L. Frerick

Sommersemester 16

M. Thelen

Einführung in die Funktionentheorie Blatt 1

Abgabe am 25.4. vor der Übung

Aufgabe 1:

- i) Berechnen Sie $\frac{3-i}{4i-1}$, $(7+2i)e^{i\frac{\pi}{4}}$, $|-7e^{3+2i}|$.
- ii) Skizzieren Sie die folgenden Mengen in der komplexen Ebene
 - a) $\{z \in \mathbb{C} : 0 < \text{Re}(iz) < 1\},\$
 - b) $\{z \in \mathbb{C} : |z-2| + |z+2| = 5\},\$
 - c) $\{z \in \mathbb{C} \setminus \{1\} : |\frac{z-i}{z-1}| = 1\}.$

Aufgabe 2:

Es seien $\gamma, \delta \in \mathbb{C}$ und $T : \mathbb{C} \to \mathbb{C}$, $T(z) = \gamma z + \delta \overline{z}$. Zeigen Sie:

- i) T ist \mathbb{R} -linear, d.h. es gilt $T(z_1 + z_2) = T(z_1) + T(z_2)$ für alle $z_1, z_2 \in \mathbb{C}$ und $T(\lambda z) = \lambda T(z)$ für alle $\lambda \in \mathbb{R}, z \in \mathbb{C}$.
- ii) Charakterisierung der \mathbb{C} -Linearität: Es gilt $T(\lambda z) = \lambda T(z)$ für alle $\lambda, z \in \mathbb{C}$ genau dann, wenn $\delta = 0$.
- iii) Tist genau dann bijektiv, wenn $\gamma\overline{\gamma}\neq\delta\overline{\delta}.$
- iv) Es gilt |T(z)| = |z| genau dann, wenn $\gamma \overline{\delta} = 0$ und $|\gamma + \delta| = 1$.

Aufgabe 3:

Es sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = \begin{cases} \frac{x_1 x_2^2}{x_1^2 + x_2^6} & \text{für } x \neq 0\\ 0 & \text{für } x = 0. \end{cases}$$

Zeigen Sie, dass $f_{x,r}: \mathbb{R} \to \mathbb{R}$, $f_{x,r}(t) = f(x+tr)$ unendlich oft differenzierbar ist für $x \in \mathbb{R}^2$ und $r \in \mathbb{R}^2 \setminus \{0\}$. Insbesondere ist dann f richtungsdifferenzierbar in jedem $x \in \mathbb{R}^2$. Zeigen Sie weiter, dass f in 0 unbeschränkt ist und daher auch nicht stetig in 0 ist.