
Parameterized Algorithms for d-Hitting Set:
the Weighted Case

Henning Fernau1

Univ. Trier, FB 4—Abteilung Informatik, 54286 Trier, Germany
fernau@uni-trier.de

Abstract. We are going to analyze simple search tree algorithms for
Weighted d-Hitting Set. Although the algorithms are simple, their
analysis is technically rather involved. However, this approach allows us
to even improve on elsewhere previously published running time esti-
mates for the more restricted case of (unweighted) d-Hitting Set. 1

1 Introduction

Our approach—in general. We exhibit how to systematically design and analyze
search tree algorithms within the framework of parameterized algorithmics [3].
Here, we advocate a top-down approach as opposed to a rather bottom-up design,
because the resulting algorithms tend to be simpler than via the opposite ap-
proach, and they sometimes pretty much resemble heuristic pruning techniques
as used in branch-and-cut algorithms for solving hard problems. Moreover, this
approach is quite modular in the sense that it produces algorithms whose search
tree backbone, i.e., the branching pattern of the algorithm as such, is not affected
by the optimization techniques reflected in what we will call heuristic priorities
(according to which the branching is performed) and the employed reduction
rules. This not only modularizes correctness proofs for such algorithms, but also
favors rapid prototyping of implementations. We will exemplify this approach
by developing and analyzing simple algorithms for Weighted d-Hitting Set
(d-WHS) problems. No prior research on parameterized algorithms has been
reported for these problems.

Problem statement. Weighted d-Hitting Set (d-WHS) can be viewed as a
“weighted vertex cover problem” on hypergraphs. More formally, this problem
can be stated as follows:
Given: A weighted hypergraph G = (V,E, w) with edge size bounded by d, i.e.,
∀e ∈ E(|e| ≤ d), and a weight function w : V → [1,∞)
Parameter: a non-negative integer k
Question: Is there a (weighted) hitting set C of total weight of at most k, i.e.,
∃C ⊆ V ∀e ∈ E(C ∩ e 6= ∅) and w(C) :=

∑
x∈C w(x) ≤ k?

1 This is a full version of the paper presented in [9]. Most of the work on this material
has been done while the author was with Univ. Tübingen, Germany, as well as with
Univ. Hertfordshire, Hatfield, UK. The according support is gratefully acknowledged.

2

Why Hitting Set? Hitting Set problems show up in many places; e.g.,
Reiter’s ground-breaking research on model-based diagnosis [12,17] relates the
automatic diagnosis of systems to Hitting Set. The thrive for minimum hitting
sets is in that context motivated by the parsimony principle in two ways: (a) the
simplest diagnosis tends to find the actual cause, and (b) when the diagnosis
implies exchanging (possibly) faulty components (as a consequence of a self-
diagnosis of an autonomous system, e.g., in space), then a minimum hitting set
might also be the cheapest repair solution; in that particular scenario, however,
the weighted case seems to be even more interesting than the unweighted one. As
a further application, in [10], connections between a two-tree drawing problem
that is important in bioinformatics and 4-WHS are shown, where the weights
reflect further natural restrictions from biological background knowledge. The
algorithmics of this paper can be immediately transferred to both applications.

Previous work. For the unweighted case (which is a special case of the weighted
setting if all weights are equal to one), there is one published paper presenting
a search tree algorithm for Unweighted d-Hitting Set (d-HS), d > 2, from
a parameterized perspective [13]. The exponential base of the running time esti-
mate for these algorithms tends to d−1 with growing d, although in the simplest
case d = 3, it is still relatively far off from that bound: that basis is 1 +

√
2. By

an intricate case analysis of a comparatively complicated algorithm, they were
able to arrive at an O∗(2.270k) algorithm for the (unweighted) 3-HS problem
(i.e., all weights equal one). This was improved in [6] to about O∗(2.179k) by
using a similar methodology as explained here for the weighted case. In fact, this
result was recently improved by Wahlström [19] by a different although related
methodology to O∗(2.0755k).

Notice that we are dealing with search tree algorithms and apply a param-
eterized analysis of the search tree size. If we then say that the algorithm has
O∗(f(k)) running time, where k is the parameter, this means that the search
tree has size (number of leaves) O(f(k)), since the work in each search tree node
will be at worst polynomial in n. In actual fact, all analysis that follows will be
a clever estimate on the size of the search tree.

For the special case of 2-HS, likewise known as Vertex Cover, in a kind of
race (using more and more intricate case analysis) anO(1.285k+kn)-algorithm [1]
has been obtained. For 2-WHS, likewise known as Weighted Vertex Cover,
the best that was obtained is on O∗(1.396k), see [14]. Our approach seems not
to be suitable to tackle the case d = 2.

The results of this paper. As in the unweighted case [6],2 our analysis is based on
the introduction of a second auxiliary parameter that allows us to account for
“gains” obtained by using appropriate reduction rules and heuristic priorities.
This technique can be useful in other areas of parameterized algorithms, as we
believe. We get the following table for the bases cd of an O∗(ck

d) algorithm for d-
WHS; the bases are better than those for the unweighted case published in [13]:

2 A revised version of that report is going to be published with Algorithmica.

3

d 3 4 5 6 7 8 9 10 100

cd ≤ 2.2470 3.1479 4.1017 5.0640 6.0439 7.0320 8.0243 9.0191 99.0002
(1)

General notions and definitions. We introduce some terminology on hypergraphs
as needed for Hitting Set. A hypergraph G = (V,E) is given by its finite set
of vertices V and its set of (hyper)-edges E, where a hyperedge is a subset of V .
The cardinality |e| of a hyperedge e is also called its size. The cardinality of the
set of edges which contain the vertex v is called the degree of v, written δ(v).

2 Heuristics and reductions for Weighted d-Hitting Set

2.1 A simple branching algorithm

Since each hyperedge must be covered and the weights are all at least one, there
exists a trivial O∗(dk)-algorithm for d-WHS.

simple-WHS(G = (V ,E,w), k, S):
IF k > 0 AND G has some edges THEN

choose some edge e; // to be refined
S′ = ∅; // solution to be constructed
FOREACH x ∈ e DO // recursively branch

G′ = (V \ {x}, {e ∈ E | x /∈ e});
S′ = simple-WHS(G′, k − w(x), S ∪ {x})
IF S′ 6= failure THEN break

return S′

ELSIF E = ∅ THEN return S ELSE return failure

Obviously, the base of the exponential running time of this algorithm heavily
depends on the necessary amount of branching. Observe that according to the
problem specification, in a d-WHS instance, there might be edges of size up
to d already in the very beginning. “Small edges” may also be introduced later
during the run of the algorithm. A natural heuristic would first branch on small
edges. We would therefore refine:

simple-WHS(G, k, S):
IF k > 0 AND G has some edges THEN
choose some edge e of smallest size;

... // as before

Can we make use of this “heuristic priority” in our analysis ? We therefore
now define reduction rules which we will always exhaustively apply at the begin-
ning of each recursive call. Moreover, we switch towards a “binary branching”
at vertices (instead of branching on edges), as can be seen in Alg. WHS-ST below.

4

2.2 Reduction rules

First reduction rule: vertex domination. The vertex domination rule that was
used in [6,13] for the unweighted case is invalid in full generality in the weighted
case, but has to be replaced by the following weighted vertex domination rule:
If, for all edges e, x ∈ e implies y ∈ e and if w(y) ≤ w(x), then delete x.

This reduction rule implies the following one (reduction rule for degree-one-
vertices): If x, y ∈ e with δ(x) = 1 and w(y) ≤ w(x), then remove x. The
soundness of this rule is easily seen: the only reason for taking a vertex x into
the hitting set, in a situation as described by the reduction rule, is that it might
be cheap. Conserving expensive vertices makes no sense. This reduction rule
immediately implies:

Lemma 1. In a reduced instance, there is no edge with more than one vertex of
degree one.

The next lemma is again an easy consequence from the weighted vertex
domination rule and is of particular importance when d > 3.

Lemma 2. In a reduced instance, for any two edges e1 and e2, there is at most
one x ∈ e1 ∩ e2 with δ(x) = 2.

Other rules stated in [6] literally transfer to the weighted case:

Second reduction rule: edge domination. An edge e is dominated by another edge
f if f ⊂ e. Then, we delete e, since covering f will automatically also cover e.

