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Abstract

An inactive label in a clique-width expression cannot be used to create edges, and vertices
that are labelled inactive have already received their incident edges. We study properties
of clique-width expressions with inactive labels. The major results are: a characterisation
of the distance-hereditary graphs as a syntactic clique-width class, a characterisation of the
linear clique-width of disconnected graphs, and the complete set of disconnected minimal
graphs of linear clique-width at least 4.

1 Introduction

Graph theory knows many graph representations. Graph representations are often used to suc-
cinctly represent graphs and to provide easy access to structural properties of graphs. Graph
representations are of theoretical and practical importance. An example are clique-width expres-
sions [9]. A clique-width expression defines a construction procedure that iterates this routine:
take the disjoint union of two already constructed induced subgraphs and add the missing edges
between the subgraphs. The special feature of this construction procedure is that edges are not
added between vertices but between groups of vertices. Groups are identified by labels, and
vertices with the same label belong to the same group. The number of different labels necessary
during the construction is measured, and the smallest possible value is the clique-width of the
graph. Clique-width has strong algorithmic applications, since many generally hard problems
are efficiently solvable on graphs of bounded clique-width [10, 26].

There are two basic questions in the study of clique-width: about the clique-width of a
given graph, and about the graphs of a given clique-width bound. Both questions are about
a syntactic property of clique-width expressions, namely a bound on the number of used labels
during the construction procedure. The number of used labels is a syntactic property, since this
number is explicitly expressed in the clique-width expressions. We can so say that the clique-
width parameter is a syntactic property of clique-width expressions. The two basic questions
for clique-width can be seen as specific questions in the following two research directions on
clique-width: given a graph, determine syntactic properties of its clique-width expressions, and
given syntactic properties of clique-width expressions, determine the represented graphs. This
paper is purely dedicated to a study in the latter research direction.

Both described research directions have been investigated. We briefly summarise results
about syntactic properties of clique-width expressions. Some combinatorial results: forbidden
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induced subgraphs and special types of iterative constructions define graph classes of bounded
clique-width [11, 13, 6, 4, 5, 28], closure properties define graph classes of unbounded clique-width
[21]. Some algorithmic results: the clique-width and linear clique-width decision problems are
NP-hard [12], polynomial-time algorithms for computing the clique-width or linear clique-width
of some graph classes of unbounded clique-width or linear clique-width exist [13, 19, 23, 2].

This paper is purely dedicated to the study of graphs that have clique-width expressions of
specific syntactic properties. The simplest such property is a bound on the number of used labels,
which is a bound on the clique-width. Some results are known. Algorithmic results: graphs of
clique-width at most 2 and 3 and of linear clique-width at most 2 and 3 are polynomial-time
recognisable [11, 7, 14, 17]. Combinatorial results: the graphs of clique-width at most 2 are
exactly the cographs [11], equivalently the P4-free graphs [8], the graphs of linear clique-width
at most 2 are the graphs that do not contain P4 and 2K2 and co-2P3 as an induced subgraph
[14], some forbidden induced subgraphs for graphs of linear clique-width at most 3 are known
[17, 18], and single further forbidden induced subgraphs for larger bounds on the clique-width
and linear clique-width are known [13, 24]. So far, the graphs of clique-width and of linear
clique-width at most 2 are the only graphs with clique-width expressions of specific syntactic
properties that are completely known.

The syntactic property of clique-width expressions that we study in this paper is the existence
of an inactive label: we are interested in the graphs that have clique-width expressions with an
inactive label. During the evaluation of a clique-width expression, labels specify the groups the
vertices belong to, and they implicitly specify the neighbourhoods of the vertices. A label is
called inactive if its vertices will never again receive new edges. Vertices that are labelled with
an inactive label already see their full neighbourhoods, and will not receive a different label. We
study the graphs that have clique-width expressions with an inactive label. Among the major
results of this paper, we will completely characterise the graphs of clique-width at most 3 and
of linear clique-width at most 3 with an inactive label.

Inactive labels in clique-width expressions first appeared implicitly in the study of linear
clique-width of disconnected graphs. It is known that each disconnected graph has a linear
clique-width expression that constructs the connected components separately by assigning a
special label to the vertices of already completed connected components [17]. This special label
is an inactive label. A consequence of the specialties of linear clique-width expressions is that
linear clique-width is not invariant with respect to the disjoint union of graphs; this means that
the linear clique-width of a disconnected graph may be strictly larger than the linear clique-
width of each of its connected components. A simple example is the disjoint union of complete
graphs on at least two vertices each: complete graphs have linear clique-width at most 2, and
their disjoint union has linear clique-width 3, since 2K2 is an induced subgraph. The linear
clique-width of disconnected graphs cannot be determined from the linear clique-width of its
connected components. Our first main result in this paper is a characterisation of the linear
clique-width of disconnected graphs, and this characterisation is based on inactive labels. We
even generalise this characterisation result and consider connected graphs with a small separator.
This result is surprising and has no equivalent prior to this work.

In a second part of the paper, we study the graphs that have clique-width expressions with
at most three labels including an inactive label. We will completely characterise these graphs.
First, we consider general clique-width expressions, and we show that the graphs which have
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clique-width expressions with at most three labels and an inactive label are precisely the distance-
hereditary graphs. It is known that distance-hereditary graphs are of clique-width at most 3
[13], and there are graphs of clique-width at most 3 that are not distance-hereditary, such as
the chordless cycle on five vertices. It is therefore a surprise that the distance-hereditary graphs
admit a characterisation by a purely syntactic property of clique-width expressions. After this
characterisation, we restrict to linear clique-width expressions with at most three labels and an
inactive label. We will precisely characterise also these graphs, by giving the set of the minimal
forbidden induced subgraphs and by an explicit graph-structural description. Combining this
result with the characterisation of the linear clique-width of disconnected graphs, we are able
to give the complete set of disconnected minimal forbidden induced subgraphs for the graphs
of linear clique-width at most 3. This is a big step toward a complete list of forbidden induced
subgraphs of linear clique-width at most 3 and an understanding of graphs of bounded (linear)
clique-width.

Organisation of the paper. We define clique-width and linear clique-width and inactive labels
in Section 2, and we give some basic facts. We study the linear clique-width of graphs with
small separators in Section 3, and in Sections 4 and 5, we characterise the graphs with clique-
width expressions with at most three labels and an inactive label and with linear clique-width
expressions with at most three labels and an inactive label. The Conclusions summarises our
results and points out some further useful results that were established in the paper.

2 Definitions and notation, clique-width, and inactive labels

Basic graph terminology. The graphs in this paper are simple, finite, undirected. For a graphG =
(V,E), V = V (G) is the vertex set and E = E(G) is the edge set of G. Edges are denoted as
uv, where u 6= v. If uv is an edge of G then u and v are adjacent in G and u and v are a
neighbour of each other in G, and if uv is not an edge of G then u and v are non-adjacent in
G. The edge uv of G is incident to u and v in G. The (open) neighbourhood of a vertex u of
G, denoted as NG(u), is the set of the neighbours of u in G, and NG[u] =def NG(u)∪ {u} is the
closed neighbourhood of u in G. The degree of a vertex is the number of its neighbours in G. For
x a vertex of G, if NG(x) = ∅ then x is called isolated, and if NG[x] = V (G) then x is called
universal. If G has no vertices then G is called empty; otherwise, G is non-empty. If the vertices
of G are pairwise non-adjacent then G is called edgeless, and if the vertices of G are pairwise
adjacent then G is called complete.

LetG andH be graphs. We say thatH is a subgraph ofG if V (H) ⊆ V (G) and E(H) ⊆ E(G).
Let X ⊆ V (G). The set X induces the subgraph H of G, also denoted as G[X], if V (H) = X

and for every vertex pair u, v of H, uv ∈ E(H) if and only if uv ∈ E(G). We write G\X instead
of G[V (G)\X], and for X = {x}, we write G−x instead of G\{x}. We can say that G−x is the
graph obtained from G by deleting vertex x and its incident edges. For u, v a pair of possibly
non-adjacent vertices of G, where u 6= v, G+uv is the graph on vertex set V (G) and with edge
set E(G) ∪ {uv}, i.e., the graph obtained from G by adding the edge uv. We say that H is an
induced subgraph of G if there is Y ⊆ V (G) such that H = G[Y ]. We say that G contains H as
an induced subgraph if H can be embedded into G, which means that there is a total, injective
mapping ϕ : V (H) → V (G) such that for every vertex pair u, v of H, uv ∈ E(H) if and only if
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ϕ(u)ϕ(v) ∈ E(G).
Let G be a graph. Let a, b be a vertex pair of G, and let r be an integer with r ≥ 0. An

a, b-path of length r of G is a sequence (x0, . . . , xr) of pairwise different vertices of G such that
x0 = a and xr = b and xi−1xi ∈ E(G) for every 1 ≤ i ≤ r. The a, b-path (x0, . . . , xr) is called
chordless if xixj 6∈ E(G) for every index pair i, j with 0 ≤ i < i + 1 < j ≤ r. Graph G is
connected if for every vertex pair u, v of G, G has a u, v-path; otherwise, G is disconnected.
The maximal connected induced subgraphs of a graph are called connected components. For G
and H vertex-disjoint graphs, the disjoint union of G and H, denoted as G ⊕H, is the graph
on vertex set V (G) ∪ V (H) and with edge set E(G) ∪ E(H). Note that the disjoint union of
non-empty graphs is a disconnected graph.

In the course of the paper, we will encountermarked and labelled graphs. The given definitions
and notation are extended to these graphs in a natural fashion.

Clique-width and linear clique-width. Let k be an integer with k ≥ 1. The families of the k-
expressions and the linear k-expressions, denoted as respectively E(k) and Elin(k), are inductively
defined:

• atomic expression
() ∈ E(k) and () ∈ Elin(k)

• one-step extension

– for δ ∈ E(k) and s, o ∈ {1, . . . , k} with s 6= o:

ηs,o(δ), ρs→o(δ) ∈ E(k), and if δ ∈ Elin(k) then ηs,o(δ), ρs→o(δ) ∈ Elin(k)

– for β, δ ∈ E(k) and o ∈ {1, . . . , k} and u a vertex name:

β ⊕ δ, δ ⊕ o(u) ∈ E(k), and if δ ∈ Elin(k) then δ ⊕ o(u) ∈ Elin(k).

It is as easy as important to observe: Elin(k) ⊆ E(k). A k-labelled graph is an ordered pair Γ =
(G, ℓ) where G is a graph and ℓ : V (G) → {1, . . . , k} is a mapping that assigns a label to each
vertex of G; the vertices and edges of Γ are the vertices and edges of G, and G = [Γ] = [(G, ℓ)].
Let α ∈ E(k). The k-labelled graph val(α), that is represented by α, is inductively defined:

• if α = ()

val(α) is the k-labelled graph with empty vertex set

• if α = ηs,o(δ)

val(α) is obtained from val(δ) by adding all missing edges between the vertices with label s
and with label o

• if α = ρs→o(δ)

val(α) is obtained from val(δ) by assigning label o to all vertices with label s

• if α = β ⊕ δ

val(α) is the disjoint union of val(β) and val(δ)

• if α = δ ⊕ o(u)

val(α) is obtained from val(δ) by adding a new vertex with name u and label o; the new
vertex u has no neighbours in val(α).
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(a) (b) (c)

Figure 1: The minimal forbidden induced subgraphs for the graphs of clique-width at most 2
and of linear clique-width at most 2: (a) P4 and (b) 2K2 and (c) co-2P3.

The graph represented by α is [val(α)], that is the graph G with (G, ℓ) = val(α). For G a graph
and α ∈ E(k), we say that α is a k-expression for G if G = [val(α)], and we say that α is a linear
k-expression for G if G = [val(α)] and α ∈ Elin(k). The clique-width of a graph G, denoted as
cwd(G), is the smallest integer k such that G has a k-expression, and the linear clique-width of
a graph G, denoted as lcwd(G), is the smallest integer k such that G has a linear k-expression.

The graphs of small clique-width and linear clique-width are completely known. It is easy to
observe from the definition of E(k) and Elin(k) that the edgeless graphs are exactly the graphs
of clique-width at most 1, and they are exactly the graphs of linear clique-width at most 1.
The graphs of clique-width at most 2 and of linear clique-width at most 2 are more complex.
They can be characterised by (forbidden) induced subgraphs. Because of future applications
in the paper, we state the characterisation results as lower-bound results. The graphs in the
statements are depicted in Figure 1.

Theorem 2.1 ([11, 14]). Let G be a graph.

1) cwd(G) ≥ 3 if and only if G contains P4 as an induced subgraph.

2) lcwd(G) ≥ 3 if and only if G contains P4 or 2K2 or co-2P3 as an induced subgraph.

Let G be a graph. A vertex ordering for G is a linear arrangement σ = 〈u1, . . . , un〉 of the
vertices of G. For a vertex pair x, y of G, we write x ≺σ y if x = ui and y = uj and i < j. We
associate linear k-expressions with vertex orderings, that we define inductively. Let k ≥ 1, and
let α ∈ Elin(k):

• the vertex ordering associated with α = () is 〈〉, and
the vertex ordering associated with α = ηs,o(δ) and α = ρs→o(δ) is the vertex ordering
associated with δ

• for α = δ ⊕ o(u) and 〈u1, . . . , un〉 the vertex ordering associated with δ

〈u1, . . . , un, u〉 is the vertex ordering associated with α.

Vertex orderings are a useful tool in the study of linear k-expressions. Another useful tool are
subexpressions, that are defined in two steps. Let k ≥ 1, and let α, γ ∈ E(k). We say that γ

is a reduction of α if γ is constructed through one-step extensions analogous to α but may skip
one-step extensions of the form δ ⊕ o(u). Informally, γ is a reduction of α if γ can be obtained
from α by deleting vertices. Reductions are particularly interesting when considering induced
subgraphs. We say that γ is a subexpression of α if one of the following applies:
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• γ is a reduction of α

• there are β, δ ∈ E(k) and γ is a subexpression of δ and either α = ηs,o(δ) or α = ρs→o(δ)
or α = δ ⊕ o(u) or α = β ⊕ δ or α = δ ⊕ β.

Informally, we can say that γ is a subexpression of α if γ can be obtained from α by un-doing
late one-step extensions and then deleting further vertices. Viewing α as an operation tree, γ
corresponds to a subtree. Let G be a graph, let α ∈ E(k) be a k-expression for G, and let γ be
a subexpression of α. Let u, v be an adjacent vertex pair of G, and assume that u is a vertex
of val(γ). We say that v is a non-visible neighbour of u in val(γ) if uv is not an edge of val(γ).
Note that v may or may not be a vertex of val(γ). Let H be a subgraph of G, that will mostly
be an induced subgraph of G. We say that γ is a full subexpression for H if V (val(γ)) = V (H).
Full subexpressions will be particularly useful when proving properties about vertex labels for
lower-bound results.

Sample application: Vertex orderings, subexpressions and non-visible neighbours are useful for
obtaining lower bounds on the (linear) clique-width. We discuss a local property of linear 3-
expressions. Let G be a graph on at least two vertices and without isolated vertices, and assume
lcwd(G) ≤ 3. Let α ∈ Elin(3) be a 3-expression forG with associated vertex ordering 〈u1, . . . , un〉.
We assume un−1un 6∈ E(G). We consider a specific subexpression of α. Let γ = δ ⊕ o(un−1) be
a subexpression of α that is a full subexpression for G−un, and let Γ =def val(γ). Let L1, L2, L3

be the sets of the vertices of Γ with label 1, 2, 3, respectively. By symmetry, we may assume
un−1 ∈ L3. Since un−1 and un are not isolated vertices of G and they are non-adjacent, the
following is the case:

• NG(un−1) = L1 or NG(un−1) = L2 or NG(un−1) = L1 ∪ L2

• NG(un) = L1 or NG(un) = L2 or NG(un) = L1 ∪ L2;
recall here that L3 ∩NG(un) 6= ∅ means L3 ⊆ NG(un), and un−1 ∈ NG(un) in particular,
a contradiction.

It follows: either NG(un−1) = NG(un) or NG(un−1) ∩ NG(un) = ∅ or NG(un−1) ⊂ NG(un) or
NG(un) ⊂ NG(un−1). We will draw an easy but useful consequence at the end of the section.

Inactive labels. Let k ≥ 1, and let α ∈ E(k). Let l be a label, where l ∈ {1, . . . , k}. We say that
α satisfies the inactivity condition for label l if one of the following applies:

• α = ()

• α = δ ⊕ o(u) and δ satisfies the inactivity condition for label l, or
α = β ⊕ δ and β and δ satisfy the inactivity condition for label l

• α = ηs,o(δ) and s 6= l and o 6= l and δ satisfies the inactivity condition for label l, or
α = ρs→o(δ) and s 6= l and δ satisfies the inactivity condition for label l.

We say that α is a k-expression with label l as an inactive label if α satisfies the inactivity
condition for label l. Let E inac(k) and E inac

lin (k) denote the families of respectively k-expressions
and linear k-expressions with label 1 as an inactive label. The following inclusions are clear:
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E inac
lin (k) ⊆ E inac(k) and E inac

lin (k) ⊆ Elin(k) and E inac(k) ⊆ E(k). It is also not difficult to see,
and we will give the necessary formal arguments in Section 3.2: if a graph G has a k-expression
with some label as an inactive label then there is α ∈ E inac(k) that is a k-expression for G;
analogously for linear k-expressions. It is therefore no restriction to define E inac(k) and E inac

lin (k)
for k-expressions with label 1 as an inactive label. For a graph G, cwdinac(G) denotes the smallest
integer k such that G has a k-expression with an inactive label, and, analgously, lcwdinac(G)
denotes the smallest integer k′ such that G has a linear k′-expression with an inactive label.
Consequently, for k and k′ integers with k ≥ 1 and k′ ≥ 1,

• cwdinac(G) ≤ k if and only if E inac(k) has a k-expression for G

• lcwdinac(G) ≤ k′ if and only if E inac
lin (k′) has a k′-expression for G.

The following properties are straightforward to observe.

Lemma 2.2. Let G be a graph.

1) cwd(G) ≤ cwdinac(G) ≤ cwd(G) + 1, and
lcwd(G) ≤ lcwdinac(G) ≤ lcwd(G) + 1

2) cwdinac(G) ≤ lcwdinac(G)

3) cwdinac(G) ≤ 2 if and only if lcwd(G) = 1.

Proof. The first and second statement are a direct consequence of the above observed k-
expression family inclusions. For the third statement, it suffices to observe that a 2-expression
with an inactive label cannot contain an η-operation, so that each 2-expression with label 1 or
label 2 as an inactive label defines an edgeless graph, and the edgeless graphs are exactly the
graphs of linear clique-width 1.

The third statement of the lemma implies that the smallest non-trivial value of k about
k-expressions with an inactive label is 3.

The following two lemmas are particularly useful when proving lower bounds.

Lemma 2.3. Let G be a graph and let H be an induced subgraph of G. Then,

1) cwdinac(H) ≤ cwdinac(G)

2) lcwdinac(H) ≤ lcwdinac(G).

Proof. Let k ≥ 1, let α ∈ E inac(k), and assume that α is a k-expression for G. Then, α has a
subexpression γ that is a reduction of α and a k-expression for H. Since α satisfies the inactivity
condition for label 1, so γ satisfies the inactivity condition for label 1, and γ ∈ E inac(k). The
two inequalities directly follow.

Lemma 2.4. Let G be a graph on at least two vertices and without isolated vertices, and assume
lcwdinac(G) ≤ 3. Let α ∈ E inac

lin (3) be a 3-expression for G, and let 〈u1, . . . , un〉 be the vertex
ordering associated with α. If un−1un 6∈ E(G) then NG(un−1) = NG(un).
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Proof. Assume un−1 6∈ NG(un). Let γ = δ ⊕ o(un−1) a subexpression of α that is a full
subexpression for G−un, and let Γ =def val(γ). Let L1, L2, L3 be the sets of the vertices of Γ
with label 1, 2, 3, respectively. Since G has no isolated vertices and all neighbours of un−1 in G

are non-visible in Γ, un−1 has a non-visible neighbour in Γ, so that un−1 6∈ L1. By symmetry, we
assume un−1 ∈ L3. As we have shown in the sample application above, NG(un−1) ⊆ L1∪L2 and
NG(un) ⊆ L1∪L2, and since α and γ have label 1 as an inactive label, NG(un−1) = L2 = NG(un)
follows.

