishes w3 and w4 in H, a contradiction.

As the fourth case, assume that b2,k ∈ ΣT (c). We show that (ΣT (b),ΣT (c)) indeed satisfies
the limit condition, by verifying the satisfaction of the three items. The proof relies on the
existence of cac supergroups.

• {b2,k, w3, w4} ⊆ ΣT (c)

Analogous to the third case, if w3 6∈ ΣT (c) then H has no b2,k-cac supergroup, so that
w3 ∈ ΣT (c), and if w4 6∈ ΣT (c) then H has no w3-cac supergroup, so that w4 ∈ ΣT (c).
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• ΣT (b) ∩Ψ = {b1,k−1}

Recall that ΣT (b)∩Ψ = {x}. If x = b1,k then each vertex from A1 ∪ · · · ∪Ak−1 has a non-
visible neighbour from V (Rk) in H, and since b2,k ∈ ΣT (c), b2,k is a non-visible neighbour
of x in H, so that each vertex from ΣT (b) has a non-visible neighbour from V (Rk) in H,
and H cannot have a w4-cac supergroup, a contradiction.

If x ∈ {b1,1, b1,2, . . . , b1,k−2} then b1,k−1, b1,k 6∈ B′ ∪ {x} and H has no b2,k-cac supergroup.

• {bk−1,1, bk+1,1} and {b2,k−1, b2,k} are non-splittable supergroups of H

Since x = b1,k−1, each vertex from B′ has a non-visible neighbour from Ψ \ {b1,k−1, w3} =
{b1,1, . . . , b1,k−2, b1,k} in H. Since H has a w3-cac and a w4-cac supergroup, it follows that
{b1,k−1, w3} and {b1,k−1, w4} are the only possible w3-cac and w4-cac supergroups of H,
so that {b1,k−1, w3, w4} must be a supergroup of H. This particularly means that b1,k−1

must not have non-visible neighbours in H, i.e.,

{

b2,k−2, . . . , bk+1,k−2

}

∪
{

b2,k−1, . . . , bk+1,k−1

}

⊆ B ,

and h = k − 1.

Recall from the two introductory paragraphs of the proof that A1, . . . , Ak−2 are groups
of Rk[B

′∪{x}]. Since Ak−2 = {b2,k−2, . . . , bk+1,k−2}, an easy induction shows for every 1 ≤
j ≤ k−2 that {bk−j,j , . . . , bk+1,j} ⊆ Aj , which particularly means that {bk−1,1, bk,1, bk+1,1} ⊆
A1. It directly follows that {bk−1,1, bk+1,1} is a non-splittable supergroup of H.

We consider b2,k. Recall that b1,k 6∈ ΣT (b) and b2,k ∈ ΣT (c) and H has a b2,k-cac super-
group. It follows that {b2,k−1, b2,k} is the only possible b2,k-cac supergroup of H, so that
{b2,k−1, b2,k} is a non-splittable supergroup of H.

• if k = 3 then B \ {w1, w2} = {b2,1, b3,1, b4,1, b2,2, b3,2, b4,2}

This is observed in the preceding bullet point, by inserting k = 3. The equality follows
from B ∩Ψ = ∅.

We have shown that the three items of the limit condition are satisfied, where the first item was
already verified in the second paragraph of the proof. Note that ΣT (b) and ΣT (c) contain at
least two vertices each, so that T is not a supergroup caterpillar tree.

We complete the proof of the lemma, based on the four above cases. If b2,k ∈ ΣT (c) then
the limit condition is satisfied, as it is shown in the forth case. If b2,k 6∈ ΣT (c) then one of the
first three cases must apply, since otherwise, b1,1, b1,k, b2,k, w3 6∈ ΣT (c) means ΣT (c)∩ (Ψ∪Φ) ⊆
{b1,2, . . . , b1,k−1} ∪ {b2,h+1, . . . , b2,k−1}, and this contradicts Lemma 5.10.

As the second case, we consider sets that contain b2,k. The studied situations are as in the
left-side case of Figure 15.

Lemma 5.13. Let B ⊆ V (Sk), and assume that B ∩Ψ = ∅ and b2,k ∈ B and B has no empty
maximal clique of Rk. Let x ∈ Ψ ∩ V (Rk).

Let T be a t-supergroup tree for Sk with t ≥ 1. Assume that T has an inner node a with b

and c its children in T such that ΣT (b) = B ∪ {x} and ΣT (c) ∩Ψ 6= ∅. Then, t ≥ k + 2.
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Proof. For every 1 ≤ j ≤ k, let Aj =def B ∩ Kj . Let B′ =def B ∩ V (Rk). Observe that
B′ = A1 ∪ · · · ∪ Ak. Since B has no empty maximal clique of Rk, A1, . . . , Ak−1 are non-
empty. Since w3 6∈ ΣT (b), every group X of Sk[B ∪ {x}] with X ⊆ V (Rk) is a subset of one of
A1, . . . , Ak−1, {b2,k}, {x}, as can be seen as follows: if x 6∈ {b1,k−1, b1,k} then this follows from the
second statement of Lemma 5.7, and if x ∈ {b1,k−1, b1,k} then this follows from the first statement
of Lemma 5.7 and the fact that w3 is a non-visible neighbour only of b2,k. For an illustration of
the situation, consider also the left-side figure of Figure 15. Let H =def Sk[ΣT (b)]⊕ Sk[ΣT (c)].
We conclude that every supergroup partition forH has size at least k+1, and for a contradiction,
we suppose that t ≤ k + 1, and H has a v-cac supergroup for each vertex v from ΣT (c). We
consider three cases and show a contradiction in each case.

As the first case, assume that b1,1 ∈ ΣT (c). As in the proof of Lemma 5.12, {w1, b1,1, b1,2}
must be a supergroup of H, and the vertices from A1 s-distinguish w1 and b1,1 in H, a contra-
diction.

As the second case, assume that b1,k ∈ ΣT (c). Suppose for a contradiction that {b1,k, z} is
a b1,k-cac supergroup of H. Observe that b2,k is a non-visible neighbour of b1,k in H, so that z
must be a neighbour of b2,k in Rk, and thus, z ∈ {b3,k−1, . . . , bk+1,k−1}. Then, z is adjacent to
b1,k, a contradiction.

As the third case, assume that w3 ∈ ΣT (c). If w4 6∈ ΣT (c) then w4 s-distinguishes w3

and each vertex from ΣT (b) ∩ V (Rk), and H has no w3-cac supergroup. So, w4 ∈ ΣT (c). Let
{w3, z} be a w3-cac supergroup of H. Since b2,k is a non-visible neighbour of w3 in H, it follows
that z ∈ {b3,k−1, . . . , bk+1,k−1, b1,k}. If b1,k 6∈ ΣT (b) then b1,k s-distinguishes w3 and z, so that
b1,k ∈ ΣT (b) must hold. In particular, x = b1,k, and therefore, b1,k−1 6∈ ΣT (b). Thus, b1,k−1

s-distinguishes w3 and each vertex from Ak−1, so that z = x = b1,k, and {w3, b1,k} is the only
w3-cac supergroup of H. Also note that x = b1,k implies that each vertex from A1 ∪ · · · ∪Ak−1

has a non-visible neighbour from V (Rk) in H. We consider w4. Observe that {b1,k, w4} and
{b2,k, w4} are w4-cac supergroups of H, and these are the only possible w4-cac supergroups of
H. Let {M1, . . . ,Mk+1} be a compatible supergroup partition for H of size k + 1. Then, there
is 1 ≤ i ≤ k + 1 such that {b2,k, w4} ⊆ Mi or {b1,k, w4} ⊆ Mi. If the latter holds then there
are 1 ≤ i, j ≤ k + 1 such that {b1,k, w4} ⊆ Mi and {w3, b1,k} ⊆ Mj , which clearly means that
i = j and {b1,k, w3, w4} ⊆ Mi. However, b2,k s-distinguishes w3 and w4 in H. Thus, there are
1 ≤ i, j ≤ k + 1 with i 6= j such that {b2,k, w4} ⊆ Mi and {w3, b1,k} ⊆ Mj . Now, observe
that {b2,k, w4} and {w3, b1,k} are not compatible in H, since b1,k and w4 are non-adjacent in
Sk, so that Mi and Mj are not compatible in H, and thus, {M1, . . . ,Mk+1} is not a compatible
supergroup partition for H, a contradiction.

To complete the proof, it remains to see that b1,1, b1,k, w3 6∈ ΣT (c) means ΣT (c) ∩ Ψ ⊆
{b1,2, . . . , b1,k−1}. We directly conclude a contradiction by the application of Lemma 5.10.

We summarise the results of this subsection about Ψ.
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Corollary 5.14. Let T be a t-supergroup tree for Sk with t ≥ 1. Assume that T has a maximal
Rk-clique split node a with b and c its children in T such that ΣT (a) ⊆ V (Rk) and ΣT (b) has
no empty maximal clique of Rk. Also assume that ΣT (a) ∩Ψ ⊆ ΣT (c) and |ΣT (c) ∩Ψ| = 1. If
t ≤ k + 1 then T is not a supergroup caterpillar tree and the following two items apply:

• T has an inner node a′ with b′ and c′ its children in T such that (ΣT (b
′),ΣT (c

′)) satisfies
the limit condition

• if k = 3 then ΣT (a) = {v2, v3, v4, v5, v6, v7, v8}.

Proof. Let x be the vertex with ΣT (c) ∩ Ψ = {x}. Recall that ΣT (a) ∩ Ψ = {x}. Let h be
the largest integer with 1 ≤ h ≤ k such that b2,h ∈ ΣT (a). Note that h indeed exists, since
otherwise, ΣT (a)∩Ψ′ = ∅, so that ΣT (a) cannot have a full maximal clique of Rk, contradicting
the choice of a as being a maximal Rk-clique split node of T . Also note that b2,h 6∈ Ψ, so that
b2,h 6= x. We distinguish between two cases about h.

Case 1: h = k

Observe that this means b2,k ∈ ΣT (a). Let a′ be a node of T with b′ and c′ its children in T

such that ΣT (a) ⊆ ΣT (b
′) and ΣT (b

′) ∩ Ψ = {x} and ΣT (c
′) ∩ Ψ 6= ∅. Observe that a′ and b′

and c′ exist, where a = b′ is possible but not necessary, and a′, b′, c′ satisfy the assumptions of
Lemma 5.13, and we conclude t ≥ k + 2.

Case 2: h < k

Let Φ =def {b2,j : h < j ≤ k}. According to the choice of h, it follows that ΣT (a) ∩ Φ = ∅,
and thus, ΣT (a) ∩ (Ψ ∪ Φ) = {x}. Let a′ be a node of T with b′ and c′ its children in T such
that ΣT (a) ⊆ ΣT (b

′) and ΣT (b
′) ∩ (Ψ ∪ Φ) = {x} and ΣT (c

′) ∩ (Ψ ∪ Φ) 6= ∅. Observe that a′

and b′ and c′ exist and satisfy the assumptions of Lemma 5.12: if t ≤ k + 1 then T is not a
supergroup caterpillar tree for Sk and (ΣT (b

′),ΣT (c
′)) satisfies the limit condition, and the first

item applies.
Assume k = 3 and t ≤ 4. Since (ΣT (b

′),ΣT (c
′)) satisfies the limit condition, in particular, the

second item of the limit condition, ΣT (b
′) \ {w1, w2} = {v2, v3, v4, v5, v6, v7, v8} holds. Suppose

for a contradiction that ΣT (a) ⊂ ΣT (b
′)∩ V (R3). This means that T has an inner node a′′ with

b′′ and c′′ its children in T such that

ΣT (a) ⊆ ΣT (b
′′) ⊂ ΣT (a

′′) ⊆ ΣT (b
′) and ΣT (c

′′) ∩ {v2, v3, v4, v5, v6, v7, v8} 6= ∅ .

