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Abstract

This paper extends the classical mean-variance preferences to mean-variance-ambiguity prefer-

ences by relaxing the assumption that probabilities are known, and instead assuming that prob-

abilities are uncertain. In general equilibrium, the two-fund separation theorem is preserved and

the market portfolio is identified as efficient. Thereby, introducing ambiguity into the capital asset

pricing model indicates that the ambiguity premium corresponds to systematic ambiguity, which is

distinguished from systematic risk. Using the measurable closed-form beta ambiguity, well-known

performance measures are generalized to account for ambiguity alongside risk. The introduced

capital asset pricing model is empirically implementable and provides insight into empirical asset

pricing anomalies. The model can be extended to other applications, including investment decisions

and valuations.
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1 Introduction

The capital asset pricing model (CAPM), delivered by modern portfolio theory (MPT), has become

the theoretical pillar of modern finance and is widely used in investment decisions (Barber et al., 2016).

However, evidence has shown that the theoretical predictions regarding expected returns delivered by

the CAPM are inconsistent with empirical findings (Fama and French, 1992, 2004). In particular, the

intercept of the empirical security market line (SML) is found to be too high and its slope too flat to

be justified by the theoretical CAPM.1 A possible reason for this discrepancy is that these classical

theories focus on risk, assuming away other dimensions of uncertainty in the economy.2

MPT (Markowitz, 1952; Tobin, 1958; Treynor, 1961) and the CAPM (Sharpe, 1964; Lintner, 1965;

Mossin, 1966) are built upon the concept of mean-variance preferences, established under the expected

utility paradigm (Von-Neumann and Morgenstern, 1944). The assumption underlying these theories

is that the probabilities of future returns are known, establishing a unique mean-variance space upon

which such preferences apply. In reality, however, probabilities of future returns are usually not

precisely known, and financial decision-makers (investors) face uncertainty about these probabilities,

referred to as ambiguity or Knightian uncertainty (Knight, 1921; Ellsberg, 1961).3 The presence of

ambiguity implies that the standard mean-variance preferences cannot portray a realistic picture of

pricing decisions, since these standard preferences ignore information regarding the probabilities of

future returns; information which is invaluable in portfolio and pricing decisions.

To portray portfolio and pricing decisions more realistically, this paper extends the standard mean-

variance space to a mean-variance-ambiguity space, equipped with the appropriate preferences. In

this space, it solves for the general equilibrium with heterogeneous investors in order to identify

the set of optimal portfolios. Thereby, it reestablishes the capital market line (CML) and proves

that the two-fund separation theorem is maintained in the presence of ambiguity. This framework

is then utilized to introduce ambiguity into the classical CAPM, distinguishing ambiguity from risk,

and systematic ambiguity, dominated by economy-wide characteristics, from idiosyncratic ambiguity,

dominated by firm-specific characteristics. This extended model provides a closed-form solution for

beta ambiguity, which corresponds to the systematic ambiguity associated with an asset. Analogous

to the risk premium, the ambiguity premium is derived from the commonality of asset ambiguity and

1See, for example, Black et al. (1972), Merton (1973), and Frazzini and Pedersen (2014).
2The literature has been debating whether the source of this discrepancy, which generates multiple anomalies, is a

missing uncertainty factor or mispricing due to biased expectations (Engelberg et al., 2018). Both reasons are affected
by the presence of ambiguity.

3Risk refers to conditions in which the event to be realized is a priori unknown, but the odds of all possible events
are perfectly known. Ambiguity refers to conditions in which not only the event to be realized is a priori unknown, but
the odds of events are also not uniquely assigned.
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market ambiguity, rather than from the asset’s own ambiguity. In other words, investors are rewarded

for systematic ambiguity and systematic risk, but not for idiosyncratic ambiguity or idiosyncratic

risk. The notion of (systematic) ambiguity allows for the introduction of ambiguity into the Treynor

and Sharpe ratios, as well as Jensen’s alpha, thereby delivering extended performance measures. The

resulting asset pricing model and performance measures can be estimated from the data and utilized

in empirical studies of the cross-sectional implications of ambiguity.

In reality, investors face two tiers of uncertainty: one with respect to future returns and the other

with respect to the probabilities associated with these returns. Since investors are assumed to be

ambiguity averse, having a prior over probability distributions (priors), they do not compound the

probability distributions of returns (beliefs) linearly with this prior when assessing expected utility.