3 Linear clique-width and graphs with (very) small separators

We consider graphs that are disconnected or that have a cut edge or a cut vertex. The three cases
are unified by demanding a vertex whose deletion results in a disconnected graph. We show that
such graphs have large induced subgraphs with linear clique-width expressions with an inactive
label. We call this main technical result the “decomposition lemma”. The decomposition lemma
“reduces” the linear clique-width of induced subgraphs. The decomposition lemma is applied
in order to characterise the linear clique-width of disconnected graphs and of graphs with a
cut edge, and we apply the decomposition lemma to graphs with a cut vertex. In a first part,
we prove the linear clique-width characterisation results, and in a second part, we prove the
decomposition lemma and discuss further consequences.

3.1 Characterisation results

We want to characterise the linear clique-width of graphs with small separators through the
linear clique-width of large induced subgraphs. Two implications are to be shown. To begin,
we show the easy implication of the characterisation results, that constructs linear clique-width
expressions for larger graphs from linear clique-width expressions for smaller graphs. Let G and
H be vertex-disjoint graphs and let a and b be vertices of respectively G and H. By G[a⊲⊳b]H,
we denote the graph that is obtained from the disjoint union of G−a and H−b by adding a new
vertex w with neighbourhood NG(a) ∪NH(b). We can say that G[a⊲⊳b]H is the graph obtained
from joining a and b.

Lemma 3.1. Let G and H be vertex-disjoint graphs. Let k be an integer with k ≥ 3, and
assume lcwd(G) ≤ k and lcwdinac(H) ≤ k. Then, there is a vertex pair a, b with a ∈ V (G) and
b ∈ V (H) such that the following is the case:

1) lcwd(G⊕H) ≤ k

2) lcwd((G⊕H)+ab) ≤ k

3) lcwd(G[a⊲⊳b]H) ≤ k.
If G is not a complete graph then a can be chosen as a vertex that is not universal in G.

If lcwdinac(G) ≤ k then the three statements analogously hold for lcwdinac, except for the third
statement in the following situation: k = 3 and lcwd(G) = 2 and G has a universal vertex.

8



Proof. The three statements can be proved very similarly. Let β ∈ Elin(k) be a k-expression for
G and let δ ∈ E inac

lin (k) be a k-expression for H. Let σ = 〈u1, . . . , un〉 and τ = 〈v1, . . . , vm〉 be the
vertex orderings associated with respectively β and δ. Let b =def v1, and let δ = δ′(δ′′ ⊕ o(v1)).
Note that δ′(()⊕ o(v1)) is a k-expression for H. We will use b and δ′ in the proofs of the second
and the third statement.

To prove the first statement, it suffices to observe that

α1 =def δ′
(

ρk→1

(

· · ·
(

ρ2→1(β)
)

· · ·
)

⊕ o(v1)
)

is a linear k-expression for G ⊕ H. It is important to recall that δ has label 1 as an inactive
label. If β ∈ E inac

lin (k) then β and δ have label 1 as an inactive label, and α1 has label 1 as an
inactive label, so that α1 ∈ E inac

lin (k) in this case.

We prove the second statement. Let a =def un. Since k ≥ 3, we can modify β into a linear
k-expression β′ such that in val(β′): a has label 3 and all other vertices have label 1. This
modification can be achieved, for instance, by changing the labels of the non-neighbours of a
to label 1 and the labels of the neighbours of a to label 2 before inserting a, and a is inserted
with label 3. Note that this modification of β into β′ is possible also in case of β ∈ E inac

lin (k),
particularly since no neighbour of a can have label 1 before the insertion of a.

Let
α2 =def δ′

(

ρ2→o

(

ρ3→1

(

η2,3

(

β′ ⊕ 2(b)
))))

.

Note that ρ2→o is only necessary (and valid) if o 6= 2. It is straightforward to verfiy that α2 is a
linear k-expression for (G⊕H)+ab, and it is not difficult to see that α2 satisfies the inactivity
condition for label 1 if β, and thus β′, satisfies the inactivity condition for label 1.

We prove the third statement. We choose vertex a and find a k-expression for G of special
properties. If G is a complete graph then let a =def un, and if G is not a complete graph then
let a =def up for p largest with 1 ≤ p ≤ n such that up is not a universal vertex of G. If a = un
then let β′′ =def β

′, where β′ is the k-expression of the proof of the second statement.
As the other case, assume a 6= un, i.e., p < n. Then, up+1, . . . , un are universal vertices of

G. Let γ be a subexpression of β such that γ is a k-expression for G \ {up+1, . . . , un}. Note here
that 〈u1, . . . , up〉 is the vertex ordering associated with γ. Analogous to the definition of β′, we
obtain γ′ from γ such that γ′ is a linear k-expression for G \ {up+1, . . . , un} and in val(γ′): up
has label 3 and all other vertices have label 1. A linear k-expression for G \ {up+2, . . . , un} is:

ρ2→1

(

η2,1

(

η2,3

(

γ′ ⊕ 2(up+1)
)))

.

Iterating the construction, we obtain a linear k-expression β′′ for G such that in val(β′′): a has
label 3 and all other vertices have label 1.

Let
α3 =def δ′

(

ρ3→o(β
′′)
)

;

recall that ρ3→o is valid and necessary only in case of o 6= 3. It is straightforward to verify that
α3 is indeed a linear k-expression for G[a⊲⊳b]H.

It remains to consider k-expressions with an inactive label, more precisely, if β ∈ E inac
lin (k).

We need to show that β′′ of the required properties exists. If k ≥ 4 or if un is not a universal
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vertex of G then we can apply the above construction for β′′ directly or with minor modifications,
namely by using labels 2, 3, 4 instead of 1, 2, 3.

If k = 3 and un is a universal vertex of G then the construction of β′′ as described is not
possible. This is a special situation. Let βn = βn−1 ⊕ o′(un) be a subexpression of β that is a
full subexpression for G. Since un is adjacent to each other vertex of G, each vertex of G has
a non-visible neighbour in val(βn), and thus, no vertex of val(βn) has label 1; moreover, the
vertices of val(βn−1) have the same label and that is different from label o′. As a consequence,
[val(βn−1)] = G−un, and βn−1 is a linear 3-expression for G−un and for each subexpression γ′n−1

of βn−1, no vertex has label 1 in val(γ′n−1). Thus, G−un has a linear 3-expression that does not
use label 1, so that G−un has a linear 2-expression, and lcwd(G−un) ≤ 2, and since un is a
universal vertex of G, lcwd(G) = 2.

We established three easy results about how to join graphs without increasing the linear
clique-width. The proof of Lemma 3.1 explores some constructions, and it also presents some
easy arguments to reason about clique-width properties on the basis of given clique-width ex-
pressions. As an example, we refer to the special situation in the proof of the third statement.
It is not difficult to see that more complex join operations are possible, that yield similar results.
As an example, instead of connecting a and b through an edge in the second statement, a and b

may be connected through a chordless path of arbitrary length. This raises the question of how
“good” these join operations are. We are going to show that they are in fact best possible.

The approach to proving the asked optimality of the join operations of Lemma 3.1 is by giving
equivalence statements. We are going to show that the assumptions of Lemma 3.1 are not only
sufficient but also necessary. The main technical tool is the already mentioned decomposition
lemma, that we state here in a simplified version and that we prove in the next subsection.

Lemma 3.2 (Decomposition lemma, simplified version). Let G be a graph and let w be a vertex
of G. Assume that G−w is disconnected. Let C be a connected component of G−w on at least
two vertices, and let D =def G\V (C). Assume that D is connected and has at least two vertices,
and assume V (C) 6⊆ NG(w).

Let k be an integer with k ≥ 3. Assume lcwd(G) ≤ k. Let α ∈ Elin(k) be a k-expression for
G and let 〈u1, . . . , un〉 be the vertex ordering associated with α. Assume that u1 is a vertex of
C. Then, lcwdinac(D) ≤ k.

As a first and easy application of Lemma 3.2, we characterise the linear clique-width of
disconnected graphs. Recall that this is not a trivial result, since the linear clique-width of
disconnected graphs is not a function in the linear clique-width of the connected components.
A simple example is 2K2 of Figure 1, that has linear clique-width 3 and each proper induced
subgraph has linear clique-width at most 2.

Proposition 3.3. Let G be a graph, and let k be an integer with k ≥ 1.

1) lcwdinac(G) ≤ k if and only if lcwdinac(C) ≤ k for every connected component C of G.

2) lcwd(G) ≤ k if and only if lcwd(C) ≤ k for every connected component C of G and there
is at most one connected component C ′ of G such that lcwdinac(C

′) > k.
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Proof. If G is connected then the two statements of the proposition are obviously correct. It is
equally easy to see that the two statements are correct if G is edgeless and if k = 1. We consider
the case when k = 2. If lcwdinac(G) ≤ 2 then G is edgeless due to Lemma 2.2, and the first
statement clearly holds. If lcwd(G) ≤ 2 then at most one connected component of G has at least
two vertices, since G does not contain 2K2 as an induced subgraph due to Theorem 2.1, so that
G is the disjoint union of a connected graph of linear clique-width at most 2 and an edgeless
graph, and the second statement follows. In the following, we assume k ≥ 3. Let C1, . . . , Cr be
the connected components of G, where r ≥ 2.

We prove the first statement. If lcwdinac(G) ≤ k then lcwdinac(Ci) ≤ k for every 1 ≤ i ≤ r

due to Lemma 2.3. For the converse, assume lcwdinac(Ci) ≤ k for every 1 ≤ i ≤ r. Let
G1 =def C1, and let Gi =def Gi−1 ⊕ Ci for 2 ≤ i ≤ r. An iterative application of the first
statement of Lemma 3.1 to Gi−1 and Ci yields lcwdinac(Gi) ≤ k for every 1 ≤ i ≤ r, and since
Gr = G, we conclude lcwdinac(G) ≤ k.

We prove the second statement. We may assume lcwd(C1) ≤ k and lcwdinac(Ci) ≤ k for
every 2 ≤ i ≤ r. Thus, lcwdinac(C2⊕ · · ·⊕Cr) ≤ k due to the first statement of the proposition,
and lcwd(G) ≤ k by applying the first statement of Lemma 3.1 to C1 and C2 ⊕ · · · ⊕ Cr.

For the converse, assume lcwd(G) ≤ k. Then, lcwd(Ci) ≤ k for every 1 ≤ i ≤ k. Let
β ∈ Elin(k) be a k-expression for G with associated vertex ordering σ = 〈u1, . . . , un〉. We assume
that u1 is a vertex of C1. We are going to show lcwdinac(Ci) ≤ k for every 2 ≤ i ≤ r. Let
2 ≤ p ≤ r. Let Hp =def C1 ⊕ Cp. Observe that Hp is an induced subgraph of G, and thus,
lcwd(Hp) ≤ lcwd(G). Let βp be a subexpression of β that is a k-expression for Hp, and let σp
be the vertex ordering associated with βp. Recall that βp is a linear k-expression for Hp, and σp
is the restriction of σ to the vertices of Hp. It is a direct consequence that u1 = x or u1 ≺σp x

for every vertex x of Hp.
We are going to apply Lemma 3.2. If Cp has at most two vertices then lcwdinac(Cp) ≤ 3 ≤ k.

So, assume that Cp has at least three vertices. Let w be a vertex of Cp such that Cp−w is
connected; observe that w does exist. Then, Hp−w has exactly two connected components,
namely C1 and Cp−w, and Cp = Hp \ V (C1) and Cp has at least two vertices and V (C1) 6⊆
NHp

(w). The assumptions of Lemma 3.2 are satisfied for Hp and w and βp, and we obtain the
desired result of lcwdinac(Cp) ≤ k.

The result of Proposition 3.3 characterises the linear clique-width of disconnected graphs.
We give two applications of this characterisation, applications to connected graphs. Our first
application is to connected graphs with a cut edge, i.e., to connected graphs with an edge whose
removal yields a disconnected graph.

Proposition 3.4. Let G and H be vertex-disjoint connected graphs, and let k be an integer with
k ≥ 3. Then, lcwd(G ⊕ H) ≤ k if and only if there is a vertex pair a, b with a ∈ V (G) and
b ∈ V (H) such that lcwd((G⊕H)+ab) ≤ k. Analogously for lcwdinac.

Proof. Assume lcwd(G⊕H) ≤ k. Due to the second statement of Proposition 3.3 and without
loss of generality, lcwd(G) ≤ k and lcwdinac(H) ≤ k. Thus, the assumptions of Lemma 3.1 are
satisfied: there is a vertex pair a, b with a ∈ V (G) and b ∈ V (H) such that lcwd((G⊕H)+ab) ≤
k. Analogously, if lcwdinac(G ⊕ H) ≤ k then lcwdinac(G) ≤ k and lcwdinac(H) ≤ k due to
Lemma 2.3, and lcwdinac((G⊕H)+ab) ≤ k for some a ∈ V (G) and b ∈ V (G) due to Lemma 3.1.
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We prove the converse. Let a, b be a vertex pair with a ∈ V (G) and b ∈ V (H), and let
F =def (G⊕H)+ab. Observe that G andH are induced subgraphs of F . First, if lcwdinac(F ) ≤ k

then lcwdinac(G) ≤ k and lcwdinac(H) ≤ k due to Lemma 2.3, and lcwdinac(G⊕H) ≤ k due to
the first statement of Proposition 3.3.

Next, assume lcwd(F ) ≤ k. Then, lcwd(G) ≤ k and lcwd(H) ≤ k. If G or H has at most
three vertices then lcwdinac(G) ≤ 3 or lcwdinac(H) ≤ 3, and lcwd(G⊕H) ≤ k due to the second
statement of Proposition 3.3. We henceforth assume that G and H have at least four vertices
each. Let α ∈ Elin(k) be a k-expression for F with associated vertex ordering 〈u1, . . . , un〉. We
may assume u1 ∈ V (G). We verify the assumptions of Lemma 3.2: F−b is disconnected and G

is a connected component of F−b and H = F \ V (G) and H is connected and V (G) 6⊆ NF (b),
particularly since G has at least four vertices and NF (b)∩ V (G) = {a}. Then, lcwdinac(H) ≤ k,
and lcwd(G⊕H) ≤ k due to the second statement of Proposition 3.3.

Our second application of the characterisation in Proposition 3.3 is to connected graphs with
a cut vertex, i.e., to connected graphs with a vertex whose removal yields a disconnected graph.
To state a result of full strength, technical assumptions are necessary, that we want to avoid
here, and that is why the given statement is weaker than actually possible. Let G be a graph
and let S ⊆ V (G). An S-component of G is an induced subgraph C of G such that S ⊆ V (C)
and C \S is a connected component of G\S. We can say that an S-component of G is obtained
from a connected component of G \ S by adding the vertices in S.

Proposition 3.5. Let k be an integer with k ≥ 3. Let G be a connected graph and let w be
a vertex of G. Assume that G−w is disconnected and no {w}-component of G has w as a
universal vertex. If lcwd(G) ≤ k then there is at most one {w}-component C of G such that
lcwdinac(C) > k.

Proof. Assume lcwd(G) ≤ k. Let α ∈ Elin(k) be a k-expression for G with associated vertex
ordering σ = 〈u1, . . . , un〉 such that w 6= u1 and NG(u1) 6= {w}. It is important to note that this
assumption is indeed possible and such a k-expression α does exist, since there are also linear k-
expressions for G with associated vertex orderings 〈u2, u1, u3, . . . , un〉 and 〈u3, u2, u1, u4, . . . , un〉.

Let C be the {w}-component of G containing u1; since u1 6= w, C is unique. Let D be an
arbitrary {w}-component of G, whereD 6= C. IfD has at most three vertices then lcwdinac(D) ≤
3 ≤ k. Otherwise, D has at least four vertices. Let GD =def G[V (C) ∪ V (D)], let αD be a
subexpression of α that is a k-expression for GD, and let σD be the vertex ordering associated
with αD. Recall that αD is a linear k-expression for GD and u1 = x or u1 ≺σD

x for every
vertex x of GD. We verify the assumptions of Lemma 3.2: GD−w is disconnected and C−w

is a connected component of GD−w on at least two vertices and D = GD \ V (C−w) and D is
connected and has at least two vertices and D−w is connected. Then, lcwdinac(D) ≤ k.

The converse of Proposition 3.5 requires some technical assumptions, and it is proved anal-
ogous to the proof of Proposition 3.4 by applying the third statement of Lemma 3.1. The
two results, Propositions 3.4 and 3.5, can be seen as additional characterisations of the linear
clique-width of disconnected graphs. The usefullness of the two results is better understood
when considering their contrapositions: they provide lower bounds on the linear clique-width
of connected graphs with a cut vertex through the linear clique-width of special induced sub-
graphs. For example: if G and H are vertex-disjoint connected graphs with lcwdinac(G) > k
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and lcwdinac(H) > k, where k ≥ 3, then lcwd(G⊕H) > k and lcwd((G⊕H)+ab) > k for every
vertex pair a, b with a ∈ V (G) and b ∈ V (H). We will discuss more concrete consequences in
the Conclusions section at the end of the paper.

3.2 Proof of the decomposition lemma

We are going to prove the decomposition lemma, Lemma 3.2 of the preceding subsection. The
lemma shows that a graph with a cut vertex has a large component of smaller linear clique-
width. We split the proof into several parts, that we prove as individual results. We do this for
two reasons: to better structure the proof, and to provide a guideline for the proof of similar
results.

The proof of the decomposition lemma employs two invariants for clique-width expressions.
Let k be an integer with k ≥ 1. Let a be a label with a ∈ {1, . . . , k}, and let δ ∈ E(k). We
say that label a is used in δ if label a occurs as s or o in the one-step extensions ηs,o or ρs→o

or δ ⊕ o(v) in δ. By used(δ), we denote the set of the labels from {1, . . . , k} that are used in δ.
We also need to express the existence of an inactive label, that we formalise through inac(δ):
inac(δ) ∈ {0, 1, . . . , k}, and if inac(δ) = 0 then δ has no used label as an inactive label, and
if inac(δ) = b for b ∈ {1, . . . , k} then b ∈ used(δ) and δ has label b as an inactive label. It is
important to note that an inactive label shall be a used label, and δ may have more than one
inactive labels.

We consider the three types of one-step extensions separately. We begin with the easiest
case.

Lemma 3.6. Let k be an integer with k ≥ 3. Let δ ∈ E(k), and let α =def ρs→o(δ), where
s, o ∈ {1, . . . , k} and s 6= o. Then, there is γ ∈ E(k) with val(γ) = val(α) such that the two
conditions are satisfied:

1) used(γ) = used(δ), or
s ∈ used(δ) and o 6∈ used(δ) and used(γ) = (used(δ) \ {s}) ∪ {o}

2) inac(γ) = inac(δ), or
inac(δ) = s and inac(γ) = o,

and if δ ∈ Elin(k) then γ ∈ Elin(k).

Proof. Let ∆ =def val(δ) and Γ =def val(α). For i ∈ {1, . . . , k}, let Li and L′

i be the sets of
the vertices of respectively ∆ and Γ with label i. Observe the easy observation: Li = L′

i for
i ∈ {1, . . . , k} \ {s, o}, and L′

s = ∅ and L′

o = Ls ∪ Lo. If Ls = ∅ then Γ = ∆, and we can
choose γ =def δ, and the two conditions are clearly satisfied. Otherwise, Ls 6= ∅, and therefore,
s ∈ used(δ). If inac(δ) = o then o ∈ used(δ), and we can choose γ =def α and inac(γ) = o, and
the two conditions are satisfied. Otherwise, inac(δ) 6= o.

Obtain δ′ from δ by replacing each occurrence of label s by label o and each occurrence of
label o by label s. In other words, we exchange labels s and o in δ against each other. It is
important to observe [∆] = [val(δ′)], and, more importantly, Γ = val(ρs→o(δ

′)). Assume Lo 6= ∅.
Then, o ∈ used(δ), and we let γ =def ρs→o(δ

′). Observe used(γ) = used(δ), and γ satisfies the
first condition. If inac(δ) 6= s then we can choose inac(γ) such that inac(γ) = inac(δ), and if
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inac(δ) = s then we can choose inac(γ) such that inac(γ) = o, and γ also satisfies the second
condition.