Then, ΣT (b
′′) has a full and no empty maximal clique of R3, and we can apply Lemma 5.5 to

the V (R3)-reduced supergroup tree of T , and it follows t ≥ 5, a contradiction to the assumption
of t ≤ 4. Thus, ΣT (a) = ΣT (b

′) ∩ V (R3) must be the case, and the second item applies.

The result of Corollary 5.14 gives strong properties about supergroup trees for Sk that are
in accordance with Ψ. Therefore, we also conclude strong properties about supergroup trees for
Sk that are in accordance with Ψ′, through the automorphic equivalent of Corollary 5.14.

5.3 Second part of analysis of supergroup trees and conclusion

In the previous subsection, we considered properties of supergroup trees for Sk that are in
accordance with Ψ and Ψ′. Following Corollary 5.9, one case remains. Let

Ψ′′ =def {vi·k+1 : 0 ≤ i ≤ k} ∪ {w2, w3} .
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Figure 16: The situation for S5 when the bubbles for the vertices in Ψ′′ are empty. Note that
this situation is automorphically equivalent to itself.

The described situation is depicted in Figure 16. This is an easy and nice case, when compared
to the analysis of the situations in the preceding subsection, since B∩Ψ′′ = ∅ implies that Sk[B]
has many maximal groups already.

Lemma 5.15. Let B ⊆ V (Sk), and assume that B ∩ Ψ′′ = ∅ and B has no empty maximal
clique of Rk. Let x ∈ Ψ′′ ∩ V (Rk).

Let T be a t-supergroup tree for Sk with t ≥ 1. Assume that T has an inner node a with b

and c its children in T such that ΣT (b) = B ∪ {x} and ΣT (c) ∩Ψ′′ 6= ∅. Then, t ≥ k + 2.

Proof. Let di =def i · k + 1 for 0 ≤ i ≤ k. Observe that 〈d0, . . . , dk〉 is a B-empty forward long
step index sequence, where dk = k · k + 1 = n, and x = vdl for some l with 0 ≤ l ≤ k. For
1 ≤ i ≤ k, let Ai =def B ∩ {vdi−1

, . . . , vdi}. Since di − di−1 = k and B has no empty maximal
clique of Rk, A1, . . . , Ak are non-empty. Also observe that each vertex in ΣT (b) ∩ V (Rk) has a
non-visible neighbour from Ψ′′ ∩ V (Rk) in H.

Let X be a group of Sk[B ∪ {x}] with X ⊆ V (Rk). We show that X is a subset of one
of A1, . . . , Ak, {x}: if 0 < l < k then this is the case directly due to the third statement
of Lemma 5.7, and if l = 0 or l = k then this is the case due to the third statement of
Lemma 5.7 and the fact that w2 or w3 s-distinguishes x and each other vertex from B ∩ V (Rk).
It follows that Sk[B ∪ {x}] has at least k + 1 maximal groups with vertices of Rk. Let H =def

Sk[ΣT (b)] ⊕ Sk[ΣT (c)]. It follows that each supergroup partition for H has at least k + 1
supergroups with vertices of Rk.

For a contradiction, suppose that t ≤ k+1. Then, H has a v-cac supergroup for each vertex v

from ΣT (c). Let y be a vertex from ΣT (c) ∩ Ψ′′, that exists by the assumptions of the lemma.
Since H has a y-cac supergroup, Lemma 5.10 shows that y ∈ {v1, vn, w2, w3}. Observe that the
cases y = w2 and y = w3 are automorphically equivalent. So, suppose for a contradiction that
y ∈ {w2, w3}, and we can assume y = w2. If w1 6∈ ΣT (c) then w1 s-distinguishes w2 and each
vertex from ΣT (b) ∩ V (Rk), so that H cannot have a y-cac supergroup, a contradiction, and
thus, w1 ∈ ΣT (c), and H has a w1-cac supergroup {w1, z}. However, as observed above, z has
a non-visible neighbour from V (Rk) in H, that s-distinguishes w1 and z, a contradiction. Thus,
w2, w3 6∈ ΣT (c), and y ∈ {v1, vn} must hold. Since the two cases are automorphically equivalent,
we may restrict to y = v1. Note that w2 s-distinguishes v1 and each vertex from ΣT (b)∩V (Rk),
and H has no y-cac supergroup, a contradiction.

We are ready to prove the main results about Sk. We do this in two steps.
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Corollary 5.16. Let T be a t-supergroup tree for Sk with t ≥ 1. If t ≤ k + 1 then T is not
a supergroup caterpillar tree and the following two items apply to T and Sk or to T and the
automorphic copy of Sk:

• T has an inner node a′ with b′ and c′ its children in T such that (ΣT (b
′),ΣT (c

′)) satisfies
the limit condition

• if k = 3 then T has a maximal R3-clique split node a with ΣT (a) = {v2, v3, v4, v5, v6, v7, v8}.

Proof. We assume that t ≤ k+1, and we apply Corollary 5.4: T has a maximal Rk-clique split
node a with b and c its children in T such that ΣT (a) ⊆ V (Rk) and ΣT (b) has no empty maximal
clique of Rk and one of the two stated statements applies. Let B =def ΣT (b) and C =def ΣT (c).
So, B ∪ C has a full maximal clique of Rk and B has no full and no empty maximal clique of
Rk, and either |C| = 1 or |(B ∪ C) ∩Ψ| = 1 and |(B ∪ C) ∩Ψ′| = 1.

Assume (B ∪ C) ∩ Ψ ⊆ C. Then, (B ∪ C) ∩ Ψ = C ∩ Ψ. Note that (B ∪ C) ∩ Ψ 6= ∅, since
B ∪ C has a full maximal clique of Rk. So, |C ∩ Ψ| = 1 also in case of |C| = 1. We can apply
Corollary 5.14, and the two items apply. If (B ∪ C) ∩ Ψ′ ⊆ C then |C ∩ Ψ′| = 1, and the two
items apply to T and the automorphic copy of Sk according to Corollary 5.14. Observe that
this fully captures the second case of Corollary 5.4.

We henceforth assume that the first case of Corollary 5.4 applies, so that Sk[B] has exactly
k maximal groups and |C| = 1, and we assume (B∪C)∩Ψ 6⊆ C and (B∪C)∩Ψ′ 6⊆ C. Observe
that this means B ∩ Ψ 6= ∅ and B ∩ Ψ′ 6= ∅. Since B ∪ C has a full maximal clique of Rk and
since |C| = 1, B has a full clique of size k of Rk. Due to Corollary 2.9, applied to Sk[B] and
Rk[B], Rk[B] has at most k maximal groups. We distinguish between two situations about B.

Situation 1: v1 6∈ B and vn 6∈ B

Corollary 5.9 is applicable, and B ∩Ψ′′ = ∅, and thus, ΣT (a) ∩Ψ′′ = C ∩Ψ′′ = C. Let a′ be an
inner node of T with b′ and c′ its children in T such that ΣT (a) ⊆ ΣT (b

′) and ΣT (b
′) ∩Ψ′′ = C

and ΣT (c
′) ∩ Ψ′′ 6= ∅. Observe that a′ and b′ and c′ exist. Then, we can apply Lemma 5.15,

which shows t ≥ k + 2.

Situation 2: v1 ∈ B or vn ∈ B

Since the case of v1 ∈ B is automorphically equivalent to the case of vn ∈ B, we assume vn ∈ B.
We show that this yields a contradiction. Since ΣT (a) ⊆ V (Rk), w3 is a non-visible neighbour of
vn in Sk[B], that s-distinguishes vn and every other vertex of Sk[B], so that {vn} is a maximal
group of Sk[B]. Since Sk[B] has at most k maximal groups, it follows from Lemma 2.8 and
Corollary 2.9 that Sk[B]−vn and Rk[B]−vn have at most k − 1 maximal groups each. We can
apply the second statement of Lemma 5.3, which shows B∩Ψ = ∅, a contradiction to our above
assumptions.

This completes the proof of the corollary.

We are finally in the position to prove the desired lower clique-width bounds. We define four
further graphs, that we use a single name for. A graph S+

k is obtained from Sk by adding a new
vertex w+ whose neighbourhood is one out of the following four:

• NS+

k
(w+) = {v1, . . . , vk, w1, w2} or NS+

k
(w+) = {vn−k+1, . . . , vn, w3, w4}

• NS+

k
(w+) = {v1, . . . , vk−1, w1, w2} or NS+

k
(w+) = {vn−k+2, . . . , vn, w3, w4}.
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Figure 17: The four bubble models represent the four graphs that we obtained from adding a
new vertex to Sk and that we denote by S+

k , depicted for the special case of k = 5. The shaded
area collects the vertices of S5. The two bubble models to the left represent isomorphic graphs,
which are therefore full bubble model graphs. The two bubble models to the right also represent
isomorphic graphs, and these graphs are not full bubble model graphs.

The four possible bubble models for S+
k that are based on a full bubble model for Sk are depicted

in Figure 17. Observe that S+
k may not be a full bubble model graph. It will be important in

the coming lower-bound proof that two graphs are isomorphic to the other two graphs.

Proposition 5.17. For k ≥ 3, lcwd(Sk) ≥ k + 2 and cwd(S+
k ) ≥ k + 2.

Proof. Let T be a t-supergroup caterpillar tree for Sk. Since T is also a t-supergroup tree for Sk,
we can apply Corollary 5.16, so that t ≥ k+2 directly follows, and we conclude lcwd(Sk) ≥ k+2.

For the second lower bound, on the clique-width of S+
k , we consider the supergroup trees for

S+
k . Let G be a graph S+

k , and let w+ be the new vertex. Let T ∗ be an arbitrary t-supergroup
tree for G. We suppose for a contradiction that t ≤ k + 1.

Let T be the V (Sk)-reduced supergroup tree of T ∗. Due to Lemma 2.10, T is a t-supergroup
tree for Sk, and we can apply Corollary 5.16 to T and its automorphic equivalent. We restrict
to the exact case. So, T has an inner node a′ with b′ and c′ its children in T such that
(ΣT (b

′),ΣT (c
′)) satisfies the limit condition and if k = 3 then T has a maximal R3-clique

split node a with ΣT (a) = {v2, . . . , v8}. We begin by exploring the implications of the limit
condition, and we end by concluding for k = 3 in a remaining special situation.

We study the situation in T ∗. Let a∗ and b∗ and c∗ be nodes of T ∗, where b∗ and c∗ are the
children of a∗ in T ∗, that correspond to respectively a′, b′, c′ of T . Note that

ΣT ∗(a∗) \ {w+} = ΣT (a
′)

ΣT ∗(b∗) \ {w+} = ΣT (b
′)

ΣT ∗(c∗) \ {w+} = ΣT (c
′) .