Third reduction rule: small edges. Delete all edges of size one and place the
corresponding vertices into the hitting set.

The small edge rule, together with the vertex domination rule, proves the
non-existence of isolated edges in the following precise sense:

Lemma 3. In a reduced instance, there is no edge e such that all vertices x ∈ e
have degree one.

Fourth reduction rule: edge cover rule. If G contains a component C that is of
maximum vertex degree two, then resolve C in polynomial time.

This (last) rule is justified by the following lemma:

Lemma 4. If G is a weighted hypergraph of maximum vertex degree of two, then
a minimum weighted hitting set can be found in polynomial time.

Proof. To G, there corresponds an edge-weighted graph G′ whose vertices are
the edges of G and whose vertex-adjacency relation is the edge-adjacency relation
of G. Then, a minimum weighted hitting set of G corresponds to a minimum
weighted edge cover of G′ that can be computed in polynomial time.

5

2.3 Branching rules and their analysis

The idea of making favorable branches first has also another bearing, this time
on the way we are going to analyze the search tree algorithm, based on an
auxiliary parameter `. Let T `(k), ` ≥ 0 denote the size (more precisely, the
number of leaves) of the search tree when assuming that at least ` edges in the
given instance (with parameter k) have a size of (at most) d− 1. The intuition
is that T 3(k) would describe a situation which is “more like” (d− 1)-WHS than
T 2(k). The underlying idea is that search trees with many small edges are smaller
than search trees with only a few; hence:

∀k : T `(k) ≥ T `+1(k). (2)

Regarding an upper bound on the size T (k) of the search tree of the whole
problem, we can equate T (k) = T 0(k) by following the same intuition. Eq. (2)
also shows that, upon analyzing a T `-situation, we can always assume that there
are exactly ` edges that have a size of at most d − 1, and these small edges do
have a size of exactly d− 1.

Our algorithm will make choices with the bias of what we will call heuristic
priorities. They can be refined if necessary along the analysis of the algorithm.
The simplest list to start with might contain a single rule that should be intu-
itively clear: Choose a vertex of highest degree within an edge of smallest size.
We will update the list of priorities whenever necessary.

WHS-ST(G = (V ,E,w), k, S):
exhaustively apply reduction rules;
IF k > 0 THEN
IF E = ∅ THEN return S;
choose some vertex x according to the heuristic priorities
S′ = ∅; // solution to be constructed
E′ = { e ∈ E | x /∈ e };
S′ = WHS-ST((V \ {x}, E′), k − w(x), S ∪ {x});
IF S′ ==failure THEN

E′′ = { e \ {x} | e ∈ E };
S′ = WHS-ST((V \ {x}, E′′), k, S);

return S′

ELSIF G contains some edges or k < 0
return failure

ELSE // G contains no edges and k is zero
return S

In the very beginning, given the instance (G, k), we call WHS-ST(G, k, ∅). We
assume that reduction rules may also change the parameter value k and the
solution S. The algorithm is quite generic: the list of reduction rules may grow
and we might also change the heuristic priorities. The simple binary branching
structure of WHS-ST enables a straight-forward inductive proof of its correctness:

6

Theorem 1. If the reduction rules are correct, then WHS-ST(G, k, ∅) either re-
turns a correct hitting set to the d-WHS instance (G, k) or it returns failure,
if there is no solution of size at most k.

Proof. The proof is by straightforward induction on the number of vertices of
the hypergraph, similar to the unweighted case considered in [6].

3 A simple branching analysis

We will now undertake a simple analysis, only considering T 0, T 1 and (partially)
T 2 and T 3.

Lemma 5. T 0(k) ≤ T 0(k − 1) + T 3(k).

Proof. Whenever we select an edge of size d to branch on (according to the
heuristic priorities), we can find an edge that contains a vertex x of degree three
or larger due to the edge cover rule. One branch is that x is put into the hitting
set. This reduces the admissible weight by at least one. If x is not put into the
hitting set, then at least three new edges of size two are created.

T 1-branching. In the next lemma, we show a first step into a strategy which will
finally give us better branching behaviors. Namely, we try to exploit the effect
of reduction rules triggered in different sub-cases. This already necessitates a
refinement in the choice of heuristic priorities: within a smallest edge e of size
j < d, we prefer branching at x ∈ e that maximizes the number of incident edges
of size j + 1.

Lemma 6. T 1(k) ≤ max{T 0(k − 1) + T 1(k − 1) + T 2(k − 1) + (d − 4)T 3(k −
1), T 0(k−1)+T 1(k−1)+(j−2)T 2(k−1)+(d2− (2j +1)d+(j2 + j))T 0(k−2) :
j = 2, 3, . . . , d−2} if d ≥ 4; if T 0(k) ≥ (d−1)k or if d = 3, this may be simplified:
T 1(k) ≤ T 0(k − 1) + (d− 2)T 1(k − 1).

Proof. The instance G has an edge e = {x1, x2, . . . , xd−1} of size (d− 1).
Case 1. If there is an edge f of size d such that 2 ≤ j := |e∩ f | ≤ d− 2 (this can
only happen if d ≥ 4), then we would first branch at the vertices in e∩ f ; due to
weighted vertex domination, at least one of the j branches that take one of the
vertices of e ∩ f into the hitting set is an T 1(k − 1)-branch and j − 2 are even
T 2(k − 1)-branches (or better). If none of the vertices from e ∩ f goes into the
hitting set, then, in order to cover e, there are d− 1− j many possibilities left,
and in order to cover f , there are d− j remaining possibilities. This explains the
other ((d− j)− 1)(d− j) many T 0(k − 2)-branches. We can neglect these cases
in our time analysis when assuming T 0(k) ≥ (d − 1)k. For readability, we refer
for this analysis to the appendix.
Case 2. If the previous case does not occur, then for all edges f 6= e, |e∩ f | ≤ 1.
Assume that x1 is the vertex of maximum degree in e, so that we branch at x1.
If δ(x1) = 1, we can deterministically resolve the case with the reduction rules
(apply d− 1 times the weighted vertex domination rule and then the small edge

7

rule) and get one T 0(k− 1)-branch. This is obviously better than the inequality
claimed in the lemma. Therefore, we can now assume that δ(x1) ≥ 2. If we take
x1 into the hitting set, then we get a T 0(k − 1)-branch. If we do not take x1

into the hitting set, we create one new edge e1 of size (d − 1) and we get the
edge e′ = e \ {x1} of size (d − 2). In the next recursive call, e′ is the edge of
smallest size. There is no other edge of that size, since Case 1 did not apply. We
therefore continue branching at the vertex (say x2) of maximum degree in e′.
Again, δ(x2) = 1 is better than the case we are going to pursue next. If δ(x2) ≥ 2,
then we again have two cases: either we take x2 into the hitting set or not. If x2

goes into the hitting set, then this is a T 1(k − 1)-branch; namely, since Case 1
did not apply, x2 /∈ e1, so that the small edge e1 will be preserved. If x2 does not
go into the hitting set, then there will be a new edge e2 of size (d−1) (“new” due
to edge domination). In the next recursive call, e′′ = e \ {x1, x2} is the edge of
smallest size. The argument continues and shows that branches of type T j(k−1)
will show up, for j = 2, 3, . . . , d − 2. This shows the claim, taking into account
that T j(k − 1) ≤ T 3(k − 1) for j ≥ 3 due to Eq. (2).

Estimating branching numbers. By using the inequality T 3(k) ≤ T 2(k) ≤ T 1(k),
Lemmas 5 and 6 yield:

T 0(k) ≤ T 0(k − 1) + T 1(k) (3)

T 1(k) ≤ T 0(k − 1) + (d− 2)T 1(k − 1)

With cd being the largest positive real root of the characteristic polynomial
x2 − dx + d− 2, i.e.,

cd =
d +

√
d2 − 4d + 8

2
=

d +
√

(d− 2)2 + 4
2

≥ d− 1 (4)

we can see that by setting T 0(k) = ck
d and T 1(k) = (cd−1)ck−1

d , the inequalities
system (3) can be solved. The larger d, the closer cd gets to d− 1. Hence:

d 3 4 5 6 10 100
T (k) ≤ 2.62k 3.42k 4.31k 5.24k 9.13k 99.0103k

Obviously, this is worse than what Niedermeier and Rossmanith got in [13]
for the (general) unweighted case (due to the lack of the vertex domination rule
in full generality), but shows the same “limit behavior” (when d is large). Can we
do better? Let us give a simple trial to incorporate T 2 and T 3 into the analysis
in the special case of Weighted 3-Hitting Set.