Assume Lo = ∅. Then, Γ = val(δ′) already. Let γ =def δ
′. If o ∈ used(δ) then used(γ) =

used(δ′) = used(δ), and if o 6∈ used(δ) then used(γ) = (used(δ) \ {s}) ∪ {o}, and the first
condition is satisfied. For the second condition, if inac(δ) 6= s then we can choose inac(γ) such
that inac(γ) = inac(δ), and if inac(δ) = s then we can choose inac(γ) such that inac(γ) = o.

For the other two one-step extensions, we need to restrict the structure of the considered
graph. Throughout the remaining subsection, let the following definitions and assumptions
be valid: G is a graph without isolated vertices, and G has a vertex w such that G−w is
disconnected. Observe that G may already be disconnected. Let C be a connected component
of G−w, and let D =def G\V (C). Observe that w is a vertex of D. Assume that D is connected
and has at least two vertices. This means that G has at most two connected components. We
also assume that C has at least two vertices. Observe that these are assumptions of Lemma 3.2.

Lemma 3.7. Let k be an integer with k ≥ 3, and let s, o ∈ {1, . . . , k} and s 6= o. Let Γ be a
k-labelled graph such that [Γ] is a subgraph of G. Let Ls and Lo be the sets of the vertices of Γ
with label s and o, respectively. Assume that the vertices in Ls and Lo are adjacent in G.

Let δ ∈ E(k) be with Γ \ V (C) = val(δ), and let α =def ηs,o(δ). Then, one of the two cases
applies:

1) val(α) = val(δ), or Ls ∪ Lo ⊆ V (D)

2) val(α) 6= val(δ), and if Ls ∩ V (C) 6= ∅ then Lo = {w} and Ls ⊆ NG(w) and the vertices in
Ls have no non-visible neighbour in Γ other than w.

Proof. We assume val(α) 6= val(δ). This means that there is an adjacent vertex pair u, v of D
with u ∈ Ls and v ∈ Lo and u is a non-visible neighbour of v in Γ.

We assume Ls ∩ V (C) 6= ∅; let z ∈ Ls ∩ V (C). According to the assumptions of the lemma,
xy ∈ E(G) for every x ∈ Ls and y ∈ Lo, in particular, Lo ⊆ NG(z) ∩NG(u). The structure of
G implies Lo ∩ V (D) = {w}. It follows Ls ⊆ NG(w), and w 6∈ Ls. If Lo ∩ V (C) 6= ∅ then u

has a neighbour in V (C), which means u = w according to the structure of G, but contradicts
w 6∈ Ls. So, Lo ∩ V (C) = ∅, and Lo = {w}.

Suppose there is a vertex pair x, y of G with x ∈ Ls and y 6= w such that x is a non-visible
neighbour of y in Γ. Clearly, Ls ⊆ NG(y) must hold, and since Ls∩V (C) 6= ∅ and Ls∩V (D) 6= ∅,
y 6= w yields a contradiction.

We prove the decomposition lemma by modifying a linear clique-width expression for G,
mainly by omitting one-step extensions that are not necessary for D. Let k be an integer with
k ≥ 3. Let α ∈ Elin(k) be a k-expression for G. Let α0, . . . , αr be the subexpressions of α such
that α0 = () and αr = α and αi is obtained from αi−1 by a one-step extension, for 0 < i ≤ r.
For 0 ≤ i ≤ r, let Γi =def val(α

i) and ∆i =def Γi \ V (C).
The linear k-expression for D that we are going to obtain from α will satisfy to invariants:

about the number of used labels and about an inactive label. We need the following definitions.
For 0 ≤ i ≤ r, let ai be the number of the labels occurring on the vertices of ∆i. The following
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is clear: a0 = 0, and for 0 < i ≤ r,

ai−1











≤

=

≥











ai if











αi = αi−1 ⊕ o(v) and v ∈ V (D)

αi = ηs,o(α
i−1), or αi = αi−1 ⊕ o(v) and v ∈ V (C)

αi = ρs→o(α
i−1) .

For 0 ≤ i ≤ r, let mi =def max{a0, . . . , ai}. Clearly, m0 ≤ · · · ≤ mr, and if mi−1 < mi then
a0, . . . , ai−1 < ai. These are the parameters that we employ for the used labels.

We need to determine an indicator for an inactive label. We say that (x, y, j) is a witness
triple if 0 ≤ j ≤ r and x ∈ V (C) and y ∈ V (D) and x and y are vertices of Γj with the same
label; let b(x,y,j) be the label of x and y in Γj . Observe that (x, y, i) is a witness triple for every
i with j ≤ i ≤ r then. We say that a witness triple (x, y, j) satisfies the inactivity condition
if x ∈ NG(w) implies w ∈ V (Γj) and if for every i with j < i ≤ r and αi = αi−1 ⊕ o(v) and
v ∈ V (D), (x, v, i) is not a witness triple, i.e., if o 6= b(x,y,i). We choose two indices p and
q. If there is no witness triple that satisfies the inactivity condition then let p =def q =def r.
Otherwise, let p with 0 ≤ p ≤ r be smallest such that (x, y, p) is a witness triple that satisfies
the inactivity condition. We fix an arbitrary such witness triple, and we let dC =def x and
dD =def y. And let q with p ≤ q ≤ r be largest such that mp = mq. If q < r then for p ≤ i ≤ r,
let bi =def b(dC ,dD,i).

Finally, we need to identify a special phase for the special vertex w. Let t′ with 0 < t′ ≤ r

be such that αt′ = αt′−1 ⊕ o(w), where o ∈ {1, . . . , k}. If G is disconnected then let t =def t
′,

and if G is connected then let t be the largest index with t′ ≤ t ≤ r such that no other vertex
of Γt has the same label as w. Observe that t is well-defined in the latter case, and it suffices
to show that no second vertex of Γt′ has label o: if Γt′ has a second vertex with label o, say u,
then u ≺σ w, and so, NG(w) ⊆ NG(u), so that G−w cannot be disconnected, a contradiction.
For 0 ≤ i ≤ r, if G is disconnected then let Fi =def ∅, and if G is connected then let

Fi =def











∅ , if 0 ≤ i < t′
{

xw ∈ E(G) : x ∈ V (∆i)
}

, if t′ ≤ i ≤ t

Ft , if t < i ≤ r .

We will see that we need to take special care of these edges.
We are ready to prove the main technical lemma. The statement of the lemma appears

almost straightforward and expectable, and the proof shows the technical difficulties.

Lemma 3.8. For 0 ≤ i ≤ r, there is δi ∈ Elin(k) such that val(δi) = ∆i+Fi and the following
two conditions are satisfied:

1) δi uses at most mi labels

2) if q < i then δi has label bi as an inactive label.

Proof. We prove the claim by induction on i. The induction base, i.e., the case when i = 0,
is easy: ∆0+F0 is empty, and δ0 =def () is a linear k-expression for ∆0+F0 that uses at most
0 labels, and since a0 = 0 and m0 = 0 and q ≥ p ≥ 2, the two conditions of the lemma are
satisfied.
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For the induction step, let i > 0. Assume that δi−1 is a linear k-expression for ∆i−1+Fi−1 that
satisfies the two conditions of the lemma. We show that a k-expression of the desired properties
exists also for ∆i+Fi, and we distinguish between the three possible one-step extensions of αi−1

to αi.
As the first case, assume αi = αi−1 ⊕ o(v). If v ∈ V (C) then ∆i+Fi = ∆i−1+Fi−1, and

δi =def δ
i−1 is a linear k-expression for ∆i+Fi that uses at most mi−1 labels. Since ai = ai−1

and mi = mi−1, the first condition of the lemma is satisfied, and since q < i implies q < i − 1,
also the second condition is satisfied. Note here that q < i also means bi = bi−1.

The main situation to consider is v ∈ V (D). Let γ =def δ
i−1 ⊕ o(v). Clearly, γ is a linear k-

expression for ∆i+Fi−1. If Fi = Fi−1 then γ is a k-expression for ∆i+Fi. Otherwise, Fi 6= Fi−1,
which is possible only if G is connected. According to the definition of Fi, this means t′ ≤ i ≤ t

and v ∈ ND[w]. Let Lo be the set of the vertices of Γi−1 with label o. Observe that Lo ∪ {v}
is the set of the vertices of Γi with label o. We distinguish between two cases. First, assume
v = w, and this means i = t′. Then, Lo = ∅, as we proved about the choice of t. We consider
ND(w)∩V (∆i−1): let c1, . . . , ch be the labels of the vertices of ∆i−1 in ND(w). It is not difficult
to see that β =def ηc1,o(· · · ηch,o(γ) · · · ) is a linear k-expression for ∆i+Fi. Since Fi 6= Fi−1,
ND(w) ∩ V (∆i−1) is non-empty.

Second, assume v ∈ ND(w). Since w is a non-visible neighbour of v in Γi, Lo∪{v} ⊆ NG(w)
follows. This particularly means w 6∈ Lo ∪ {v}. According to the definition of t′, w is a vertex
of Γi and, because of w 6= v, also of Γi−1. Let l be the label of w in Γi−1, and let Ll be the set
of the vertices of Γi−1 with label l. According to the definition of t, Ll = {w}. With the given
arguments, it directly follows that ηl,o(γ) is a linear k-expression for ∆i+Fi.

We consider the two conditions of the lemma, that may or may not be satisfied by γ or β or
ηl,o(γ) already. We define δi appropriately to satisfy the two conditions, where δi will be fixed
after the consideration of the two conditions.

1) First condition. If o ∈ used(δi−1) then used(γ) = used(δi−1), and γ uses at most mi−1

labels. Otherwise, o 6∈ used(δi−1). This particularly means that no vertex of ∆i−1 has
label o, and thus, ai = ai−1 + 1. If mi−1 < mi then γ uses at most mi labels.

Otherwise, mi−1 = mi, which means ai−1 < ai ≤ mi = mi−1. Let s ∈ used(δi−1) be a label
such that no vertex of ∆i−1 has label s; such a label must exist. We obtain δ′ from δi−1

by replacing every occurrence of label s by label o. The following is easy but crucial: δ′

uses at most mi−1 labels and s 6∈ used(δ′) and o ∈ used(δ′) and δ′ is a linear k-expression
for ∆i−1+Fi−1. If Fi = Fi−1 then γ′ =def δ

′ ⊕ o(v) is a linear k-expression for ∆i+Fi, and
if Fi 6= Fi−1 then β′ =def ηc1,o(· · · ηch,o(δ

′ ⊕ o(v)) · · · ) or γ′ =def ηl,o(δ
′ ⊕ o(v)) is a linear

k-expression for ∆i+Fi, and β′ and γ′ use at most mi labels, and they satisfy the first
condition.

2) Second condition. We assume q < i, and we distinguish between two cases. As the first
and easy case, assume q < i − 1. Then, δi−1 has label bi−1 as an inactive label. Note
bi−1 = bi. It suffices to prove, depending on the case about the first condition above:
o 6= bi and c1, . . . , ch 6= bi and l 6= bi and s 6= bi (when they are chosen). Since dD of
∆i−1 has label bi−1, s 6= bi directly follows. Since w has label l and Ll = {w} and dC and
dD of Γi−1 have label bi−1, also l 6= bi directly follows. And since (dC , dD, p) satisfies the
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inactivity condition, o 6= bi is a definitional consequence. So, we can choose δi =def γ′,
and δi satisfies the second condition. In the case of v = w, we easily observe w 6∈ V (Γi−1),
so that the inactivity condition implies dC 6∈ NG(w), and thus, c1, . . . , ch 6= bi−1 directly
follows, and β′ also satisfies the second condition.

As the second case, assume q = i − 1. Recall: mq < mq+1 and mq+1 = aq+1 = ai
and o 6∈ used(δi−1). Obtain δ′′ from δi−1 by replacing each occurrence of label bi−1

by label o. Note bi−1 6∈ used(δ′′). Also note that ρo→bi−1
(δ′′) is a linear k-expression

for ∆i−1+Fi−1 that has label bi−1 as an inactive label, and that uses mi−1 + 1 labels
however. If Fi = Fi−1 then let δi =def ρo→bi−1

(δ′′) ⊕ o(v), and if Fi 6= Fi−1 and v = w

then let δi =def ηc1,o(· · · ηch,o(ρo→bi−1
(δ′′) ⊕ o(v)) · · · ), and if Fi 6= Fi−1 and v 6= w then

let δi =def ηl,o(ρo→bi−1
(δ′′) ⊕ o(v)). Observe that δi uses at most mi labels, and since

c1, . . . , ch, l 6= bi, δ
i has label bi−1 as an inactive label, so that the two conditions of the

lemma are satisfied. It remains to see that δi is a linear k-expression for ∆i+Fi, which is
straightforward.

We conclude that δi is a linear k-expression for ∆i+Fi that satisfies the two conditions of the
lemma, and the first case of the proof is complete.

As the second case, assume αi = ηs,o(α
i−1). Note here that Fi = Fi−1 is the case, and if

p < i then bi = bi−1, and if q < i then q < i − 1. If ∆i+Fi = ∆i−1+Fi−1 then δi−1 is a linear
k-expression for ∆i+Fi that satisfies the two conditions. Otherwise, ∆i+Fi 6= ∆i−1+Fi−1.

Let Ls and Lo be the sets of the vertices of Γi−1 with label s and o, respectively. Since
∆i+Fi 6= ∆i−1+Fi−1, it is clear that Ls ∩ V (D) and Lo ∩ V (D) are non-empty, and s, o ∈
used(δi−1) in particular. If Ls ∪ Lo ⊆ V (D) and p < i then s 6= bi−1 and o 6= bi−1, since dC of
Γi−1 has label bi−1, and δi =def ηs,o(δ

i−1) is a linear k-expression for ∆i+Fi that satisfies the
two conditions. Otherwise, Ls ∪ Lo 6⊆ V (D).

By a symmetry argument, we may assume Ls ∩ V (C) 6= ∅. We show that this yields a
contradiction. Observe that we can apply Lemma 3.7, and the second case of Lemma 3.7
applies: Lo = {w} and Ls ⊆ NG(w) and the vertices in Ls have no non-visible neighbour in
∆i−1+Fi−1 other than w. Observe that G is connected, since NG(w) contains vertices of C and
D, and Lo = {w} implies t′ < i < t. It simply follows that the vertices in Ls∩V (D) are adjacent
to w in ∆i−1+Fi−1 already, so that ∆i+Fi = ∆i−1+Fi−1, the contradiction.

As the third case, assume αi = ρs→o(α
i−1). Note here that Fi = Fi−1 is the case. We apply

Lemma 3.6 to δi−1 for ∆i−1+Fi−1 and obtain a linear k-expression δi for ∆i+Fi that satisfies
the two conditions of Lemma 3.6.

We verify the two conditions of the lemma. Since ai−1 ≥ ai and mi−1 = mi, δ
i uses at most

mi−1 labels according to the first condition of Lemma 3.6, and δi satisfies the first condition of
the lemma. For the second condition of the lemma, we may assume q < i, which also means
q < i− 1. According to the induction hypothesis, δi−1 has label bi−1 as an inactive label, which
means we may assume inac(δi−1) = bi−1. According to the second condition of Lemma 3.6:
if bi−1 6= s then inac(δi) = inac(δi−1), and if bi−1 = s then bi = o and inac(δi) = o, so that
inac(δi) = bi. We conclude that δi satisfies the second condition of the lemma.

Since ∆r+Fr = ∆r = Γr \ V (C) and [Γr \ V (C)] = G \ V (C) = D, Lemma 3.8 shows that
D has a linear k-expression that uses at most mr labels and that has an inactive label, if q < r.
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The two important parameters here are mr and q. These two parameters are usually not known,
and their definitions strongly depend on the given linear k-expression α. As a first application
of Lemma 3.8 and in order to approach the proof of the decomposition lemma, we show how to
bound these parameters combinatorially.

Lemma 3.9. Let 〈u1, . . . , un〉 be the vertex ordering associated with α, and assume that u1 is a
vertex of C. Assume V (C) 6⊆ NG(w). Then, mr < k or q < r.

Proof. We begin with an auxiliary observation about the inactivity condition. Let 0 ≤ i ≤ r

and assume αi = αi−1 ⊕ o(v) with v ∈ V (D). Assume that (x, v, i) is a witness triple. Recall
that this means NG(v) ⊆ NG(x), and since G has no isolated vertices, the structure of G implies
NG(v) = {w}, and x has no non-visible neighbour from V (C) in Γi, and x ∈ NG(w). We will
apply this result below.

Assume mr = k. Since m0 = 0, there is 0 < i ≤ r with mi−1 < k and mi = k. This means
ai−1 < k and ai = k in particular, and αi = αi−1 ⊕ o(v) and v ∈ V (D). We show that q < r

must hold, by finding a witness triple that satisfies the inactivity condition appropriately. It is
important to observe that ai ≥ 1 implies that Γi and Γi−1 contain a vertex of C, namely u1
according to the assumptions of the lemma.

For every vertex c from V (Γi)∩V (C), let ĉ be a vertex from V (Γi)∩V (D) such that (c, ĉ, i)
is a witness triple; recall that ĉ exists, because of ai = k. If c has a non-visible neighbour from
V (C) in Γi then ĉ = w due to the structure of G. We distinguish between two cases.

As the first case, assume that Γi has a vertex x from V (C) with a non-visible neighbour
from V (C). Then, x̂ = w and (x,w, i) is a witness triple. If (x, v, i) is also a witness triple then
x, v, w have the same label in Γi, namely label o, so that x,w 6∈ NG(v), and this contradicts
NG(v) = {w} of the auxiliary observation, so that (x, v, i) is not a witness triple and v 6= w.
Since x and w are vertices of Γi−1, (x,w, i − 1) is also a witness triple. If (x,w, i − 1) does
not satisfy the inactivity condition then there is i − 1 < i′ ≤ r with αi′ = αi′−1 ⊕ o′(v′) and
v′ ∈ V (D) and o′ = b(x,w,i′), so that (x, v′, i′) is a witness triple, and the auxiliary observation
yields NG(v

′) = {w}, which is a contradiction, since w has label o′ in Γi′ . Thus, (x,w, i − 1)
satisfies the inactivity condition, and p ≤ q < i ≤ r.

As the second case, assume that Γi has no vertex from V (C) with a non-visible neighbour
from V (C). Since C is connected, this directly means V (C) ⊆ V (Γi). Let x ∈ V (C) \ NG(w),
and (x, x̂, i) is a witness triple. If x̂ = v then the auxiliary observation observes x ∈ NG(w),
a contradiction. So, x̂ 6= v, and (x, x̂, i − 1) is a witness triple, and (x, x̂, i − 1) satisfies the
inactivity condition due to the auxiliary observation and x 6∈ NG(w). We conclude q < i.

As a conclusion, we conclude that mr = k implies q < r.

What if V (C) ⊆ NG(w)? Our technique is not applicable in this case. We leave it as an
open problem whether and how Lemma 3.9 can be extended to include this case.

We are finally ready to prove the decomposition lemma of the preceding subsection. Re-
call that our assumptions about G and the choice of w and C and D are in accordance with
Lemma 3.2.

Proof of Lemma 3.2. If mr < k then there is δ ∈ Elin(k) for D that uses at most k − 1
labels according to Lemma 3.8. In this case, it follows that there is δ′ ∈ Elin(k − 1) for D, and
lcwd(D) ≤ k − 1, and thus, lcwdinac(D) ≤ k due to Lemma 2.2.
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Figure 2: Lemma 4.1 establishes properties of 3-expressions for these three graphs. The dashed
edge of graph (c) may or may not be an edge of the graph.

If mr = k then q < r due to Lemma 3.9, and there is δ ∈ Elin(k) for D that has label br as
an inactive label due to Lemma 3.8. So, there is δ′ ∈ E inac

lin (k) for D, and lcwdinac(D) ≤ k.

As a final remark, and hinting at another direction of future research, note the case when un
is a vertex of C. The auxiliary observation in the proof of Lemma 3.9 can be employed to show
mr < k. This directly leads to graph composition operations generating graphs of arbitrary
linear clique-width.