Let H =def Sk[ΣT (b
′)] ⊕ Sk[ΣT (c

′)] and H∗ =def G[ΣT ∗(b∗)] ⊕ G[ΣT ∗(c∗)]. It is important to
observe that H is an induced subgraph of H∗, in fact, H = H∗ or H = H∗−w+, depending on
whether w+ is a vertex of H∗.

Let {A1, . . . , Ap} be the supergroup partition label of a∗ in T ∗. Since Rk[ΣT (b
′) ∩ V (Rk)]

has k+ 1 maximal groups due to the first item of the limit condition, p ≥ k+ 1 directly follows
due to Corollary 2.9, so that t = p = k + 1 due to the initial assumption about t ≤ k + 1 and
p ≤ t due to the definition of supergroup trees. This particularly means that each of A1, . . . , Ap

contains a vertex of Rk. We use this to show that w+ ∈ ΣT ∗(b∗) must hold.
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As an auxiliary intermediate result, we show that {bk−1,1, bk+1,1} and {b2,k−1, b2,k} are con-
tained in supergroups of {A1, . . . , Ap}. For every 1 ≤ i ≤ p, Ai \ {w+} is a supergroup of H
with respect to Sk due to Lemma 2.8. Thus,

{

(A1 \ {w
+}), . . . , (Ap \ {w

+})
}

is a supergroup partition for H with respect to Sk. If there are 1 ≤ i < j ≤ p such that

bk−1,1 ∈ (Ai \ {w
+}) and bk+1,1 ∈ (Aj \ {w

+}) or

bk+1,1 ∈ (Ai \ {w
+}) and bk−1,1 ∈ (Aj \ {w

+}) ,

i.e., if bk−1,1 and bk+1,1 are not contained in the same supergroup, then we obtain a contradiction
to the fact that {bk−1,1, bk+1,1} is a non-splittable supergroup of H according to the third item
of the limit condition. Thus, there is 1 ≤ i ≤ p with {bk−1,1, bk+1,1} ⊆ Ai. Analogously, there is
1 ≤ j ≤ p with {b2,k−1, b2,k} ⊆ Aj . To complete: if w+ 6∈ ΣT ∗(b∗) then w+ s-distinguishes bk−1,1

and bk+1,1 in H∗ and Ai is not a supergroup of H∗ or w+ s-distinguishes b2,k−1 and b2,k in H∗

and Aj is not a supergroup of H∗. This yields a contradiction in each case. We conclude that
w+ ∈ ΣT ∗(b∗) must hold, and, without loss of generality, we may assume w+ ∈ A1.

Recall that A1 contains a vertex z from ΣT ∗(b∗) ∩ V (Rk). So, {w+, z} is a supergroup of
H∗. We distinguish between the two situations about the neighbourhood of w+, whether w+ is
a neighbour of w1 or of w4.

• w+ is adjacent to w4 in G

Observe that w+ is adjacent to w3 in G. Due to the second item of the limit condition,
b2,k, w3 6∈ ΣT ∗(b∗). So, z 6= b2,k, and w3 s-distinguishes w+ and z in H∗, a contradiction.

• w+ is adjacent to w1 in G and k ≥ 4

Observe that w+ is adjacent to b1,1 in G. Due to the second item of the limit condition,
b1,1, b1,2 6∈ ΣT ∗(b∗). So, b1,1 is a non-visible neighbour of w+ and z in H∗, and therefore,
z ∈ {b2,1, . . . , bk+1,1}, and then, b1,2 s-distinguishes w+ and z in H∗, a contradiction.

• w+ is adjacent to w1 in G and k = 3

Recall that T has a maximal R3-clique split node a with ΣT (a) = {v2, . . . , v8}. Observe
that ΣT (a) describes the situation depicted in the right-side bubble model of Figure 12.
Let d∗ be a node of T ∗ corresponding to a, which means that ΣT ∗(d∗) \ {w+} = ΣT (a). If
w+ ∈ ΣT ∗(d∗) then w1 s-distinguishes w

+ and each vertex from ΣT (a), and G[ΣT ∗(d∗)] has
five maximal groups. If w+ 6∈ ΣT ∗(d∗) then w+ s-distinguishes v2 and v4, and G[ΣT ∗(d∗)]
has five maximal groups. In both cases, t ≥ 5.

We conclude: t ≥ k + 2 must hold, and therefore, cwd(S+
k ) ≥ k + 2.
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Figure 18: Depicted is the graph M4,2,6. It is composed of two 4-path powers on 3 · 5 + 1 = 16
vertices each and a 2-path power on ten vertices, containing w1, . . . , w6. The left side shows a
graph drawing, and the right side shows a bubble model representation. The graphs F4 and F ′

4

are highlighted through shaded backgrounds.

6 Second clique-width lower-bound result

Let k be an integer with k ≥ 3, and let n =def (k − 1)(k + 1) + 1 = k2. Let Λk = 〈v1, . . . , vn〉
and Λ′

k = 〈v′1, . . . , v
′
n〉 be two sequences of pairwise different vertices. The k-path power on

n vertices and with k-path layout Λk is denoted as Fk, and the k-path power on n vertices
and with k-path layout Λ′

k is denoted as F ′
k. Observe that Fk and F ′

k have exactly one ver-
tex less than Rk from Section 5. Let k′ and l be two integers with k > k′ ≥ 1 and l ≥ 0.
The graph Mk,k′,l is obtained from the disjoint union of Fk and F ′

k and l new vertices w1, . . . , wl

such that {vn−k′+1, . . . , vn, w1, . . . , wl, v
′
n, . . . , v

′
n−k′+1} induces a k′-path power with k′-path lay-

out Λ′′
k′,l = 〈vn−k′+1, . . . , vn, w1, . . . , wl, v

′
n, . . . , v

′
n−k′+1〉:

V (Mk,k′,l) = V (Fk) ∪ V (F ′
k) ∪ {w1, . . . , wl}

E(Mk,k′,l) = E(Fk) ∪ E(F ′
k) ∪ {xy : x and y are at distance at most k′ in Λ′′

k′,l} .

We can say that Mk,k′,l is obtained as the union of a k′-path power with k′-path layout Λ′′
k′,l

and Fk and F ′
k. If l is small then vertices of Fk and F ′

k may be adjacent in Mk,k′,l. An example,
of M4,2,6, is depicted in Figure 18. Throughout this section, we fix these definitions, and we
necessarily require k ≥ 4.

We show that the clique-width of Mk,k′,l is at least k + 2 for large k′ and the linear clique-
width of Mk,k′,l is at least k + 2 for every k′ ≥ 1. Our approach to proving these two lower
bounds partially resembles the approach taken in Section 5. We will analyse the supergroup
trees for Mk,k′,l and study supergroup partitions. The following technical lemma is a helpful
observation about supergroups.
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Lemma 6.1. Let (B,C) be a partial partition of V (Mk,k′,l) such that B and C have no full
maximal clique of Fk. Let H =def Mk,k′,l[B]⊕Mk,k′,l[C].

1) Let y, z be a vertex pair of H with y ∈ B ∩ V (Fk). Assume that {y, z} is a supergroup of
H. Then, {y, z} is a clique of H.

2) Assume that B∪C has a full maximal clique of F ′
k and vn 6∈ B. Let D =def (B∪C)\V (Fk).

Assume that D is a supergroup of H. Then, V (F ′
k)∪{w1, . . . , wl}∪{vn−k′+1, . . . , vn} ⊆ C.

Proof. We prove the first statement. Suppose for a contradiction that y and z are non-adjacent
in H. Then, y and z are non-adjacent also in Mk,k′,l. Let y = vp. If z 6∈ V (Fk) then either
1 ≤ p ≤ k + 1 and {v1, . . . , vk+1} ⊆ B or k + 2 ≤ p ≤ n and {vp−k, . . . , vp} ⊆ B, both cases
yielding a contradiction. So, z is a vertex of Fk, and z = vq. Thus, {vp, vq} is a supergroup
of H and vp and vq are non-adjacent in Mk,k′,l. We can henceforth assume p < p + k < q

without loss of generality. If p ≥ k + 1 then {vp−k, . . . , vp} is a full maximal clique of Fk in B,
if p ≤ k and q > n− k then {v1, . . . , vk+1} is a full maximal clique of Fk in B, and if q ≤ n− k

then {vq, . . . , vq+k} ⊆ B or {vq, . . . , vq+k} ⊆ C. So, each of the three possible cases yields a
contradiction. For the second case, it is necessary to observe that (k+1)+k = 2k+1 ≤ n−k < q.

We prove the second statement. Let a and b be indices with 1 ≤ a ≤ b ≤ n such that
{v′a, . . . , v

′
b} ⊆ D and b − a is largest possible. Observe that b − a ≥ k, since D has a full

maximal clique of F ′
k. If a ≥ 2 then v′a−1 6∈ B ∪ C, and v′a−1 s-distinguishes v′a and v′a+k in

H, and if b ≤ n − 1 then v′b+1 s-distinguishes v′b and v′b−k in H, so that a = 1 and b = n and
therefore V (F ′

k) ⊆ D.
If there is a largest index c with 1 ≤ c ≤ l and wc 6∈ D: if c < l then wc s-distinguishes wc+1

and v′1 inH, and if c = l then wc s-distinguishes v
′
n and v′1 inH, so that V (F ′

k)∪{w1, . . . , wl} ⊆ D

must hold.
Due to Lemma 2.4, H[D] = Mk,k′,l[D], and since Mk,k′,l[D] is a connected graph, D ⊆ B or

D ⊆ C must hold. If D ⊆ B then vn s-distinguishes v′1 and one of w1 and v′n, mainly depending
on whether l = 0 or l ≥ 1. So, D ⊆ C must hold.

Finally, observe that each vertex from {vn−k′+1, . . . , vn} may s-distinguish v′1 and one of w1

and v′n in H, so that {vn−k′+1, . . . , vn} ⊆ C must hold.

For 1 ≤ j ≤ k − 1, let Kj =def {v(j−1)(k+1)+1, . . . , vj(k+1)}, and let Kk =def {vn}. The
following lemma about top vertices in induced subgraphs of Fk mainly re-states the result of
Lemma 5.6. Recall that Rk and Fk differ by a single vertex. The lemma can be proved analogous
to the proof of Lemma 5.6, or it suffices to observe that it follows from Lemma 5.6 by considering
sets B of vertices of Rk with either b1,k, b2,k 6∈ B or b1,k, b2,k ∈ B.

Lemma 6.2. Let B ⊆ V (Fk) be such that B has no full maximal clique of Fk. The top vertices
of K1, . . . ,Kk in B appear in pairwise different maximal groups of Fk[B].

Let T be a supergroup tree for Mk,k′,l. Let a be an inner node of T and let b and c be the
children of a in T . We call a a two maximal clique split node of T if ΣT (a) has a full maximal
clique of Fk and a full maximal clique of F ′

k and neither ΣT (b) nor ΣT (c) has a full maximal
clique of Fk and of F ′

k. We will often assume, without loss of generality, that ΣT (b) has no full
maximal clique of Fk, and ΣT (c) may or may not have a full maximal clique of Fk. It will turn
out that there are two major cases to consider.
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The first case, that we consider in the next lemma, shows that first constructing F ′
k and then

constructing Fk requires many labels.

