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TPM: Multiple-Periods Model

Multiple-Periods Model
“It will fluctuate.” John P. Morgan’s reply, when asked what
the stock market will do.
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General Equilibrium Model

General Equilibrium Model
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General Equilibrium Model

General Equilibrium Model

Lucas Tree Model

t = 0, 1, 2, . . . ,T
tree-like extension of two-period model
ωt ∈ Ωt : finite set of realized states in each t
ωt = (ω0, ω1, . . . , ωt): path of state realizations

Event Tree:

ω0

ω177ooooo

ω2
��???????

ω3//

77oooooo

t = 0 t = 1 t = 2 t = 3 · · ·

Ω0 Ω1 Ω2 Ω3
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General Equilibrium Model

General Equilibrium Model

Model Setup (1)

P : probability measure determining the occurrence of states
P is defined over the set of paths
We use P to model the exogenous dividends process
If realizations are independent over time, P product of
probabilities associated with building the vector
ωt = (ω0, ω1, . . . , ωt).
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General Equilibrium Model

General Equilibrium Model

Model Setup (2)

Payoffs are determined by dividend payments and capital gains in
every period
i = 1, . . . , I : investors
k = 1, . . . ,K : long-lived assets in unit supply
k = 0: consumption good
Not every node in the tree has to result in a payoff

Example

Company paying out dividends once a year, but having quarterly
earning reports
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General Equilibrium Model

General Equilibrium Model

Perfect Foresight

Assume always perfect foresight:
Conditionally on the events, all investors agree on the prices
Model is still flexible enough to accomodate different opinions:
just split states into sub-states whenever some investors disagree
about the prices in the original state.
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General Equilibrium Model

General Equilibrium Model

Competitive Equilibrium (1)

In a competitive equilibrium with perfect foresight every investor
decides about his portfolio strategy according to his consumption
preferences over time.
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General Equilibrium Model

General Equilibrium Model

Competitive Equilibrium (2)

Definition
A competitive equilibrium with perfect foresight is a list of portfolio
strategies θi

t , i = 1, . . . , I and a sequence of prices qk
t , t = 0, 1, . . . ,T

s.t. for all i = 1, . . . , I

(θi
0, . . . , θ

i
T ) ∈ arg max

θi
t∈RK+1

t=0,...,T

U i (θcons) s.t.

θcons
t +

K∑
k=1

qk
t θk !

=
K∑

k=1

(
Dk

t + qk
t
)
θi,k
t−1 + w i

t , θcons
t ≥ 0,

for all t = 0, . . . ,T, where Dk
t are the total dividend payments of

asset k, and markets clear:

I∑
i=1

θi,k
t

!
= 1, for all k and all t.
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General Equilibrium Model

General Equilibrium Model

Competitive Equilibrium (3)

θi ,k
t (ωt) ∈ R: number of assets k that agent i has in period t
given the path ωt(
θi ,k
t (ωt)

)
k=0,...,K

∈ RK+1: portfolio of assets that agent i has in

period t given the path ωt(
θi ,k
t (ωt)

)
ωt∈Ωt

∈ R|Ωt |: vector of asset k holdings across the

states ωt ∈ Ωt

θi ,k
t , t = 0, 1, . . .: portfolio strategy along the set of paths
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General Equilibrium Model

General Equilibrium Model

Competitive Equilibrium (4)

Initial endowment of assets θi
−1 such that

∑I
i=1 θi

−1 = 1
Budget constraint at the beginning:

θi ,cons
0 +

K∑
k=1

qk
0 θi ,k

0 =
K∑

k=1

(qk
0 + Dk

0 )θi ,k
−1 + w i

0.
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General Equilibrium Model

General Equilibrium Model

Reformulation (1)

Rewrite in terms of asset allocation: θi ,k
t = λi ,k

t W i
t /q

k
t .