4 Weighted 3-Hitting Set

We will use subscripts in the functions that describe the search tree sizes to indi-
cate this special case. We branch according to the following heuristic priorities.
Let s be the size of the smallest edge in the instance G = (V,E, w).

8

Let Es be the collection of smallest size edges.
(P31) Let the set of (first) branching candidates B be

⋃
e∈Es

e.
(P32) If e is a smallest edge that is disjoint with all other e′ ∈ Es, refine B = e.
(P33) If no such isolated smallest edge exists, then update B to collect the ver-
tices of maximum degree in the hypergraph (

⋃
e∈Es

e,Es).
(P34) Select x ∈ B to be a vertex of maximum degree in G.
It is easy to check that the analyses of Lemmas 5 and 6 are still valid under
these heuristic priorities.

Lemma 7. T 2
3 (k) ≤ max{T 1

3 (k − 1) + T 2
3 (k − 1), T 0

3 (k − 1) + T 0
3 (k − 2)}

Proof. We consider first the situation that the two edges e1 and e2 of size two are
disjoint (see (P32)). Then, basically the analysis of Lemma 6 applies, showing
the claim. More precisely, we have T 2

3 (k) ≤ T 1
3 (k − 1) + T 2

3 (k − 1).
Otherwise, e1 ∩ e2 6= ∅, i.e., e1 = {x, y} and e2 = {x, z}. According to the

heuristic priority (P33), we branch at x. If we take x into the hitting set, we get
a T 0

3 (k − 1)-branch. Not taking x into the hitting set enforces y and z into the
hitting set, which is a T 0

3 (k − 2)-branch.

Lemma 8. T 3
3 (k) ≤ max

T 1
3 (k − 1) + T 0

3 (k − 2),
T 0

3 (k − 1) + T 0
3 (k − 3),

T 2
3 (k − 1) + T 3

3 (k − 1)


Proof. If there is a edge e of size two that has non-empty intersection with any
other edge of size two, due to (P32) we branch on e without destroying the at
least two other edges of size two. The reasoning given in Lemma 6 therefore
yields the upper bound T 2

3 (k − 1) + T 3
3 (k − 1) in this case.

If the first case does not apply, the all edges of size two are connected. Let
e1, e2, e3 be three connected edges of size two. If x ∈ e1 ∩ e2 ∩ e3 exists, then we
branch at x due to (P33). This gives the (trivial) upper bound of T 0

3 (k − 1) +
T 0

3 (k − 3). Otherwise, we branch at some x contained in two small edges due
to (P33); w.l.o.g.: x ∈ e1 ∩ e2. Since x /∈ e3, the case that we take x into
the hitting set is indeed a T 1

3 (k − 1)-branch. This explains the upper bound
T 1

3 (k − 1) + T 0
3 (k − 2).

Theorem 2. Weighted 3-Hitting Set can be solved in time O∗(2.2470k).

The algebra justifying this claim can be found in the following subsection.
We only mention for the reader that likes to skip this section in a first read
that the exact solution of the inequalities system can be described by the largest
positive root c3 of the polynomial x3−2x2−x+1, which then gives T 0

3 (k) = ck
3 ,

T 1
3 = ck

3/(c3 − 1), T 2
3 (k) = ck

3/(c3 − 1)2, and T 3
3 (k) = ck−1

3 (c3 − 1). This worst
case is realized when all T 3-branches are according to the T 1

3 (k−1)+T 0
3 (k−2)-

estimate. Improving on that particular case would not help too much, however,
since the other extreme cases show also branching behaviors worse than 2.2k.
Observe that this also means that a search tree in the T 3(k)-case is only about
half the size of a search tree in the T 0(k)-case.

9

4.1 The algebra for Weighted 3-Hitting Set

In the following, we suppress the subscript 3, since we are only dealing with this
case.

Let us first show some algebra in case that we only analyze up to T 2(k), i.e.,
if we put T 3(k) = T 2(k). What branching behavior do we observe in either case
in Lemma 7 ?

1. If T 2(k) ≤ T 1(k − 1) + T 2(k − 1), we get (by Lemma 5),

(T 0(k)− T 0(k − 1)) = T 1(k − 1) + (T 0(k − 1)− T 0(k − 2)),

which gives as a recurrence

T 1(k − 1) = T 0(k)− 2T 0(k − 1) + T 0(k − 2).

By Lemma 6,

T 0(k+1)−2T 0(k)+T 0(k−1) = T 0(k−1)+T 0(k)−2T 0(k−1)+T 0(k−2).

Therefore,

0 = T 0(k + 1)− 3T 0(k) + 2T 0(k − 1)− T 0(k − 2).

This is resolved by T 0(k) ≤ 2.3248k.
2. T 2(k) ≤ T 0(k−1)+T 0(k−2) gives immediately the characteristic polynomial

x2− 2x− 1 with largest positive real root x = 1+
√

2 ≤ 2.4143; this is hence
the worst case here.

It might be surprising at first glance that we treated the weak inequalities as if
they were equalities. This is based on experience: taking this approach we were
always able to come up with a solution to the envisaged system of inequalities.
However, these computations should be justified by further analysis. Since this is
only an (encouraging) intermediate result, we refrain from giving such validation
here; we will however give it in the general case.

For Weighted 3-Hitting Set, we derived the following recurrences:

T 0(k) ≤ T 0(k − 1) + T 3(k)
T 1(k) ≤ T 0(k − 1) + T 1(k − 1)
T 2(k) ≤ max{T 1(k − 1) + T 2(k − 1), T 0(k − 1) + T 0(k − 2)}

T 3(k) ≤ max

T 1(k − 1) + T 0(k − 2),
T 0(k − 1) + T 0(k − 3),
T 2(k − 1) + T 3(k − 1)


How do we arrive at possible solutions? Firstly, we try to solve “extreme

cases” that are obtained by treating the weak inequalities as if they were equal-
ities and by discussing all possible combinations as described by the maximum
operator. In our case, this would in principle result in six systems of equations.

10

However, since T 2 shows up only in one place in a right-hand side of a T 3(k) ≤-
inequality, we only get four cases.

It is noteworthy to see that, when assuming T 0(k) = ck, (for all situations)
the first equation gives

T 3(k) = ck−1(c− 1)

and the second equation gives

T 1(k) = ck/(c− 1).

Notice that finally we are looking for an overall solution for all T j , i.e., T j(k) =
αjc

k
3 with c3 and the αj still to be determined. Our considerations so far entail:

α0 = 1 ≥ α1 = 1/(c3 − 1) ≥ α2 ≥ α3 = (c3 − 1)/c3

T 0(k) = T 0(k − 1) + T 3(k)
T 1(k) = T 0(k − 1) + T 1(k − 1)

(T 2(k) = max{T 1(k − 1) + T 2(k − 1), T 0(k − 1) + T 0(k − 2)})
T 3(k) = T 1(k − 1) + T 0(k − 2)

Obviously, the function T 2(k) does not come into play if we are primarily
interested in looking for solutions for T 0(k) in this case. Plugging in the expres-
sions for T 0(k), T 1(k) and T 3(k) in the last equation yields:

ck−1(c− 1) = ck−1/(c− 1) + ck−2.

After multiplication with (c − 1)c2−k and some reordering, this becomes the
characteristic polynomial:

0 = c(c− 1)2 − c− (c− 1) = c3 − 2c2 − c + 1.

Its largest positive real root can be bounded by 2.2470 from above. As can be
seen, this is the claimed worst case.

T 0(k) = T 0(k − 1) + T 3(k)
T 1(k) = T 0(k − 1) + T 1(k − 1)

(T 2(k) = max{T 1(k − 1) + T 2(k − 1), T 0(k − 1) + T 0(k − 2)})
T 3(k) = T 0(k − 1) + T 0(k − 3)

The same solution strategy provides:

ck−1(c− 1) = ck−1 + ck−3.

Multiplication with c3−k and some reordering yields:

0 = c3 − 2c2 − 1;

11

the largest positive real root can be bounded by 2.2056 from above.
In the following two cases, we have to distinguish the two different upper

bounds for T 2.