4 Graphs of clique-width at most 3 with an inactive label

In the preceding section, we studied graphs of bounded linear clique-width and determined
large induced subgraphs with linear clique-width expressions with an inactive label. In this and
the next section, we ask about the graphs that have clique-width expressions with an inactive
label. We consider 3-expressions with an inactive label, and will precisely and comprehensively
characterise the represented graphs.

In this section, we consider the 3-expressions with an inactive label, and we will show that
the represented graphs are exactly the distance-hereditary graphs. The result is proved in two
steps, by proving necessity and sufficiency. Distance-hereditary graphs have a structural char-
acterisation through forbidden induced subgraphs. We first show that these graphs do not have
3-expressions with an inactive label. This will prove the necessity part of the characterisation
result. For the sufficiency part, we can employ and adapt a result from the literature. The
definition of distance-hereditary graphs and useful properties are given later in this section.

We prove lower bounds. The graphs that we are interested in are: chordless cycle of length
at least 5, house, gem, domino. The latter three graphs are depicted in Figure 3. We show that
these graphs do not have 3-expressions with an inactive label. We will obtain this result by
applying results for special induced subgraphs and their 3-expressions. These special induced
subgraphs and their 3-expressions are considered in the next two lemmas. The graphs considered
in the first lemma are depicted in Figure 2.

Lemma 4.1. Let G be a graph and let α ∈ E inac(3) be a 3-expression for G. Let γ be a
subexpression of α that is a full subexpression for G, and let Γ =def val(γ).

1) If V (G) = {a, b, c} and E(G) = {ab, bc, ca} then two vertices of Γ have the same label.
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2) If V (G) = {a, b, c, d} and E(G) = {ab, bc, cd, db} then a has label 1 in Γ or c and d have
label 1 in Γ or a, c, d have the same label in Γ.

3) If V (G) = {a, b, c, d} and E(G) = {ab, bc, cd, da} or E(G) = {ab, bc, cd, da, bd} then a and
c have the same label in Γ or b and d have the same label in Γ.

Proof. If γ = ηs,o(δ) and the claims are true for val(δ) then the claims are also true for Γ.
Similarly, if γ = ρs→o(δ) and the claims are true for val(δ) then the claims are true also for Γ;
recall here that s 6= 1 must hold. By repeatedly applying these easy arguments, it suffices to
assume about γ that γ = β ⊕ δ and val(β) and val(δ) are not empty; if γ = β ⊕ o(u) then we
assume γ = β ⊕ δ with δ = ()⊕ o(u) in order to satisfy the formal requirements.

We prove the first statement; consider graph (a) of Figure 2. By symmetry, we may assume
that a and b are vertices of val(β) and c is the vertex of val(δ). Then, a and b are non-visible
neighbours of c in Γ, so that a, b, c have label 2 or 3 in Γ and the label of c is different from the
labels of a and b. It follows that a and b must have the same label in Γ.

We prove the second statement; consider graph (b) of Figure 2. Assume that a does not
have label 1 in Γ, and we may assume that a has label 2 in Γ. Since [Γ] is disconnected, there
is a pair of vertices of Γ that are non-visible neighbours of each other, so that they have label 2
and 3 in Γ; let x be that vertex with label 3. Then, all vertices with label 2 in Γ are neighbours
of x in G, in particular, a ∈ NG(x), and thus, x = b. It also follows that c and d must have
label 1 or 2 in Γ, since c and d are non-adjacent to a in G. Let γ′ be a subexpression of γ that is
a full subexpression for G[{b, c, d}]. Note that γ′ is a subexpression of α. We can apply the first
statement of the lemma to γ′ and conclude that c and d have the same label in γ′, and thus, c
and d have label 1 or have label 2 in Γ.

We prove the third statement; consider graph (c) of Figure 2. We may assume that a is
a vertex of val(β) and b is a vertex of val(δ) and a is a non-visible neighbour of b in Γ. By
symmetry, a has label 2 and b has label 3 in Γ. Since a and c are non-adjacent in G, c does not
have label 3 in Γ. Assume that c does not have label 2 in Γ: c has label 1 in Γ. Since label 1 is
an inactive label, bc and cd are edges already of Γ, so that c is a vertex of val(δ), and thus, d is
a vertex of val(δ). Hence, d is a non-visible neighbour of a in Γ, and d must have label 3 in Γ,
i.e., b and d have the same label in Γ.

Lemma 4.2. Let G be a graph on n vertices, where n ≥ 4. Assume that G has a path P =
(v1, . . . , vn). Let α ∈ E(3) be a 3-expression for G. Let γ be a subexpression of α that is a full
subexpression for G, and let Γ =def val(γ).

1) Assume that P is a chordless path of G. If n ≥ 6 then v1 and v2 have the same label in Γ
or vn−1 and vn have the same label in Γ.

2) Assume that P is a chordless path of G, and assume α ∈ E inac(3). Then, v1 or vn has
label 1 in Γ.

3) Let n = 5. Assume that v2v5 is an edge of G and P is a chordles path of G−v2v5, and
assume α ∈ E inac(3). Then, v1 or v5 has label 1 in Γ, or v1 and v3 and v5 have the same
label in Γ.
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Proof. Analogous to the introductory considerations in the proof of Lemma 4.1, it suffices to
consider γ = β ⊕ δ with val(β) and val(δ) being non-empty, and we may assume that v1 is a
vertex of val(β). Let p be the index with 1 ≤ p < n such that v1, . . . , vp are vertices of val(β)
and vp+1 is a vertex of val(δ). Since vp+1 is a non-visible neighbour of vp in Γ, we may assume
that vp has label 2 and vp+1 has label 3 in Γ. Let D be the set of the vertices of Γ with label 2
or 3. Clearly, the vertices of Γ that are not in D have label 1.

We prove the first and second statement. Since P is a chordless path of G, Γ cannot have
two vertices with label 2 and two vertices with label 3, and since no vertex of G has degree at
least 3, Γ does not have three vertices with label 2 or three vertices with label 3. It follows:
|D| ≤ 3. If |D| = 2 then D = {vp, vp+1}. If |D| = 3 then Γ has a second vertex of label 2, that
must be vp+2, or Γ has a second vertex of label 3, that must be vp−1. Thus, D = {vp−1, vp, vp+1}
or D = {vp, vp+1, vp+2}. For the first statement: if D ⊆ {v1, . . . , v4} then vn−1 and vn have the
same label in Γ and if D 6⊆ {v1, . . . , v4} then D ⊆ {v3, . . . , vn} and v1 and v2 have the same
label in Γ. For the second statement: v1 6∈ D or vn 6∈ D.

We prove the third statement. We assume that v1 and v5 do not have label 1 in Γ. Thus,
v1, v5 ∈ D, so that {v1, vp, vp+1, v5} ⊆ D, and v1 is adjacent to vp or vp+1, so that p ≤ 2 must
hold. If p = 2 then v1 and v5 are non-adjacent to vp+1 in G, so that v1, vp+1, v5 have the
same label in Γ. Otherwise, p = 1, and v1 and v5 have label 2 and v2 has label 3 in Γ. Since
(v1, v2, v3, v4) is a chordless path of G, we can apply the second statement of the lemma and
observe that v4 has label 1 in Γ. Similarly, we can apply the third statement of Lemma 4.1 to
G[{v2, v3, v4, v5}]: since v2 and v4 do not have the same label in Γ, v3 and v5 have the same
label in Γ, and thus, v1, v3, v5 have the same label in Γ.

As the first result, we characterise the clique-width of chordless cycles. Let n be an integer
with n ≥ 3. A chordless cycle of length n, denoted as Cn, is a graph G on n vertices that has
a vertex ordering 〈v1, . . . , vn〉 such that (v1, . . . , vn) is a chordless v1, vn-path of G−v1vn and
v1vn ∈ E(G). The clique-width result for chordless cycles may already be fully known. We give
a proof for completeness reasons and in order to provide an example for a lower-bound proof.

Proposition 4.3. Let n be an integer with n ≥ 5. The following is the case:

1) cwd(C3) = cwd(C4) = 2 and cwd(C5) = cwd(C6) = 3

2) cwd(Cn) = 4 for n ≥ 7, and cwdinac(Cn) = 4.

Proof. Let 〈v1, . . . , vn〉 be a vertex ordering for Cn such that (v1, . . . , vn) is a chordless v1, vn-
path of Cn−v1vn. We consider the first statement. The lower bounds for C3 and C4 are easy.
The lower bounds for C5 and C6 and the upper bounds for C3 and C4 are due to Theorem 2.1.
A 3-expression for C5 can be obtained on the structure of this reduced expression: ((v1 ⊕ v2)⊕
(v3 ⊕ v4)) ⊕ v5, and a 3-expression for C6 can be obtained on the structure of this reduced
expression: (((v1 ⊕ v2)⊕ (v4 ⊕ v5))⊕ v3)⊕ v6.

We consider the second statement. The upper bounds are easy and straightforward exercises.
We prove the lower bounds. Suppose that Cn has a 3-expression α. In case of cwd(Cn) ≥ 4 for
n ≥ 7, we will construct a contradiction, and in case of cwdinac(C5) ≥ 4 and cwdinac(C6) ≥ 4,
we will construct a contradiction when assuming α ∈ E inac(3). Let γ = β⊕ δ be a subexpression
of α that is a full subexpression for Cn and such that val(β) and val(δ) are non-empty; let
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Figure 3: The figure depicts these special graphs: (a) house, (b) gem, (c) domino, and graph
family (E) represents the family of graphs obtained from chordless cycles of length at least 5
by adding edges that are incident to a common vertex. The possible added edges are shown as
dashed edges.

Γ =def val(γ). Without loss of generality and by easy symmetry arguments, we may assume
that val(β) has at least two vertices and there are i, i′ with 1 < i < i′ ≤ n such that v1 and vi′

are vertices of val(β) and vi is a vertex of val(δ). Let p be the index with 1 ≤ p ≤ n − 2 such
that v1, . . . , vp are vertices of val(β) and vp+1 is a vertex of val(δ). We may assume that vp has
label 2 and vp+1 has label 3 in Γ.

According to our assumptions, vp and vp+2 are the neighbours of vp+1 in Cn. Assume that
vp+2 is a vertex of val(β). Then, vp and vp+2 are non-visible neighbours of vp+1 in Γ, and vp
and vp+2 have label 2 and vp+1 has label 3 and all other vertices have label 1 in Γ. Observe that
(vp, vp−1, . . . , v1, vn, vn−1, . . . , vp+2) is a chordless vp, vp+2-path of Cn−vp+1 on n − 1 vertices.
Let γ′ be a subexpression of γ that is a full subexpression for Cn−vp+1. If n ≥ 7 then we can
apply the first statement of Lemma 4.2, which yields a contradiction to the observed labels, and
if n ≤ 6 and α ∈ E inac(3) then the second statement of Lemma 4.2 yields a contradiction, since
the labels of vp and vp+2 must not be inactive.

As the other case, assume that vp+2 is a vertex of val(δ). Let q be the index with p+2 ≤ q < n

such that vp+1, . . . , vq are vertices of val(δ) and vq+1 is a vertex of val(β). It is easy to observe
that vp, vp+1, vq, vq+1 must have pairwise different labels in Γ, a contradiction.

As the second result, we characterise the clique-width of graphs that are obtained from
chordless cycles by adding edges, that are incident to a common vertex. We start from chordless
cycles of length at least 5. If the obtained graph does not have a chordless cycle of length at
least 5 as an induced subgraph then it has one of the three left-side graphs of Figure 3 as an
induced subgraph: house or gem or domino. We characterise the clique-width of these graphs.

Proposition 4.4. Let G be a house or a gem or a domino. Then, cwd(G) = lcwd(G) = 3 and
cwdinac(G) = lcwdinac(G) = 4.

Proof. For the considered graphs and used vertex names, we refer to Figure 3. We prove
the desired bounds by mixing general arguments for the three graphs and separate arguments
for the individual graphs. We abbreviate the names of the three graphs as follows: (H) and
(G) and (D) for house, gem, domino, respectively. We first show the upper bounds. It is not
difficult to verify that house and gem and domino have linear 3-expressions, that are associated
with these vertex orderings: (H) 〈a, b, e, d, c〉, and (G) 〈a, b, c, d, e〉, and (D) 〈d, e, b, c, a, f〉. So,
cwd(G) ≤ lcwd(G) ≤ 3. The upper bound of cwdinac(G) ≤ lcwdinac(G) ≤ 4 follows from
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Lemma 2.2. The lower bound of cwd(G) ≥ 3 follows from Theorem 2.1, since G has P4 as an
induced subgraph. It remains to show cwdinac(G) ≥ 4.

Suppose for a contradiction that cwdinac(G) ≤ 3. Let α ∈ E inac(3) be a 3-expression for G.
Let γ = β ⊕ δ be a subexpression of α that is a full subexpression for G and such that val(β)
and val(δ) are non-empty; let Γ =def val(γ). It will be important to recall that vertices with
label 1 in Γ do not have non-visible neighbours. We always assume that a is a vertex of val(β).
We distinguish between the three cases.

(H) Assume that a has label 1 in Γ. Then, a, b, c are vertices of val(β), and we may assume
by symmetry that e is a vertex of val(δ). This also means that c and d and e do not
have label 1 in Γ, in particular, a and c do not have the same label in Γ. We obtain a
contradiction to the second statement of Lemma 4.1 when applied to G−e.

Assume that a does not have label 1 in Γ. We apply the second statement of Lemma 4.2
to G−c and G−b: since a does not have label 1 in Γ, d and e must have label 1 in Γ. So,
b, c, d, e are the vertices of val(δ), and a is the unique vertex of val(β), and b and c are
non-visible neighbours of a in Γ. Then, b and e do not have the same label and c and d

do not have the same label in Γ, and we obtain a contradiction to the third statement of
Lemma 4.1.

(G) We apply the second statement of Lemma 4.2 to G−e: a or d has label 1 in Γ, and we
assume that a has label 1 in Γ. Then, a, b, e are vertices of val(β), and c or d is a vertex
of val(δ). Since c, d, e are pairwise adjacent in G, c, d, e do not have label 1 in Γ.

We apply the second statement of Lemma 4.1 to G−c: since d does not have label 1 and a

and d do not have the same label, a and b must have label 1 in Γ. Observe that c must be
a vertex of val(β) then, so that d is the unique vertex of val(δ) and c and e are non-visible
neighbours of d in Γ, that do not have label 1. We apply the third statement of Lemma 4.1
to G−d: a and c have the same label or b and e have the same label in Γ, a contradiction.

(D) We apply the second statement of Lemma 4.2 to G−b and G−e: a or c has label 1 in Γ
and d or f has label 1 in Γ. If a, c, e have the same label in Γ then a, c, e have label 1 in Γ,
and val(δ) is empty. Analogously, f, d, b cannot have the same label in Γ, since this would
be label 1. We apply the third statement of Lemma 4.2 to G−a, G−c, G−d and G−f :
b or d, and b or f , and a or e, and c or e has label 1 in Γ. Then, by combining the two
steps, Γ has four vertices with label 1, which yields a contradition.

We conclude a contradiction in each of the cases. We therefore conclude cwdinac(G) > 3.

Let D be the graph family containing the chordless cycles of length at least 5 and house and
gem and domino. Recall from a previous discussion that a graph G has one of the graphs in
D as an induced subgraph if and only if G has an induced subgraph that is obtained from a
chordless cycle of length at least 5 by adding edges that are incident to a common vertex. We
collect these graphs in graph family (E), and this graph family (E) is depicted in the right-side
figure of Figure 3.

Corollary 4.5. Let G be a graph. If G contains one of the graphs in D as an induced subgraph
then cwdinac(G) ≥ 4.

23



Proof. Due to Propositions 4.3 and 4.4, cwdinac(H) = 4 for every graph H in D. The claimed
lower bound follows from Lemma 2.3.

We are ready to complete the characterisation of the graphs with 3-expressions with an
inactive label. Corollary 4.5 shows that such graphs must not contain a graph in D as an
induced subgraph. The graphs without induced subgraphs from D are a well-known graph
class, namely the distance-hereditary graphs. A graph G is called distance-hereditary if for
every vertex pair a, b of G, the chordless a, b-paths of G are of the same length [20]. It is not
difficult to see that trees are distance-hereditary graphs, and cographs are distance-hereditary.
Cographs are the graphs that do not contain P4 as an induced subgraph (see the first statement
of Theorem 2.1). Distance-hereditary graphs admit several characterisations [20, 3, 16], some of
which we state in the next theorem.

Theorem 4.6 ([3, 16]). Let G be a graph. The following statements are equivalent:

1) G is distance-hereditary

2) G does not contain a graph in D as an induced subgraph

3) G is a graph on a single vertex, or
G has a vertex pair u, v where u 6= v such that G−v is distance-hereditary and one of the
three applies: NG(v) = {u} or NG(v) = NG(u) or NG[v] = NG[u].

Golumbic and Rotics showed that the clique-width of distance-hereditary graphs is at most
3 [13]. The upper-bound proof is based on an algorithm to construct a 3-expression, by apply-
ing the deconstruction characterisation of distance-hereditary graphs in the third statement of
Theorem 4.6. A careful analysis of the constructed 3-expression shows that the expression has
label 1 as an inactive label. We can therefore directly conclude the following result.

Theorem 4.7 ([13]). Let G be a distance-hereditary graph. Then, cwdinac(G) ≤ 3.

We can give our characterisation result of the graphs with 3-expressions with an inactive
label.

Proposition 4.8. Let G be a graph. Then, cwdinac(G) ≤ 3 if and only if G is a distance-
hereditary graph.

Proof. If G is distance-hereditary then cwdinac(G) ≤ 3 due to Theorem 4.7. If cwdinac(G) ≤ 3
then G does not contain a graph in D as an induced subgraph due to Corollary 4.5, and G is
distance-hereditary due to Theorem 4.6.

The structure of graphs of clique-width at most 3 is unknown. The currently best known
result is the polynomial-time recognition algorithm for graphs of clique-width at most 3 [7]. An
easy description of the structure of these graphs is not likely, since these graphs can contain C5

and C6 and house and gem and domino as induced subgraphs (Propositions 4.3 and 4.4).
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5 Graphs of linear clique-width at most 3 with an inactive label

We know the graphs of clique-width at most 3 with an inactive label: the distance-hereditary
graphs. Now, we consider the restriction to linear 3-expressions. As is easy to see and proved
in Lemma 2.2, the graphs of linear clique-width at most 3 with an inactive label are distance-
hereditary graphs, and we will see that they form a proper subclass of the distance-hereditary
graphs. We will precisely characterise this subclass in two ways: by constructively describing
their structure and by a set of forbidden induced subgraphs. Our proof approach relies on the
result of Proposition 4.8.

This section is partitioned into four subsections, that partition and structure the proof of
the main result.

5.1 Base graphs and pendant vertex extension

We define a class of graphs, that generalise the graphs of linear clique-width at most 2 (see
the second statement of Theorem 2.1). We prove structural properties of these graphs and we
consider the extension of these graphs by adding a pendant vertex. In particular, we determine
induced subgraphs that are obtained from adding a pendant vertex.

Definition 5.1. Marked two-chain graphs and their building sequences are defined inductively.

1) Let G be an edgeless graph on vertex set M . Then, (G;M,M) is a marked two-chain
graph, and 〈M〉 is a building sequence for (G;M,M).

2) Let (G;M,A) be a marked two-chain graph with building sequence 〈B1, . . . , Bt〉. Let B be
a set of vertices that are not vertices of G. Let K be a set of edges as follows: K = ∅ or
K = {ab : a ∈ A and b ∈ B}. Let H be obtained from G by adding the vertices in B and
the edges in K. Then, (H;M,A) and (H;M, (A ∪B)) are marked two-chain graphs, and
〈B1, . . . , Bt, B〉 is a building sequence for (H;M,A) and (H;M, (A ∪B)).

A graph G is a two-chain graph if there are M ⊆ V (G) and A ⊆ V (G) such that (G;M,A) is
a marked two-chain graph, and a building sequence for G is a building sequence for a marked
two-chain graph (G;M,A) where M,A ⊆ V (G).