Equalizing demand with supply, i.e.,

I∑
i=1

λi ,k
t W i

t

qk
t

!
= 1, for all k and all t,

gives

Proposition

The price of asset k is the average wealth of the traders’ asset
allocation for asset k, i.e.

qk
t =

I∑
i=1

λi ,k
t W i

t .
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General Equilibrium Model

General Equilibrium Model

Reformulation (2)

Definition

A competitive equilibrium with perfect foresight is a list of portfolio
strategies λi

t , and a sequence of prices qk
t for all t = 0, . . . ,T, such

that for all i = 1, . . . , I

λi ∈ arg max
λi

t∈∆K+1

t=0,...,T

U i (λconsW i ) such that

W i
t =

(
K∑

k=1

Dk
t + qk

t
qt−1

λi ,k
t−1

)
W i

t−1 + w i
t , for all t = 0, . . . ,T

and markets clear:

I∑
i=1

λi,k
t w i

t = qk
t , for all k and all t.
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Complete and Incomplete Markets

Complete and Incomplete Markets
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Complete and Incomplete Markets

Complete and Incomplete Markets

Complete and Incomplete Markets (1)

Definition

A financial market (D, q) is said to be complete if any consumption
stream {θcons} can be attained with at least one initial wealth w0, i.e.,
it is possible to find some trading strategy θ such that for all periods
t = 1, 2, . . . ,T,

θcons
t +

∑
k

qk
t θk

t =
∑
k

(Dk
t + qk

t )θk
t−1, and θcons

0 +
∑
k

qk
0 θk

0 = w0.

A financial market is said to be incomplete if there are some
consumption streams that cannot be achieved whatever the initial
wealth is.
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Complete and Incomplete Markets

Complete and Incomplete Markets

Complete and Incomplete Markets (2)

A financial market is complete iff

rankAt(ω
t−1ωt) =

∣∣Ωt(ω
t−1)

∣∣ for all ωt , t = 1, 2, . . . ,T .

where

At(ω
t−1ωt) :=

[
Dk

t (ωt−1ωt) + qk
t (ωt−1ωt)

]k=1,...,K

ωt∈Ωt
.

Hence, if K < |Ωt(ω
t)| for some ωt , then markets are incomplete.

An example can be found in the text book on page 226ff.
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Complete and Incomplete Markets

Complete and Incomplete Markets

Redundancy

An asset is redundant if it has payoffs {DK+1
t (ω)}ω∈Ωt which are a

(positive) linear combination of the existing assets k = 1, 2, . . . ,K ,
i.e., for some αk :

DK+1
t (ω) =

K∑
k=1

αk(t)Dk
t (ω) for all ω ∈ Ωt .

Choosing prices according to the linear rule qK+1 =
∑

k αkqk in every
event ωt we have:

rank
[
At(ω

t−1ωt)
∣∣∣DK+1

t (ωt−1ωt) + qK+1
t (ωt−1ωt)

]
= rankAt(ω

t−1ωt),

i.e., the rank of the payoff matrix does not change.
If there are non-redundant assets the market cannot have been
complete.
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Term Structure of Interest

Term Structure of Interest
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Term Structure of Interest

Term Structure of Interest

Want to apply the multi-period model to fixed-income markets.
rt0,tn : annual interest rate applied for borrowing and lending
money between t0 and tn.
The collection of interest rates rt0,t1 , . . . , rt0,tT is called the spot
rate curve or the term structure of interest rates, usually
increasing and concave.
The forward rate ft0,t1,t2 is the (annual) interest rate between t1
and t2 that is agreed today for the borrowing and lending
between t1 and t2.
The forward rate can be determined by the No-arbitrage Principle.
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Term Structure of Interest

Term Structure of Interest

Forward rate:

1 + ft0,t1,t2 =
(1 + rt0,t2)

t2
t2−t1

(1 + rt0,t1)
t1

t2−t1

.

Forward rate often seen as the interest rate we expect today for
tomorrow, i.e. the realized interest rate between t1 and t2 should
be on average the same as the forward rate.
But: Empirical data show, that the forward rate bias (difference
between the forward rate and realized interest rate) is quite
persistent.
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Term Structure of Interest

Term Structure without Risk

Term Structure without Risk

Consider a three-period economy with t = 0, 1, 2 and a
representative investor with the utility function

U(c) = ln(c0) +
1

1 + δ
E(ln(c1)) +

1
(1 + δ)2

E(ln(c2)).