T 0(k) = T 0(k − 1) + T 3(k)
T 1(k) = T 0(k − 1) + T 1(k − 1)
T 2(k) = T 1(k − 1) + T 2(k − 1)
T 3(k) = T 2(k − 1) + T 3(k − 1)

From T 1(k) = ck/(c− 1), we can deduce from the third equation:

T 2(k) = ck/((c− 1)2).

Therefore, the last equation gives:

ck(c− 1) = ck−1/((c− 1)2) + ck−1(c− 1).

Multiplication with c1−k(c− 1)2 results in:

0 = (c− 1)4 − c = c4 − 4c3 + 6c2 − 5c + 1,

whose largest positive real root can be estimated by 2.2208.

T 0(k) = T 0(k − 1) + T 3(k)
T 1(k) = T 0(k − 1) + T 1(k − 1)
T 2(k) = T 0(k − 1) + T 0(k − 2)
T 3(k) = T 2(k − 1) + T 3(k − 1)

A direct plug-in yields:

T 0(k) = T 0(k − 1) + T 3(k) = T 0(k − 1) + T 2(k − 1) + T 3(k − 1)
= T 0(k − 1) + T 0(k − 2) + T 0(k − 3) + (T 0(k − 1)− T 0(k − 2))
= 2T 0(k − 1) + T 0(k − 3)

This gives again
0 = c3 − 2c2 − 1;

the largest positive real root can be bounded by 2.2056 from above.
So, the worst scenario gives the characteristic polynomial c3 − 2c2 − c + 1,

whose largest positive real root c3 can be bounded from above by 2.246980.
We haven’t yet determined α2. From T 2(k) ≤ T 1(k−1)+T 2(k−1), we would

get α2 = 1/(c3 − 1)2, and from T 2(k) ≤ T 0(k − 1) + T 0(k − 2), we arrive at
α2 = (c3+1)/c2

3. However, c2
3 = (c3+1)(c3−1)2 = (c2

3−1)(c3−1) = c3
3−c2

3−c3+1
is true, since c3 is a root of the characteristic polynomial, so that both (seemingly
different) values of α2 are in fact equal. In other words, we found:

12

α0 = 1 ≥ α1 = 1/(c3 − 1) ≈ 0.80 ≥
α2 = (c3 + 1)/c3 ≈ 0.64 ≥ α3 = (c3 − 1)/c3 ≈ 0.55

After having obtained these numbers, we should verify that indeed T 0(k) =
ck
3 , T 1 = ck

3/(c3−1), T 2(k) = ck−2
3 (c3 +1), and T 3(k) = ck−1

3 (c3−1) satisfies the
whole system of inequalities. This amounts in showing that the “extreme case”
we found is indeed maximizing all right-hand side maxima functions. In fact, our
reasoning with determining α2 in the preceding paragraph already shows that
T 1(k − 1) + T 2(k − 1) = T 0(k − 1) + T 0(k − 2) for our functions. We still have
to deal with the T 3(k) ≤-inequalities.

1. To show: T 1(k − 1) + T 0(k − 2) ≥ T 0(k − 1) + T 0(k − 3). Substituting the
functions we derived and multiplying with c3−k(c− 1) leaves us to show:

c2 + (c2 − c) ≥ (c3 − c2) + (c− 1) ⇔ 0 ≥ c3 − 3c2 + 2c− 1

which is true for c = c3.
2. To show: T 1(k − 1) + T 0(k − 2) ≥ T 2(k − 1) + T 3(k − 1). Substituting the

functions we derived and dividing by ck−2 leaves us to show:

c

c− 1
+ 1 ≥ c2 + c

c2
+

c2 − c

c
=

1 + c2

c

This in turn means we have to verify (again) for c = c3:

0 ≥ c3 − 3c2 + 2c− 1.

5 Weighted d-Hitting Set with d ≥ 4

How well do our considerations transfer to the more general case ? We analyze
possible T 2

d -branches in what follows. Since the obtained bases are quite satis-
factory, we refrain from analyzing the T 3

d -branches. In our analysis, we apply the
following heuristic priorities to a given (reduced) instance G = (V,E,w):
Let s be the size of the smallest edge in the instance G = (V,E, w).
Let Es be the collection of smallest size edges.
(P1) Let the set of (first) branching candidates B be

⋃
e∈Es

e.
(P2) Define GB = (B,Es) and update B to be the set of vertices in GB of
maximum degree.
(P3) Choose a vertex x ∈ B of maximum degree in G.

One can check that Lemmas 5 and 6 are still valid when assuming these
heuristic priorities.
Since in our opinion solving d-Hitting Set for larger d is of less practical
importance, we will defer some details of the following analysis to the appendix.

Analyzing T 2. We will distinguish several cases in what follows:

Lemma 9. Let e1 and e2 be two edges of size d− 1. If e1 ∩ e2 = ∅, then we can
estimate T 2

d (k) ≤ T 1
d (k − 1) + (d− 2)T 2

d (k − 1).

13

This can be basically inherited from Lemma 6 due to edge domination. As we
will see, this is the second worst case branching. Being the simplest case, we give
some details. As justified in the appendix, we solve the next set of equations:

T 0
d (k) = T 0(k − 1) + T 2(k) (5)

T 1
d (k) = T 0(k − 1) + T 1(k − 1) + (d− 3)T 2(k − 1)

T 2
d (k) = T 1

d (k − 1) + (d− 2)T 2
d (k − 1)

This yields, after some algebra:

0 = T 0
d (k + 1)− dT 0

d (k) + (d− 1)T 0
d (k − 1)− T 0

d (k − 2). (6)

Theorem 3. Let cd denote the largest positive real root of the polynomial x3 −
dx2 + (d − 1)x − 1. Then T 0

d (k) = ck
d, T 1

d (k) = αd,1c
k
d with αd,1 = (cd − d +

2)(cd − 1)/cd and T 2
d (k) = αd,2c

k
d with αd,2 = (cd − 1)/cd solve the system (5).

The following table lists some of the exponential bases cd for (5):

d 3 4 5 6 7 8 9 10 100

cd ≤ 2.3248 3.1479 4.0780 5.0490 6.0330 7.0237 8.0178 9.0139 99.0002
(7)

Lemma 10. Let e1 and e2 be two edges of size d − 1. If |e1 ∩ e2| = j ∈
{1, 2, . . . , d− 2}, then we can estimate

T 2
d (k) ≤ T 0

d (k − 1) + T 1
d (k − 1) + (j − 2)T 2

d (k − 1) + (d− 1− j)2T 0
d (k − 2),

thereby assuming that T 0
d (k) ≥ (d− 1)k, i.e., cd ≥ d− 1.

Proof. The priorities (P1) and (P2) let us branch at a vertex x ∈ e1 ∩ e2. If
j > 1, the weighted vertex domination rule moreover guarantees that there is a
vertex of degree at least three in e1 ∩ e2, and (P3) will select one such vertex
x for branching. Hence, when x is not taken into the hitting set, then we gain
at least one edge of size d− 1 if j > 1 due to vertex domination, see Lemma 2,
since we will continue selecting vertices within e1 ∩ e2 according to (P2). The
case that edges that intersect with e1∩e2 might contain more than one vertex in
this intersection turns out not to be the worst case (assuming (d−1)k as a lower
bound of our approach) along the lines of Lemma 6. If e1 ∩ e2 is “exhausted”,
then in the case that we take none of the vertices from e1 ∩ e2 into the hitting
set, we are left with two very small edges e′1 = e1 \ e2 and e′2 = e2 \ e1. P1 lets
us continue branching at say e′1. Having selected x ∈ e′1 to go into the hitting
set, e′2 will be the smallest edge (of size (d− 1− j)), and hence P1 continues to
branch on e′2 in the next recursion step. This explains that we get (very grossly
estimated) (d− 1− j)2 many T 0

d (k − 2)-branches.

In order to prove Theorem 4, the following technical lemma is important:

14

Lemma 11. If j > 1 and d > 3, then

T 1
d (k − 1) + (d− 2)T 2

d (k − 1)
≥ T 0

d (k − 1) + T 1
d (k − 1) + (j − 2)T 2

d (k − 1) + (d− 1− j)2T 0
d (k − 2)

for T 0
d (k) = ck and T 2

d (k) = ck − ck−1 with d− 1 ≤ c, independent of T 1
d .