An illustration of the iterative construction process of marked two-chain graphs is given
in Figure 4. It is visible in the figure example and is an easy consequence of the definition of
marked two-chain graphs that the vertices in V (G)\A admit a vertex ordering by neighbourhood
inclusion, and this inclusion chain corresponds to their order in the building sequence, except
for vertices with the same neighbourhoods and for vertices without any neighbours. Vertices
that are added in the same step are vertices with the same neighbours. Such vertices are twins.
Let G be a graph, and let u, v be a vertex pair of G. We say that u and v are false twins if
NG(u) = NG(v), and we say that u and v are true twins if NG[u] = NG[v]. False twins are
non-adjacent and true twins are adjacent. We say that u, v is a twin pair if u and v are false
twins or true twins.

We begin by proving some structural properties of marked two-chain graphs, that will be
most valuable.
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A

M

Figure 4: The figure illustrates the construction of marked two-chain graphs. The initial set M
and the neighbourhood set A are highlighted. In each step, a set of new vertices is added and
the vertices are made adjacent to all vertices of the current set A or to no vertex, and then, they
are added to the neighbourhood set A or not. The building sequence that we can associate with
the depicted marked two-chain graph is 〈2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 2, 5〉, where we simply give the
cardinalities instead of the sets of vertices. Note that the depicted marked two-chain graph has
several building sequences.

Lemma 5.2. Let Σ = (G;M,A) be a marked two-chain graph where M and V (G) \ M are
non-empty. Then, one of the two cases applies:

1) G has an isolated vertex, or 〈M, (V (G) \M)〉 is a building sequence for Σ

2) G has a vertex pair x, y with x, y 6∈ M such that either x, y is a twin pair of G or NG(x)∩
M = ∅ and M ∪ {x} ⊆ NG(y).

Proof. Let 〈B1, . . . , Bt〉 be a building sequence for Σ where B1 = M . We assume that the first
case of the lemma does not apply. Then, each vertex of G has a neighbour and at least two of
the sets B2, . . . , Bt are non-empty. If there is 2 ≤ i ≤ t such that |Bi| ≥ 2 then the vertices in
Bi are pairwise false twins of G and G has a twin pair that satisfies the condition of the second
case of the lemma. We henceforth assume |Bi| ≤ 1 for every 2 ≤ i ≤ t. Note here that Bi may
indeed be empty.

Assume that G has a non-adjacent vertex pair x, z with x 6∈ M and z ∈ M . Let p with
2 ≤ p ≤ t be such that x ∈ Bp. Observe NG(x)∩M = ∅, and the definition of building sequences
implies (B1 ∪ · · · ∪ Bp−1) ∩NG(x) = ∅, so that NG(x) ⊆ Bp+1 ∪ · · · ∪ Bt. Let y ∈ NG(x), that
exists, since x is not an isolated vertex. According to Definition 5.1, Bp ⊆ NG(y), and thus,
A∩ (B1 ∪ · · · ∪Bp) ⊆ NG(y), so that M ∪ {x} ⊆ B1 ∪Bp ⊆ NG(y) in particular, and the second
case of the lemma applies.

Assume that each vertex in B2 ∪ · · · ∪Bt is adjacent to each vertex in M . Let p and q with
1 < p < q ≤ t be largest possible such that Bp and Bq are non-empty; let Bp = {x} and Bq = {y}.
Since x and y are not isolated vertices of G and (Bp+1 ∪ · · · ∪Bq−1) ∪ (Bq+1 ∪ · · · ∪Bt) = ∅ by
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the choice of p and q:

NG(y) = (A ∩ (B1 ∪ · · · ∪Bp−1)) ∪ (A ∩Bp)

A ∩ (B1 ∪ · · · ∪Bp−1) ⊆ NG(x) ⊆ (A ∩ (B1 ∪ · · · ∪Bp−1)) ∪Bq .

If x ∈ A then Bp ⊆ A and NG[x] = NG[y], and if x 6∈ A then A∩Bp = ∅ and NG(x) = NG(y). In
both cases, x, y is a twin pair of G that satisfies the condition of the second case of the lemma.

Let G be a two-chain graph, and let (A,C) be a partition of V (G). We say that (A,C)
is a building partition for G if (G;M,A) is a marked two-chain graph for some M ⊆ V (G).
Analogously, we can associate a building partition with every building sequence for G.

Lemma 5.3. Let G be a two-chain graph with building sequence 〈B1, . . . , Bt〉. Then, G has a
building sequence 〈D1, . . . , Ds〉 such that D1, . . . , Ds are maximal sets of pairwise false twins of
G and B1 ⊆ Ds.

Proof. We prove the claim by induction on t, and we may assume that G is non-empty. If G
is edgeless then 〈B1 ∪ · · · ∪Bt〉 is a building sequence for G of the desired properties. Note that
G is edgeless if t = 1 or if t = 2 and B1 or B2 is empty. We henceforth assume that G is not
edgeless. If t = 2 then B1 and B2 are non-empty and G has an adjacent vertex pair x, y with
x ∈ B1 and y ∈ B2, and thus, NG(x) = B2 and NG(y) = B1, and 〈B2, B1〉 is a building sequence
for G. Since the vertices in B1 are adjacent to the vertices in B2, B1 and B2 are maximal sets
of pairwise false twins, and 〈B2, B1〉 has the desired properties. We henceforth assume t ≥ 3.
If B2 = ∅ or Bt = ∅ then 〈B1, B3, . . . , Bt〉 or 〈B1, . . . , Bt−1〉 is a building sequence for G, and
we can apply the induction hypothesis, and conclude. So, we henceforth assume B2 6= ∅ and
Bt 6= ∅.

Let J be the set of the isolated vertices of G, and assume J 6= ∅. Note that J is a maximal
set of pairwise false twins of G. If B1 6= ∅ and B1 ⊆ J then G is edgeless, a contradiction to
the above assumptions. Let p with 1 ≤ p ≤ t be such that Bi ∩ J 6= ∅. For every 1 ≤ i ≤ t, let
B′

i =def Bi \J . Since B1, . . . , Bt are sets of pairwise false twins, B
′

i = Bi or B
′

i = ∅, and B′

1 = B1

and B′

p = ∅, and p ≥ 2. So, 〈B′

1, . . . , B
′

p−1, B
′

p+1, . . . , B
′

t〉 is a building sequence for G \ J . It is
important to observe that B′

1 = B1 = ∅ is possible. We can apply the induction hypothesis and
obtain a building sequence 〈D1, . . . , Ds〉 for G \ J that has the desired properties. Since G is
not edgeless, G \ J is not edgeless, and therefore, s ≥ 2. Then, 〈D1, J,D2, . . . , Ds〉 is a building
sequence for G, that has the desired properties. We henceforth assume that G has no isolated
vertices.

Let (A,C) be the building partition for G associated with 〈B1, . . . , Bt〉. Assume B1 = ∅.
If B2 ⊆ C then the vertices in B2 are isolated vertices of G, a contradiction, so that B2 ⊆ A.
Then, 〈B2, . . . , Bt〉 is a building sequence for G, and we can conclude by an application of the
induction hypothesis. We henceforth assume B1 6= ∅. If B1∪B2 is a set of pairwise false twins or
if B2∪B3 is a set of pairwise false twins then 〈(B1∪B2), B3, . . . , Bt〉 or 〈B1, (B2∪B3), B4, . . . , Bt〉
is a building sequence for G, and we can conclude by applying the induction hypothesis. We
henceforth assume that B1 ∪ B2 and B2 ∪ B3 are not sets of pairwise false twins. Since the
vertices in Bt are not isolated vertices, it follows NG(x) = A ∩ (B1 ∪ · · · ∪ Bt−1) = A \ Bt for
every x ∈ Bt.
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We distinguish between two cases about B2. As the first case, assume B2 ⊆ C. Then,
NG(x) = B1 for every x ∈ B2, which also means that B1 is a maximal set of pairwise false twins
of G. We show B3 ⊆ A and t ≥ 4: if B3 ⊆ C or if B3 ⊆ A and t = 3 then NG(y) = B1 for every
y ∈ B3, and B2∪B3 is a set of pairwise false twins, a contradiction. It follows for every vertex u in
B4∪· · ·∪Bt: (B1∪B3)∩NG(u) = ∅ or B1∪B3 ⊆ NG(u). An easy consequence: B2 is a maximal
set of pairwise false twins of G. Now, observe that 〈B1, B3, . . . , Bt〉 is a building sequence for
G \ B2, and an application of the induction hypothesis yields a building sequence 〈D1, . . . , Ds〉
for G \ B2 of the desired properties. If Ds = B1 then 〈D1, . . . , Ds−1, B2, Ds〉 is a building
sequence for G of the desired properties, and if B1 ⊂ Ds then 〈D1, . . . , Ds−1, (Ds \B1), B2, B1〉
is a building sequence for G of the desired properties.

As the second case, assume B2 ⊆ A. Analogous to the preceding paragraph, for every
vertex u in B3 ∪ · · · ∪Bt: (B1 ∪B2)∩NG(u) = ∅ or B1 ∪B2 ⊆ NG(u). If the vertices in B1 and
B2 are non-adjacent in G then B1 ∪ B2 is a set of pairwise false twins, a contradiction to our
assumptions, so that the vertices in B1 and B2 are adjacent, and B1 and B2 are maximal sets of
pairwise false twins, particularly since B1 and B2 are non-empty. Observe that 〈B2, . . . , Bt〉 is
a building sequence for G \B1, and an application of the induction hypothesis yields a building
sequence 〈D1, . . . , Ds〉 for G \B1 of the desired properties. If Ds = B2 then 〈D1, . . . , Ds, B1〉 is
a building sequence for G of the desired properties, and if B2 ⊂ Ds then 〈D1, . . . , Ds−1, (Ds \
B2), B2, B1〉 is a building sequence for G of the desired properties.

Let G be a two-chain graph, and let 〈B1, . . . , Bt〉 be a building sequence for G. We call
〈B1, . . . , Bt〉 a normal building sequence for G if B1, . . . , Bt are maximal sets of pairwise false
twins of G. This particularly means that B1, . . . , Bt are non-empty, unless G is empty.

Corollary 5.4. Let G be a two-chain graph that is not edgeless, and let x be a vertex of G.
Then, G has a normal building sequence 〈D1, . . . , Ds〉 with building partition (A,C) such that
x 6∈ D1 and x ∈ A.

Proof. Let 〈B1, . . . , Bt〉 be a building sequence for G. We apply Lemma 5.3: G has a normal
building sequence 〈D1, . . . , Ds〉 with associated building partition (A,C). We may assume Ds ⊆
A. If x ∈ A ∩ (D2 ∪ · · · ∪Ds) then we can already conclude. Otherwise, x ∈ D1 or x ∈ C.

We apply Lemma 5.3 to 〈D1, . . . , Ds〉: G has a normal building sequence 〈E1, . . . , Es〉 with
Es = D1 and associated building partition (A′, C ′). Also here, we may assume Es ⊆ A′. If
x ∈ A′ ∩ (E2 ∪ · · · ∪ Es) then we can directly conclude, and if x ∈ E1 then we conclude after
another application of Lemma 5.3. Otherwise, NG(x) = ∅, which we observe as follows: if
x ∈ D1 then x ∈ A′ ∩ Es, and if x ∈ C and NG(x) 6= ∅ then D1 ⊆ NG(x), and x ∈ A′.

So, let J be the set of the isolated vertices of G, and let 〈D′

1, . . . , D
′

s−1〉 be a normal building
sequence for G \ J . It is easy to see that 〈D′

1, . . . , D
′

s−1, J〉 is a normal building sequence for G
of the desired properties.

Lemma 5.5. Let G be a connected two-chain graph. Let 〈D1, . . . , Ds〉 be a normal building
sequence for G with building partition (A,C), and assume s ≥ 3. Let z ∈ D1 and d ∈ Ds−1 and
c ∈ Ds. Then, D1 ∪Ds−1 ⊆ A, and (C ∪D2) ⊆ NG(z) and NG(c) = A \Ds, and if D1 ⊆ NG(d)
then 〈D1, . . . , Ds−2, Ds, Ds−1〉 is a normal building sequence for G.
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(b)
(c)(a)

Figure 5: We use these names for the depicted graphs: (a) diamond net, (b) triangle net, (c)
square net.

Proof. Since s ≥ 3, G has at least three vertices, and since G is connected, every vertex
of G has a neighbour. So, NG(c) = A ∩ (D1 ∪ · · · ∪ Ds−1) = A \ Ds. If Ds−1 ⊆ C then
NG(d) = A ∩ (D1 ∪ · · · ∪ Ds−2) = A \ Ds, and Ds−1 ∪ Ds is a set of pairwise false twins, a
contradiction to the properties of normal building sequences, so that Ds−1 ⊆ A. Note that
D1 ⊆ A follows from Definition 5.1 directly.

We consider the vertices in C ∪ D2. Let x ∈ C, and let x ∈ Di. Since NG(x) 6= ∅,
NG(x) = A ∩ (D1 ∪ · · · ∪Di−1), in particular, D1 ⊆ NG(x), and thus, Di ⊆ NG(z). Let y ∈ D2.
If yz 6∈ E(G) then D2 ⊆ A, and D1 ∪D2 is a set of pairwise false twins, a contradiction. Thus,
yz ∈ E(G), i.e., D2 ⊆ NG(z).

Assume D1 ⊆ NG(d). This means NG(d) = (A∩ (D1 ∪ · · · ∪Ds−2))∪Ds = (A \Ds−1)∪Ds,
and thus, 〈D1, . . . , Ds−2, Ds, Ds−1〉 is a building sequence for G with building partition ((A ∪
Ds), (C \Ds)).

We are ready to prove the main results of this subsection. We want to extend two-chain
graphs by a single vertex. We want to show that the extended graph is a two-chain graph or
contains a specific graph as an induced subgraph. Let G be a graph, and let u be a vertex of
G. Let v be a new vertex. We say that we obtain H from G by adding v as a pendant vertex
at u if H is a graph and v is a vertex of H and G = H−v and NH(v) = {u}. In other words,
H is a graph that is obtained from G by adding the new vertex v and making it adjacent to u.
We consider graphs that are obtained from two-chain graphs by adding a pendant vertex. The
specific graphs that we are going to identify are the three graphs of Figure 5.

We do not consider arbitrary two-chain graphs but two-chain graphs without twin pairs.
Let G be a graph. We say that G is twin-free if G has no twin pairs, and we say that G is
weakly twin-free if G has no true twin pairs and for every vertex pair x, y of G with x 6= y and
NG(x) = NG(y), |NG(x)| = |NG(y)| = 1 must hold. Observe that weakly twin-free graphs are
twin-free on the vertices of degree at least 2.

Lemma 5.6. Let G be a connected two-chain graph on at least three vertices. Let u be a vertex
of G and let v be a new vertex. Obtain H from G by adding v as a pendant vertex at u. Assume
that H is weakly twin-free and |NG(u)| ≥ 2. Then, one of the two cases applies:

1) G has a normal building sequence 〈D1, . . . , Ds〉 such that u ∈ Ds

2) H contains one of the following graphs as an induced subgraph: diamond net or triangle

net or square net.
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Proof. We assume that the first case of the lemma does not apply. Let 〈D1, . . . , Ds〉 be a
normal building sequence for G with building partition (A,C), and we may assume Ds ⊆ A.
We also assume u 6∈ D1 ∪ Ds. This particularly means s ≥ 3. Let z ∈ D1 and d ∈ Ds−1

and c ∈ Ds. Due to Lemma 5.5, D1 ∪ Ds−1 ⊆ A and NG(c) = A \ Ds. Observe Ds = {c},
because: D1 ∪Ds−1 ⊆ NG(c), so that |NG(c)| ≥ 2, and NH(x) = NG(x) for every x ∈ Ds, since
u 6∈ Ds, so that |Ds| ≥ 2 contradicts the weak twinfreeness of H. If u ∈ Ds−1 and D1 ⊆ NG(u)
then the first case of the lemma applies due to Lemma 5.5, a contradiction, and if u ∈ Ds−1

and D1 6⊆ NG(u) then NG(u) = NG(d) = Ds = {c}, i.e., |NG(u)| = 1, also a contradiction.
Thus, u 6∈ D1 ∪ Ds−1 ∪ Ds. If D1 ⊆ NG(d) then NG(d) = A \ Ds−1 due to Lemma 5.5, and
|NG(d)| ≥ 2 and either |Ds−1| ≥ 2 or d and c are true twins. Both cases yield a contradiction.
Thus, D1 6⊆ NG(d) and NG(d) = Ds = {c}. We apply these considerations to two building
sequences for G.

Recall that G is connected and has at least three vertices, so that G is not edgeless. Due
to Corollary 5.4, G has a normal building sequence 〈E1, . . . , Es〉 with building partition (A,C)
such that u ∈ A \ E1. We apply Lemma 5.3 to 〈E1, . . . , Es〉 and obtain a normal building
sequence 〈E′

1, . . . , E
′

s〉 for G, where E′

s = E1. According to our initial assumption: u 6∈ E1 ∪
Es ∪ E′

1 ∪ E′

s, and the considerations of the preceding paragraph are applicable, in particular,
u 6∈ E1 ∪ Es−1 ∪ Es and u 6∈ E′

1 ∪ E′

s−1 ∪ E′

s.
Let z ∈ E1 and a ∈ E′

s−1 and d ∈ Es−1 and c ∈ Es. From the first paragraph, it follows:
NG(d) = {c} and NG(a) = {z} and zc ∈ E(G). Observe that z, a, d, c are pairwise different
vertices, and they are different from u, and uc ∈ E(G). If uz ∈ E(G) then {z, u, c, a, v, d}
induces a triangle net in H. Otherwise, uz 6∈ E(G). Note that NG(d) ⊆ {c} ⊆ NG(u) is the
case, and since u 6∈ Es−1, there is y ∈ NG(u) \NG(d). Let u ∈ Ep; recall 2 ≤ p ≤ s − 2. Thus,
y ∈ Ep+1 ∪ · · · ∪ Es, and yz ∈ E(G) follows. Note also y 6= d and y 6= c. If yc 6∈ E(G) then
{z, y, u, c, a, v, d} induces a square net in H, and if yc ∈ E(G) then {z, y, u, c, a, v} induces a
diamond net in H. We conclude that the second case of the lemma applies.

Lemma 5.7. Let G be a connected two-chain graph. Let u be a vertex of G, and assume that
NG(u) is a set of pairwise false twins of G. Let 〈D1, . . . , Ds〉 be a normal building sequence for
G with building partition (A,C), and assume s ≥ 3. Then, one of the two cases applies:

1) u ∈ C ∩D2 and NG(u) = D1

2) u ∈ A ∩Ds−1 and NG(u) = Ds.

Proof. Let z ∈ D1 and c ∈ Ds. Due to Lemma 5.5, D1 ∪Ds−1 ⊆ A and (C ∪D2) ⊆ NG(z) and
NG(c) = A \Ds. If u ∈ D1 then D2 ∪Ds ⊆ NG(u), and if u ∈ Ds then D1 ∪Ds−1 ⊆ A \Ds =
NG(c) = NG(u), a contradiction in both cases. Thus, u 6∈ D1 ∪ Ds. Let p with 1 < p < s be
such that u ∈ Dp.

If u ∈ C then Dp ⊆ C and NG(u) = A∩ (D1 ∪ · · · ∪Dp−1), and D1 ⊆ A implies NG(u) = D1

and D2 ∪ · · · ∪Dp−1 ⊆ C. Since G is connected, D2 ∪ · · · ∪Dp is a set of pairwise false twins of
G, which is only possible in case of p = 2, and the first case of the lemma applies.

If u ∈ A then Dp ⊆ A, and Ds ⊆ NG(u) implies NG(u) = Ds. Since G is connected and has
no isolated vertices, Dp+1 ∪ · · · ∪Ds−1 ⊆ A must follow. And since NG(z)∩ (Dp+1 ∪ · · · ∪Ds) =
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NG(u) ∩ (Dp+1 ∪ · · · ∪Ds), it follows that Dp ∪ · · · ∪Ds−1 is a set of pairwise false twins of G,
which is only possible in case of p = s− 1, and the second case of the lemma applies.

