2. Übung zur Einführung in die Mathematik für Lehramt und Informatik

Abgabe: bis Dienstag, 8.11.16, 8:00 Uhr in Kasten E 11.

Versehen Sie bitte Ihre Lösungen mit Ihrem Namen und Ihrer Matrikelnummer!

H4: (4 Punkte)

Betrachten Sie die Funktion $\varphi \colon \{a,b,c,d,e,f\} \to \{\triangle,\Box,\heartsuit,*\}$, die durch

$$\begin{array}{ll} \varphi\left(a\right) \coloneqq \triangle, & \qquad \varphi\left(c\right) \coloneqq \triangle, & \qquad \varphi\left(e\right) \coloneqq \heartsuit, \\ \varphi\left(b\right) \coloneqq \Box, & \qquad \varphi\left(d\right) \coloneqq \heartsuit, & \qquad \varphi\left(f\right) \coloneqq \triangle, \end{array}$$

definiert ist. Bestimmen Sie die Mengen $\varphi(\{a,d,e\})$, $\varphi(\{c,f\})$, $\varphi(\{a,b,c\})$, $\varphi^{-1}(\{\triangle\})$, $\varphi^{-1}(\{\Box,\heartsuit\})$ und $\varphi^{-1}(\{*\})$. Begründen Sie, warum φ weder injektiv noch surjektiv ist.

H5: (4+3+2 Punkte)

Es sei $f: X \to Y$ eine Abbildung.

- (a) Zeigen Sie folgende Aussagen:
 - (i) Für alle $A \subset X$ ist $A \subset f^{-1}(f(A))$.
 - (ii) Für alle $B \subset Y$ ist $f(f^{-1}(B)) = f(X) \cap B \subset B$.
- (b) Beweisen Sie, dass f genau dann injektiv ist, wenn $A = f^{-1}(f(A))$ für alle $A \subset X$ gilt.
- (c) Zeigen Sie anhand von Beispielen, dass in Teil (a) in beiden Fällen im Allgemeinen keine Gleichheit gilt.

H6: (6+2 Punkte)

Es sei $f: X \to Y$ eine Abbildung. Weiter seien \mathscr{F} ein Mengensystem auf der Menge X und \mathscr{G} ein Mengensystem auf der Menge Y.

(a) Beweisen Sie

$$f\left(\bigcup_{M\in\mathscr{F}}M\right)=\bigcup_{M\in\mathscr{F}}f\left(M\right)\ \mathrm{und}\ f^{-1}\left(\bigcap_{N\in\mathscr{G}}N\right)=\bigcap_{N\in\mathscr{G}}f^{-1}\left(N\right).$$

(b) Zeigen Sie anhand eines Beispiels, dass im Allgemeinen nicht

$$f\left(\bigcap_{M\in\mathscr{F}}M\right) = \bigcap_{M\in\mathscr{F}}f\left(M\right)$$

gilt.