Lemma 6.3. Let T be a t-supergroup tree for Mk,k′,l with t ≥ 1. Let a be a two maximal clique
split node of T with b and c its children in T such that ΣT (b) has no full and no empty maximal
clique of Fk. Then, t ≥ k + 2, or k′ = 1 and T is not a supergroup caterpillar tree for Mk,k′,l.

Proof. Let H =def Mk,k′,l[ΣT (b)] ⊕ Mk,k′,l[ΣT (c)]. Let B =def ΣT (b) ∩ V (Fk) and C =def

ΣT (c) ∩ V (Fk), and let D =def ΣT (a) \ V (Fk). Let a be smallest such that v′a ∈ D. Recall here
that D ∩ V (F ′

k) is non-empty and a ≤ n − k, since ΣT (a) has a full maximal clique of F ′
k. In

particular, v′a has no neighbour from V (Fk).
Let Φ and Φ′ be the sets of the top vertices of K1, . . . ,Kk−1,Kk in B and C, respectively.

Since B has no empty maximal clique of Fk, (B ∩K1), . . . , (B ∩Kk−1) are non-empty, and since
C is non-empty, also Φ′ is non-empty. Thus, k − 1 ≤ |Φ| ≤ k and 1 ≤ |Φ′|. Since B and C have
no full maximal clique of Fk and v′a has no neighbour in Φ∪Φ′: no supergroup of H contains two
or more vertices from Φ or from Φ′ due to Lemma 6.2, and no supergroup of H contains vertices
from more than one of the sets Φ,Φ′, {v′a} due to the first statement of Lemma 6.1. Thus, no
supergroup of H contains two or more vertices from Φ∪Φ′∪{v′a}, so that |Φ∪Φ′∪{v′a}| ≥ k+2
implies t ≥ k + 2.

Assume |Φ∪Φ′∪{v′a}| ≤ k+1. This means: |Φ| = k−1 and |Φ′| = 1 and vn 6∈ B and C ⊆ Kp

for some 1 ≤ p ≤ k. Observe that the vertices from Kp−1 or Kp+1 s-distinguish the vertices
from C ∩Kp. Thus, no supergroup of H contains more than one vertex from Φ ∪ C ∪ {v′a}, so
that |Φ ∪ C ∪ {v′a}| ≥ k + 2 implies t ≥ k + 2.

Assume |Φ ∪ C ∪ {v′a}| ≤ k + 1. This means |C| = 1; let C = {vc}. No supergroup of
H contains vertices from Φ ∪ {vc} and D, according to the first statement of Lemma 6.1: if
c ≤ n− k′ then vc has no neighbour in D, and if c ≥ n− k′ + 1 then vc−k s-distinguishes vc and
each vertex from D in H, and if Φ contains a vertex with a neighbour in D then this is the top
vertex of Kk−1 in B, which cannot be vn−(k+1), so that vn−(k+1) 6∈ B s-distinguishes the top
vertex of Kk−1 in B and each vertex from D in H. Thus, if D is not a supergroup of H then
each supergroup partition for H has at least two supergroups containing vertices from D, and
thus, each supergroup partition for H has size at least k + 2, and thus, t ≥ k + 2.

Assume that D is a supergroup of H. Recall from the introductory definitions that D =
ΣT (a) \ V (Fk), and we have already seen vn 6∈ B. So, the second statement of Lemma 6.1 is
applicable: V (F ′

k) ∪ {w1, . . . , wl} ∪ {vn−k′+1, . . . , vn} ⊆ ΣT (c). Since |C| = 1, it follows that
|{vn−k′+1, . . . , vn}| ≤ 1, which means k′ = 1. And T is not a supergroup caterpillar tree for
Mk,k′,l, since |ΣT (b)| ≥ |B| ≥ k and |ΣT (c)| ≥ |V (F ′

k)|+ |{vn−k′+1, . . . , vn}| ≥ (k + 1) + 1.

We consider the second major case. Let G be a k′-path power and let 〈x1, . . . , xm〉 be a
k′-path layout for G. Let B ⊆ V (G), and let xg be a vertex of G. The close left vertex of xg in
B is the vertex with largest index from this set, if it is non-empty:

B ∩
{

xg−i(k′+1) : i ≥ 1 where 1 ≤ g − i(k′ + 1)
}

.

Informally, using the bubble model notions, the close left vertex of xg in B is the vertex from
B “nearest” to the left of xg in the same row of the bubble model. Equivalently, we can define
close right vertices, that are the close left vertices in the reverse of 〈x1, . . . , xm〉.
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Lemma 6.4 ([14]). Let G be a k′-path power on m vertices with m ≥ k′+3, and let 〈x1, . . . , xm〉
be a k′-path layout for G. Let (B,C) be a partial partition of V (G). Let 1 ≤ g < g′ ≤ m be such
that xg, xg′ 6∈ B, and assume that xg and xg′ have close left vertices xh and xh′ , respectively, in
B, where h 6= h′ and h′ < g. Then, {xh, xh′} is not a supergroup of G[B]⊕G[C].

In an informal sense and using the bubble model, the result of Lemma 6.4 can be seen as the
“rows equivalent” of Lemma 6.2 about top vertices in columns. We apply this result to prove
a lower bound for an arbitrary path power, a result, that we use as the technical key result for
our second lower-bound situation for Mk,k′,l.

Lemma 6.5. Let m be an integer with m ≥ 2(k′ + 1). Let Q be a k′-path power on m vertices
with k′-path layout 〈x1, . . . , xm〉. Let (B,C) be a partial partition for V (Q), and let H =def

Q[B]⊕Q[C]. Assume that B and C satisfy the following conditions:

• {x1, . . . , xk′+1} ⊆ B and {xm−k′ , . . . , xm} ⊆ C

• B \ {x1} and C \ {xm} have no full maximal clique of Q.

Then, each compatible supergroup partition for H has size at least k′ + 1 + ⌊k
′

2 ⌋.

Proof. Since k′ ≥ 1, it directly follows m ≥ 2(k′ + 1) ≥ k′ + 2 + 1, and Lemma 6.4 is formally
applicable.

Before we begin the analysis, observe the following auxiliary result, that will be of importance
later. Assume H has a supergroup {u, v} with u ∈ B and v ∈ C, where u = xp and v = xq. If
q < p then k′ + 1 < q < q + k′ < p < m− k′, and {xq−k′ , . . . , xq} would be full in C \ {xm} and
{xp, . . . , xp+k′} would be full in B \ {xm}, contradicting the assumptions about Q. Thus, p < q.
If k′ +1 < p < p+ k′ < q then {xp−k′ , . . . , xp} ⊆ B \ {x1}, contradicting the assumptions about
Q. Thus, p ≤ k′ + 1.

Also note that the second condition on B implies xk′+2 6∈ B, since otherwise, B \ {x1} has
a full maximal clique of Q.

We analyse the size of the compatible supergroup partitions for Q. Let Φ be the set of
the close left vertices of xm−k′ , . . . , xm in B. Recall that {xm−k′ , . . . , xm} is full in C and thus
empty in B. Since {x1, . . . , xk′+1} is full in B, every vertex has a close left vertex, and thus,
|Φ| = k′ + 1. Note that Φ ⊆ {x1, . . . , xm−k′−1}. So, Lemma 6.4 is applicable, and the vertices
in Φ appear in pairwise different supergroups of every supergroup partition for H. Analogously,
let Φ′ be the set of the close right vertices of x1, . . . , xk′+1 in C. Then, |Φ′| = k′ + 1, and the
vertices in Φ′ appear in pairwise different supergroups of every supergroup partition for H. Let
{M1, . . . ,Mr} be a compatible supergroup partition for H. If the vertices from (Φ \ {x1}) ∪ Φ′

appear in pairwise different supergroups from {M1, . . . ,Mr} then r ≥ |Φ\{x1}|+ |Φ′| ≥ 2k′+1.
As the other case, there are a largest index q with 2 ≤ q ≤ m and an index i with 1 ≤ i ≤ r

and a vertex z from Φ′ such that xq ∈ Φ and {xq, z} ⊆ Mi. The above auxiliary result shows
that q ≤ k′ + 1 must hold. This particularly means that xk′+2 is a non-visible neighbour of xq
in H, and thus, xk′+2 must be adjacent to z in Q, so that z ∈ {xk′+3, . . . , x2k′+2}. And since xq
and z are non-adjacent in Q, we conclude z ∈ {xq+k′+1, . . . , x2k′+2}.

Next, assume that there are vertices xa, xb with xa ∈ Φ and 2 ≤ a < q and xb ∈ Φ′

and an index j with 1 ≤ j ≤ r such that {xa, xb} ⊆ Mj . Observe that i 6= j must hold,
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since otherwise, two vertices from Φ would make a supergroup of H, contradicting Lemma 6.4.
Observe that {xq, z} and {xa, xb} are compatible in H, since {M1, . . . ,Mr} is a compatible
supergroup partition for H. We show that q + k′ + 1 ≤ b ≤ 2k′ + 2. First, suppose for a
contradiction that b ≤ q + k′, which means that xq and xb are adjacent in Q. Observe that
xqxb is a non-visible edge of H, since xq ∈ B and xb ∈ C, and the compatibility condition
implies that xa and z must be adjacent in Q, meaning that z ∈ {x1, . . . , xa+k′}, and since
a < q ≤ a + k′ < q + k′, we obtain a contradiction to the above, and therefore, q + k′ + 1 ≤ b.
Second, observe that xk′+2 is a non-visible neighbour of xa in H, and thus, b ≤ 2k′ + 2 directly
follows.

We summarise the results. Let u, v be a vertex pair of H with u ∈ Φ \ {x1} and v ∈ Φ′ and
assume that there is an index i with 1 ≤ i ≤ r such that {u, v} ⊆ Mi. Then, u ∈ {x2, . . . , xq}∩Φ
and v ∈ {xq+k′+1, . . . , x2k′+2} ∩ Φ′. Let f be the number of supergroups from {M1, . . . ,Mr}
containing a vertex from Φ\{x1} and from Φ′. Observe that r ≥ |Φ|+ |Φ′|−f −1 = 2k′+1−f .
To see the usefulness of the inequality, note that x1 may be a vertex from Φ and may also be in
a supergroup with a vertex from Φ′, and this supergroup does not contribute to f . If f ≤ ⌈k

′

2 ⌉
then

r ≥ |Φ|+ |Φ′| − f − 1 ≥ 2k′ + 1−

⌈

k′

2

⌉

= k′ + 1 +

⌊

k′

2

⌋

,

and the claimed lower bound on the size of {M1, . . . ,Mr} follows, and the proof is completed.
It remains to verify the assumed assumption about the value of f . Applying the above obtained
results, this follows:

f ≤ min
{∣

∣

∣
{x2, . . . , xq} ∩ Φ

∣

∣

∣
,
∣

∣

∣
{xq+k′+1, . . . , x2k′+2} ∩ Φ′

∣

∣

∣

}

≤ min
{

q − 1, (2k′ + 2)− (q + k′ + 1) + 1
}

= min
{

q − 1, k′ − q + 2
}

≤

⌊

q − 1 + k′ − q + 2

2

⌋

=

⌊

k′ + 1

2

⌋

=

⌈

k′

2

⌉

.