Instead, they act as if they overweight the probabilities of unfavorable returns and underweight the

probabilities of favorable returns (Tversky and Kahneman, 1992; Wakker, 2010).4 Expected utility is,

therefore, negatively affected by both risk and ambiguity, for a given level of expected return.

To represent preferences for ambiguity, the standard mean-variance space is extended by adding

ambiguity—the uncertainty of probabilities—as a third dimension. Suppose that rates of return are

normally distributed with a density function ϕ (r |µ, σ), where the mean, µ, and the standard deviation,

σ, are uncertain. Then, in this three-dimensional mean-variance-ambiguity space, ambiguity, f2 [r],

is measured by the expected volatility of probabilities (Izhakian, 2020). Formally,

f2 [r] =

∫
E [ϕ (r |µ, σ)] Var [ϕ (r |µ, σ)] dr,

where the expectation, variance, and covariance of probabilities are taken using a second-order prob-

ability distribution (a distribution over a set of possible distributions). Risk, Var [r], in this space, is

measured by the volatility of returns, taken using expected probabilities.

Preferences for risk and ambiguity are naturally reflected in the mean-variance-ambiguity space,

as investors maximize their expected return for a given level of risk and ambiguity. In general equilib-

rium, these preferences imply that in any optimal portfolio, the relative proportion of any two risky

and ambiguous assets is the same for all (heterogeneous) investors, independent of their aversion to

ambiguity or to risk. This means that, in general equilibrium, every optimal portfolio is a combination

of only two funds: the market portfolio and the risk-free asset (which is also ambiguity free). That

is to say, the two-fund separation theorem (Tobin, 1958) holds true also in the presence of ambigu-

ity. The proportions of these two funds, as well as the proportions and values (prices) of the assets

4This is explicitly formalized in cumulative prospect theory (Tversky and Kahneman, 1992), or implicitly delivered
in ambiguity models (Gilboa and Schmeidler, 1989; Schmeidler, 1989; Klibanoff et al., 2005; Nau, 2006; Chew and Sagi,
2008).
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comprising the market portfolio, are determined in general equilibrium by investors’ preferences for

risk and ambiguity. Since two-fund separation is maintained, along with the appropriate risk and

ambiguity preferences, a construct analogous to the standard CML can be derived.

In the presence of ambiguity, the proportions of the assets comprising the market portfolio might be

different from those in the absence of ambiguity and from those in an economy with ambiguity neutral

preferences. The reason being that, in the presence of ambiguity, these proportions reflect market

values that also price ambiguity. In reality, the market values (proportions) of the assets in the market

portfolio are unique and observable. However, the classical CAPM faces difficulty in explaining these

values. The proposed model aims to improve the theoretical explanation of these observable market

values. The improvement of this model’s predictions is a question for future empirical research.

The mean-variance-ambiguity framework also allows for the introduction of ambiguity into the

classical CAPM.5 In this extended model, referred to as Capital Asset Pricing Model under Ambiguity

(ACAPM), the expected return of asset j corresponds not only to the covariation of its return, rj , with

the market-portfolio return, rm, but also to the covariation of the possible probability distributions of

rj with the possible probability distributions of rm. Formally, the expected return of asset j satisfies

E [rj ] = rf + ζPj (E [rm]− rf )︸ ︷︷ ︸
Participation Premium

+ βR
j

(
1− ζPj

)
(E [rm]− rf )︸ ︷︷ ︸

Risk Premium

+ βA
j

(
1− ζPj

)
(E [rm]− rf )︸ ︷︷ ︸

Ambiguity Premium

,

where

ζPj =

√
f2 [rm]

1 + f2 [rm]
I{j ̸=f}

is the zeta participation; I{j ̸=f} is an indicator function that takes the value one for non risk-free assets

and zero otherwise;

βR
j =

Cov [rm, rj ]

Var [rm]

1 + f2 [rm]

1 + f2 [rm] + Λ [rm, rm]

is the beta risk;

βA
j =

Λ [rm, rj ]

1 + f2 [rm] + Λ [rm, rm]

is the beta ambiguity;

Λ [rm, rj ] =

∫
E [ϕ (r |µm, σm)] Cov

[
ϕ (r |µm, σm) , ϕ (r |µm, σm)λ

(
r |µm, µj , σ

2
m, σm,j

)]
dr;