The forward rate is exactly the realized interest rate and there is
no forward rate bias.
The model is too simple to capture the effects causing a forward
rate bias.
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Term Structure of Interest

Term Structure without Risk

Term Structure without Risk

Consider quasi-hyperbolic instead of exponential time discounting
(compare Sec. 2.7).
Utility of the representative investor:

UH(c) = ln(c0) +
1

1 + β

(
1

1 + δ
E(ln(c1)) +

1
(1 + δ)2

E(ln(c2))
)

,

where β > 0 describes the degree of quasi-hyperbolic discounting.
Hyperbolical discounting implies a negative forward rate bias, but
in reality positive and negative forward rate biases can be
observed.
Hyperbolic discounting would lead to a decreasing term structure,
contrary to what we usually observe on the market.
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Term Structure of Interest

Term Structure with Risk

Term Structure with Risk

Include risk into our model so that in t = 1 the economy can
develop better or worse, i.e. we have two states, an up and a
down state.
Utility maximization problem of the representative investor with
beliefs for the occurrence of the up state:

max
c0,c1u ,c1d ,c2u ,c2d

s01,s02,s12

ln(c0) + prob
(

1
1 + δ

ln(c1u) +
1

(1 + δ)2
ln(c2u)

)
+ (1− prob)

(
1

1 + δ
ln(c1d ) +

1
(1 + δ)2

ln(c2u)

)
,

s.t. p0c0 + s01 + s02 = p0w0 ,
p1uc1u + s12 = p1uw1u + (1 + r01)s01 ,
p1c1d + s12 = p1dw1d + (1 + r01)s01 ,
p2uc2u = p2uw2u + (1 + f12)s12 + (1 + r02)

2s02 ,
p2dc2d = p2dw2d + (1 + f12)s12 + (1 + r02)

2s02 ,
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Term Structure of Interest

Term Structure with Risk

Term Structure with Risk

Interest rate in the up state:

1 + r12u = (1 + δ)(1 + g12u)

Interest rate in the down state:

1 + r12d = (1 + δ)(1 + g12d )

Expected return:

E(1 + r12) = (1 + δ)E(1 + g12).
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Term Structure of Interest

Term Structure with Risk

Example

Nominal growth rate: gt,t+1,s = (wt+1,spt+1,s)/(wt,spt,s)− 1
δ = 0.1, prob= 0.5, g0,1,u(u) = g1,2,u = 1/9, g0,1,d = −1/21 and
g0,2,d = 0.
Interest rates in t = 0, 1:

1 + r01 = 1.128, 1 + r02 = 1.156, 1 + f12 = 1.185.

Interest rates realized in t = 1 depend on the state:

1 + r12u = 1.222, 1 + r12d = 1.155, E(1 + r12) = 1.189.

In the upper state the realized interest rate rises and we have a
negative forward rate bias. in the down state the opposite
happens.
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Arbitrage in the Multi-Period Model
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Arbitrage in the Multi-Period Model

Arbitrage

Arbitrage

Definition

An arbitrage is a self-financing trading strategy, i.e., there is some
strategy θt with θ−1 = 0 such that for all t = 0, 1, 2, . . . ,T,

θcons
t +

K∑
k=1

qk
t θk

t =
K∑

k=1

(Dk
t + qk

t )θk
t−1

and the resulting consumption is positive: θcons
t > 0, i.e.,

θcons
t (ωt) ≥ 0 for all ωt and all t = 0, 1, 2, . . . ,T, and θcons 6= 0.

(We give here only the strict monotonic variant of arbitrage – compare
Chapter 4.)
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Arbitrage in the Multi-Period Model

Fundamental Theorem of Asset Pricing

Fundamental Theorem of Asset Pricing

Theorem (FTAP)

There is no arbitrage opportunity if and only if there is a state price
process πt=1,2,...,T À 0 such that for all ωt

qk
t−1(ω

t−1) =
1

πt−1(ωt−1)

∑
ωt∈Ωt

πt(ω
t)(Dk

t (ωt) + qk
t (ωt)) (1)

where ωt = ωt−1ωt .

The proof can be found in the text book on page 235.
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Arbitrage in the Multi-Period Model

Consequences of No-Arbitrage

Consequences of No-Arbitrage

As in the Two-Period case, no-arbitrage has two immediate
consequences:

Law of one Price
Linear Pricing
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Arbitrage in the Multi-Period Model

Consequences of No-Arbitrage

Law of One Price (1)

Corollary

If from period t onward two assets have identical dividend processes,
then in period t − 1 they must have the same price.

The proof can be found in the text book on page 236.
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Arbitrage in the Multi-Period Model

Consequences of No-Arbitrage

Linear Pricing

Corollary

If in period t − 1 one buys and holds a portfolio θ̂t−1 then in t − 1 the
price of the portfolio must be a linear combination of its components:

qt−1(θ̂) = θ̂t−1qt−1 =
K∑

k=1

θ̂k
t−1q

k
t−1.