This completes the proof of the lemma.

Corollary 6.6. Let T be a t-supergroup tree for Mk,k′,l with t ≥ 1. Let a be a two maximal
clique split node of T with b and c its children in T such that ΣT (b) has no full maximal clique
of Fk and has a full maximal clique of F ′

k and ΣT (c) has no full maximal clique of F ′
k and has

a full maximal clique of Fk. Then, t ≥ k′ + 1 + ⌊k
′

2 ⌋.

Proof. Since ΣT (c) has a full maximal clique of Fk, ΣT (b) has an empty maximal clique of Fk,
and since ΣT (b) has a full maximal clique of F ′

k, ΣT (c) has an empty maximal clique of F ′
k.

We define a specific induced subgraph of Mk,k′,l. Let Q
′ be the induced subgraph of Mk,k′,l

on the following vertices:

{w1, . . . , wl} ∪ {vp : n− k′ ≤ p+ i(k + 1) ≤ n for some i ≥ 0}

∪ {v′p : n− k′ ≤ p+ i(k + 1) ≤ n for some i ≥ 0} .

The definition of Q′ is illustrated in Figure 19. It is important to observe that Q′ is a k′-path
power, and each of ΣT (b) and ΣT (c) contains a full and an empty maximal clique of Q′, simply
by restricting the full and empty maximal cliques of Fk and F ′

k to the vertices of Q′.
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Figure 19: Depicted is a bubble model for M6,3,34. The bubble model is not full. We see two
types of vertices: the circles represent the vertices of F6 and F ′

6, and the squares represent the
added vertices w1, . . . , w34. The vertices of F6 and F ′

6 are additionally collected by the thick
frames, and the vertices of the 3-path power, extending from {w1, . . . , w34} according to the
construction in the proof of Corollary 6.6, are indicated by the shaded area. A 3-path layout
can be read off the bubble model from left to right.

We define an induced subgraph of Q′. Let m′ be the number of vertices of Q′, and let
〈y1, . . . , ym′〉 be a k′-path layout for Q′. Let B′ =def ΣT (b) ∩ V (Q′) and C ′ =def ΣT (c) ∩ V (Q′).
Recall from the preceding paragraph that B′ and C ′ have full maximal cliques of Q′. We define
Q by iteratively applying the following procedure: if B′ and C ′ have full maximal cliques of
Q′ in Q′−y1 then restrict Q′ to Q′−y1, and if B′ and C ′ have full maximal cliques of Q′ in
Q′−ym′ then restrict Q′ to Q′−ym′ . Note that 〈y2, . . . , ym′〉 is a k′-path layout for Q′−y1 and
〈y1, . . . , ym′−1〉 is a k′-path layout for Q′−ym′ . We repeat this procedure as long as possible.
Then, Q is the resulting graph.

Observe that Q is a k′-path power. Let 〈x1, . . . , xm〉 be a k′-path layout for Q; we can assume
that 〈x1, . . . , xm〉 is the remaining sublayout of 〈y1, . . . , ym′〉. Let B and C be the restrictions
of B′ and C ′ to the vertices of Q, i.e., B = B′ ∩ V (Q) and C = C ′ ∩ V (Q). The construction
of Q yields the following properties: {x1, . . . , xk′+1} is a full maximal clique of B or C; without
loss of generality, we may assume {x1, . . . , xk′+1} ⊆ B. It follows that {xm−k′ , . . . , xm} is a full
maximal clique of Q in C.

We conclude the desired lower bound on t. Let H =def Q[B]⊕Q[C]. Observe that Q and H

and (B,C) and 〈x1, . . . , xm〉 satisfy the assumptions of Lemma 6.5, and we conclude that every
compatible supergroup partition for H has size at least k′+1+⌊k

′

2 ⌋. Recall that H is an induced
subgraph of H ′ =def Q

′[B′]⊕Q′[C ′], and thus, each compatible supergroup partition for H ′ has
size at least k′+1+⌊k

′

2 ⌋. Next, H
′ is an induced subgraph of Mk,k′,l[ΣT (b)]⊕Mk,k′,l[ΣT (c)], and

hereby, t ≥ k′+1+⌊k
′

2 ⌋ directly follows. For the arguments, recall the results of Subsection 2.2.3.

We combine the obtained results and finish with the desired lower bounds on the clique-width
and linear clique-width of Mk,k′,l.

56



Proposition 6.7. For k ≥ 4 and k > k′ ≥ 1 and l ≥ 0,

1) lcwd(Mk,k′,l) ≥ k + 2, and

2) if k′ + ⌊k
′

2 ⌋ ≥ k + 1 then cwd(Mk,k′,l) ≥ k + 2.

Proof. Let T be a t-supergroup tree for Mk,k′,l. By descending in T , it is clear that T has a
two maximal clique split node a. Let b and c be the children of a in T , and let B =def ΣT (b)
and C =def ΣT (c). We begin by listing three cases.

1) B and C have empty maximal cliques of Fk

Let T ∗ be the V (Fk)-reduced supergroup tree of T . Observe that T ∗ has a maximal Fk-
clique split node a∗ with b∗ and c∗ its children in T ∗ such that ΣT ∗(b∗) and ΣT ∗(c∗) have
an empty maximal clique of Fk: if neither B nor C has a full maximal clique of Fk, we
choose a∗ as the node of T ∗ that corresponds to a of T , and if B or C has a full maximal
clique of Fk, which means that a cannot serve as a maximal Fk-clique split node, then
we find a∗ by descending further from a. We can apply Lemma 5.2 to T ∗, and t ≥ k + 2
follows.

2) B and C have empty maximal cliques of F ′
k

This case is analogous to Case 1, and t ≥ k + 2 follows.

3) B or C has no full and no empty maximal clique of Fk, or
B or C has no full and no empty maximal clique of F ′

k

Lemma 6.3 is applicable, and t ≥ k + 2 or the special case of the lemma applies.

Recall the special case of Lemma 6.3: k′ = 1 and T is not a supergroup caterpillar tree. So, if T
is a supergroup caterpillar tree, for the first statement of the proposition, then t ≥ k + 2 must
hold. And if T is not a supergroup caterpillar tree, for the second statement of the proposition,
then k′ = 1 does not satisfy the inequality condition of the statement.

We summarise the situations for B and C that we have already considered by applying
the three above cases. We list the sixteen possible situations, about B and C having empty
maximal cliques, in the below table: a “+” entry for B(Fk), for example, means that B has an
empty maximal clique of Fk, and a “-” entry for B(Fk) analogously means that B has no empty
maximal clique of Fk. We give a reference to a case that considers this particular situation. It
is to note that serveral cases may be applicable to the same situation.

B(Fk) - - - - - - - - + + + + + + + +
B(F ′

k) - - - - + + + + - - - - + + + +
C(Fk) - - + + - - + + - - + + - - + +
C(F ′

k) - + - + - + - + - + - + - + - +

case 3 3 3 3 2 2 3 1 1 2 1 1
A B C D

We specially argue about the four remaining cases. We begin with Case A. If B has no full
maximal clique of Fk or of F ′

k then Case 3 is applicable, and if B has a full maximal clique of
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Fk and of F ′
k then a is not a two maximal clique split node. Case D is analogous to Case A,

with the meanings of B and C interchanged.
We consider Case B: B has no empty maximal clique of Fk and C has no empty maximal

clique of F ′
k, so that B has no full maximal clique of F ′

k and C has no full maximal clique
of Fk. If B has no full maximal clique of Fk or if C has no full maximal clique of F ′

k then
Case 3 is applicable. If B has a full maximal clique of Fk and C has a full maximal clique of F ′

k

then Corollary 6.6 is applicable, with the meanings of B and C, or, equivalently, of Fk and F ′
k

interchanged, and t ≥ k′ + 1 + ⌊k
′

2 ⌋ ≥ k + 2. Note here that T is not a supergroup caterpillar
tree. Case C is analogous to Case B.

We remark that the second statement of Proposition 6.7 is interesting only for k ≥ 5 and
k′ ≥ 4, since ⌊k

′

2 ⌋ ≤ 1 for k′ ≤ 3.

7 Computation and characterisation

We are ready to obtain the full characterisation of the clique-width and linear clique-width of
full bubble model graphs. We obtain the characterisation by combining the lower- and upper-
bound results from the preceding sections. We proceed in two stages: we first summarise and
complete the lower-bound results, and then, we prove the final characterisation and give the
efficient computation algorithms.

7.1 The completed lower-bound results

We summarise the obtained lower-bound results from Sections 5 and 6. We also extend these
results to capture the remaining few cases for obtaining a complete list of forbidden induced
subgraphs of bounded clique-width and linear clique-width. We consider clique-width and linear
clique-width separately.

We begin with clique-width. For k, k′, l integers with k ≥ 3, k′ ≥ 1, k > k′ and l ≥ 0, the
graphs S+

k are defined in Section 5 and the graphs Mk,k′,l are defined in Section 6. Let k be an
integer with k ≥ 0. A k-path power on k(k+1)+ 2 vertices is denoted by Zk. The clique-width
of such path powers was completely determined in [14]. The graph S2 is the left-side graph of
Figure 20.

Proposition 7.1. Let k, k′, l be integers with k ≥ 0, k′ ≥ 1 and l ≥ 0.

1) cwd(Zk) ≥ k + 2 [14]

2) cwd(S2) ≥ 4, and cwd(S+
k ) ≥ k + 2 for k ≥ 3

3) cwd(Mk,k′,l) ≥ k + 2 for k ≥ 5 and where k′ satisfies k > k′ and k′ + ⌊k
′

2 ⌋ ≥ k + 1.

Proof. The result of the first statement is proved in [14], the result of the third statement is
proved in the second statement of Proposition 6.7, and Proposition 5.17 proves cwd(S+

k ) ≥ k+2
for k ≥ 3 of the second statement. It remains to show cwd(S2) ≥ 4.

For the used names of the vertices of S2, we refer to Figure 20. Let F be a subgraph of S2,
and let X be a set of vertices of F . For A a supergroup partition for F , we say that X is a
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Figure 20: Depicted are the graphs S2 to the left and M+
2 and M−

2 to the right, which are
forbidden induced subgraphs for graphs of linear clique-width at most 3. Note that M+

2 has ee′

as an edge and M−
2 does not have ee′ as an edge.

witness set for A if the vertices from X are in pairwise different supergroups from A, and we
say that X is a witness set for F if X is a witness set for every compatible supergroup partition
for F . A witness set shows a lower bound on the size of supergroup partitions.

Let T be a t-supergroup tree for S2. We show t ≥ 4 by identifying witness sets of size 4. We
focus on the closed neighbourhood of z. Let Nz be short for the closed neighbourhood of z in S2,
i.e., Nz = NS2

[z] = {c, d, e, f, z}. Let a be an inner node of T with b and c its children in T , and
let B =def ΣT (b) and C =def ΣT (c) and H =def S2[B] ⊕ S2[C]. Assume that 1 ≤ |B ∩Nz| ≤ 2
and 1 ≤ |C ∩Nz| ≤ 2 and 3 ≤ |(B ∪ C) ∩Nz| ≤ 4. We consider three particular situations.