Let G be a graph. We call G a star graph if G is connected and has a vertex x such that
each edge of G is incident to x. Clearly, NG[x] = V (G) and NG(y) = {x} for every vertex y of
G with y 6= x.

Corollary 5.8. Let G be a connected two-chain graph that is not a star graph. Let u be a vertex
of G and let v be a new vertex. Obtain H from G by adding v as a pendant vertex at u. Assume
that H is weakly twin-free and |NG(u)| ≥ 2. Also assume that H does not contain any of the
following graphs as an induced subgraph: diamond net and triangle net and square net.

Assume that G has a vertex pair a, b with b 6= u such that NG(a) = {b}. Then, H has
a normal building sequence 〈D1, . . . , Ds〉 such that D1 = {b} and a ∈ D2 and v ∈ Ds−1 and
Ds = {u}.

Proof. Note that G has at least three vertices, and we can apply Lemma 5.6: G has a normal
building sequence 〈D1, . . . , Ds〉 such that u ∈ Ds. If s = 2 and |D1| ≥ 2 and |Ds| ≥ 2 then H is
not weakly twin-free, and if s = 2 and |D1| = 1 or |Ds| = 1 then G is a star graph. So, s ≥ 3
must hold.

We determine the sets containing a and b. Since NG(a) is a set of pairwise false twins of G,
we can apply Lemma 5.7: since b 6= u and u ∈ Ds, Ds 6= NG(a) follows, so that a ∈ D2 and
NG(a) = {b} = D1.

Assume that v has no false twin in H. Then, {v} is a maximal set of pairwise false twins
of H, and 〈D1, D2, . . . , Ds−1, {v}, Ds〉 or 〈D1, D2, . . . , Ds−1, (Ds \ {u}), {v}, {u}〉 is a normal
building sequence for H of the desired properties.

Assume that v has a false twin x in H. Then, NH(x) = NH(v) = {u} = NG(x), and NG(x)
is a set of pairwise false twins of G, and we can apply Lemma 5.7: x 6∈ D2 because of u 6= b and
D1 = {b}, and thus, x ∈ Ds−1 and NG(x) = {u} = Ds. Then, 〈D1, . . . , Ds−2, (Ds−1 ∪ {v}), Ds〉
is a normal building sequence for H of the desired properties.

5.2 Base graph combinations and pendant vertex extension

We combine two-chain graphs into sequences of two-chain graphs, thereby generalising two-
chain graphs and graphs of linear clique-width at most 2. We prove a structural property of
these graphs, that corresponds to Corollary 5.4 of the preceding subsection. We consider the
extension of these graphs by adding a pendant vertex, mainly relying on the results of the
preceding subsection.

Definition 5.9. Marked sequence two-chain graphs and their building sequences are defined
inductively.

1) Let Σ = (G;M,A) be a marked two-chain graph. Then, (G;A) is a marked sequence
two-chain graph, and 〈Σ〉 is a building sequence for (G;A).

2) Let (G;A) be a marked sequence two-chain graph with building sequence 〈Σ1, . . . ,Σt〉. Let
Σ = (H;M,B) be a marked two-chain graph. Let K =def {ab : a ∈ A and b ∈ M}. Let F
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be obtained from the disjoint union of G and H by adding the edges in K. Then, (F ;B) is
a marked sequence two-chain graph, and 〈Σ1, . . . ,Σt,Σ〉 is a building sequence for (F ;B).

A graph G is a sequence two-chain graph if there is A ⊆ V (G) such that (G;A) is a marked
sequence two-chain graph, and a building sequence for G is a building sequence for a marked
sequence two-chain graph (G;A) where A ⊆ V (G).

Observe that two-chain graphs are sequence two-chain graphs. As the main structural result
of this subsection, we show that sequence two-chain graphs have building sequences with good
properties. A graph G is called complete bipartite if G admits a partition (C,D) of V (G) such
that for every vertex pair u, v of G with u 6= v, uv ∈ E(G) if and only if u ∈ C and v ∈ D,
or v ∈ C and u ∈ D. Let Σ = (H;M,A) be a marked two-chain graph. Set M of Σ is called
the initializer of Σ. We call Σ easy complete bipartite if H is complete bipartite with vertex set
partition (M, (V (G) \ M)). The first case of Lemma 5.2 does not apply to connected marked
two-chain graphs that are not easy complete bipartite.

Lemma 5.10. Let G be a connected sequence two-chain graph with building sequence 〈Σ1, . . . ,Σt〉.
Assume that G is not a complete bipartite graph. Then, G has a building sequence 〈∆r, . . . ,∆1〉
such that V (Σ1) ⊆ V (∆1) and ∆r is not edgeless and ∆1 is not easy complete bipartite and
∆r−1, . . . ,∆1 have non-empty initializers.

Proof. If t = 1 then Σ1 is not easy complete bipartite, since otherwise, G would be complete
bipartite, and 〈Σ1〉 is a building sequence for G of the desired properties. We henceforth assume
t ≥ 2. For 1 ≤ i ≤ t, let Σi = (Gi;Mi, Ai), let Ci =def V (Gi) \Ai, and let A0 =def Mt+1 =def ∅.
According to Definition 5.9, for every 1 ≤ p ≤ t and x ∈ V (Gp):

NG(x) ∩
(

V (Gp+1) ∪ · · · ∪ V (Gt)
)

=

{

∅ , if x ∈ Cp

Mp+1 , if x ∈ Ap

and NG(x) ∩
(

V (G1) ∪ · · · ∪ V (Gp−1)
)

=

{

∅ , if x 6∈ Mp

Ap−1 , if x ∈ Mp .

Assume that G1 is edgeless. Then, for every x ∈ V (G1), NG(x) ∩ V (G1) = ∅, and thus,
NG(x) = M2. Let Σ

′

2 =def (G[V (G1)∪V (G2)];M2, A2). Let 〈B1, . . . , Bs〉 be a building sequence
for Σ2 with M2 = B1. Then, 〈B1, V (G1), B2, . . . , Bs〉 is a building sequence for Σ′

2, also in case
of V (G1) = ∅. Thus, Σ′

2 is a marked two-chain graph, and 〈Σ′

2,Σ3, . . . ,Σt〉 is a building sequence
for G. If V (Gt) = ∅ then 〈Σ1, . . . ,Σt−1〉 is a building sequence for G. We henceforth assume
that G1 is not edgeless and Gt is non-empty.

Let a ∈ V (G1) and b ∈ V (Gt). Since G is connected, G has an a, b-path, that contains a

vertex xp with xp ∈ V (Gp) ∪ · · · ∪ V (Gt) such that NG(xp) ∩
(

V (G1) ∪ · · · ∪ V (Gp−1)
)

6= ∅ for

every 2 ≤ p ≤ t. Due to the above observations, xp ∈ Mp must hold, and thus, M2, . . . ,Mt are
non-empty. And since G has no isolated vertices, we can also assume that M1 is non-empty, as
we argued in the proof of Lemma 5.3. For 1 ≤ i ≤ t, let zi ∈ Mi, and let

Hi =def G
[

V (Gi) ∪Mi+1

]

and

Πi =def

(

Hi; Mi+1, (NHi
(zi) ∪Mi)

)

.
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Assume that Π1, . . . ,Πt are marked two-chain graphs. Let ∆1 =def Π1 and ∆i =def Πi \Mi for
2 ≤ i ≤ t, i.e., ∆i = ((Hi \Mi);Mi+1, NHi

(zi)). Note that zi is not a vertex of ∆i. It follows
that ∆1, . . . ,∆t are marked two-chain graphs. It is not difficult to see that 〈∆t, . . . ,∆1〉 is a
building sequence for G.

We verify the conditions of the lemma. Clearly, V (Σ1) ⊆ V (∆1) is the case. The initializers of
∆t−1, . . . ,∆1 are Mt, . . . ,M2, that we already proved non-empty. If ∆t is edgeless then we apply
the simplification result from the beginning of the proof. If ∆1 is easy complete bipartite thenH1

is complete bipartite with vertex set partition (M2, (V (H1) \M2)), where V (H1) \M2 = V (G1),
and G1 is edgeless, a contradiction.

We prove that Π1, . . . ,Πt are indeed marked two-chain graphs. Let 1 ≤ p ≤ t. It suffices
to show that Hp is a two-chain graph with an appropriate building sequence. Since G has no
isolated vertices, Mp ⊆ NG(x) for every x ∈ Cp.

Let a, c, d be new vertices. Obtain F from Hp by adding a, c, d with these neighbourhoods:
NF (a) = Mp and NF (c) = Ap ∪ {d} and NF (d) = Mp+1 ∪ {c}. Observe that F is connected:
every vertex in Ap ∪ {d} is adjacent to c, and every vertex in Cp ∪ {a} is adjacent to zp, and
zp ∈ Ap. Note here that (a, zp, c, d) is a chordless path of F .

We show that F is a two-chain graph. Let 〈E1, . . . , El〉 be a building sequence for Σp with
E1 = Mp and building partition (Ap, Cp). Then, 〈E1, . . . , El,Mp+1〉 is a building sequence for
Hp with building partition ((Ap∪Mp+1), Cp). And then, 〈E1, {a}, E2, . . . , El, {d}, (Mp+1∪{c})〉
is a building sequence for F with building partition ((Ap ∪Mp+1 ∪ {c, d}), (Cp ∪ {a})). Due to
Corollary 5.4, F has a normal building sequence 〈D1, . . . , Ds〉 with building partition (A′′, C ′′)
such that zp 6∈ D1. We may assume Ds ⊆ A′′. Since F is not edgeless and not complete bipartite,
s ≥ 3 must hold.

Observe that NF (a) and NF (d) are sets of pairwise false twins of F , and we can apply
Lemma 5.7:

• since zp ∈ NF (a) and zp 6∈ D1: NF (a) = Ds and a ∈ A′′ ∩Ds−1

• since NF (a) 6= NF (d): NF (d) 6= Ds and thus NF (d) = D1 and d ∈ C ′′ ∩D2.

So, Ds = Mp and D1 = Mp+1 ∪ {c}. And due to Lemma 5.5 and our definitions, NF (zp) =
A′′ \Ds = A′′ \Mp, and thus, NHp

(zp) ∪Mp ∪ {a, c} = A′′. We conclude that

〈

Mp+1, (D2 \ {d}), D3, . . . , Ds−2, (Ds−1 \ {a}), Mp

〉

is a building sequence for Hp with building partition ((A′′ \ {c, a}), (C ′′ \ {d})), and Πp is a
marked two-chain graph indeed.

It is noteworthy that the construction is also valid in case Gp is edgeless. Then, Cp is empty,
and the vertices in Ap \Mp are false twins of d in Fp, and thus, D2 = (Ap \Mp) ∪ {d}.

Corollary 5.11. Let G be a connected sequence two-chain graph that is not a two-chain graph,
and let x be a vertex of G. Then, G has a building sequence 〈∆1, . . . ,∆s〉 with s ≥ 2 such that
x 6∈ V (∆1) and ∆1 is not edgeless and ∆s is not easy complete bipartite and ∆2, . . . ,∆s have
non-empty initializers.
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Proof. Due to Lemma 5.10, G has a building sequence 〈Σ1, . . . ,Σs〉 such that Σ1 is not edgeles
and Σs is not easy complete bipartite and Σ2, . . . ,Σs have non-empty initializers. If s = 1 then
G is a two-chain graph, a contradiction to the assumptions. If x 6∈ V (Σ1) then we can already
conclude. Otherwise, x ∈ V (Σ1).

We apply Lemma 5.10 to 〈Σ1, . . . ,Σs〉 and obtain a building sequence 〈∆1, . . . ,∆r〉 for G with
V (Σ1) ⊆ V (∆r), and ∆1 is not edgeless and ∆r is not easy complete bipartite and ∆2, . . . ,∆r

have non-empty initializers. If r = 1 then G is a two-chain graph, a contradiction, so that r ≥ 2
must hold, and thus, x 6∈ V (∆1), and we can conclude.

We are ready to prove our main result about the extension of sequence two-chain graphs by
a pendant vertex. We partition the proof into two cases, where we consider two-chain graphs
first and sequence two-chain graphs that are not two-chain graphs after.

Lemma 5.12. Let G be a two-chain graph that is edgeless or connected. Let u be a vertex of
G and let v be a new vertex. Obtain H from G by adding v as a pendant vertex at u. Assume
that H is weakly twin-free. Then, H is a sequence two-chain graph or H contains one of the
following graphs as an induced subgraph: diamond net or triangle net or square net.

Proof. If G is edgeless then H clearly is a two-chain graph and thus a sequence two-chain
graph. If G is a star graph then H is also a two-chain graph. So, we may assume that G is not a
star graph and connected, and G has at least four vertices and each vertex of G has a neighbour.
We assume that G does not contain any of the listed graphs as an induced subgraph.

Assume that G has a normal building sequence 〈D1, . . . , Ds〉 with building partition (A,C)
such that u ∈ Ds. If s ≤ 2 then G is edgeless or easy complete bipartite, and since H is weakly
twin-free, s = 2 implies |D1| = 1 or |D2| = 1, and G is a star graph, a contradiction. So,
s ≥ 3 must hold. We can apply Lemma 5.5: NG(u) = A \ Ds. Then, H is a two-chain graph
with building sequence 〈D1, . . . , Ds−1, (Ds \{u}), {v}, {u}). If |NG(u)| ≥ 2 then G has a normal
building sequence of the requested properties due to Lemma 5.6.

As the other case, assume |NG(u)| ≤ 1. Since G is connected and has at least four vertices,
|NG(u)| = 1 follows. Let NG(u) = {w}. Let 〈D1, . . . , Ds〉 be a normal building sequence for G
with building partition (A,C) such that w 6∈ D1, that exists due to Corollary 5.4. Note that
NG(u) is a set of pairwise false twins of G, and s ≥ 3 as shown in the preceding paragraph, so
we can apply Lemmas 5.7 and 5.5: NG(u) = {w} = Ds and NG(w) = A \Ds = A \ {w}.

Let Σ1 =def (H \{u, v, w};D1, A\{u,w}) and Σ2 =def (H[{u, v, w}]; {w}, {w, v}). According
to the preceding paragraph, Σ1 is a marked two-chain graph, and Σ2 is a marked two-chain graph
clearly. It follows that H is a sequence two-chain graph with building sequence 〈Σ1,Σ2〉.

For the proof of the general result about the extension of sequence two-chain graphs by a
pendant vertex, we need more graphs. These new graphs are depicted in Figure 6.

Lemma 5.13. Let G be a connected sequence two-chain graph. Let u be a vertex of G and let
v be a new vertex. Obtain H from G by adding v as a pendant vertex at u. Assume that H is
twin-free. Then, H is a sequence two-chain graph or H contains one of the following graphs as
an induced subgraph: triangle-0 graph or triangle-1 graph or triangle-2 graph or diamond net or
triangle net or square net or square-1 graph or square-2 graph.
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(b) (c)(a)

(d) (e)

Figure 6: We use these names for the depicted graphs: (a) triangle-0 graph, (b) triangle-1 graph,
(c) triangle-2 graph, (d) square-1 graph, (e) square-2 graph.

Proof. If G is a two-chain graph then we can apply Lemma 5.12, and conclude. We henceforth
assume that G is not a two-chain graph. This particularly means that G has no isolated vertices.
Due to Corollary 5.11, G has a building sequence 〈Σ1, . . . ,Σt〉 with t ≥ 2 such that u 6∈ V (Σ1)
and Σ1 is not edgeless and Σt is not easy complete bipartite and Σ2, . . . ,Σt have non-empty
initializers.

For 1 ≤ i ≤ t, let Σi = (Gi;Mi, Ai) and let Ci =def V (Gi) \ Ai. We choose useful vertices
of G. For 2 ≤ i ≤ t, let zi ∈ Mi, that do exist, and let z0, z1 be an adjacent vertex pair of
G1 where z1 ∈ A1, and let zt+1, zt+2 be an adjacent vertex pair of Gt where zt+1, zt+2 6∈ Mt

and ztzt+1 ∈ E(Gt). Since G1 is not edgeless, z0, z1 do exist, and since Gt is not easy complete
bipartite and connected, also zt+1, zt+2 do exist. Observe that (z0, z1, z2, . . . , zt, zt+1, zt+2) is a
z0, zt+2-path of G, and z0 and z2 may be adjacent and zt and zt+2 may be adjacent in G.

We prove the claim of the lemma by considering different cases about u and its neighbour-
hood.

Case A: There is p with 2 ≤ p ≤ t such that u ∈ Mp.

Proof of the case. Assume |Mp| = 1, i.e., Mp = {u}. Let Σ′

p =def (H[V (Gp)∪{v}]; {u}, Ap). Ob-
serve that Σ′

p is a marked two-chain graph. Then, 〈Σ1, . . . ,Σp−1,Σ
′

p,Σp+1, . . . ,Σt〉 is a building
sequence for H, and H is a sequence two-chain graph.

Assume |Mp| ≥ 2. Let z ∈ Mp with z 6= u. Then, {zp−2, zp−1, z, u, v, zp+1, zp+2} induces a
square net or a square-1 graph or a square-2 graph in H, depending on NG(z)∩ {zp−2, zp+2}.

We henceforth assume u 6∈ M2 ∪ · · · ∪ Mt. Since H is twin-free, this particularly means
|M2| = · · · = |Mt| = 1, so that Mi = {zi} for 2 ≤ i ≤ t.

Case B: There is 1 ≤ p ≤ t such that NG(u) = Mp.

Proof of the case. If p = 1 and NG(u) = M1 then u ∈ M2, a contradiction. So, p ≥ 2.
Note that NG(u) = Mp = {zp} is the case. Thus, u is of degree 1 in G, so that u is

different from zp−1, zp, zp+1, that are vertices of degree at least 2. Furthermore, since u is non-
adjacent to zp−1 and zp+1, u is also different from zp−2 and zp+2. Thus, u is different from
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zp−2, zp−1, zp, zp+1, zp+2. Then, {zp−2, zp−1, zp, u, v, zp+1, zp+2} induces a triangle-0 graph or a
triangle-1 graph or a triangle-2 graph in H, depending on the edges zp−2zp and zpzp+2.

We henceforth assume NG(u) 6= Mi for 1 ≤ i ≤ t. Recall that u is of degree at least 1. Let
p with 2 ≤ p ≤ t be such that u ∈ V (Gp).

Case C: |NG(u)| = 1

Proof of the case. If u ∈ Cp then Mp ⊆ NG(u), so that Mp = NG(u), a contradiction. Thus,
u ∈ Ap. If p < t then Mp+1 ⊆ NG(u), so that NG(u) = Mp+1, a contradiction. Thus, p = t.

We assume that H does not contain any of the listed graphs as an induced subgraph. Let
NG(u) = {w}. Due to our assumptions, w ∈ V (Gt) and w 6= zt. Let G

′ =def G[V (Gt) ∪ {zt−1}]
andH ′ =def H[V (Gt)∪{zt−1, v}]. Note that G

′ is a two-chain graph that is weakly twin-free, and
NG′(zt−1) = {zt}. By repeating the construction of the second case in the proof of Lemma 5.12,
there are marked two-chain graphs Σ′

t,Σ
′

t+1 such that 〈Σ′

t,Σ
′

t+1〉 is a building sequence forH
′ and

Mt is the initializer of Σ
′

t. Let Σ
′

t = (G′

t;Mt, A
′

t), and let Σ′′

t =def ((G
′

t−zt−1);Mt, (A
′

t \ {zt−1})).
It directly follows that 〈Σ1, . . . ,Σt−1,Σ

′′

t ,Σ
′

t+1〉 is a building sequence for H, and H is a sequence
two-chain graph.

Case D: |NG(u)| ≥ 2

Proof of the case. Let

G′

p =def G
[

V (Gp) ∪ {zp−1, zp+1, zp+2}
]

and

H ′

p =def H
[

V (Gp) ∪ {zp−1, zp+1, zp+2} ∪ {v}
]

.

It is important to observe that G′

p is an induced subgraph of G and a two-chain graph, and
H ′

p is an induced subgraph of H and is obtained from G′

p by adding v as a pendant vertex at
u. Furthermore, NG(u) = NG′

p
(u), since u 6∈ Mp and, for p < t, NG(u) ∩ V (Gp+1) ⊆ {zp+1}.