The proof can be found in the text book on page 236.
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Arbitrage in the Multi-Period Model

Applications to Option Pricing

Option Pricing

Binomial lattice model:

u
rrrrrrrrr

u
rrrrrrrrr

u
rrrrrrrrr · · ·

d
LLLLLLLLL

d
LLLLLLLLL

u
rrrrrrrrr · · ·

d
LLLLLLLLL

d LLLLLLLLL
u

rrrrrrrrr

d LLLLLLLLL
u

rrrrrrrrr · · ·
d LLLLLLLLL

t = 0 t = 1 t = 2 · · ·
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Arbitrage in the Multi-Period Model

Applications to Option Pricing

Risk-Neutral Probability

The risk-neutral probability is stationary, i.e. it remains the same at
every node.

To see this, suppose that the stock price is S . Then, its expected
value after one period is:

Eπ∗(S) = π∗Su + (1− π∗)Sd .

In a risk-less world this value must be equal to SR :

Eπ∗(S) = π∗Su + (1− π∗)Sd = SR.

Thus, the risk-neutral probability is constant over the time and
depends only on the size and the frequency of “up” and “down”
movements.
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Arbitrage in the Multi-Period Model

Applications to Option Pricing

Example Call Option

Periods t = 0, 1, 2
Value in t = 1 depends on the realized state, i.e.:

Cu :=
1
R

(π∗Cuu + (1− π∗)Cud ) ,

Cd :=
1
R

(π∗Cud + (1− π∗)Cdd ) .
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Arbitrage in the Multi-Period Model

Applications to Option Pricing

Example Call Option

Value of the call at t = 0 is

C =
1
R2

(
(π∗)2Cuu + 2π∗(1− π∗)Cud + (1− π∗)2Cdd

)
,

i.e.,

C =
1
R2

(
(π∗)2 max{0, u2S−K}+2π∗(1−π∗)max{0, udS−K}

+ (1− π∗)2 max{0, d2S − K}
)
.

For t →∞ this gives the normal distribution
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Arbitrage in the Multi-Period Model

Stock Prices as Discounted Expected Payoffs

Stock Prices as Discounted Expected Payoffs (1)

Suppose we have two assets:
short-lived and risk-free
risky

Then

q1
t−1(ω

t−1) =
1

πt−1(ωt−1)

∑
ωt∈Ωt

πt(ω
t−1ωt)(D1

t (ωt−1ωt)︸ ︷︷ ︸
1

+ q1
t (ω

t−1ωt)︸ ︷︷ ︸
0

)

=
1

1 + rft−1(ωt−1)
.
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Arbitrage in the Multi-Period Model

Stock Prices as Discounted Expected Payoffs

Stock Prices as Discounted Expected Payoffs (2)

Using this we get

qk
t−1(ω

t−1) =
1

1 + rft−1(ωt−1)

∑
ωt∈Ωt

π∗t (ωt−1ωt)(Dk
t (ωt−1ωt)+qk

t (ωt−1ωt)),

where

π∗t (ω
t) =

πt(ω
t)∑

ωt∈Ωt
πt(ωt)

> 0

is a (risk-neutral) probability measure based on the information of
period t − 1. Hence, asset prices can be presented as discounted
expected payoffs.
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Arbitrage in the Multi-Period Model

Stock Prices as Discounted Expected Payoffs

Stock Prices as Discounted Expected Payoffs (3)

Forward iteration along paths yields the discounted dividends model:

qk
t−1(ω

t−1) = Eπ?
t−1(ω

t−1)

∞∑
τ=t

Dk
τ (ωτ )

Πτ
τ ′=t−1(1 + rf τ ′(ωτ ′))

Price movements depend only on movements of the risk-free interest
rate and the dividend payments.
If the dividend process follows a random walk, then anticipated prices
must be random, i.e.,

Eπ∗t (q
k
t+1 − (1 + rt)qk

t ) = −Eπ∗t (D
k
t+1).

In terms of excess returns we get Eπ∗t (R
k
t+1 − Rft) = 0.