5Several studies derived a consumption-based CAPM (Breeden, 1979; Duffie and Zame, 1989). Other studies extend
the CAPM by introducing various risk factors, including skewness (Kraus and Litzenberger, 1976; Harvey and Siddique,
2000), stochastic volatility in intertemporal settings (Campbell et al., 2018), probability weights (Barberis and Huang,
2008), liquidity risk (Acharya and Pedersen, 2005; Liu, 2006), long-run risk in aggregate consumption (Ai and Kiku,
2013), extrapolated past prices (Barberis et al., 2015), and index investments (Baruch and Zhang, 2017). This paper
introduces a different aspect of uncertainty, which relates to probabilities rather than to outcomes.
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and

λ
(
r |µm, µj , σ

2
m, σm,j

)
=

r − µm

σ2
m

(
σm,j

σ2
m

(r − µm) + µj

)
− σm,j

σ2
m

.

The risk-free rate of return is denoted rf , and the expectation, variance and covariance of returns are

taken using the expected probabilities.

In the ACAPM, beta risk and beta ambiguity are independent of individual attitudes toward risk

and ambiguity, reflecting only beliefs (information). Beta risk captures the effect of systematic risk,

measured by the covariation of asset return with the market return; it departs from the standard

theory due to the uncertainty regarding the probabilities used to assess risk. Beta ambiguity captures

the effect of systematic ambiguity, measured by the covariation of asset return probabilities and market

return probabilities. Extending other models, within which the ambiguity premium is attributed to

the asset’s own ambiguity and does not consider the relation between asset ambiguity and market

ambiguity, the current model shows that only the systematic component of ambiguity, rather than

the total ambiguity, is the relevant determinant of the asset’s expected return. In addition, the model

introduces a fixed participation premium that rewards for bearing the fundamental ambiguity in the

economy. Different than risk, where a marginal exposure to the market portfolio implies a marginal

exposure to risk, a marginal exposure to the market portfolio exposes the investor to a discrete level of

ambiguity, the reward for which is the participation premium. A special case occurs when probabilities

are known (or investors are ambiguity neutral), in which case the ACAPM reduces to the classical

CAPM.

Existing empirical findings are inconsistent with the predictions of the classical CAPM. Specifically,

the slope of the SML is found to be flatter, and the intercept higher than predicted by the traditional

theory. As Figure 1 illustrates, the ACAPM delivers a new structure of the SML that, in addition to

risk, accounts for ambiguity. This new structure may provide improved identification of idiosyncratic

risk, overpricing, and underpricing. Thereby, it may help explain some of the empirical inconsistencies

and anomalies related to the standard CAPM, including the fact that expected returns may differ

from the risk-free rate even for assets having no systematic risk (the zero-beta anomaly, Black et al.,

1972; Merton, 1973); the empirical SML being too flat to be explained by the theoretical prediction

of the CAPM (the beta anomaly, Black et al., 1972; Frazzini and Pedersen, 2014); the idiosyncratic

volatility being (negatively) priced in sharp contrast to the prediction of the CAPM (the idiosyncratic

volatility anomaly, Ang et al., 2006; Liu et al., 2018); and the additional positive premia associated

with firms with small market capitalization and high book-to-market equity ratio (the size and value

anomalies, Fama and French, 1992). Since the ACAPM can be estimated using trading data, it can be
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utilized in cross-sectional empirical tests of the rates of return, which may address the aforementioned

anomalies.

CAPM SML

ACAPM SML

βR + βA1

E [r]

rf

E [r0]

E [rm]

(1−ζP)(E [rm]− rf )

(E [rm]− rf )

Figure 1: The security market line

In this figure, the blue dashed line describes the SML as predicted by the classical CAPM; i.e., the expected return as a
function of βR. The red solid line describes the SML as predicted by the ACAPM; i.e., the expected return as a function
of βR + βA. The market return, E [rm], and the risk-free rate of return, rf , are the empirically observable ones in the
economy.

The new formulations of the CML and the SML in the mean-variance-ambiguity space allow for

the extension of the classical performance measures. The Sharpe (1966) ratio, which measures the

reward in terms of excess return per unit of the total (systematic and idiosyncratic) risk borne, can be

extended to measure, for any risky and ambiguous asset j, the reward per unit of risk and ambiguity

borne:

E [rj ]− rf

Std [rj ]
√

1 + f2 [rj ]
.

The Treynor (1965) ratio, which measures the reward per unit of systematic risk borne, can be extended

to measure, for any risky and ambiguous asset j, the reward per unit of systematic risk and ambiguity

borne:

E [rj ]− rf

ζPj +
(
1− ζPj

)(
βR
j + βA

j

) .
In this framework, Jensen’s (1968) alpha, which measures the abnormal return over the theoretical

expected return, is written:

rj − rf − ζPj (E [rm]− rf )−
(
βR
j + βA

j

) (
1− ζPj

)
(E [rm]− rf ) .