Finally, H ′

p is weakly twin-free, in particular, since NH′

p
(x) = NH(x) for every vertex x from

V (H ′

p) \ {zp−1, zp, zp+1, zp+2}.
Assume that H does not contain any of the listed graphs as an induced subgraph. Then, H ′

p

does not contain any of the listed graphs as an induced subgraph. Also observe NG′

p
(zp−1) =

{zp}. Since G′

p is a connected two-chain graph that is not a star graph, we can apply Corol-
lary 5.8: H ′

p has a normal building sequence 〈D1, . . . , Ds〉 such thatD1 = {zp} and zp−1 ∈ D2 and
v ∈ Ds−1 andDs = {u}. If p = t then Σ′

t =def (H[V (Gt)∪{v}];Mt, NH(u)) is a marked two-chain
graph and 〈Σ1, . . . ,Σt−1,Σ

′

t〉 is a building sequence for H. If p < t then NG′

p
(zp+2) = {zp+1}

and zp+1 6∈ D1 and zp+1 6∈ Ds, and we obtain a contradiction due to Lemma 5.7.

We have considered all possible cases about u and NG(u), and thus, we can conclude the
lemma.

5.3 True- and false-twin extensions

In the preceding two subsections, we introduced the sequence two-chain graphs, studied struc-
tural properties and investigated the extension by a pendant vertex. The main result of these
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two subsections is Lemma 5.13. In this subsection, we consider two further single-vertex exten-
sions: by adding a true twin or a false twin. Let G be a graph, and let u be a vertex of G. Let v
be a new vertex. We say that we obtain H from G by adding v as a true twin or a false twin of
u if H is a graph and v is a vertex of H and G = H−v and NH [v] = NH [u] or NH(v) = NH(u),
respectively.

We begin by considering false-twin extensions. This case is easy, and it is no surprise that
the class of sequence two-chain graphs is closed under adding false twins.

Lemma 5.14. Let G be a sequence two-chain graph. Let u be a vertex of G and let v be a new
vertex. Obtain H from G by adding v as a false twin of u. Then, H is a sequence two-chain
graph.

Proof. Let 〈Σ1, . . . ,Σt〉 be a building sequence for G, and let u ∈ V (Σp). Let Σp = (Gp;Mp, Ap)
and let Cp =def V (Gp) \Ap.

Obtain H ′ from Gp by adding v as a false twin of u. We show that H ′ is a two-chain graph.
Let 〈B1, . . . , Br〉 be a building sequence for Gp with building partition (Ap, Cp) and where
B1 = Mp. Let u ∈ Bq. Then, 〈B1, . . . , Bq−1, (Bq ∪ {v}), Bq+1, . . . , Br〉 is a building sequence for
H ′ with building partition ((Ap ∪ {v}), Cp) or (Ap, (Cp ∪ {v})), depending on whether u ∈ Ap

or u ∈ Cp. Let

M ′ =def

{

Mp ∪ {v} , if u ∈ Mp

Mp , otherwise
and A′ =def

{

Ap ∪ {v} , if u ∈ Ap

Ap , otherwise,

and let Σ′

p =def (H
′;M ′, A′). Clearly, Σ′

p is a marked two-chain graph.
Let the building sequence 〈Σ1, . . . ,Σp−1,Σ

′

p,Σp+1, . . . ,Σt〉 define the sequence two-chain
graph F . We show F = H. This is clear: F−v = H−v = G. According to the definitions
of H ′ and Σ′

p and M ′ and A′:

NF (v) ∩ V (Σ′

p) = NH′(v) = NH′(u) = NG(u) ∩ V (Σ′

p)

if p > 1 : NF (v) ∩ V (Σp−1) = NF (u) ∩ V (Σp−1) = NG(u) ∩ V (Σp−1)

if p < t : NF (v) ∩ V (Σp+1) = NF (u) ∩ V (Σp+1) = NG(u) ∩ V (Σp+1) .

We conclude NF (v) = NF (u) = NG(u), and F = H.

The main part of this subsection is dedicated to the extension of sequence two-chain graphs
by true twins. We separately consider two-chain graphs and sequence two-chain graphs. We
need further graphs, that are depicted in Figure 7.

Lemma 5.15. Let G be a connected two-chain graph. Let u be a vertex of G and let v be a new
vertex. Obtain H from G by adding v as a true twin of u. Then, one of the three cases applies:

1) G has a normal building sequence 〈D1, . . . , Ds〉 such that either u ∈ Ds or u ∈ Ds−1 and
Ds = NG(u)

2) H is a two-chain graph
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(d) (e)

(a) (b) (c)

(f)

Figure 7: We use these names for the depicted graphs: (a) face-1 graph, (b) face-2 graph, (c)
face-3 graph, (d) full house with antenna, (e) full domino, (f) triangle-3 graph. In all graphs, the
grouped vertices represent true twin pairs.

3) H contains one of the following graphs as an induced subgraph: square-1 graph or square-2

graph or face-1 graph or face-2 graph or face-3 graph or full house with antenna or full

domino.

Proof. If G is edgeless then 〈V (G)〉 is a normal building sequence for G, and the first case of
the lemma applies. Otherwise, G is not edgeless. Due to Corollary 5.4, G has a normal building
sequence 〈D1, . . . , Ds〉 with building partition (A,C) such that u ∈ A \D1. If u ∈ Ds then the
first case of the lemma applies. Otherwise, u 6∈ Ds, which particularly means s ≥ 3. If u ∈ Ds−1

and D1 ⊆ NG(u) then 〈D1, . . . , Ds−2, Ds, Ds−1〉 is a normal building sequence for G due to
Lemma 5.5, and the first case of the lemma applies, and if u ∈ Ds−1 and D1 6⊆ NG(u) then
NG(u) = Ds, and the first case of the lemma applies again. We henceforth assume u 6∈ Ds−1,
i.e., u ∈ D2 ∪ · · · ∪Ds−2. Let u ∈ Dp.

Let z ∈ D1 and d ∈ Ds−1 and c ∈ Ds. Due to Lemma 5.5, NG(c) = A \Ds and Ds−1 ⊆ A

and (C ∪D2) ⊆ NG(z), and Ds ⊆ NG(u) in particular. We distinguish between two cases about
NG(u).

Case A: z 6∈ NG(u)
Proof of the case. Note: NG(u) ⊆ Dp+1 ∪ · · · ∪ Ds and Ds ⊆ NG(u) ⊆ NG(z). Let x ∈
NG(z) \NG(u), that exists, since u and z are not false twins of G. Note: x ∈ D2 ∪ · · · ∪Dp−1,
since u ∈ A.

Assume that NG(u) contains an adjacent vertex pair a, b. If x ∈ C then NG(x) ∩ {a, b} = ∅
and if x ∈ A then {a, b} ⊆ NG(x). In the former case, {x, z, a, b, u, v} induces a full house with
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antenna in H, and in the latter case, {x, z, a, b, u, v} induces a full domino in H.
Assume that the vertices in NG(u) are pairwise non-adjacent in G. Since NG(c) = A \ Ds

and Ds ⊆ NG(u), A ∩ NG(u) = Ds follows, and therefore, NG(d) = Ds and NG(u) = (C ∩
(Dp+1 ∪ · · · ∪ Ds−2)) ∪ Ds. Let y ∈ NG(u) \ NG(d), that exists, since NG(d) ⊆ NG(u) and u

and d are not false twins of G. Recall that y ∈ C \Ds must hold, so that yc 6∈ E(G). If x ∈ C

then {z, c, u, y, x, d, v} induces a square-1 graph in H, and if x ∈ A then u, z, x ∈ NG(y) and
xc ∈ E(G) and {z, c, u, y, x, d, v} induces a square-2 graph in H.

Case B: z ∈ NG(u)
Proof of the case. Note: A ∩ (D1 ∪ · · · ∪Dp−1) ⊆ NG(u). If Dp = {u} then

〈

D1, . . . , Dp−1, {u}, {v}, Dp+1, . . . , Ds

〉

is a building sequence for H with building partition ((A ∪ {v}), C), and the second case of the
lemma applies. Otherwise, |Dp| ≥ 2. Let u′ ∈ Dp with u′ 6= u. If Dp+1 ∪ · · · ∪ Ds−2 ⊆ A

and Dp+1 ∪ · · · ∪ Ds−1 ⊆ NG(u) then 〈D1, . . . , Dp−1, Dp+1, . . . , Ds, Dp〉 is a normal building
sequence for G, and the first case of the lemma applies. Similarly, if D2 ∪ · · · ∪Dp−1 ⊆ A and
D3 ∪ · · · ∪ Dp−1 ⊆ NG(z) then 〈Dp, D1, . . . , Dp−1, Dp+1, . . . , Ds〉 is a building sequence for G,
and we can apply Lemma 5.3, and the first case of the lemma applies. We henceforth assume
that these two situations do not occur.

For a better understanding of the below conclusions, note this table of a schematic description
of the considered construction sequence, where we assume Ds ⊆ A for convenience.

D1 D2 ∪ · · · ∪Dp−1 Dp Dp+1 ∪ · · · ∪Ds−2 Ds−1 Ds

A {z} e {u, u′} b {d} {c}

C a y

Assume that vertex a exists. If vertex b can be chosen with b 6∈ NG(u) then {a, z} ∪ {u′, u, v} ∪
{c, b} induces a face-1 graph in H; note that b = d is possible. If vertex b cannot be chosen with
b 6∈ NG(u) then Dp+1 ∪ · · · ∪ Ds−1 ⊆ NG(u), and vertex y must exist according to our above
assumptions. In this case, {a, z} ∪ {u′, u, v} ∪ {y, c, d} induces a face-2 graph in H.

As the other case, assume that vertex a does not exist. Then, D2 ∪ · · · ∪Dp−1 ⊆ A, and our
above assumptions imply that vertex e with e 6∈ NG(z) must exist. Let x ∈ NG(z) \NG(e), that
exists, since NG(e) ⊆ NG(z) and e and z are not false twins of G. Recall x ∈ A∩(D2∪· · ·∪Dp−1).
If vertex b with b 6∈ NG(u) exists then {e, z, x}∪{u′, u, v}∪{c, b} induces a face-2 graph in H. If
vertex b cannot be chosen with b 6∈ NG(u) then vertex y exists, and {e, z, x}∪{u′, u, v}∪{y, c, d}
induces a face-3 graph in H.

To conclude: if the first or the second case of the lemma does not apply then H contains
one of the listed graphs as an induced subgraph, and the third case of the lemma applies.

Lemma 5.16. Let G be a connected sequence two-chain graph. Let u be a vertex of G and let
v be a new vertex. Obtain H from G by adding v as a true twin of u. Then, H is a sequence
two-chain graph or H contains one of the following graphs as an induced subgraph: triangle-1

graph or triangle-2 graph or triangle-3 graph or diamond net or full house with antenna or full

domino or square-1 graph or square-2 graph or face-1 graph or face-2 graph or face-3 graph.
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Proof. We first assume that G is not a two-chain graph; the other case will be considered at the
end of the proof. Due to Corollary 5.11, G has a building sequence 〈Σ1, . . . ,Σt〉 with t ≥ 2 such
that u 6∈ V (Σ1) and Σ1 is not edgeless and Σt is not easy complete bipartite and Σ2, . . . ,Σt have
non-empty initializers. For 1 ≤ i ≤ t, let Σi = (Gi;Mi, Ai). As proved in the second paragraph
of the proof of Lemma 5.13: G has a path (z0, z1, . . . , zt+2) where zi ∈ Mi for every 2 ≤ i ≤ t

and z0 ∈ V (G1) and z1 ∈ A1 and zt+1, zt+2 ∈ V (Gt) \Mt.
We distinguish between three cases.

Case A: There is p with 1 ≤ p ≤ t such that NG(u) = Mp or u ∈ Mp.

Proof of the case. Assume NG(u) = Mp. Observe that p = 1 is not possible, since NG(u) = M1

and u 6∈ V (G1) implies u ∈ M2 and t = 2 and V (G2) = M2, the latter contradicting the assump-
tion about Σt being not easy complete bipartite. So, p ≥ 2. Consider {zp−2, zp−1, zp, zp+1, zp+2}:
NG(u)∩{zp−2, zp−1, zp, zp+1, zp+2} = {zp}, and {zp−2, zp−1, zp, zp+1, zp+2, u, v} induces a triangle-
1 graph or a triangle-2 graph or a triangle-3 graph in H.

Next, assume u ∈ Mp; clearly, p ≥ 2. Observe: u = zp or u, zp is a false twin pair of G. So,
{zp−2, zp−1, u, v, zp+1, zp+2} induces a diamond net or a full house with antenna or a full domino

in H.

We henceforth assume that Case A does not apply. Let p with 1 < p ≤ t be such that u is a
vertex of Gp. Note u 6∈ Mp according to our assumption. Let Hp =def H[V (Gp)∪{v}]. Observe
that Hp is obtained from Gp by adding v as a true twin of u. Let A′

p =def Ap if u 6∈ Ap, and let
A′

p =def Ap ∪ {v} if u ∈ Ap. Let Σ′

p =def (Hp;Mp, A
′

p). If Σ′

p is a marked two-chain graph then
〈Σ1, . . . ,Σp−1,Σ

′

p,Σp+1, . . . ,Σt〉 is a building sequence for H, and H is a sequence two-chain
graph. We apply this result in the following, and we distinguish between two cases about p.

Case B: 1 < p < t

Proof of the case. Let G′

p =def G[V (Gp) ∪ Mp+1 ∪ {zp−1, zp+2}]. It is important to recall
NG′

p
(zp−1) = Mp and NG′

p
(zp+2) = Mp+1. Note also that G′

p is a connected two-chain graph,
that is not edgeless or complete bipartite. Let 〈D1, . . . , Ds〉 be a normal building sequence
for G′

p such that zp+1 6∈ D1, that exists due to Corollary 5.4. Note that s ≥ 3 must hold.
We can apply Lemma 5.7: zp−1 ∈ D2 and Mp = D1 and zp+2 ∈ Ds−1 and Mp+1 = Ds. If
u ∈ D1 ∪D2 ∪Ds−1 ∪Ds then Case A applies, a contradiction.

Let H ′

p =def H[V (Gp) ∪ Mp+1 ∪ {zp−1, zp+2, v}]. Observe that H ′

p is obtained from G′

p by
adding v as a true twin of u. We apply Lemma 5.15: if the first case applies then Case A
applies, as we have shown in the preceding paragraph, and if the third case applies then we
can already conclude. So, assume that the second case applies, which means that H ′

p is a
two-chain graph. Due to Corollary 5.4, H ′

p has a normal building sequence 〈E1, . . . , Er〉 with
building partition (A′, C ′) such that zp+1 6∈ E1. Observe: NH′

p
(zp−1) = NG′

p
(zp−1) = Mp and

NH′

p
(zp+2) = NG′

p
(zp+2) = Mp+1, and due to Lemma 5.7: Er = Mp+1 and E1 = Mp. It directly

follows that (H ′

p;Mp, A
′) is a marked two-chain graph. Recall: NH′

p
(zp+1) \ {v} = NG′

p
(zp+1) =

Ap∪{zp+2}. Due to Lemma 5.5, NH′

p
(zp+1) = A′ \Er, and thus, A′ \ (Er∪{zp+2}) = A′

p. Hence,
Σ′

p = (Hp;Mp, A
′

p) is a marked two-chain graph.

Case C: p = t

Proof of the case. We adapt the proof of Case B. Let G′

t =def G[V (Gt) ∪ {zt−1}] and H ′

t =def

H[V (Gt) ∪ {zt−1, v}], and H ′

t is obtained from G′

t by adding v as a true twin of u. Note also
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that G′

t is a connected two-chain graph, and (zt−1, zt, zt+1, zt+2) is a path of G′

t, and G′

t is
not complete bipartite. We apply Lemma 5.15. If the third case applies then we can already
conclude.

Assume that the second case applies and H ′

t is a two-chain graph. Due to Corollary 5.4, H ′

t

has a normal building sequence 〈D1, . . . , Ds〉 with building partition (A′, C ′). If zt−1 ∈ D2 then
zt−1 ∈ C ′ and D1 = Mt due to Lemma 5.7, so that (H ′

t;Mt, A
′) is a marked two-chain graph.

Then, Σ′′

t =def (Ht;Mt, A
′) is a marked two-chain graph and 〈Σ1, . . . ,Σt−1,Σ

′′

t 〉 is a building
sequence for H. As a remark, we use Σ′′

t instead of Σ′

t to avoid a here unnecessary argument
about why also (Ht;Mt, A

′

t) is a marked two-chain graph. If zt−1 6∈ D2 then zt−1 ∈ Ds−1 and
Ds = Mt due to Lemma 5.7, and we apply Lemma 5.3 to 〈D1, . . . , Ds〉, obtain a normal building
sequence 〈E1, . . . , Es〉 for H

′

t with Es = D1, and zt−1 ∈ E2 follows due to Lemma 5.7.
Next, assume that the first case applies and G′

t has a normal building sequence 〈D1, . . . , Ds〉
with building partition (A′, C ′) such that either u ∈ Ds or u ∈ Ds−1 and Ds = NG′

t
(u). If

zt−1 ∈ Ds−1 then Mt = NG′

t
(zt−1) = Ds due Lemma 5.7, and either u ∈ Ds where Ds = Mt or

u ∈ Ds−1 and NG′

t
(u) = NG′

t
(zt−1) = Mt, and Case A applies, which contradicts our previous

assumptions. So, zt−1 ∈ C ′ ∩D2 and NG′

t
(zt−1) = Mt = D1 due to Lemma 5.7, and (Gt;Mt, A

′)
is a marked two-chain graph with building sequence 〈D1, (D2 \ {zt−1), D3, . . . , Ds〉. We show
that H is a sequence two-chain graph, and we distinguish between the two cases about u. In
both cases, it is important to recall NG′

t
(x) = A′ \Ds for x ∈ Ds due to Lemma 5.5, which is

indeed applicable.

• u ∈ Ds

Let A′′ =def (A′ \ Ds) ∪ {u, v}. Then, (Ht;Mt, A
′′) is a marked two-chain graph with

building sequence

〈

D1, (D2 \ {zz−1}), D3, . . . , Ds−1, (Ds \ {u}), {u}, {v}
〉

and building partition (A′′, ((C ′ \ {zt−1}) ∪ (Ds \ {u}))), and H is a sequence two-chain
graph.

• u ∈ Ds−1 and Ds = NG′

t
(u) = NG(u)

Let A′′ =def A
′ \ (Ds−1 ∪Ds) and A′′′ =def Ds ∪ {u, v}, and let

Σ′

t =def

(

(Gt \ (Ds−1 ∪Ds)); Mt, A′′

)

Σ′

t+1 =def

(

H[Ds−1 ∪Ds ∪ {v}]; Ds, A′′′

)

.

It is not difficult to see that Σ′

t and Σ′

t+1 are marked two-chain graphs, and it follows that
H is a sequence two-chain graph with building sequence 〈Σ1, . . . ,Σt−1,Σ

′

t,Σ
′

t+1〉.

Thus, if H does not contain any of the listed graphs as an induced subgraph then H is a sequence
two-chain graph.

We have proved that the claim of the lemma is correct if G is not a two-chain graph. As the
remaining case, assume that G is a two-chain graph. We can apply Lemma 5.15 to G and H
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directly: if the second or the third case applies then we can already conclude. If the first case
applies then we can conclude purely analogous to the last situation of above Case C, by giving
a building sequence for H.

5.4 Two characterisations

We are ready to prove the characterisation results. Most work was done in the preceding
subsections. The main technical results of this subsection are lower-bound proofs.

Let F be the set of the following graphs: triangle-0 graph and triangle-1 graph and triangle-2

graph and triangle-3 graph and diamond net and triangle net and square net and square-1 graph

and square-2 graph and face-1 graph and face-2 graph and face-3 graph and full house with antenna

and full domino. These are exactly the graphs that are depicted in Figures 5 and 6 and 7. We
summarise the results of the preceding subsections.

Proposition 5.17. Let G be a connected distance-hereditary graph. Then, G is a sequence
two-chain graph or G contains one of the graphs in F as an induced subgraph.