The net present value of a strategy with respect to the risk-neutral
probability must be equal to 0.
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Arbitrage in the Multi-Period Model

Equivalent Formulations of the No-Arbitrage Principle

Equivalent Formulations of No-Arbitrage (1)

If a price process is arbitrage-free, there exists no strategy θt ,
t = 0, 1, 2, . . ., that generates risk-free returns on q.
This is equivalent to the existence of a market expectation or a
risk-neutral probability such that

qk
t =

1
1 + rt

Eπ∗t (D
k
t+1 + qk

t+1).

Applying forward iteration we get the Dividend Discount Model
(DDM):

qk
t = Eπ∗t

( ∞∑
τ=t+1

(
1

1 + r

)τ−t

Dk
τ

)
, t = 0, 1, . . . ,T .
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Arbitrage in the Multi-Period Model

Equivalent Formulations of the No-Arbitrage Principle

Equivalent Formulations of No-Arbitrage (2)

There are no expected gains Eπ?
t
(Gt+1 − Gt) = 0, i.e. the gains

process is a martingale, where Gt =
∑t

τ=1 gτθt−1 for some portfolio
strategy θ and

gk
t+1 =

(
1

1 + r

)t [ 1
1 + r

(Dk
t+1 + qk

t+1)− qk
t

]
is the discounted gain from holding asset k from t till t + 1.
Hence, the cumulative expected gains are zero:

Eπ?
t

( ∞∑
τ=t+1

gτθτ−1

)
= 0

“Nobody can beat the market”, i.e. you cannot beat a martingale.
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Pareto efficiency

Pareto efficiency
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Pareto efficiency

First Welfare Theorem

Pareto Efficiency (1)

As in the two-period case (see Sec. 4.1), we can prove that market
equilibria in complete markets are Pareto-optimal.
We first have to generalize the necessary definitions:

Definition (Attainability)

An allocation of consumption streams {{θi ,cons
t (ωt)}T

t=0}I
i=1 is

attainable if each component is in the consumption set of the agent
and it does not use more consumption than is available from the
dividend process D and exogenous endowments:

I∑
i=1

θi ,cons
t (ωt) =

K∑
k=1

Dk
t (ωt)+

I∑
i=1

w i
t (ω

t) for every ωt , t = 0, . . . ,T .

T. Hens, M. Rieger (Zürich/Trier) Financial Economics August 6, 2010 42 / 75



Pareto efficiency

First Welfare Theorem

Pareto Efficiency (2)

Definition (Pareto efficiency)

In a financial market the allocation of consumption streams
{{θi ,cons

t (ωt)}T
t=0}I

i=1 is Pareto-efficient if and only if it is attainable
and there does not exist an alternative attainable allocation of
consumption streams {{θ̂i ,cons

t (ωt)}T
t=0}I

i=1, such that no consumer is
worse off and some consumer is better off:

U i
(
{θ̂i ,cons

t (ωt)}T
t=0

)
≥ U i

(
{θi ,cons

t (ωt)}T
t=0

)
∀ i and > for some i .
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Pareto efficiency

First Welfare Theorem

First Welfare Theorem (1)

Theorem (First Welfare Theorem)

In a complete financial market, the allocation of consumption streams
in any market equilibrium is Pareto-efficient.

Market efficiency does not rule out that some agents consume much
more than others. From the perspective of fairness, this might not be
optimal.

The proof can be found in the text book on page 244.

T. Hens, M. Rieger (Zürich/Trier) Financial Economics August 6, 2010 44 / 75



Pareto efficiency

First Welfare Theorem

First Welfare Theorem (2)

If utility functions are smooth, we have for all investors i , j :

MRS i
s,z =

∂θcons
s U i (c i )

∂θcons
z U i (c i )

=
∂θcons

s U j(c j)

∂θcons
z U j(c j)

= MRS j
s,z .
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Dynamics of Price Expectations

Dynamics of Price Expectations
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Dynamics of Price Expectations

Dynamics of Price Expectations

Consider two types of input data on which the price expectations
are formed:

previous prices used by chartists
fundamental values used by fundamentalists

Combine this with two types of expectations rules:
momentum
reversal

Hence, we study the interaction of four types of expectation
formations: momentum or reversal rules for chartists and
fundamentalists.
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Dynamics of Price Expectations

What is momentum?