Situation 1: |B ∪ C| ≥ 4 and no supergroup of H contains two vertices from Nz

Observe that (B ∪ C) ∩ Nz is a witness set for H already by the assumption. If B ∪ C ⊆ Nz

then B ∪ C is a witness set of size 4 for H. Otherwise, (B ∪ C) ∩ {a, b, g, h} 6= ∅. Let x be
a vertex of H with x ∈ {a, b, g, h}. If {x, y} for some y ∈ Nz is a supergroup of H: either
y ∈ B and |B ∩Nz| ≥ 3, or y ∈ C and |C ∩Nz| ≥ 3, both cases yielding a contradiction. Thus,
(B ∪ C) ∩ (Nz ∪ {x}) is a witness set for H.

Situation 2: H has a supergroup with two vertices from Nz

Let {u, v} with u, v ∈ Nz be a supergroup of H. We may assume u ∈ B. If v ∈ B then
{u, v} = B ∩ Nz, and u or v has a non-visible neighbour from Nz that s-distinguishes u and v

in H, a contradiction, so that v ∈ C must hold. Note that u and v are non-adjacent in S2, so
that {u, v} = {c, e} or {u, v} = {d, f} or {u, v} = {c, f}. By symmetry arguments, it suffices to
consider {u, v} = {c, e} and {u, v} = {c, f}, and we can assume u = c.

Consider this special case: {b, c, d} ⊆ B and {e, f} ⊆ C. Then, z 6∈ B ∪ C, and z and e

s-distinguish b, c, d from each other in H. Thus, for every compatible supergroup partition A
for H, {b, c, d, e} or {b, c, d, f} is a witness set for A. If {c, f} is a supergroup of H, which
means {b, c, d} ⊆ B and {e, f, g} ⊆ C, or if {c, e} is a supergroup of H and d ∈ B, which means
{b, c} ⊆ B and {e, f} ⊆ C, then the special case occurs.

To complete the proof of the situation, assume that {c, e} is a supergroup of H and d 6∈ B.
Observe that b ∈ B and f ∈ C, so that C ∩Nz = {e, f}. If z ∈ B then {b, c, f, z} is a witness
set for H. Otherwise, d, z 6∈ B ∪ C. Let a′ be the inner node of T with b′ and c′ its children
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in T such that B ∪ C ⊆ ΣT (b
′) and ΣT (b

′) ∩ {d, z} = ∅ and ΣT (c
′) ∩ {d, z} 6= ∅. Note that

b, c, f appear in pairwise different maximal groups of S2[{a, b, c, e, f, g, h}]. So: if z ∈ ΣT (c
′)

then {b, c, f, z} is a witness set and if z 6∈ ΣT (c
′) and d ∈ ΣT (c

′) then {b, c, d, f} is a witness set
for S2[ΣT (b

′)]⊕ S2[ΣT (c
′)].

Situation 3: |B ∪ C| = 3

Observe that the assumptions about B and C directly imply B ∪ C ⊆ Nz. Let a′ be the
inner node of T with b′ and c′ its children in T , where B′ =def ΣT (b

′) and C ′ =def ΣT (c
′) and

H ′ =def S2[B
′]⊕ S2[C

′], such that B ∪ C ⊆ B′ ⊆ B ∪ C ∪ {a, h} and C ′ 6⊆ {a, h}. Observe that
a′ indeed exists and B ∪ C is a witness set for H ′. If z ∈ C ′ then B ∪ C ∪ {z} is a witness set
for H ′, since z is a non-visible neighbour of each vertex from B ∪ C. If e ∈ C ′ and {e, u} for
some u ∈ B ∪C is a supergroup of H ′ then u = c, but b 6∈ B′ s-distinguishes c and e in H ′, and
B ∪ C ∪ {e} is a witness set for H ′; analogously for the case of d ∈ C ′.

Assume that d, e, z 6∈ C ′. If f ∈ C ′ and {f, u} for some u ∈ B ∪ C is a supergroup
of H ′ then e and z are non-visible neighbours of f in H ′ and u = d must hold, and thus,
{c, d} ⊆ B ∪ C ⊆ {c, d, e, z} and g ∈ C ′, and B ∪ C ∪ {g} is a witness set for H ′. Recall here
that e 6∈ B ∪ C or z 6∈ B ∪ C. The case of c ∈ C ′ analogously follows by symmetry.

Assume that c, d, e, f, z 6∈ C ′. Thus, C ′ ⊆ {a, b, g, h} and C ′∩{b, g} 6= ∅. If b ∈ C ′ and {b, u}
for some u ∈ B ∪C is a supergroup of H ′ then c is a non-visible neighbour of b in H ′, and u = d

follows, so that B ∪C = {d, e, z} and a ∈ C ′, and {a, d, e, z} is a witness set for H ′; analogously
for the case of g ∈ C ′.

It remains to see that a with the required properties indeed exists, by descending from the
root node of T , and if Situation 2 does not occur then Situation 1 or Situation 3 occurs. We
conclude t ≥ 4, and thus, cwd(S2) ≥ 4.

We continue with linear clique-width. The graphs Zk are the k-path powers on k(k+ 1) + 2
vertices, the graphs Sk are defined in Section 5 and Figure 20, and the graphs Mk,1,l are defined
in Section 6. The graphs M+

2 and M−
2 are shown as the right-side graph of Figure 20, where

the dotted edge ee′ is an edge of M+
2 and is no edge of M−

2 . If we do not properly distinguish
between M+

2 and M−
2 , we simply write M±

2 .

Proposition 7.2. Let k and l be integers with k ≥ 0 and l ≥ 0.

1) lcwd(Zk) ≥ k + 2 [14]

2) lcwd(Sk) ≥ k + 2 for k ≥ 2

3) lcwd(M±
2 ) ≥ 4 and lcwd(Mk,1,l) ≥ k + 2 for k ≥ 3.

Proof. The result of the first statement is proved in [14], the result of the second statement
for k ≥ 3 is proved in Proposition 5.17 and lcwd(S2) ≥ 4 is proved in the second statement of
Proposition 7.1, and the first statement of Proposition 6.7 proves lcwd(Mk,1,l) ≥ k+2 for k ≥ 4.
It remains to show lcwd(M±

2 ) ≥ 4 and lcwd(M3,1,l) ≥ 5, by identifying appropriate witness sets
(for the definitions, we refer to the beginning of the proof of Proposition 7.1).
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Proof of lcwd(M±
2 ) ≥ 4

Let G =def M±
2 . For the names of the vertices of G, we refer to Figure 20. Let T be a t-

supergroup caterpillar tree for G. By a symmetry argument, we can assume that T has an
inner node a with b and c its children in T , where B =def ΣT (b) and ΣT (c) = {x}, such
that |B ∩ {e, a′, b′, c′, d′, e′}| ≥ 2 and |B ∩ {a, b, c, d}| = 1 and x ∈ {a, b, c, d}. Observe that
|NG(x) ∩ {a, b, c, d, e}| ≥ 2. Let H =def G[B]⊕G[{x}].

Assume that {x, u} for u ∈ B is a supergroup of H. Since x has at least two non-visible
neighbours from {a, b, c, d, e} in H, it directly follows that {x, u} ⊆ {a, b, c, d, e} must hold.
Note here that {u} = B ∩ {a, b, c, d, e}. Since x and u must be non-adjacent in G, only three
situations about {u, x} must be considered: (1) {x, u} = {a, e} is not possible, since b or d

s-distinguishes a and e, and (2) {x, u} = {b, e} is not possible, since a s-distinguishes b and e.
Thus, {x, u} = {a, d} is the only possible situation. If x = d then e s-distinguishes x and u in
H, so that x = a and u = d must hold, and e ∈ B, and b, c 6∈ B. Let a′ be the inner node
of T with b′ and c′ its children in T such that B ∪ {x} ⊆ ΣT (b

′) and ΣT (b
′) ∩ {b, c} = ∅ and

ΣT (c
′) ⊆ {b, c}. Let y be an arbitrary vertex from ΣT (b

′) ∩ {a′, b′, c′, d′, e′}. Observe that a, e, y
are s-distinguished from each other by b and c in G[ΣT (b

′)], so that a, e, y appear in pairwise
different maximal groups of G[ΣT (b

′)]. If ΣT (c
′) = {c} then {a, c, e, y} is a witness set for

G[ΣT (b
′)] ⊕ G[{c}], and if ΣT (c

′) = {b} then {a, b, e, y} is a witness set for G[ΣT (b
′)] ⊕ G[{b}].

Thus, t ≥ 4.
As the other case, assume that there is no vertex u ∈ B such that {x, u} is a supergroup

of H. If G[B] has at least three maximal groups then every supergroup partition for H has
size at least 4. If G[B] has at most two maximal groups then this is only possible as follows:
G = M−

2 and {a′, b′, c′, d′, e′} ⊆ B. We ascend in T from a toward the root of T . Let u, v, w be a
vertex triple from {a, b, c, d, e}, let B′ =def {u, v, a

′, b′, c′, d′, e′}, and let H ′ =def G[B′]⊕G[{w}].
Observe that the parent node of a in T defines such a situation. We show that H ′ has a witness
set of size 4 or u, v, w is a very special vertex triple. Observe about H ′ that each of u, v, w has a
non-visible neighbour and {u, v} is not a supergroup of H ′. It follows that {u, v, a′} is a witness
set for H ′ and {w, a′} is not a supergroup of H ′. It therefore suffices to show that {u, v, w} is
a witness set for H ′, since this implies that also {u, v, w, a′} is a witness set for H ′. It is easy
to verify that the following three graphs have exactly three maximal groups with respect to G:
G[{a, b, c}], G[{b, c, d}], G[{a, c, e}], so that {u, v, w} is a witness set for H ′ in particular. In case
of {u, v, w} = {a, b, d} and {u, v, w} = {a, c, d}, G[{u, v, w}] is an induced path of length 2 and e

s-distinguishes a and d, and {u, v, w} is a witness set forH ′, independent of the actual choice of w.
As the final case, consider {u, v, w} = {a, b, e}. This case is special, since {a, b, e} is not a witness
set for H ′. We ascend further in T and consider H ′′ =def G[{a, b, e} ∪ {a′, . . . , e′}] ⊕ G[{x}],
where x ∈ {c, d}. If x = c then {a, b, c, a′} is a witness set for H ′′, and if x = d then {a, b, d, a′}
is a witness set for H ′′.

We conclude t ≥ 4.

Proof of lcwd(M3,1,l) ≥ 5
Let G =def M3,1,l. For the names of the vertices and induced subgraphs of G, we refer to the
beginning of Section 6: G is composed of F3 and F ′

3 and the connecting vertices w1, . . . , wl. Let
T be a t-supergroup caterpillar tree for G. Let a be a two maximal clique split node of T with
b and c its children in T . By a symmetry argument, we can assume that ΣT (c) = {x} for some
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vertex x of F3. Let B =def ΣT (b), and let H =def G[B] ⊕ G[{x}]. Let p be the smallest index
with 1 ≤ p ≤ 9 such that v′p ∈ B. Since B has a full maximal clique of F ′

3, p ≤ 6, and v′p has
no (non-visible) neighbour from {v1, . . . , v9} in H. We show that H has a witness set of size at
least 5.