We need a somewhat stronger result (compared to Lemma 10) in the case
j = 1 that describes our worst case (for d > 4):

Lemma 12. Let e1 and e2 be two edges of size d − 1. If |e1 ∩ e2| = 1, then we
can estimate

T 2
d (k) ≤ T 0

d (k − 1) + (d− 3)T 1
d (k − 2) + [(d− 2)(d− 3) + 1]T 0

d (k − 2).

Moreover,

T 1
d (k−1)+(d−2)T 2

d (k−1) ≥ T 0
d (k−1)+(d−3)T 1

d (k−2)+[(d−2)(d−3)+1]T 0
d (k−2)

for T `
d as defined in Theorem 4 below.

Proof. We only explain the branching in what follows (for the algebra, see the
appendix). Assume that {x} = e1 ∩ e2. x is selected for branching according
to (P1). If x does not go into the hitting set, then we may continue branching
on e1. The claim is that, for any y ∈ e1 \ {x} (with one possible exception, if
δ(y) = 1 for some y ∈ e1; but due to Lemma 1, there is at most one vertex of
degree one in e1 and (P3) avoids branching at that vertex), there is an edge
ey 6= e1 with y ∈ ey such that there is a vertex zy ∈ e2 \ e1 with zy /∈ ey. For, if
(e2 \{x}) ⊆ ey, then the edge domination rule would have triggered. The branch
that takes y and zy into the hitting set is a T 1

d (k− 2)-branch (possibly better).

Theorem 4. d-WHS can be solved in time O∗(ck
d), where cd is the largest posi-

tive root of the characteristic polynomial x4−3x3−(d2−5d+5)x2+x+(d2−6d+9).
Some values of cd are listed below:

d 4 5 6 7 8 9 10 100

cd ≤ 3.1845 4.1017 5.0640 6.0439 7.0320 8.0243 9.0191 99.0002
(8)

Is it worthwhile trying to further improve on the exponential bases as derived
in this section ? In principle, yes of course; however, one would need a different
approach for substantial improvements: (a) the second-worst case is only slightly
better than the worst case that we analyzed, and (b) with growing d, the lower
bound (d− 1) assumed in (some) estimates is already quite well approximated.
The most interesting case that remains seems to be d = 4, which we tackle in
the following separate section.

15

6 4-Hitting Set

We are claiming that Lemma 9 actually provides the worst case for 4-WHS,
based on a deeper analysis and (again) slightly changed heuristic priorities (which
we will not make explicit in this case but which will become clear from the
analysis). So, we are going to show in the remainder of this section the following
result:

Theorem 5. Let c4 denote the largest positive real root of the polynomial x3 −
4x2+3x−1. Then T 0

4 (k) = ck
4 , T 1

4 (k) = α4,1c
k
4 with α4,1 = (c4−2)(c4−1)/c4 and

T 2
4 (k) = α4,2c

k
4 with α4,2 = (c4 − 1)/c4 solve the system (12). Moreover, O∗(ck

4)
is an upper bound on the running time of our algorithm for solving Weighted
4-Hitting Set. We can bound c4 from above by 3.1479.

As we have already seen before, the worst case (from above) we have to deal
with is the case of two edges e1, e2 with |e1| = |e2| = 3 and {x} = e1 ∩ e2. We
will analyze two sub-cases: (a) ∃e′1, e′2: e′i ∩ (ei \ {x}) 6= ∅ but e′i ∩ e3−i = ∅ for
i = 1, 2. (b) ∀e′1, e′2 with e′i ∩ (ei \ {x}) 6= ∅: e′i ∩ e3−i 6= ∅ as well, for i = 1, 2.

In case (a), we can branch as follows: Taking x into the hitting set gives a
T 0

4 (k − 1)-branch. Otherwise, due to the condition, let us continue branching
at {x1} = e1 ∩ e′1. (Observe that due to weighted vertex domination, not all e′1
satisfying the condition (a) may contain {x1, x2} = e1 \ {x}.) Similarly, there
is some {y1} = e2 ∩ e′2. So, if we take both x1 and y1 into the hitting set, we
get a T 0

4 (k − 2)-branch. If we take y1 into the hitting set but not x1, we must
select x2. Since y1 /∈ e1 by (a), this is a T 1

4 (k − 2)-branch. Similarly, taking x1

into the hitting set but not y1 is a T 1
4 (k− 2)-branch. If neither x1 nor y1 go into

the hitting set, then we gain two new small edges due to condition (a), so this
is even a T 2

4 (k − 2)-branch. Altogether, we have derived in case (a):

T 2
4 (k) ≤ T 0

4 (k − 1) + T 0
4 (k − 2) + 2T 1

4 (k − 2) + T 2
4 (k − 2). (9)

In case (b), there must be an edge e with (e1\{x})∩e 6= ∅ and (e2\{x})∩e 6= ∅,
since otherwise (i.e., if the “forall condition” is vacuously satisfied) the weighted
vertex domination rule would trigger and result in the following branching:

T 2
4 (k) ≤ T 0

4 (k − 1) + 2T 0
4 (k − 2).

We will see that the case we are going to consider will result in a branching that
is strictly worse, so that we can neglect this case. Moreover, we can also assume
that |(e1 \ {x}) ∩ e| = 1, for if not, the weighted vertex domination rule would
trigger in the case that x is not taken into the hitting set. This means that one
of the two vertices from (e1 \ {x}) ∩ e must go into the hitting set. Moreover,
since e is now hit, two sub-cases arise: either both vertices from e1 \ {x} are
contained in e and there are no edges that contain vertices from e2 \ {x} apart
from e2 and possibly e; then, the weighted vertex domination rule would trigger
once more and altogether yield the branch we already observed before, namely:

T 2
4 (k) ≤ T 0

4 (k − 1) + 2T 0
4 (k − 2);

16

or, say y1 ∈ e2 \ {x} is contained in one other edge ey besides e2 and e, and no
vertex from e1 \ {x} is contained in ey. Branching at y1 would hence gain us
one small edge at least in the situation that y1 is not going into the hitting set.
Altogether, we get as estimate:

T 2
4 (k) ≤ T 0

4 (k − 1) + T 0
4 (k − 2) + T 1

4 (k − 2).

This is again always better than the general estimate that we derive now. So,
we can assume now that {x1} = (e1 \ {x}) ∩ e and that {y1} = (e2 \ {x}) ∩ e.
Assume we start branching at x1. Let us call {x2} = e1 \{x, x1}. We distinguish
two sub-cases regarding {y2} = (e2 \ {x, y1}): (i) δ(y2) = 1 and (ii) δ(y2) ≥ 2.
Case (i) is again split into two cases: (ia) |{e ∈ E | y1 ∈ e, x1 /∈ e}| = 1 and (ib)
|{e ∈ E | y1 ∈ e, x1 /∈ e}| > 1.

In case (ia), if x1 is taken into the hitting set, we will delete either y1 or y2

due to the weighted vertex domination rule, and then this edge is resolved by
the small edge rule. This gives a T 0

4 (k − 2)-branch. If x1 is not taken into the
hitting set, x2 must be in. Moreover, if we continue branching at y2, we get a
T 0

4 (k − 2)-branch when y1 goes into the hitting set and two T 0
4 (k − 3)-branches

when not y1 but y2 is in the hitting set, since then one of the two remaining
vertices from e must be in the hitting set, too. Overall, we get in this case:

T 2
4 (k) ≤ T 0

4 (k − 1) + 2T 0
4 (k − 2) + 2T 0

4 (k − 3).