Momentum Effect

Efficient market hypothesis would say that information is always
already incorporated into the current price – at least when we
consider time scales above split-seconds.
Momentum effect: Investing in assets that had previously
outperformed the market leads on average to excess returns, even
when controlling for risk.
The momentum effect disappears on long time scales (years),
where instead a reversal is observable.
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Dynamics of Price Expectations

What is momentum?

Explanations

[Barberis et al., 1998]:
Underreaction explanation for short-term momentum, and an
overreaction explanation for long term reversals.
[Daniel et al., 1998]:
Existence of private signals and overconfident reaction to them
and afterwards a too slow adjustment to “reality”.
[Hong and Stein, 1999]:
Market with two investor types, “newswatchers” (fundamentalists)
and “momentum traders” (chartists).

T. Hens, M. Rieger (Zürich/Trier) Financial Economics August 6, 2010 49 / 75



Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Dynamical Model of Chartists and Fundamentalists

Chartists: use previous price data
Fundamentalists: rely on fundamental values.
The steady state of the dynamical system is characterized by the
discounted dividends rule, and the stability of it will depend on
the relative proportions of investors with different types of price
expectation.
Assume that given his price expectations every trader maximizes
a mean-variance utility for one period ahead.
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Mean-Variance Utility Functions (1)

Assume that the economy follows a discrete time tree model with
a finite number of states in each period.
Consider the utility of agent i :

U i (c i
1, . . . , c

i
S) = µ(c i

1, . . . , c
i
S)− γ i

2
σ2(c i

1, . . . , c
i
S)

Note that his consumption in state s is given by

c i
s = λi ,cR i

sλ
iw i ,f

and recall the budget constraint

K∑
k=0

λ̂i ,k = 1.
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Mean-Variance Utility Functions (2)

Hence, for any portfolio λ̂ we get a utility from that portfolio:

U i (λ̂i ,0, . . . , λ̂i ,K ) = w i ,f
(

µ(λi ,cR i λ̂i )− γ iw i ,f

2
σ2(λi ,cR i λ̂i )

)
.

The solution is

λ̂i =
(
COV (R i )

)−1 µ(R i )− Rf

γ iλi ,cw i ,f .

Written in economic terms:

θi =
1
γ i

(
COV (Ai )

)−1 (
µ(Ai )− Rf q

)
.
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Price Expectation Dynamics (1)

Recall that in the multi-period model payoffs are given by
dividends and resale prices, i.e.

Ai (ωt) = D i (ωt) + qi (ωt).

Assume point expectations, i.e. qi
t is independent of (ωt).

Then, the demand in period t given the expectations for the next
period is

λ̂i
t =

1

γ iλi ,c
t w i ,f

t

Λ(qt) (COV (Dt+1))
−1 (µ(Dt+1) + qi

t+1 − Rf qt
)
.

Normalizing the supply of each asset to 1, assuming short-run
equilibrium and defining γ̄−1 =

∑I
i=1(γ

i )−1 gives
I∑

i=1

λi,c
t w i,f

t = qt = Λ(qt) (COV (Dt+1))
−1

(
µ(Dt+1)

γ̄
+

I∑
i=1

qi
t+1

γ i − Rf qt

γ̄

)
.
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Dynamical Model of Chartists and Fundamentalists

Price Expectation Dynamics (2)

Multiplying both sides by Λ(q)−1
k and COV (Dt+1) and defining

DM =
∑K

k=1 D
k , for any asset k gives

qk
t =

µ(Dk
t+1)− γ̄tCOV (Dk

t+1,D
M
t+1) +

∑I
i=1 δiqi ,k

t+1

Rf
,

where
δi =

γ̄

γ i .

Hence, the price of any asset k in period t is given by the
discounted expected dividends minus the risk of those dividends
relative to the market dividends plus the average expected price
for the next period.
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Stationary Equilibrium (1)

Assume that the trading strategies λ̂i , the consumption rates
λi ,c , the expected dividends µ(D) and the covariance COV (D)
are all stationary.
Price equation:

q̄k =
µ(Dk)− γ̄COV (Dk ,DM)

rf
,

which is equal to the discounted expected dividends of the
constant payoff

µ(Dk)− γ̄COV (Dk ,DM)

discounted at Rf = 1 + rf .
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Stationary Equilibrium (2)

Substitute

γ̄ =
µ(DM)− rf qM

σ2(DM)
,

from summing the above formula over k .
Then we obtain(

q̄k − µ

(
Dk

rf

))
= βk

(
q̄M − µ

(
DM

rf

))
,

where

βk =
COV (Dk ,DM)

σ2(DM)
.