Suppose for a contradiction that {x, u} for u ∈ B is a supergroup of H. Then, all (non-
visible) neighbours of x are neighbours of u in G, i.e., NG(x) ⊆ NG(u). This is only possible
if x = v1 and u = v5, and then, {v5, v6, v7, v8} is a full maximal clique of F3 in B, the claimed
contradiction. Thus, no supergroup of H contains x and a vertex from B. We show that B

contains a witness set of size 4. We distinguish between two cases.
Assume that B has an empty maximal clique {va, . . . , va+3} of F3. Recall that B ∪ {x} has

a full maximal clique of F3. It follows that |B ∩ {v1, . . . , va−1}| ≥ 3 or |B ∩ {va+4, . . . , v9}| ≥ 3.
Let Φ and Φ′ be the sets of the respectively close left and close right vertices of va, . . . , va+3 in
B∩V (F3). Due to Lemma 6.4, Φ and Φ′ are witness sets for H, and since B has no full maximal
clique of F3, each vertex from Φ ∪ Φ′ has a non-visible neighbour from V (F3) in H, so that in
fact Φ ∪ {v′p} and Φ′ ∪ {v′p} are witness sets for H. It follows that Φ ∪ {v′p, x} and Φ′ ∪ {v′p, x}
are witness sets for H, and one of the two sets is of size at least 5.

Assume that B has no empty maximal clique of F3. Let Ψ be the set of the top vertices
of K1,K2,K3 in B. Note that B ∩ K1 and B ∩ K2 are non-empty, so that 2 ≤ |Ψ| ≤ 3, and
each vertex in Ψ has a non-visible neighbour from V (F3). Thus, due to Lemma 6.2 and the
above, Ψ ∪ {v′p, x} is a witness set for H. Note here that the result of Lemma 6.2 is indeed
applicable, since the proof does not require k ≥ 4 and is valid also for k = 3. If |Ψ| = 3 then
|Ψ∪ {v′p, x}| = 5, and Ψ∪ {v′p, x} is a witness set of size 5 for H. If |Ψ| = 2 then v9 6∈ B, and H

has a vertex y such that Ψ ∪ {y, v′p, x} is a witness set of size 5 for H: if B ∩ {w1, . . . , wl} 6= ∅
then we choose y = wi for wi ∈ B of smallest index, and if B ∩ {w1, . . . , wl} = ∅ then we choose
y = v′j for v′j ∈ B of largest index. Thus, t ≥ 5.

7.2 Characterisation and computation

We show that open k-models, short-end k-models and k-models with small separators exactly
capture the full bubble model graphs of clique-width at most k + 1. We also show that open
k-models and short-end k-models exactly capture the full bubble model graphs of linear clique-
width at most k + 1. We show these results by proving that a full bubble model graph is an
induced subgraph of a graph with a specified bubble model or contains one of the special graphs
of large (linear) clique-width as an induced subgraph.

Let B = 〈bi,j〉1≤j≤s,1≤i≤rj and B′ = 〈b′i,j〉1≤j≤s′,1≤i≤r′j
be full bubble models. We say that B′

is embeddable into B if there is an integer p with 0 ≤ p ≤ s − s′ such that r′j ≤ rj+p for every
1 ≤ j ≤ s′. We can understand p as a column-index offset, and we can understand the defined
embeddability notion is a special induced subgraph notion, since B is a full bubble model.

The goal is to embed bubble models into one of the three special classes of full bubble
models, and the main property is the depth of columns. Let k be an integer with k ≥ 3. Let
B = 〈bi,j〉1≤j≤s,1≤i≤rj be a full bubble model. Let p, q be column indices with 1 ≤ p ≤ q ≤ s.
We call [p, q], or B[p, q], a deep pseudo-rectangle if rp, . . . , rq > k, and either p = 1 or rp−1 ≤ k,
and either q = s or rq+1 ≤ k. The size of [p, q] = B[p, q] is q− p+ 1. Observe that deep pseudo-
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rectangles are the deep analogue of shallow pseudo-rectangles that were used in the proof of
Lemma 4.6.

Lemma 7.3. Let k be an integer with k ≥ 3. Let G be a connected full bubble model graph and
let B be a full bubble model for G. If B is not embeddable into an open k-model or a short-end
k-model then G contains Zk or Sk or Mk,1,l for some l ≥ 0 as an induced subgraph.

Proof. Let B = 〈bi,j〉1≤j≤s,1≤i≤rj . If B has no deep pseudo-rectangles then rj ≤ k for every
1 ≤ j ≤ s, and B is clearly embeddable into an open k-model. As the other case, assume that
B has deep pseudo-rectangles. If every deep pseudo-rectangle of B has size at most k − 2 then
B is embeddable into an open k-model. Otherwise, B has a deep pseudo-rectangle of size at
least k − 1. For the following arguments, recall that the connectedness of G and the result of
Lemma 3.2 implies rj ≥ 2 for every 1 ≤ j ≤ s− 1. Assume that [p, q] is a deep pseudo-rectangle
of B of size at least k − 1:

• assume that p ≥ 2 and q ≤ s− 3
G contains Sk as an induced subgraph, induced by

{b1,p−1, b2,p−1} ∪
⋃

p≤j≤p+k−2

{b1,j , . . . , bk+1,j} ∪ {b1,p+k−1, b2,p+k−1, b1,p+k, b2,p+k} ;

recall here that p + k ≤ q + 2 ≤ s − 1, and thus, rp+k ≥ 2, and the listed vertices indeed
exist

• assume that [p, q] has size at least k and one of the following applies:
(1) [p, q] has size at least k + 1, or (2) q ≤ s− 2, or (3) q = s− 1 and rs ≥ 2
G contains Zk as an induced subgraph, induced by

⋃

p≤j≤p+k−1

{b1,j , . . . , bk+1,j} ∪ {b1,p+k, b2,p+k} .

So, if G contains Zk or Sk as an induced subgraph then the claim of the lemma trivially holds.
We henceforth assume that G does not contain Zk and Sk as an induced subgraph. Then, the
following is the case for each deep pseudo-rectangle [p, q] of B:

• if [p, q] is of size k − 1:
(1) p = 1 or (2) p ≥ 2 and q ≥ s− 2 and if q = s− 2 then rs = 1

• if [p, q] is of size at least k:
[p, q] has size exactly k and q ≥ s− 1 and if q = s− 1 then rs = 1.

We distinguish between the two situations about whether B has a deep pseudo-rectangle of size
at least k.

As the first situation, assume that B has a deep pseudo-rectangle [p, q] of size k. Note that
q ≥ s − 1, and thus, [p, q] is the unique deep pseudo-rectangle of B of size k. If B has no deep
pseudo-rectangle of size k − 1 then B is embeddable into an open k-model. Otherwise, B has a
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deep pseudo-rectangle [p′, q′] of size k − 1. Note that q′ ≤ p − 2 must hold, since p′ ≥ q + 2 is
not possible. Then, G contains Mk,1,l as an induced subgraph, that is induced by

⋃

p′≤j≤q′

{b1,j , . . . , bk+1,j} \ {b1,p′} ∪
⋃

q′<j<p

{b1,j , b2,j} ∪
⋃

p≤j<q

{b1,j , . . . , bk+1,j} ∪ {b1,q} .

It is to note that Fk of Mk,1,l also requires b1,q′+1 and b2,q′+1, and the value of l is 2(p− q′ − 2).
As the second situation, assume that B has no deep pseudo-rectangle of size k. Let p be

smallest possible with 1 ≤ p ≤ s such that [p, q] is a deep pseudo-rectangle of B of size k − 1.
Recall from the beginning that B has a deep pseudo-rectangle of size k − 1, so that p indeed
exists. According to the above: (1) p = 1 or (2) q = s−2 and rs = 1 or (3) q ≥ s−1. If q ≥ s−2
then all other deep pseudo-rectangles of B have size at most k − 2. It follows for q ≥ s− 2 that
B is embeddable into an open k-model. As the other case, assume p = 1. If all other deep
pseudo-rectangles of B have size at most k − 2 then B is embeddable into a short-end k-model.
Otherwise, there is a smallest p′ with q+2 ≤ p′ ≤ s such that [p′, q′] is a deep pseudo-rectangle of
size k−1. If q′ < s then G contains Mk,1,l as an induced subgraph, analogous to the construction
of the preceding paragraph. If q′ = s then all deep pseudo-rectangles different from [p, q] and
[p′, q′] have size at most k − 2, and B is embeddable into a short-end k-model.

Lemma 7.4. Let k be an integer with k ≥ 3. Let G be a connected full bubble model graph
and let B be a full bubble model for G. If B is not embeddable into an open k-model or a short-
end k-model or a k-model with small separators then G contains Zk or S+

k or Mk,k′,l for some

integers k′ and l with k > k′ ≥ 1 and k′ + ⌊k
′

2 ⌋ ≥ k + 1 and l ≥ 0 as an induced subgraph.

Proof. The proof is similar to the proof of Lemma 7.3, and we can therefore refer to the
constructions there. Let B = 〈bi,j〉1≤j≤s,1≤i≤rj . If B has no deep pseudo-rectangle of size at
least k − 1 then B is embeddable into an open k-model, and if G does not contain Zk as an
induced subgraph then for every deep pseudo-rectangle [p, q] of B of size at least k: [p, q] has
size exactly k and (1) q = s or (2) q = s − 1 and rs = 1. Assume that B has a deep pseudo-
rectangle [p, q] of size k − 1, and assume p ≥ 2 and (1) q ≤ s − 3 or (2) q = s − 2 and rs ≥ 2.
Recall that rp−1 ≥ 2 and rq+1 ≥ 2 and rq+2 ≥ 2. If rp−1 = k or if rq+1 ≥ 3 then G contains S+

k

as an induced subgraph, more precisely, G contains one of the two graphs represented by S+
k as

an induced subgraph.
We henceforth assume that G does not contain Zk and S+

k as an induced subgraph. Then,
for every deep pseudo-rectangle [p, q] of size k− 1, one of the following applies: (1) p = 1, or (2)
p ≥ 2 and q ≥ s − 1, or (3) p ≥ 2 and q = s − 2 and rs = 1, or (4) p ≥ 2 and q ≤ s − 2 and
rp−1 ≤ k − 1 and rq+1 = 2. The following cases are easy.

• [1, k − 1] is not a deep pseudo-rectangle
B is embeddable into a k-model with small separators.
In order to formally satisfy the definition of k-models with small separators, we would embed into

a bubble model whose second rectangle is of depth 2.

• [1, k − 1] is the only deep pseudo-rectangle of size at least k − 1
B is embeddable into a short-end k-model.
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• [1, k − 1] and [s− k + 2, s] are the only deep pseudo-rectangles of size at least k − 1
B is embeddable into a short-end k-model.