(Notice that this is strictly speaking a tight analysis for δ(y1) = 2.) Again, this
is not the worst case to consider. In case (ib), if x1 is taken into the hitting set,
we might take y1 into the hitting set. This gives a T 0

4 (k − 2)-branch. If y1 does
not go into the hitting set, then y2 will, giving a T 1

4 (k − 2)-branch (gaining a
small edge by the case assumption). If x1 is not going into the hitting set but
x2, we get one T 0

4 (k − 2)-branch and two T 1
4 (k − 3)-branches. This yields:

T 2
4 (k) ≤ T 0

4 (k − 1) + 2T 0
4 (k − 2) + T 1

4 (k − 2) + 2T 1
4 (k − 3);

again, this is not the worst case to consider.
In case (ii), we can assume that there is an edge ey that contains y2 but

none of the vertices from {x, y1, x1}. Namely, since δ(y2) ≥ 2, there is at least
one edge ey besides e2 that contains y2. As can be seen, δ(y2) = 2 is the worst
case we assume henceforth. If y1 ∈ ey, the weighted edge domination rule would
have triggered, yielding a better branching as analyzed before. If x1 ∈ ey, we
have a situation analyzed under case (i) above. We branch as follows: If x1 goes
into the hitting set, we can gain a small edge in the case that y2 does not go
into the hitting set (assume we continue branching at y2); hence, this is one
T 0

4 (k − 2)-branch and one T 1
4 (k − 2)-branch. If x1 is not in the hitting set, let

us continue branching at y1. By a simple analysis, we get one T 0
4 (k− 2) and two

T 0
4 (k − 3)-branches (similar as in the previous cases). This means:

T 2
4 (k) ≤ T 0

4 (k − 1) + 2T 0
4 (k − 2) + T 1

4 (k − 2) + 2T 0
4 (k − 3). (10)

We will show now that the case that e1∩ e2 = ∅ is in fact the worst case that
yields the estimate T 2

4 (k) = T 1
4 (k − 1) + 2T 2

4 (k − 1).

17

We first consider Eq. (9): we have to find an upper bound for

−T 2
4 (k) + T 0

4 (k − 1) + T 0
4 (k − 2) + 2T 1

4 (k − 2) + T 2
4 (k − 2).

With the settings of the functions as formulated in Theorem 5, this expression
means:

−ck
4 + 2ck−1

4 + ck−2
4 + 2(c4 − 2)(c4 − 1)ck−3

4 + ck−2
4 − ck−3

4 .

After multiplication with c3−k
4 , we get the following chain:

−c3
4 + 2c2

4 + 2c1
4 + 2(c4 − 2)(c4 − 1)− 1

= −c3
4 + 2c2

4 + 2c1
4 − 1 + 2c2

4 − 6c4 + 4
= [−c3

4 + 4c2
4 − 3c4 + 1]− c4 + 2

≤ 0

The expression in square brackets vanishes, since c4 is a root of the characteristic
polynomial mentioned in Theorem 5, and the inequality follow from 3 ≤ c4.

Let us consider Eq. (10): we will find an upper bound for

−T 2
4 (k) + T 0

4 (k − 1) + 2T 0
4 (k − 2) + T 1

4 (k − 2) + 2T 0
4 (k − 3)

under the settings of the functions as formulated in Theorem 5. This means we
have to upperbound:

−ck
4 + 2ck−1

4 + 2ck−2
4 + (c4 − 2)(c4 − 1)ck−3

4 + 2ck−3
4 .

After multiplication with c3−k
4 , we get the following chain:

−c3
4 + 2c2

4 + 2c1
4 + (c4 − 2)(c4 − 1) + 2

= −c3
4 + 3c2

4 − c4 + 4
= [−c3

4 + 4c2
4 − 3c4 + 1]− c2

4 + 2c4 + 3
≤ −c2

4 + 3c4

= c4(3− c4)
≤ 0

The expression in square brackets vanishes, since c4 is a root of the characteristic
polynomial mentioned in Theorem 5, and the two inequalities follow from 3 ≤ c4.

7 Conclusions

Let us allow first one final remark regarding the correctness of our analysis:

Remark 1. The astute reader might have noticed that there are possible situa-
tions say with two or more edges of size d− 1 where the reduction rules actually
destroy all of them and replace them by one edge of size d− 2 or smaller. How-
ever, it can be easily verified that, for all d ≥ 3 and ` ≥ 2—as far as analyzed—,
T `

d(k) ≥ (d − 2)k. This is based on the assumption cd ≥ d − 1. Therefore, this
omission in the analysis will never affect the worst case running time claimed in
the paper.

18

We have developed and analyzed a novel, top-down methodology for param-
eterized search tree algorithms. Up to now, we have applied this methodology
to d-Hitting Set [6], biplanarization problems [8] (thereby improving on the
constants derived in [4]), linear arrangement problems (in the long version of [7])
and to Weighted d-Hitting Set (this paper). A further natural candidate for
applying this technique would be (Weighted) Directed Feedback Vertex
/ Arc Set in Tournaments, as considered in [15], as well as variants thereof
[2].

In order to apply this method, we need a kind of second auxiliary parameter
in the problem which we try to improve on in case the main parameter cannot
be improved upon binary branching. In the case of (Weighted) Hitting Set,
the number of edges of small size is such an auxiliary parameter. Our results
show that this methodology is a quite powerful tool of algorithm analysis. For
example, while the gap between the running times of the (very sophisticated)
best search tree algorithms for Weighted Vertex Cover and for Vertex
Cover [1,14] do differ significantly (both algorithms being approximately of
the same complexity), this paper shows that with our analysis method of a
comparatively simple algorithm for 3-WHS, we can even (slightly) improve on
the previous analysis of a much more sophisticated algorithm for Unweighted
3-HS [13].

It may be interesting to compare the way the analysis of the recurrences
guided by the auxiliary parameter is undertaken in this paper with the analysis
method of Wahlström [18] or with Eppstein’s quasiconvex method [5]. It would
be also interesting to see this approach applied to other, different problems with
accordingly different auxiliary parameters.

More generally speaking, there seems to be a recent thrive in Exact Algorith-
mics towards “simple” algorithms. The Minimum Dominating Set algorithm
of Fomin, Grandoni and Kratsch is only one more example (see [11]) that inci-
dentally also uses a (special) Hitting Set algorithm. This direction of research
certainly brings practical and theoretical research on attacking hard problems
closer together, since one could also envisage a kind of interplay between al-
gorithm analysis and algorithm testing in the near future. Can an appropriate
analysis then “explain” certain observed phenomena of the implementation? The
modular decomposition of such an algorithm into the actual recursive “search
tree backbone” and the reduction rules and (in particular) the heuristic pri-
orities also opens up a whole area of experimental algorithmics: under which
circumstances (or, in a more theoretical formulation: for which classes of hyper-
graphs) is a certain set of rules the most successful ? Can this be proved ? Due
to the simple overall structure of the algorithms, also an analysis of expected
running times (possibly adding coin tossing into the heuristic priorities) might
be possible.

Incidentally, improvements in parameterized algorithms for d-Hitting Set
also entail improvements in exact algorithms for Minimum d-Hitting Set,
measured in terms of number of vertices: in the case of 3-Hitting Set, the
use of the algorithm exhibited in [6] improved Wahlström’s algorithm [18] from

19

O∗(1.6538n) down to O∗(1.6483n) (personal communication by Wahlström dat-
ing from 2005). The results of this paper will immediately entail new running
time bounds for exact algorithms for Minimum Weighted Hitting Set. For
example, along the lines sketched by Raman, Saurabh and Sikdar, in [16], we get
an exact algorithm for Minimum Weighted 4-Hitting Set that runs in time
O∗(1.97n), using our parameterized Weighted 4-Hitting Set algorithm.

References

1. J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41:280–301, 2001.

2. M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. In T. Calamoneri,
I. Finocchi, and G. F. Italiano, editors, Conference on Algorithms and Complexity
CIAC, volume 3998 of LNCS, pages 320–331. Springer, 2006.

3. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
4. V. Dujmović, M. R. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,

N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. A fixed-parameter approach to 2-layer planarization. Algorithmica, 45:159–
182, 2006.

5. D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Proc. 15th Symp.
Discrete Algorithms SODA, pages 781–790. ACM and SIAM, January 2004.

6. H. Fernau. A top-down approach to search-trees: Improved algorithmics for 3-
Hitting Set. Technical Report TR04-073, Electronic Colloquium on Computational
Complexity ECCC, 2004. An updated version has been accepted to Algorithmica.

7. H. Fernau. Parameterized algorithmics for linear arrangement problems. In
U. Faigle, editor, CTW 2005: Workshop on Graphs and Combinatorial Optimiza-
tion, pages 27–31. University of Cologne, Germany, 2005. Long version to appear
in Discrete Applied Mathematics.

8. H. Fernau. Two-layer planarization: improving on parameterized algorithmics.
In P. Vojtáš, M. Bieliková, B. Charron-Bost, and O. Sýkora, editors, SOFSEM,
volume 3381 of LNCS, pages 137–146. Springer, 2005.