Hence, we have derived a Security Market Line formula similar to
that of the static CAPM, but in terms of first principles:
dividends and the risk-free rate!
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Dynamical Model of Chartists and Fundamentalists

Structure on Price Expectations (1)

Two types of traders: chartists i ∈ C and fundamentalists i ∈ F .
Chartists form the price expectations

qi ,k
t+1 = qk

t + ai ,k(qk
t − qk

t−1)

with ai ,k > 0 being a momentum chartist and ai ,k < 0 being a
reversal chartist.
Fundamentalists form the price expectations

qi ,k
t+1 = qk

t + bi ,k(q̄k
t − qk

t )

with bi ,k > 0 being value investors and bi ,k < 0 being growth
investors.
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Structure on Price Expectations (2)

Note that the price dynamics developed above is an
inhomogeneous first order difference equation.
Such a dynamical system converges to its steady state q̄ iff the
absolute value of the coefficient in front of the price variable∑I

i=1 δiqi ,k
t+1 is smaller than one.

Inserting the expectation functions we get:

Rf qk
t =

∑
i∈C

δi
(
qk
t + ai ,k(qk

t − qk
t−1)

)
+
∑
i∈F

δi
(
qk
t + bi ,k(q̄k

t − qk
t )
)

.

Rearranging while ignoring constant terms we get:(∑
i∈C

δi
t(1 + ai,k) +

∑
i∈F

δi
t(1− bi,k)− Rf

)
qk
t =

(∑
i∈C

δi
ta

i,k

)
qk

t−1

or qk
t =

(∑
i∈C δi

tai,k
)(∑

i∈C δi
tai,k −

∑
i∈F δi

tbi,k − rf
)qk

t−1 =:
āt

āt − b̄t − Rf
.
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Structure on Price Expectations (3)

For the stability analysis we get 4 cases:
Case 1 (numerator and denominator positive)
This happens, e.g. with strong momentum and weak value.
Consequently stability occurs iff∑

i∈F

δibi,k + Rf < 0,

which is unlikely since Rf > 1.
Case 2 (numerator positive and denominator negative)
This happens, e.g. with medium momentum and strong growth.
Consequently stability occurs iff

2
∑
i∈C

δiai,k <
∑
i∈F

δibi,k + rf ,

which cannot be since in this case∑
i∈C

δi
ta

i,k > 0 and
∑
i∈F

δi
tb

i,k < 0.
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Dynamics of Price Expectations

Dynamical Model of Chartists and Fundamentalists

Structure on Price Expectations (4)

Case 3 (numerator negative and denominator positive)
This happens, e.g. with reversal and strong growth. Consequently
stability occurs iff∑

i∈F

δibi ,k + rf < 2
∑
i∈C

δiai ,k ,

which is well possible.
Case 4 (numerator and denominator negative)
This happens, e.g. with reversal and value or weak growth.
Stability occurs iff

−2
∑
i∈C

δiai ,k <
∑
i∈F

δibi ,k + rf ,

which is possible if the reversal is not too strong relative to value.
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Survival of the Fittest on Wall Street

Survival of the Fittest on Wall Street

We analyze the long term dynamics of our model, the evolution
of wealth over time and uncertainty.
Assuming complete markets, perfect foresight and intertemporal
utility maximization, the wealth of investors with rational
expectations will grow fastest in a financial market equilibrium.
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Survival of the Fittest on Wall Street

Market Selection Hypothesis with Rational Expectations

Market Selection Hypothesis (1)

Use Pareto efficiency property of competitive equilibria to
formulate a Market Selection Hypothesis that determines which
investor survives best in the dynamics of the market in terms of
(relative) wealth over time.
If every investor has some expected utility function with the same
time preferences, but possibly different risk attitude, and it
payoffs are stochastic, then investor i will dominate investor j if
his beliefs on the occurrence of the states are more accurate.
Note: the investor’s dominance is not defined over his strategy,
but on his ability to make good estimates.
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Survival of the Fittest on Wall Street

Market Selection Hypothesis with Rational Expectations

Market Selection Hypothesis (1)