These extended performance measures are empirically applicable to capital budgeting estimations and
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to the evaluation of professionally managed portfolios.

The implications of ambiguity have been studied in different aspects of asset pricing and portfolio

selection, including the equity premium (Izhakian and Benninga, 2011; Ui, 2011; Zimper, 2012), market

participation (Cao et al., 2005; Easley and O’Hara, 2009), zero trade (Dow and Werlang, 1992),

portfolio inertia (Simonsen and Werlang, 1991; Illeditsch, 2011), portfolio choice (Pflug and Wozabal,

2007; Garlappi et al., 2007; Gollier, 2011; Boyle et al., 2012), learning (Leippold et al., 2008; Ju and

Miao, 2012; Groneck et al., 2016), asset supply (Bianchi et al., 2018); demand uncertainty (Ilut et al.,

2020); the term structure of interest rates (Gagliardini et al., 2009), and credit default swaps spreads

(Augustin and Izhakian, 2020).6 Adding to these studies, which consider the ambiguity of an asset

independently of the surrounding ambiguity in the market, the current paper studies the pricing of

asset ambiguity relative to the surrounding market ambiguity.

In related studies, Chen and Epstein (2002), and Epstein and Ji (2013), introduce ambiguity into

the consumption CAPM using dynamic recursive max-min preferences (Gilboa and Schmeidler, 1989),

assuming a representative investor; Epstein and Ji (2013) also assume ambiguity only with respect to

the covariance matrix.7 In these models, an asset’s beta is subject to the investor’s attitudes toward

ambiguity and risk. Adding to this literature, the current paper considers heterogeneous investors

and accounts for both ambiguous means and ambiguous covariance matrices, through ambiguous

probabilities. Contrary to other studies, in the current paper, beta ambiguity is independent of the

investors’ (heterogenous) attitudes toward ambiguity and risk. Therefore, the ACAPM can be tested

empirically using the methodology of estimating ambiguity from the data, suggested in recent literature

(e.g., Izhakian and Yermack, 2017; Brenner and Izhakian, 2018).

The ACAPM provides a theoretical foundation for cross-sectional empirical tests of the rates of

return. Prior studies have focused mainly on the implications of ambiguity for the time-series of asset

prices (e.g., Izhakian and Benninga, 2011; Ui, 2011). Adding to these studies, the current paper focuses

on the implications of cross-sectional asset ambiguity (relative to the surrounding market ambiguity)

for asset returns. The extended performance measures that the current paper introduces provide a

theoretical foundation for better assessment of portfolio performances.

6The implications of ambiguity for asset pricing is surveyed by Guidolin and Rinaldi (2013).
7Kogan and Wang (2003) consider a representative investor with max-min preferences, who constructs her subjective

set of priors around a reference prior based upon her aversion to ambiguity. Therefore, in their model, the asset’s beta is
subject to the investor’s attitude toward ambiguity. In addition, their model assumes a known covariance matrix and a
known reference prior. Nevertheless, Epstein and Ji (2013) highlight the importance of an ambiguous covariance matrix.
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2 The equilibrium model

2.1 Ambiguity

Ambiguity, or Knightian uncertainty, provides the basis for a rich literature in decision theory. This

literature takes a variety of approaches for modeling decision making under ambiguity (Gilboa and

Schmeidler, 1989; Schmeidler, 1989; Klibanoff et al., 2005; Nau, 2006; Chew and Sagi, 2008). One

important concept of these models is that, in the presence of ambiguity, ambiguity-averse decision-

makers act as if they overweight the probabilities of unfavorable outcomes and underweight the

probabilities of favorable outcomes, thereby lowering the perceived expected utility. In particular, the

higher the degree of ambiguity or the aversion to ambiguity, the lower the perceived expected utility.