9. H. Fernau. Parameterized algorithms for hitting set: the weighted case. In
T. Calamoneri, I. Finocchi, and G. F. Italiano, editors, Conference on Algorithms
and Complexity CIAC, volume 3998 of LNCS, pages 332–343. Springer, 2006.

10. H. Fernau, M. Kaufmann, and M. Poths. Comparing trees via crossing minimiza-
tion. In R. Ramanujam and Sandeep Sen, editors, Foundations of Software Tech-
nology and Theoretical Computer Science FSTTCS 2005, volume 3821 of LNCS,
pages 457–469. Springer, 2005.

11. F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination – a
case study. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors, Automata, Languages and Programming, 32nd International Colloquium,
ICALP, volume 3580 of LNCS, pages 191–203. Springer, 2005.

12. J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diagnoses and sys-
tems. Artificial Intelligence, 56:197–222, 1992.

13. R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for
3-Hitting Set. Journal of Discrete Algorithms, 1:89–102, 2003.

14. R. Niedermeier and P. Rossmanith. On efficient fixed parameter algorithms for
weighted vertex cover. Journal of Algorithms, 47:63–77, 2003.

20

15. V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems
and their duals in tournaments. Theoretical Computer Science, 351(3):446–458,
2006.

16. V. Raman, S. Saurabh, and S. Sikdar. Improved exact exponential algorithms
for vertex bipartization and other problems. In M. Coppo et al., editors, Italian
Conference on Theoretical Computer Science ICTCS, volume 3701 of LNCS, pages
375–389. Springer, 2005.

17. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–
95, 1987.

18. M. Wahlström. Exact algorithms for finding minimum transversals in rank-3 hy-
pergraphs. Journal of Algorithms, 51:107–121, 2004.

19. M. Wahlström. Algorithms, Measures and Upper Bounds for Satisfiability and
Related Problems. PhD thesis, Department of Computer and Information Science,
Linköpings universitet, Sweden, 2007.

21

8 Appendix: More justifying computations for Sec. 3

To fully justify our computations, we have to show two things:

1. The root cd as determined in Sec. 3 determines T 0(k) = ck
d and T 1(k) =

(cd − 1)ck−1
d such that it solves the following system of equalities:

T 0(k) = T 0(k − 1) + T 1(k)
T 1(k) = T 0(k − 1) + (d− 2)T 1(k − 1)

In fact,

ck
d = ck−1

d + (cd − 1)ck−1
d

(cd − 1)ck−1
d = ck−1

d + (d− 2)(cd − 1)ck−2
d

To see the validity of the second equation, multiply by c2−k
d to get

(cd − 1)cd = c2
d − cd = cd + (d− 2)(cd − 1) = (d− 1)cd − (d− 2)

This is true since cd is a root of the polynomial x2 − dx + (d− 2).
2. We distinguish two cases to prove that T 0(k− 1) + T 1(k− 1) + T 2(k− 1) +

(d− 4)T 3(k− 1) is always bigger than T 0(k− 1)+T 1(k− 1)+ (j− 2)T 2(k−
1) + (d2 − (2j + 1)d + (j2 + j))T 0(k − 2) for all j = 2, 3, . . . , d− 2 if d ≥ 4:
(a) we stop the analysis at T 1; (b) we stop the analysis at T 2.
In case (a), we have to show (using Eq. (2)):
for all j = 2, . . . , d− 2: T 0(k − 1) + (d− 2)T 1(k − 1) ≥

T 0(k − 1) + (j − 1)T 1(k − 1) + (d2 − (2j + 1)d + (j2 + j))T 0(k − 2),

when T 0(k) = ck
d and T 1(k) = (cd − 1)ck−1

d . Canceling the term T 0(k − 1),
we have to show that

(d2 − (2j + 1)d + (j2 + j))ck−2
d + [j − 1− (d− 2)](cd − 1)ck−2

d ≤ 0 (11)

Multiply by c2−k
d and consider the following chain:

(d2 − (2j + 1)d + (j2 + j)) + (j + 1− d)(cd − 1)
≤ (d2 − (2j + 1)d + (j2 + j)) + (j − d + 1)(d− 2)
= (d2 − (2j + 1)d + (j2 + j) + jd− d2 + d− 2j + 2d− 2
= (2− j)d + j2 − j − 2
= (j − 2)(−d + (j + 2))− j + 2
≤ 0

where, for the inequalities, we used that cd ≥ d− 1 and that (j − d + 2) ≤ 0
and j ≥ 2. This therefore also shows the additional assertion of Lemma 6.

22

In case (b), we have to show (using Eq. (2)): for all j = 2, . . . , d− 2:
T 0(k − 1) + T 1(k − 1) + (d− 3)T 2(k − 1) is always bigger than

T 0(k−1)+T 1(k−1)+(j−2)T 2(k−1)+(d2− (2j +1)d+(j2 +j))T 0(k−2),

when T 0(k) = ck
d and T 2(k) = (cd− 1)ck−1

d . Canceling the term T 0(k− 1) +
T 1(k − 1), we have to show that

(d2 − (2j + 1)d + (j2 + j))ck−2
d + [j − 2− (d− 3)](cd − 1)ck−2

d ≤ 0

As can be seen, this is exactly the same expression as Eq. (11) above, so
that the claim is true. In fact, more generally, this is true for any analysis
up to say T ρ, since then a sum of ρ terms T 0(k− 1),. . . ,T ρ−1(k− 1) in both
estimates would cancel out, and then the same algebraic argument applies
again to show the claim.

9 Appendix: The algebra for the general case

9.1 The algebra for Lemma 9

T 1
d (k) = T 2

d (k + 1)− (d− 2)T 2
d (k)

= T 0
d (k − 1) + (T 2

d (k)− (d− 2)T 2
d (k − 1)) + (d− 3)T 2

d (k − 1)
= T 0

d (k − 1) + T 2
d (k)− T 2

d (k − 1).

Now, replace T 2
d (k) by T 0

d (k)− T 0
d (k − 1) (and similar). Hence,

0 = T 0
d (k + 1)− T 0

d (k)− (d− 2)T 0
d (k) + (d− 2)T 0

d (k − 1)
−T 0

d (k − 1)− T 0
d (k) + T 0

d (k − 1) + T 0
d (k − 1)− T 0

d (k − 2)
= T 0

d (k + 1)− dT 0
d (k) + (d− 1)T 0

d (k − 1)− T 0
d (k − 2)

as claimed.

9.2 The algebra for Lemma 11

We are going to prove:

T 1
d (k−1)+(d−2)T 2

d (k−1) ≥ T 0
d (k−1)+T 1

d (k−1)+(j−2)T 2
d (k−1)+(d−1−j)2T 0

d (k−2)

with the settings as described in the Lemma. Obviously, the T 1
d -term cancels

out, so we are left to show an upper bound on

−(d− 2)T 2
d (k − 1) + T 0

d (k − 1) + (j − 2)T 2
d (k − 1) + (d− 1− j)2T 0

d (k − 2).

By the assumptions of the lemma, this means we have to upperbound:

−(d−2)(ck−1−ck−2)+ck−1+(j−2)(ck−1−ck−2)+(d2−2(j+1)d+(j+1)2)ck−2.

23

After multiplication with c2−k
d , we get the following chain:

(−d + 2 + j − 2)(c− 1) + c + (d2 − 2(j + 1)d + (j + 1)2)
= (j + 1− d)c + d2 + (−2j − 1)d + j2 + j + 1
≤ (−d + j + 1)(d− 1)︸ ︷︷ ︸

=−d2+jd+2d−j−1

+d2 + (−2j − 1)d + j2 + j + 1

=

=−jd+j2+2d−4︷ ︸︸ ︷
(j − 2)(−d + j + 2)−d + 4

≤ 0.

The first estimate is true, since d − 1 ≤ c and j ≤ d − 2, and the last one from
d ≥ 4 and from j > 1 together with j ≤ d− 2.