The better the agents’ beliefs, the more those agents get in the
more likely states. Hence, their wealth will grow faster.
Note: The only requirement for our fitness criteria to hold is
decreasing marginal utilities as in the expected utility framework.
Investors get more wealth in those states to which they assign a
higher probability.
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Survival of the Fittest on Wall Street

Evolutionary Portfolio Model

Evolutionary Portfolio Model (1)

We base our evolutionary model on the Lucas (1978) asset
pricing model.
As in the traditional model, we start from the fundamental
equation of wealth dynamics:

W i
t+1 =

K∑
k=1

Dk
t+1 + qk

t+1

qk
t

λi ,k
t W i

t

with
∑K

k=1 λi ,k
t 1− λi ,c

t for all i and t.
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Survival of the Fittest on Wall Street

Evolutionary Portfolio Model

Evolutionary Portfolio Model (2)

We restrict attention to relative wealth, relative dividends and relative
prices.

r it+1 =
∑
k

λcdk
t+1 + q̂k

t+1

q̂k
t+1

λi ,k
t r it ,

where

q̂k
t+1 =

qk
t∑

i W
i
t
, dk

t+1 =
Dk

t+1∑
k ′ D

k ′
t+1

,

r it =
W i

t∑
i W

i
t
, λc

I∑
i=1

W i
t =

∑
k

Dk
t
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Survival of the Fittest on Wall Street

Evolutionary Portfolio Model

Evolutionary Portfolio Model (3)

Important assumption: All strategies have the same consumption
rate λc .
The relative asset prices are the convex combination of the
strategies in the market:

q̂k
t =

I∑
i=1

λi ,k
t r it .

Strategies are “playing the field” i.e. one strategy has an impact
on any other strategy only via the average of the strategies.
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Survival of the Fittest on Wall Street

Evolutionary Portfolio Model

Evolutionary Portfolio Model (4)

Λt+1 := (λ̂i ,k
t+1)i ,k is the matrix of portfolio strategies

rt+1 = λc

Id−

[
λ̂i ,k

t r it
λ̂·,kt r ·t

]
i ,k

ΛT
t+1

−1 [∑
k

dk
t+1

λ̂i ,k
t r it

λ̂·,kt r ·t

]
i

This equation is a first order stochastic difference equation
describing a mapping from the simplex 4 into itself.

rt+1(ω
t+1) = Ft(ω

t+1, rt) rt rt+1
Ft //



t

11111111 

t

11111111
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Survival of the Fittest on Wall Street

Evolutionary Portfolio Model

Simulation Analysis (1)

Simulation with two strategies

red line: mean-variance analysis
green line: equal weight.
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Survival of the Fittest on Wall Street

Evolutionary Portfolio Model

Simulation Analysis (2)

Even though initially the wealth of the mean-variance rule
accounts for 90% of the market wealth after a few iterations the
situation has reversed and the 1/n rule has 90% of the market
wealth.
This wealth dynamics is reflected in the asset prices: they initially
reflect the mean-variance rule but rapidly converge to the 1/n
rule.
Seemingly rational portfolio rules like mean-variance can do quite
poorly against seemingly irrational rules like 1/n.
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Survival of the Fittest on Wall Street

The Unique Survivor: λ?

Simulation Analysis (3)

Including the expected relative dividends portfolio λ∗,k = EPdk ,
the process always converges to the strategy λ∗.
Our conjecture from these simulations is: Starting from any initial
distribution of wealth, on P-almost all paths the market selection
process converges to λ∗, if the dividend process d is i.i.d.
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Survival of the Fittest on Wall Street

The Unique Survivor: λ?

Simulation Analysis (4)

It can be shown analytically, that if dividends d follow an i.i.d.
process and we only consider stationary adapted strategies, then

λ̂?,k = (1− λc)Epdk
(ω)

is the unique evolutionary stable strategy.
Expected growth rate of wealth of any strategy λ̂ in a market
governed by strategy λM :

g(λ̂, λ̂M) = Ep ln

(
1− λc + λc

K∑
k=1

dk λ̂k

λ̂M,k

)
.
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Survival of the Fittest on Wall Street

The Unique Survivor: λ?

Simulation Analysis (5)

Note: g(λ̂M , λ̂M) = 0, i.e. if all strategies are identical the none
can grow at the cost of others.
Evolutionary stability property: g(λ̂, λ̂?) < 0, hence all strategies
die out in a market governed by λ?.
It is apparent that under-diversified strategies have no chance to
survive.
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