Ambiguity may affect asset pricing due to the role it plays in investment decisions. Investment

decisions are made based upon perceived expected utility, which is estimated using subjective perceived

probabilities. When an asset’s perceived expected utility is relatively low, investors are reluctant to

hold it, reducing its equilibrium price. To illustrate, consider an asset whose payoff is determined by

a flip of an unbalanced coin, for which the investors do not know the odds of heads or tails. The

payoff of the asset is $100 for heads and $0 for tails. Suppose now that new information increases

the assessed degree of ambiguity about the coin. As investors are ambiguity averse, they lower their

perceived probabilities of favorable (good) payoffs and raise their perceived probabilities of unfavorable

(bad) payoffs. As a result, the expected utility falls, so that investors find this asset less attractive,

and may prefer to reduce their holding in the asset, decreasing its equilibrium price. Instead, suppose

that the good payoff increases to $200. In this case, both risk and expected payoff increase, such that

the investors may find this asset more (or less) attractive, which may increase (or decrease) its price.

However, in this case, ambiguity has not changed, as investors have no reason to change the assessed

probabilities (beliefs) or the assessed degree of ambiguity, since no new information about probabilities

has been obtained.

This example illustrates that ambiguity is outcome independent up to a state space partition. That

is, if the outcomes associated with events change, while the induced partition of the state space into

events (set of events) remains unchanged, then the degree of ambiguity remains unchanged, since all

probabilities remain unchanged. This is a critical insight, since outcome dependence enforces risk

dependence. Furthermore, since ambiguity is outcome independent, the related preferences must also

be outcome independent and apply exclusively to probabilities; otherwise, when outcomes are changed,

investors would change their perceived probabilities (beliefs) of events even though no new information

about the probabilities of events has been obtained.
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2.2 The economy

Following Mossin (1966), consider a single-good frictionless exchange economy with one risk-free asset,

indexed j = 0, and n risky and ambiguous real assets (firms), indexed j = 1, . . . , n.8 Each investor

brings to the market her present holdings of assets, and an exchange takes place. Then, assets’ payoffs

are realized, and consumption takes place. The consumption good is perishable, and the only way to

transfer consumption between individuals is through the capital market. Prices and payoffs of assets

are denominated in units of the single consumption good. Prices of all assets, including the risk-free

asset, are endogenously determined in general equilibrium.9

The payoff of the risk-free asset is one in every state of nature, y0 = 1; and is, therefore, also

ambiguity free.10 The payoff vector of the risk-free, and the risky and ambiguous assets is y =

[y0, y1, . . . , yn]
′. These payoffs are characterized by a vector of their means, µy, and a symmetric,

positive definite covariance matrix of rank n + 1, Σyy. The implication of Σyy being full ranked

(nonsingular) is that there are no redundant assets.11 Since ambiguity is present, the distribution of

y is not unique. Instead, there is a set P of (joint) probability measures (priors), where each P ∈ P is

associated with a (joint) probability density function φ (·), according to which y may be distributed.

Since y0 = 1 is constant (the risk-free asset), all P ∈ P agree on its probability. A second-order

probability distribution, ξ, determines which P ∈ P is realized.12 As a consequence, µy and Σyy are

not unique, but jointly distributed according to ξ. All individuals are assumed to have an identical

perception of P and ξ (homogenous beliefs, symmetric information). The price vector of the assets is

p = [p0, p1, . . . , pn]
′. A portfolio of assets is a vector x = [x0, x1, . . . , xn]

′ of number of shares. The

number of shares outstanding of each asset is perfectly divisible.

Let double-struck capital font (E [·] and Var [·]) denote expectation or variance taken using the ex-

pected probabilities, and regular straight font (E [·] and Var [·]) denote expectation or variance taken

8In particular, there are no costs for transactions or information acquisitions.
9Therefore, the risk-free rate of return is endogenously determined. Note that in Sharpe (1964) the risk-free rate of

return is exogenously given.
10The following notational conventions are used. All vectors are column vectors. The transpose operation is denoted

by a single quotation mark. Bold lowercase (Greek or upright Roman) letters denote vectors. Bold uppercase (Greek or
upright Roman) letters denote matrices. Constants and variables are italicized, operators are in regular font (followed by
square parentheses), and sets are in capital calligraphic font. No special notation is used to distinguish random variables
from their realizations. The context should clarify the intention.

11The case of two perfectly correlated payoffs with different means implies that one could short one asset, long the
other asset, and create an infinite expected payoff with no risk and no ambiguity. However, such a case is a violation of
the law of one price, which is ruled out in equilibrium, as proved later.