Finally, assume that [1, k− 1] is a deep pseudo-rectangle and there is a smallest p′ with k+1 ≤
p′ ≤ s − k + 1 such that [p′, q′] is a deep pseudo-rectangle of size at least k − 1. Note that
[p′, q′] has size at least k or it has size exactly k − 1 and q′ < s. Let k′ be the largest integer
such that rj ≥ k′ + 1 for every k ≤ j < p′. Recall that k ≥ k′ + 1 ≥ 2: by the definition
of deep pseudo-rectangles, rk ≤ k, and therefore, k′ + 1 ≤ k, and k′ + 1 ≥ 2 follows from the
connectedness of G and Lemma 3.2. Then, G contains Mk,k′,l as an induced subgraph, induced
by

⋃

1≤j≤k−1

{b1,j , . . . , bk+1,j} \ {b1,1, . . . , bk′,1} ∪
⋃

k≤j<p′

{b1,j , . . . , bk′+1,j}

∪
⋃

p′≤j≤p′+k−2

{b1,j , . . . , bk+1,j} ∪ {b1,p′+k−1} .

If k′+⌊k
′

2 ⌋ ≤ k then B is embeddable into a k-model with small separators, and if k′+⌊k
′

2 ⌋ ≥ k+1
then k′ satisfies the requested conditions.

We obtain the final characterisation results about the clique-width of full bubble model
graphs. We give the two results separately.

Theorem 7.5. Let k be an integer with k ≥ 3. Let G be a connected full bubble model graph
and let B be a full bubble model for G.

1) cwd(G) ≤ k+1 if and only if B is embeddable into an open k-model or a short-end k-model
or a k-model with small separators.

2) lcwd(G) ≤ k + 1 if and only if B is embeddable into an open k-model or a short-end
k-model.

Proof. The two results follow from Corollary 4.8, and Lemmas 7.3 and 7.4 and Propositions 7.1
and 7.2.

Theorem 7.6. Let G be a connected full bubble model graph.

1) cwd(G) ≤ 1 if and only if G does not contain Z0 as an induced subgraph.
cwd(G) ≤ 2 if and only if G does not contain Z1 as an induced subgraph.
cwd(G) ≤ 3 if and only if G does not contain Z2 and S2 as an induced subgraph.

lcwd(G) ≤ 3 if and only if G does not contain Z2 and S2 and M±
2 as an induced subgraph.

2) For k ≥ 3:
cwd(G) ≤ k+1 if and only if G does not contain Zk and S+

k and Mk,k′,l where k > k′ ≥ 1

and k′ + ⌊k
′

2 ⌋ ≥ k + 1 and l ≥ 0 as an induced subgraph.

3) For k ≥ 3:
lcwd(G) ≤ k + 1 if and only if G does not contain Zk and Sk and Mk,1,l for l ≥ 0 as an
induced subgraph.
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Figure 21: A full bubble model graph of linear clique-width at most 3: the graph to the left,
and a full bubble model to the right. The shaded areas indicate cliques.

Proof. It is clear from the definition of clique-width that cwd(G) ≤ 1 if and only if G has
no edge, which is equivalent to G not containing Z0 as an induced subgraph. It is analogously
known that cwd(G) ≤ 2 if and only if G does not contain P4 as an induced subgraph [5], and
Z1 is isomorphic to P4. The case of cwd(G) ≤ k + 1 and the case of lcwd(G) ≤ k + 1 for k ≥ 3
is due to Propositions 7.1 and 7.2 and Lemmas 7.3 and 7.4 and Theorem 7.5.

We prove the remaining two cases, namely about cwd(G) ≤ 3 and lcwd(G) ≤ 3. Let
B = 〈bi,j〉1≤j≤s,1≤i≤rj be a full bubble model for G. If there is a column index p with 2 ≤ p ≤ s−2
such that rp−1 ≥ 2 and rp ≥ 3 and rp+1 ≥ 2 and rp+2 ≥ 2 then G contains S2 as an induced
subgraph. Analogously, if there is p with 1 ≤ p ≤ s − 2 such that rp ≥ 3 and rp+1 ≥ 3 and
rp+2 ≥ 2 then G contains Z2 as an induced subgraph. So, if G does not contain Z2 and S2 as
an induced subgraph then rj ≤ 2 for every 2 ≤ j ≤ s− 3 and if rs−2 ≥ 3 then rs = 1. Observe
that G must be almost like an induced path, informally spoken. By splitting G at b1,3, it is not
difficult to see that cwd(G) ≤ 3 holds.

We consider the linear clique-width of G. If r1 = 2 then G is an induced subgraph of a
graph with a full bubble model as depicted in Figure 21, and lcwd(G) ≤ 3. Otherwise, r1 ≥ 3. If
rs−2 ≥ 3 or if rs−1 ≥ 3 and rs ≥ 2 then G contains M±

2 as an induced subgraph, and lcwd(G) ≥ 4
due to the third statement of Proposition 7.2. If rs−2 = rs−1 = 2 then G is an induced subgraph
of a graph as represented in Figure 21, and lcwd(G) ≤ 3.

We conclude with a consequence of the main characterisation results.

Theorem 7.7. The clique-width and the linear clique-width of connected full bubble model graphs
without true twins can be computed in linear time.

Proof. The clique-width and linear clique-width of connected full bubble model graphs without
true twins of clique-width at most 3 can be computed in linear time (Theorem 7.6 and its proof).
Recall that such graphs of clique-width at most 2 are induced subgraphs of stars and such graphs
of clique-width at most 3 are obtained from induced paths by adding vertices to the beginning
and the end of the path.

We consider graphs of larger clique-width, and we will apply the characterisation of Theo-
rem 7.5. Recall from Section 3 that full bubble model graphs can be recognised in linear time and
a full bubble model for full bubble model graphs can be computed in linear time [15]. According
to Theorem 7.5, it suffices to decide whether the computed full bubble model is embeddable
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into one of the two or three special models. The proofs of Lemmas 7.3 and 7.4 describe easy
such algorithms, when k is given: it mainly suffices to determine the deep pseudo-rectangles.
It is to note here that no particular bubble model for the input graph is required but any full
bubble model will do. So, if a good “approximation” on the clique-width can be computed in
O(n) time, we obtain the desired linear-time algorithm by trying the few possible values in the
approximation range.

We compute a good approximation on the clique-width and linear clique-width of the input
graph G. Let B = 〈bi,j〉1≤j≤s,1≤i≤rj be the computed full bubble model for G. We determine
the smallest integer t such that B has no deep pseudo-rectangle of size at least t+ 1, relative to
t. That means more precisely: B has no t+ 1 consecutive columns of depth at least t+ 1. The
choice of t implies that B is embeddable into an open (t + 2)-model and B is not embeddable
into a (t− 1)-model. Thus, t ≤ cwd(G) ≤ lcwd(G) ≤ t+ 3 due to Theorem 7.5.

We compute t by applying a sweep algorithm, that scans the column depths from right to
left, i.e., the sequence 〈r1, . . . , rs〉. We give an informal description of the algorithm. Assume
the algorithm has already processed a right subsequence 〈rq, . . . , rs〉: with the current value of
t, t is the smallest integer such that 〈rq, . . . , rs〉 has no t+ 1 consecutive numbers larger than t.
The algorithm continues with rq−1 and decides upon the following cases:

• if rq−1 ≤ t then t satisfies the condition also for the right subsequence 〈rq−1, . . . , rs〉

• if rq−1 ≥ t+ 1 and ri ≤ t for some index i with q ≤ i ≤ q + t− 1 then also in this case, t
satisfies the condition for the right subsequence 〈rq−1, . . . , rs〉

• if rq−1, rq, . . . , rq+t−1 ≥ t+ 1 then B has t+ 1 consecutive columns of depth at least t+ 1,
and we increase the value of t by 1, and the new value of t satisfies the condition for the
right subsequence 〈rq−1, . . . , rs〉.

To make this algorithm run in linear time, it suffices to decide the applying case in constant
time, and it suffices to decide the existence of an index i with q ≤ i ≤ q+ t− 1 such that ri ≤ t.
We keep and update a table storing for each column depth d with t < d the smallest index j

with q ≤ j ≤ s such that rj = d and the smallest index j′ with rj′ ≤ t, if such indices exist.
Using this table, the case distinction is constant-time decidable, and this table can be updated
in constant time. Note that the update in case of incrementing the value of t means to take the
minimum table entry for t and t+ 1.

We conclude this section with the announced consideration about true twins and linear clique-
width. Recall from Section 3 that true twins may increase the linear clique-width of graphs.
The situations when this is the case and when this is not the case are not easy to describe.
An example of a comprehensive such study is about induced paths [13], that illustrates the
complexity already for easy-structured graphs. We do not aim at studying such questions for
full bubble model graphs. However, we do want to mention that our results already provide the
description of some cases for which adding true twins is possible without increasing the linear
clique-width. This is particularly the case for the lower-part vertices of deep rectangles. This
can be seen by reconsidering the constructions for deep rectangles of Section 4.
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8 Conclusions

We characterised the full bubble model graphs of bounded clique-width completely, by forbidden
induced subgraphs and by an embedding notion into graphs. As a corollary, we obtained an easy
linear-time algorithm for computing the clique-width of full bubble model graphs. We proved
analogous results about the linear clique-width of connected full bubble model graphs without
true twins. Full bubble model graphs are the first large graph class for which such results are
known, since the previously known related results are for square grids [10] and path powers [14]
only. We believe that our results provide a deeper understanding of the structure of graphs
of bounded clique-width, and therefore of clique-width itself. We also believe that our results,
the lower-bound proofs in particular, present interesting and useful techniques for proving lower
clique-width bounds for other graphs.

A major contribution of our paper are the lower-bound results of Sections 5 and 6. They
are summarised and completed in Propositions 7.1 and 7.2. The result of Theorem 7.6 shows
that the lower bounds are optimal in the context of full bubble model graphs. However, our
forbidden induced subgraphs may contain proper induced subgraphs of the same clique-width or
linear clique-width, so that Zk, Sk, S

+
k ,Mk,k′,l may not be minimal forbidden induced subgraphs

for graphs of clique-width or linear clique-width at most k + 1. We discuss this minimality
question in an appendix note [19], where we show that each proper induced subgraph of Zk and
Sk and Mk,1,l has linear clique-width at most k+1 and each proper induced subgraph of Zk and
S+
k has clique-width at most k + 1. So, Zk and S+

k , for example, are in fact minimal forbidden
induced subgraphs for graphs of clique-width at most k + 1.

Finally, we want to repeat that the linear clique-width of connected full bubble model graphs
without true twins can be larger than their clique-width. According to Theorem 7.5, the two
parameters differ on graphs with k-models with small separators. Is it possible that clique-width
and linear clique-width differ arbitrarily? In fact, this is not the case, since every k-model with
small separators is embeddable into an open (k+1)-model. It follows that the linear clique-width
of full bubble model graphs is equal to their clique-width up to a small additive constant. The
construction of our clique-width expressions also shows that the optimal clique-width expressions
for full bubble model graphs are easy: they are either linear expressions or their implicit tree
structure has very small pathwidth. It turns out that each full bubble model graph has an
optimal clique-width expression whose implicit tree structure has pathwidth at most 2. We keep
these observations on this informal and intuitive level, but we hope that these observations can
be helpful in the future and stimulate future research.
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