9.3 Detailed algebra following Lemma 12 (for Thm. 4)

We are dealing with the following situation as an extreme case:

T 0
d (k) = T 0

d (k − 1) + T 2
d (k) (12)

T 1
d (k) = T 0

d (k − 1) + T 1
d (k − 1) + (d− 3)T 2

d (k − 1)
T 2

d (k) = T 0
d (k − 1) + (d− 3)T 1

d (k − 2) + (d2 − 5d + 7)T 0
d (k − 2)

We can multiply the second equation with (d− 3) and do an argument shift
to obtain:

(d− 3)T 1
d (k − 1) = (d− 3)T 0

d (k − 2) + (d− 3)T 1
d (k − 2) + (d− 3)2T 2

d (k − 2)

Subtraction of the third equation yields: (d− 3)T 1
d (k − 1)− T 2

d (k) =

= (d− 3)T 0
d (k − 2) + (d− 3)T 1

d (k − 2) + (d− 3)2T 2
d (k − 2)

−(T 0
d (k − 1) + (d− 3)T 1

d (k − 2) + (d2 − 5d + 7)T 0
d (k − 2))

= −T 0
d (k − 1) + [(d− 3)− (d2 − 5d + 7)]T 0

d (k − 2) + (d− 3)2T 2
d (k − 2)

= −T 0
d (k − 1) + [(−d2 + 6d− 10) + (d2 − 6d + 9)]T 0

d (k − 2)− (d2 − 6d + 9)T 0
d (k − 3)

= −T 0
d (k − 1)− T 0

d (k − 2)− (d2 − 6d + 9)T 0
d (k − 3)

Using the first equation, this yields the following expression for (d−3)T 1
d (k−1):

T 0
d (k)− 2T 0

d (k − 1)− T 0
d (k − 2)− (d2 − 6d + 9)T 0

d (k − 3).

Plugging this into the third equation gives the following vanishing expression:

−T 0
d (k) + 2T 0

d (k − 1) + (d2 − 5d + 7)T 0
d (k − 2)

+[T 0
d (k − 1)− 2T 0

d (k − 2)− T 0
d (k − 3)− (d2 − 6d + 9)T 0

d (k − 4)]
= −T 0

d (k) + 3T 0
d (k − 1) + (d2 − 5d + 5)T 0

d (k − 2)
−T 0

d (k − 3)− (d2 − 6d + 9)T 0
d (k − 4).

24

Hence, we get the following table as estimates for cd (which can be exactly
described as the largest positive root of the characteristic polynomial x4−3x3−
(d2 − 5d + 5)x2 + x + (d2 − 6d + 9)):

d 4 5 6 7 8 9 10 100

cd ≤ 3.1845 4.1017 5.0640 6.0439 7.0320 8.0243 9.0191 99.0002

Is is further noteworthy to see that the expressions

T 1
d (k) =

cdd− d− 2cd + 3
cd − 1

ck−1
d (13)

can be derived from the (only) equation with left-hand side T 1
d , based on the

approach that sets T 0
d (k) = ck

d and hence (with the first equation) T 2
d (k) = (cd−

1)ck−1
d . These expressions are correct independently of the concrete evaluation of

cd which depends on the last equation (the one for T 2
d that involves the maximum

operator). In other words, its validity only depends on the fact that we are now
considering our set-up for auxiliary parameter values 0, 1, and 2. Namely,

T 1
d (k) = T 0

d (k − 1) + T 1
d (k − 1) + (d− 3)T 2

d (k − 1)

= ck−1
d +

cdd− d− 2cd + 3
cd − 1

ck−2
d + (d− 3)(cd − 1)ck−2

d

=
c2
d − cd + cdd− d− 2cd + 3 + (d− 3)(c2

d − 2cd + 1)
cd − 1

ck−2
d

=
c2
d − cd + cdd− d− 2cd + 3 + dc2

d − 2cdd + d− 3c2
d + 6cd − 3

cd − 1
ck−2
d

=
cdd− d− 2cd + 3

cd − 1
ck−1
d

We have now to prove that

T 1
d (k − 1) + (d− 2)T 2

d (k − 1)
≤ T 0

d (k − 1) + (d− 3)T 1
d (k − 2) + (d2 − 5d + 7)T 0

d (k − 2)

Having shown this, we know that the settings derived in the preceding para-
graphs for T 0

d , T 1
d and for T 2

d are satisfying all T 2
d (k) ≤-inequalities, because

Lemma 11 is also valid in this situation.
We therefore have to derive zero as an upper bound for

T 1
d (k−1)+(d−2)T 2

d (k−1)−T 0
d (k−1)−(d−3)T 1

d (k−2)−(d2−5d+7)T 0
d (k−2).

Plugging in the solutions cd we found for the functions gives the next expression:

cdd− d− 2cd + 3
cd − 1

ck−2
d + (d− 2)(cd − 1)ck−2

d − ck−1
d

− (d− 3)(cdd− d− 2cd + 3)
cd − 1

ck−3
d − (d2 − 5d + 7)ck−2

d

25

This expression is upperbounded by zero iff the following expression is upper-
bounded by zero (obtained by multiplication with (cd − 1)c3−k

d):

c2
dd− cdd− 2c2

d + 3cd + (d− 2)(cd − 1)2cd − c2
d

−(d− 3)(cdd− d− 2cd + 3)− (d2 − 5d + 7)(cd − 1)cd

= c2
dd− cdd− 2c2

d + 3cd + (d− 2)(c2
d − 2cd + 1)cd − c2

d

−(d− 3)(cdd− d− 2cd + 3)− (d2 − 5d + 7)(cd − 1)cd

= c2
dd− cdd− 3c2

d + 3cd

+dc3
d − 2dc2

d + d− 2c3
d + 4c2

d − 2cd

−cdd
2 + d2 + 2cdd− 3d + 3cdd− 3d− 6cd + 9

−d2c2
d + 5dc2

d − 7c2
d + d2cd − 5dcd + 7cd

= (d− 2)c3
d + (−d2 + 4d− 6)c2

d +

−d+3+d−2−d2+2d+3d−6−5d+7︷ ︸︸ ︷
(−d2 + 2) cd + d2 − 6d + 9

Up to now, our goal at showing that the expression is always non-negative does
look far away. We cannot simply use d− 1 ≤ cd ≤ d at this stage (and hope for
a positive result), since the relation we have to show is surely not true for all
d−1 ≤ cd ≤ d; i.e., somehow we must make use of the characteristic polynomial
for cd. Now, observe that the last line that we obtained is bounded by zero iff
the following line is:

(d− 2)c4
d + (−d2 + 4d− 6)c3

d + (−d2 + 2)c2
d + (d2 − 6d + 9)cd (14)

By multiplying the characteristic polynomial with (d−2), we obtain the following
expression that we know will vanish:

(d− 2)[c4
d − 3c3

4 − (d2 − 5d + 5)c2
d + cd + (d2 − 6d + 9)]

= (d− 2)c4
d + (−3d + 6)c3

d

+(2− d)(d2 − 5d + 5)︸ ︷︷ ︸
=−d3+7d2−15d+10

c2
d + (d− 2)cd

+(d− 2)(d2 − 6d + 9)︸ ︷︷ ︸
=d3−8d2+21d−18

Of course, we can subtract this complicated-looking “zero” from Eq. (14) without
changing its value. We thus see that we must show that the following expression
is bounded from above by zero; we will prove this in a chain of inequalities whose
schematics follows the well-known Horner scheme, where we only use that d ≥ 4

26

and that d− 1 ≤ cd.

<0︷ ︸︸ ︷
(−d2 + 7d− 12) c3

d + (d3 − 8d2 + 15d− 8)c2
d

+(d2 − 7d + 11)cd − d3 + 8d2 − 21d + 18

≤ [

=−d3+8d2−20d+12︷ ︸︸ ︷
(−d2 + 7d− 12)(d− 1) +d3 − 8d2 + 15d− 8]︸ ︷︷ ︸

−5d+4

c2
d

+(d2 − 7d + 11)cd − d3 + 8d2 − 21d + 18

≤ [

=−20d2+9d−4︷ ︸︸ ︷
(−5d + 4)(d− 1)+(d2 − 7d + 11)]︸ ︷︷ ︸

−19d2+2d+7

cd

−d3 + 8d2 − 21d + 18

≤

=−19d3+21d2+5d−7︷ ︸︸ ︷
(−19d2 + 2d + 7)(d− 1)−d3 + 8d2 − 21d + 18

= −20d3 + 29d2 − 16d + 9
≤ (−80 + 29)d2 − 16d + 9
≤ (−204− 16)d + 9
≤ 0

	Parameterized Algorithms for d-Hitting Set: the Weighted Case
	 Henning Fernau