12Formally, there is a probability space (S, E ,P), where S is an infinite state space; E is a σ-algebra of subsets of
the state space (a set of events); a λ-system H ⊂ E contains the events with an unambiguous probability (i.e., events
with a known, objective probability); and P ∈ P is an additive probability measure. The set of all probability measures
P is assumed to be endowed with an algebra Π ⊂ 2P of subsets of P that satisfies the structure required by Kopylov
(2010). Π is equipped with a unique countably-additive probability measure ξ that assigns each subset A ∈ Π with a
probability ξ (A).
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using the second-order probabilities, ξ.13 With these notations in place, the expected portfolio payoff,

taken using the expected probabilities, is x′E [µy] = x′E [y] and, by Lemma 1 in Appendix A.1, the

variance of the portfolio payoff is x′E [Σyy]x + x′Σµyµyx. Since all investors have the same infor-

mation (symmetric information), they have homogeneous beliefs and thus homogeneous expectations,

variances and covariances (Sharpe, 1964; Lintner, 1965; Mossin, 1966).

2.3 The decision theory framework

To develop a general equilibrium model of the three-way relation between ambiguity, risk, and expected

return, the proposed model rests on a key requirement that is necessary to differentiate ambiguity

from risk: preferences for ambiguity that are outcome independent. To this end, this paper utilizes

the theoretical framework of Expected Utility with Uncertain Probabilities (EUUP, Izhakian, 2017),

as preferences for ambiguity in this framework are outcome independent. A by-product of the EUUP

model is a model-derived outcome-independent (up to a state space partition) and risk-independent

measure of ambiguity that is rooted in an axiomatic decision theory (Izhakian, 2020).14

The EUUP model assumes two tiers of uncertainty: one with respect to outcomes, and the other

with respect to the probabilities of these outcomes. A decision-maker in this framework applies two

differentiated phases of the decision process, each reflecting one of these tiers. In the first phase, she

forms a representation of her perceived probabilities for all the events relevant to her decision, as the

certainty equivalent probabilities of the uncertain probabilities. In the second phase, she assesses the

expected utility of each alternative using these perceived probabilities. Since preferences for ambiguity

apply exclusively to the probabilities of events (independently of their associated outcomes), aversion

to ambiguity takes the form of aversion to mean-preserving spreads in probabilities.15

Investors have heterogeneous distinct preferences for ambiguity and for risk. As is common, in-

vestors are assumed to be risk averse with constant absolute risk aversion (Kraus and Litzenberger,

13Formally, the expectation and the variance of the probability of y occurring are defined, respectively, by E [φ (y)] =∫
P
φ (y) dξ and Var [φ (y)] =

∫
P

(
φ (y)−E [φ (y)]

)2
dξ. The expected payoff is defined by the double expectation (with

respect to probabilities and payoffs) E [y] =

∫
P

(∫
S
ydφ

)
dξ =

∫
E [φ (y)] ydy. The covariance of payoffs y and z is

defined by Cov [y, z] =
∫
P

(∫
S
(y − E [y]) (z − E [z]) dφ

)
dξ =

∫ ∫
E [φ (y, z)]

(
y − E [y]

)(
z − E [z]

)
dydz.

14Outcome-independent preferences for ambiguity are necessary for the separation of ambiguity from risk, as well as
attitudes from beliefs (Izhakian, 2020). While making a significant contribution to the literature, the risk-independent
measurement of ambiguity poses a challenge for other frameworks since they do not separate ambiguity from attitudes
toward ambiguity (Gilboa and Schmeidler, 1989; Schmeidler, 1989) or preferences for ambiguity are outcome dependent
and therefore risk dependent (Klibanoff et al., 2005; Nau, 2006; Chew and Sagi, 2008).

15In Rothschild and Stiglitz (1970), aversion to risk takes the form of aversion to mean-preserving spreads in outcomes.
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1973; Brennan, 1979; Acharya and Pedersen, 2005):

Ui (c) =
e−γik − e−γic

γi
, (1)

where c is consumption; γi > 0 is investor i’s coefficient of (absolute) risk aversion; and k is a reference

point that satisfies Ui (k) = 0. Consumption (outcome) lower than k is unfavorable, consumption

higher than k is favorable, and k is relatively close to the expected consumption, E [c].16

Similarly, investors are assumed to be ambiguity averse with constant absolute ambiguity aver-

sion:17

Υi (P (c)) = −e−ηiP(c)

ηi
, (2)

where 0 < ηi ≤ 1
Var[φ(c)] is investor i’s coefficient of (absolute) ambiguity aversion.18 As investors are

averse to ambiguity, they do not compound the set of priors P and the prior ξ over P in a linear way

(compound lotteries), but instead they use Υ to aggregate these probabilities in a non-linear way to

form their perceived probabilities. Intuitively, in the EUUP model, ambiguity aversion is exhibited

when an investor prefers an outcome with the expectation of its uncertain probability rather than

with the uncertain probability itself.19

The assumptions regarding the investor’s preference representation (constant absolute risk and

ambiguity aversion) are made, without loss of generality, for tractability only. As shown below, these

assumptions imply a natural closed-form solution for asset allocations, prices, and expected returns.