Proof. We prove the claim by induction on the number of vertices of G, by applying the result
of Theorem 4.6. If G is a graph on a single vertex then G is a two-chain graph and thus a
sequence two-chain graph. Otherwise, G has at least two vertices. If G contains one of the
graphs in F as an induced subgraph then we can already conclude. So, assume that G does not
contain any of the graphs in F as an induced subgraph, and thus, there is no vertex x of G such
that G−x contains one of the graphs in F as an induced subgraph.

Since G−x is distance-hereditary, the induction hypothesis implies that G−x is a sequence
two-chain graph for every x ∈ V (G). Assume that G is not twin-free. Then, G has a twin
pair u, v. Since G−v is a sequence two-chain graph, if NG(u) = NG(v), i.e., v is a false twin of
u in G, then we apply Lemma 5.14 to G−v, and if NG[u] = NG[v], i.e., v is a true twin of u in
G, then we apply Lemma 5.16 to G−v. Otherwise, G is twin-free. Due to Theorem 4.6, G has
a vertex pair u, v such that NG(v) = {u}, i.e., v is a pendant vertex at u in G, and we apply
Lemma 5.13 to G−v. In all cases, we conclude that G is a sequence two-chain graph.

For the application of Lemmas 5.16 and 5.13, it is important to observe that G−v is con-
nected.

Observe that Proposition 5.17 does not show that sequence two-chain graphs are without
induced subgraphs from F . A main result of this subsection shows that this is nevertheless the
case, and this will directly translate into a forbidden induced subgraph characterisation of the
sequence two-chain graphs.

A second main result of this subsection is a characterisation of the linear clique-width of the
sequence two-chain graphs. The following lemma proves an upper bound.

Lemma 5.18. Let F be a sequence two-chain graph. Then, lcwdinac(F ) ≤ 3.

Proof. We show that F has a linear 3-expression with label 1 as an inactive label. We first
consider marked two-chain graphs, and then, we consider marked sequence two-chain graphs.

Let (G;M,A) be a non-empty marked two-chain graph with building sequence 〈B1, . . . , Bt〉
where B1 = M , and let M = {m1, . . . ,mr}. We iteratively construct a 3-expression α such that
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A ∩ (B1 ∪ · · · ∪ Bt) are the vertices with label 2 and the other vertices have label 1 in val(α).
For a technical reason, α begins with some seemingly unnecessary one-step extensions. Let

α1 =def

{

ρ2→1() , if B1 = ∅

ρ3→2(ρ2→1(η2,3(()⊕ 3(m1)⊕ · · · ⊕ 3(mr)))) , if B1 6= ∅ .

Clearly, [val(α1)] = G[B1] and the vertices in A ∩ B1 = B1 have label 2 and all other vertices
have label 1 in val(α1).

Let 1 ≤ i < t. If Bi+1 = ∅ then let αi+1 =def αi. Otherwise, Bi+1 6= ∅. Let Bi+1 =
{x1, . . . , xq}, and let

α′

i+1 =def αi ⊕ 3(x1)⊕ · · · ⊕ 3(xq) .

Observe V (val(α′

i+1)) = B1∪ · · ·∪Bi+1. We obtain αi+1 for G[B1∪ · · ·∪Bi+1] by distinguishing
between four cases:

αi+1 =def























ρ3→1(α
′

i+1) , if Bi+1 6⊆ A and NG(x1) ∩ (B1 ∪ · · · ∪Bi) = ∅

ρ3→2(α
′

i+1) , if Bi+1 ⊆ A and NG(x1) ∩ (B1 ∪ · · · ∪Bi) = ∅

ρ3→1(η2,3(α
′

i+1)) , if Bi+1 6⊆ A and NG(x1) ∩ (B1 ∪ · · · ∪Bi) 6= ∅

ρ3→2(η2,3(α
′

i+1)) , if Bi+1 ⊆ A and NG(x1) ∩ (B1 ∪ · · · ∪Bi) 6= ∅ .

Let α =def αt. It is easy to verify that α has label 1 as an inactive label, so that α ∈ E inac
lin (3),

and it applies an easy inductive argument about αi to verify that α is a 3-expression for G of
the requested properties.

We prove the upper bound on the linear clique-width of F . Let 〈Σ1, . . . ,Σt〉 be a building
sequence for F , and for 1 ≤ i ≤ t, let Σi = (Gi;Mi, Ai). Let δi be the linear 3-expression for Σi

that is constructed in the above construction. Recall that δi has label 1 as an inactive label and
the vertices in Ai have label 2 and the other vertices have label 1 in val(δi), and δi has a very
special beginning. If t = 1 then δ1 already proves lcwdinac(F ) ≤ 3.

Otherwise, t ≥ 2. It is straightforward to verify that δt(δt−1(· · · δ1 · · · )) is a linear 3-
expression for F , that has label 1 as an inactive label, and thus, lcwdinac(F ) ≤ 3.

We now prove lower bounds on the linear clique-width of the graphs in F . The proofs apply
similar ideas as the lower-bound proofs in Section 4.

Lemma 5.19. Let G be a graph on n vertices and let α ∈ E inac
lin (3) be a 3-expression for G

with associated vertex ordering σ = 〈x1, . . . , xn〉. Let γ be a subexpression of α that is a full
subexpression for G. Let Γ =def val(γ).

1) If V (G) = {a, b, c} and E(G) = {ab, bc, ca} then x1 and x2 have the same label in Γ.

2) If V (G) = {a, b, c, d} and E(G) = {ab, cd} and x4 ∈ {a, b} then c and d have label 1 in Γ.

3) If V (G) = {a, b, c, d} and E(G) = {ab, bc, cd} and x4 ∈ {a, b} then d has label 1 in Γ, and
d, c ≺σ b, a, and if c does not have label 1 in Γ then a and c have the same label in Γ.

4) If V (G) = {a, b, c, d, e} and E(G) = {ab, cb, db, eb, de} then a and c have the same label in
Γ or d has label 1 in Γ.
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Proof. For all statements, we consider γ = δ ⊕ o(xn), and the claim directly follows.
We prove the first statement. Since x1 and x2 are non-visible neighbours of x3 in Γ, x3 has

label 2 and x1 and x2 have label 3 in Γ or x3 has label 3 and x1 and x2 have label 2 in Γ.
We prove the second statement. By symmetry, we can assume x4 = a. Since b is a non-visible

neighbour of a in Γ and since c and d are non-adjacent to a and b in G, a and b have label 2
and 3 in Γ and c and d cannot have label 2 or 3 in Γ, so that c and d have label 1 in Γ.

We prove the third statement. Observe that a and b are non-visible neighbours of each other
in Γ and d is non-adjacent to a and b in G, so that a, b, d have pairwise different labels in Γ, and
d has label 1 in Γ. Assume that c does not have label 1 in Γ. Then, c has the same label as a
or b in Γ, and since a and c are non-adjacent in G, a and c must have the same label in Γ. If
x4 = a then x3 = b due to Lemma 2.4, and if x4 = b then d, c ≺σ a follows from the fact that a
does not have label 1 in Γ.

We prove the fourth statement. If x5 = b then a, c, d, e have the same label in Γ. If x5 = d

or x5 = e then d and e are non-visible neighbours of each other, and a and c have label 1 in Γ,
since a and c are non-adjacent to d and e in G. Assume x5 ∈ {a, c}, and by symmetry, choose
x5 = a. Due to Lemma 2.4: x4 ∈ {b, c}. If x4 = b then c, d, e have the same label in Γ, that is
either label 1 or the label of a. If x4 = c then x3 = b due to Lemma 2.4, and if d does not have
label 1 in Γ then a, c, d, e have the same label in Γ.

Proposition 5.20. Let G be a triangle-h graph for h ∈ {0, 1, 2, 3}. Then, lcwdinac(G) ≥ 4.

Proof. For the used vertex names, we refer to graph family (A) of Figure 8.
For a contradiction, suppose that α ∈ E inac

lin (3) is a 3-expression for G. Let 〈x1, . . . , x7〉 be
the vertex ordering associated with α. Let 1 ≤ p ≤ 7 be smallest such that G[{x1, . . . , xp}]
contains two of the three edges ab, cd, ef . By a symmetry argument, we may assume a, b, c, d ∈
{x1, . . . , xp} and xp ∈ {c, d}. Let α′ be a subexpression of α that is a full subexpression for
G[{a, b, c, d}]. We can apply the second statement of Lemma 5.19 and directly conclude that a
and b have label 1 in val(α′), and this particularly implies g ∈ {x1, . . . , xp−1}.

Let β = δ ⊕ o(xp) be a subexpression of α that is a full subexpression for G[{x1, . . . , xp}].
Recall that c is a non-visible neighbour of d in val(β), so that we may assume that c has label 2
and d has label 3 in val(β). It follows: the vertices with label 2 in val(β) are neighbours of d in
G, and the vertices with label 3 in val(β) are neighbours of c in G. Thus, all vertices of val(β)
but c, d, g have label 1. If f is a vertex of val(β) then f has label 1, and e must be a vertex of
val(β), implying p = 7, a contradiction. So, f is not a vertex of val(β), and g has a non-visible
neighbour in val(β), so that g does not have label 1 in val(β), and since c and d are non-adjacent
to f in G, g cannot have label 2 or 3 in val(β), a contradiction. Thus, lcwdinac(G) ≥ 4.

Proposition 5.21. Let G be a square net or a square-1 graph or a square-2 graph. Then,
lcwdinac(G) ≥ 4.

Proof. For the used vertex names, we refer to graph family (B) and graphs (B1) and (B2) of
Figure 8. Observe that graph (B1) is an induced subgraph of graph (B) if g is adjacent to b and
e, and graph (B2) does not have these edges.

For a contradiction, suppose that α ∈ E inac
lin (3) is a 3-expression for G. Let σ = 〈x1, . . . , x7〉

be the vertex ordering associated with α. Let 1 ≤ p ≤ 7 be smallest such that G[{x1, . . . , xp}]
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Figure 8: The figure shows the following graph families: (A) triangle graphs, (B) square graphs,
(C0–3) face graphs, (D) other graphs. The vertex names are used in the lower-bound proofs.
The graphs (B1) and (B2) are special induced subgraphs of graph family (B). The dashed line
segments represent edges that may or may not be of the graphs.

contains the two edges cd and fg. By a symmetry argument, we may assume xp ∈ {c, d}. Let
β = δ⊕ o(xp) be a subexpression of α that is a full subexpression for G[{x1, . . . , xp}]. Then, c is
a non-visible neighbour of d in val(β), so that c and d have label 2 and 3 in val(β), and due to the
second statement of Lemma 5.19, f and g have label 1 in val(β). Thus, b, e ∈ {x1, . . . , xp−1}, and
p ≥ 6. If a = x7 then xp = x6 = b due to Lemma 2.4, a contradiction. So, a ∈ {x1, . . . , xp−1},
and p = 7.

Assume x7 = d. Then, b, c, d, e have label 2 or 3 and a, f, g have label 1 in val(β). Let β′ be a
subexpression of β that is a full subexpression for G[{a, b, e, f, g}]. Observe that G[{a, b, e, f, g}]
is graph (B1) or graph (B2) of Figure 8. Let Γ =def val(β

′). Observe that b and e do not have
label 1 or the same label as anyone of a, f, g in Γ. We apply the third statement of Lemma 5.19
to G[{a, b, f, e}]: since b and e do not have label 1 in Γ, a has label 1 and b and e have the same
label in Γ and a, b ≺σ e, f . We consider the graphs (B1) and (B2) separately.
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(B1) Since b does not have the same label as f or g in Γ, the first statement of Lemma 5.19
shows that f and g have the same label in Γ and f, g ≺σ b. This contradicts the above
b ≺σ f .

(B2) Since a, b ≺σ f and b does not have label 1 in Γ, the third statement of Lemma 5.19 shows
that b and g have the same label in Γ, a contradiction.

Thus, if x7 = d then we obtain the desired contradiction. Analogously, if x7 = c and c is adjacent
to b and e in G.

It remains to consider the case when x7 = c and c is non-adjacent to b and e in G. Then,
NG(c) = {d}, and x6 = d due to Lemma 2.4. Let β′′ = δ′′ ⊕ o(x6) be a subexpression of α that
is a full subexpression for G−c. No vertex of val(δ′′) has label o, and thus, a, f, g have label 1
and b and e do not have label 1 in val(δ′′), and we can apply the above arguments to obtain the
desired contradiction.

Proposition 5.22. Let G be a triangle net or a face-h graph for h ∈ {1, 2, 3}. Then, lcwdinac(G) ≥
4.

Proof. For illustrations of the graphs, we refer to graphs (C0), (C1), (C2), (C3) of Figure 8,
where graph (C0) is a triangle net. The vertex set of G is partitioned into three sides, each of
which is the set consisting of the three grouped vertices or the single grouped vertex and its
pendant vertex. We distinguish the sides as side 1, side 2, side 3.

For a contradiction, suppose that α ∈ E inac
lin (3) is a 3-expression for G. Let 〈x1, . . . , xn〉 be

the vertex ordering associated with α. If |NG(xn)| ≥ 2 then let p =def n, and if |NG(xn)| = 1
then NG(xn) = {xn−1} due to Lemma 2.4 and let p =def n − 1. Without loss of generality, we
may assume that xp is from side 1. If p = n − 1 then xn−1 and xn are the two vertices from
side 1. Let K be the set of the vertices from side 2 and 3, and let A =def K ∩ NG(xp) and
B =def K \NG(xp). Note |B| ≤ 2.

Let α′ = δ ⊕ o(xp) be a subexpression of α that is a full subexpression for G[{x1, . . . , xp}],
and let Γ =def val(α

′). Since xp has a non-visible neighbour in Γ, we may assume o = 2. The
vertices in A are non-visible neighbours of xp in Γ and thus have label 3 in Γ. The vertices in
B are pendant vertices of G and thus are non-adjacent to some vertex in A, so that no vertex
from B can have label 2 in Γ, and thus, the vertices in B have label 1 in Γ.

• If |B| = 0 then G[A] is a co-2P3, and since the vertices of G[A] have the same label in Γ
that is not label 1, [Γ][A] = G[A] and δ can be made into a linear 2-expression for G[A],
and lcwd(G[A]) ≤ 2, a contradiction to Theorem 2.1.

• If |B| = 1 then G[A∪B] is the graph of the fourth statement of Lemma 5.19, which directly
yields a contradiction.

• If |B| = 2 then G[A ∪ B] is a chordless path (a, b, c, d), where A = {b, c} and B = {a, d},
and the third statement of Lemma 5.19 yields a contradiction.

We conclude: lcwdinac(G) ≥ 4.
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Proposition 5.23 ([17, 18]).

1) Let G be a triangle-0 graph or a triangle net or a square net. Then, lcwd(G) ≥ 4.

2) Let G be a full house with antenna or a full domino or a diamond net. Then, lcwdinac(G) ≥ 4.

Proof. The first statement is due to [17]: the three graphs are not AT-free, and thus, they are
not cocomparability graphs, so that lcwd(G) ≥ 4.

The second statement is due to [18]: the disjoint union of any of the three graphs has linear
clique-width at least 4. The statement follows from an application of Proposition 3.3. Note that
these are the graphs of graph family (D) of Figure 8.

Finally, we can give the characterisation result.

Theorem 5.24. Let G be a graph. The following statements about G are equivalent:

1) G is a sequence two-chain graph

2) lcwdinac(G) ≤ 3

3) G does not contain a graph in D ∪ F as an induced subgraph.

Proof. If G is a sequence two-chain graph then lcwdinac(G) ≤ 3 due to Lemma 5.18.
If lcwdinac(G) ≤ 3 then cwdinac(G) ≤ 3 due to Lemma 2.2, and G is a distance-hereditary

graph due to Proposition 4.8, and G does not contain a graph in D as an induced subgraph
due to Theorem 4.6. If lcwdinac(G) ≤ 3 then lcwdinac(H) ≤ 3 for every induced subgraph H

of G due to Lemma 2.3, and G does not contain a graph in F as an induced subgraph due to
Propositions 5.20 and 5.21 and 5.22 and 5.23.

If G does not contain a graph in D∪F as an induced subgraph then G is a distance-hereditary
graph due to Theorem 4.6, and each connected component of G is a distance-hereditary graph
clearly, and each connected component of G does not contain a graph in F as an induced
subgraph, so that each connected component of G is a sequence two-chain graph due to Propo-
sition 5.17, and the disjoint union of sequence two-chain graphs is a sequence two-chain graph,
so that G is a sequence two-chain graph.

Corollary 5.25. Let G be a disconnected graph. Assume lcwd(G) ≥ 4, and assume lcwd(H) ≤ 3
for every proper induced subgraph H of G. Then, G is the disjoint union of exactly two graphs
in D ∪ F .

Proof. Let C1, . . . , Cr be the connected components of G, where r ≥ 2, and we may assume
lcwdinac(C1) ≥ · · · ≥ lcwdinac(Cr). Due to Proposition 3.3, lcwdinac(C1) ≥ lcwdinac(C2) ≥ 4,
and lcwd(C1 ⊕ C2) ≥ 4. The minimality assumption of the lemma about G implies r = 2 and
lcwdinac(H) ≤ 3 for every proper induced subgraph H of C1 and C2. Due to Theorem 5.24,
C1 and C2 contain a graph in D ∪ F as an induced subgraph and no proper induced subgraph
of C1 and C2 contains a graph in D ∪ F as an induced subgraph, so that C1 and C2 must be
(isomorphic to) a graph in D ∪ F .
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6 Conclusions

As the most notable result, we gave a characterisation of the graphs of linear clique-width at most
3 with an inactive label by their set of forbidden induced subgraphs. These graphs are grouped
as graph families (A), (B), (C), (D), (E) in Figures 8 and 3. Especially graph families (A), (B)
and (D) are defined through a base graph and some edges may be added. It is an interesting
observation that each optional edge may or may not be added, and the resulting graph is a
forbidden graph, however not minimal always. This property may be worthy of exploring in the
future.

Our list of forbidden induced subgraphs opens an interesting relationship between clique-
width and rank-width. Oum showed that the graphs of rank-width at most 1 are the distance-
hereditary graphs [25]. So, the graphs of rank-width at most 1 and the graphs of clique-width
at most 3 with an inactive label coincide (Proposition 4.8). What about their linear restric-
tions? Interestingly, the two resulting graph classes do not coincide. Recently, Adler, Farley,
Proskurowski characterised the minimal forbidden induced subgraphs of graphs of linear rank-
width at most 1 [1], and it turns out that the graphs of linear rank-width at most 1 are a proper
subclass of the graphs of linear clique-width at most 3 with an inactive label.

We were able to give the complete list of disconnected minimal forbidden induced subgraphs
for the graphs of linear clique-width at most 3 (Corollary 5.25). This list is neither empty
nor trivial. The result and the relationship to graphs of linear clique-width at most 3 with an
inactive label was established in Proposition 3.3. We can extend our list of minimal forbidden
induced subgraphs for graphs of linear clique-width at most 3 to some connected graphs, by
applying Proposition 3.4: taking the disjoint union of any two graphs from D∪F and adding an
edge between the two graphs yields a graph of linear clique-width at least 4. Similarly through
the vertex join operation of Proposition 3.5.

For the lower-bound proofs, we applied arguments that were based on subexpressions. These
arguments are reminiscent of clique-width and linear clique-width characterisations [19, 15, 22,
17], that are not applicable directly due to the special role of inactive labels. Is it possible to
characterise clique-width and linear clique-width with an inactive label in a similar fashion?
This is indeed the case, as Puppe showed by adapting the existing characterisations [27].

Finally, a computational remark. Let k be an integer with k ≥ 3, and assume an algorithm
for recognising graphs of linear clique-width at most k. We can apply this algorithm to recog-
nise graphs of linear clique-width at most k with an inactive label. Let Hk be a graph with
lcwd(Hk) ≤ k and lcwdinac(Hk) > k. According to the second statement of Proposition 3.3, for
every graph G, lcwdinac(G) ≤ k if and only if lcwd(G⊕Hk) ≤ k. It follows that the decision or
computation problem for linear clique-width with an inactive label is at most as hard as that
problem for linear clique-width, applying Proposition 3.4, even when restricted to connected
graphs. Of course, the argument relies on the graph Hk, that we do not know here but that
does exist (see [19] for an example).
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