L. Frerick

Sommersemester 16

M. Thelen

Einführung in die Funktionentheorie Blatt 5

Abgabe am 30.5. vor der Übung

Aufgabe 11:

Es sei γ eine Parametrisierung des Quadrates mit den Ecken -r-ir, r-ir, r+ir und -r+ir (in dieser Reihenfolge), wobei r>0 fest. Berechnen Sie $\int_{\gamma} \frac{1}{z} dz$.

Aufgabe 12:

i) Es seien $f_1, f_2: \mathbb{C}^2 \to \mathbb{C}, f_1(z_1, z_2) = \frac{2z_1z_2^3}{3}, f_2(z_1, z_2) = z_1^2 z_2^2$. Zeigen Sie, dass

$$F: \mathbb{C}^2 \to \mathbb{C}, \ F(z_1, z_2) = \int_{\gamma_{(z_1, z_2)}} f_1 dz_1 + f_2 dz_2$$

eine Stammfunktion von $f_1dz_1+f_2dz_2$ ist, wobei $\gamma_{(z_1,z_2)}:[0,1]\to\mathbb{C}^2,$ $\gamma_{(z_1,z_2)}(t)=(tz_1,tz_2).$ Berechnen Sie hierzu das F definierende Kurvenintegral.

ii) Bestimmen Sie, wenn möglich, eine Stammfunktion zu den folgenden Pfaffschen Formen $\omega: U \to \mathscr{L}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R}), \ \omega(x) = \sum_{\nu=1}^n f_{\nu}(x) dx_{\nu}.$

(a)
$$U = \mathbb{R}^2$$
, $f_1(x_1, x_2) = 12x_1x_2 + 3$ und $f_2(x_1, x_2) = 6x_1^2 - 1$,

(b)
$$U = \mathbb{R}^2$$
, $f_1(x_1, x_2) = x_1 x_2$ und $f_2(x_1, x_2) = x_2$.