Moreover, as shown below, since the two-fund separation theorem holds true also in the presence of

ambiguity, other preference representations (for risk and ambiguity) are supported.

Within the EUUP model the perceived probabilities are formed by the certainty equivalent prob-

abilities of uncertain probabilities. That is, the perceived probability is the minimum (maximum)

unique certain probability value that an individual is willing to accept in exchange for the uncer-

tain probability of a given favorable (unfavorable) event. Using the perceived probabilities, following

16Close in the sense that the third and higher absolute moments of c around k are of a smaller order than the second
absolute central moment, and are therefore negligible.

17This assumption is supported by experimental evidence (Baillon and Placido, 2019).
18Ambiguity aversion takes the form of a concave Υ, ambiguity loving takes the form of a convex Υ, and ambiguity

neutral takes the form of a linear Υ. The condition on Υ bounds the level of ambiguity aversion (the concavity of Υ)
to ensure that the approximated perceived probabilities are nonnegative and satisfy set monotonicity with respect to
set-inclusion.

19Note that risk aversion is exhibited when an investor prefers the expectation of the uncertain outcome over the
uncertain outcome itself.
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Izhakian (2020, Theorem 2), the expected utility can be formed by

Vi (c) =

∫
c≤k

Ui (c) E [φ (c)]
(
1 + ηiVar [φ (c)]

)︸ ︷︷ ︸
Perceived Probability of Unfavorable Outcome

dc+ (3)∫
c≥k

Ui (c) E [φ (c)]
(
1− ηiVar [φ (c)]

)︸ ︷︷ ︸
Perceived Probability of Favorable Outcome

dc+R2(c),

where the remainder R2

(
c
)
= o
(∫

E
[
|φ (c)− E [φ (c)]|3

]
cdc
)
as

∫
|φ (c)− E [φ (c)]| dc → 0.20

When investors are ambiguity neutral (Υ is linear), they compound probabilities linearly, and

Equation (3) reduces to the conventional expected utility. The same holds true when ambiguity is not

present (Var [φ (c)] = 0). In contrast, when investors are ambiguity averse (Υ is concave), they do not

aggregate probabilities linearly; instead, they overweight the probabilities of the unfavorable outcomes

and underweight the probabilities of favorable outcomes. In particular, the higher the ambiguity or

the aversion to ambiguity, the higher the perceived probabilities of unfavorable outcomes and the lower

the perceived probabilities of favorable outcomes. As a result, when ambiguity increases, the expected

utility assessed using the perceived probabilities decreases.

The notion of the variance of probabilities in Equation (3) allows for the degree of ambiguity to

be measured by the expected volatility of probabilities (Izhakian, 2020):

f2 [c] =

∫
E [φ (c)] Var [φ (c)] dc. (4)

The measure f2 (mho2) is outcome independent and risk independent, always positive, and attains

its minimum value, 0, only when all probabilities are perfectly known.21

2.4 Asset allocation decision

Suppose a large number of investors, labeled i = 1, 2, . . . ,m. Each investor brings to the market her

present holdings of assets, x̄i =
[
x̄i0, x̄

i
1, . . . , x̄

i
n

]′
. Thus, the budget set of investor i is

Bi =
{
xi ∈ Rn+1 |

(
x̄i − xi

)′
p = 0

}
. (5)

20The remainder of order o
(∫

E
[
|φ (c)− E [φ (c)]|3

]
cdc

)
means that the order of the error is three times smaller than

the order of consumption, c, and tends to zero as

∫
|φ (c)− E [φ (c)]| dc → 0. This is equivalent to a cubic expansion,

i.e., a remainder of order o
(
E
[
|c− E [c]|3

])
, in which the fourth and higher absolute central moments of consumption

are of a strictly smaller order than the third absolute central moment as |c− E [c]| → 0, and are therefore negligible.
21Some studies interpret the volatility of the volatility or the volatility of the mean as measures of ambiguity. These

measures, however, are outcome dependent, and therefore risk dependent. Moreover, f2 solves some major issues that
arise from the use of the volatility of the volatility or the volatility of the mean as measures of ambiguity. For example,
comparing two assets with different degrees of ambiguity but each with a constant volatility, or two assets with different
degrees of ambiguity but each with a constant mean.
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Subject to her budget constraint, each investor chooses the portfolio of assets, xi, that maximizes

her expected utility Vi (·) as defined in Equation (3). Accordingly, investor i solves the maximization

problem

max
xi∈Bi

Vi
(
xi′y

)
. (6)

Investors are heterogeneous in the sense that each investor i may have a different aversion to

risk, γi, and a different aversion to ambiguity, ηi. Thus, for each investor i, the solution for the

maximization problem in Equation (6) depends on her risk and ambiguity aversion. The solution also

depends on prices, which determine the budget constraint. However, for brevity, the notation does

not show this dependency. A general equilibrium is a vector of prices p, under which each investor i

solves the maximization problem in Equation (6), such that the market clears for all assets. That is,∑
i

xi =
∑
i

x̄i. (7)

2.5 Mean-variance-ambiguity preferences

To solve the maximization problem in Equation (6), and thereby the equilibrium prices, investors’

preferences can be represented as mean-variance-ambiguity preferences. To this end, the next theorem

identifies the certainty equivalent utility in Equation (3).22

Theorem 1. Suppose that E [c] > 0. The expected utility then satisfies

Vi (c) = Vi (E [c]−K) , (8)

where E [c]−K is the certainty equivalent consumption;

K = γi
1

2
Var [c]︸ ︷︷ ︸

Risk Premium

+ ηi
1

2E [c]
Var [c]f2 [c]︸ ︷︷ ︸

Ambiguity Premium

+ R2 (c)

is the risk and ambiguity premium; and the remainder R2 (c) = o
(
E
[
|c− E [c]|2

])
as |c− E [c]| → 0.

Theorem 1 shows that risk and ambiguity have separate negative effects on expected utility, while

the expected consumption has a positive effect. In particular, the higher the risk, Var [c], or the

aversion to risk, γi, the lower the certainty equivalent utility. Similarly, the higher the ambiguity,

f2 [c], or the aversion to ambiguity, ηi, the lower the certainty equivalent utility. The remainder of

order o
(
E
[
|c− E [c]|2

])
means that the third and higher absolute central moments of the uncertain

consumption, c, are of a strictly smaller order than the second absolute central moment of c, and are

22Considering constant absolute risk aversion, Ljungqvist and Sargent (2004) show that the mean-variance preference
representation can be extracted using a Taylor approximation.
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therefore negligible. Thus, henceforth, the remainder is ignored (Ljungqvist and Sargent, 2004) and

the equal sign is used instead of the approximation sign for simplicity. The use of the approximate

expected utility, rather than the expected utility, has no impact on the conclusions of the model.

Theorem 1 implies that, in order to maximize her expected utility, every investor i maximizes

Fi
(
E [c] ,Std [c] ,Std [c]f [c]

)
= E [c]− γi

1

2
Var [c]− ηi

1

2E [c]
Var [c]f2 [c] , (9)

subject to her budget constraint, where f [c] =
√∫

E [φ (c)] Var [φ (c)] dc and Std [c] =
√
Var [c].

With this representation in place, the mean-variance-ambiguity preference representation is immedi-

ately obtained.

Theorem 2. The preferences of a risk- and ambiguity-averse investor can be formed in the mean-

variance-ambiguity space by

Fi
(
E [c] , Std [c] , Std [c]f [c]

)
,

where

∂Fi

∂E [c]
> 0;

∂Fi

∂Std [c]
≤ 0; and

∂Fi

∂f [c]
≤ 0.

Theorem 2 establishes a representation of preferences for risk and ambiguity as mean-variance-

ambiguity preferences in the mean-variance-ambiguity space. The mean-variance-ambiguity space

extends the mean-variance space by adding ambiguity as a third dimension.23 In this three-dimensional

space, to scale ambiguity to the units of consumption, as the other two dimensions, E [c] and Std [c],

the third dimension is represented by Std [c]f [c]. An alternative representation of this third dimension

by f [c] would not alter the conclusions of the model.

Since the only source of consumption available to investor i is the payoff of her asset portfolio xi,

investor i’s maximization problem in Equation (6) can be reframed as

max
xi∈Bi

Fi

(
E
[
xi′y

]
, Std

[
xi′y

]
,Std

[
xi′y

]
f
[
xi′y

])
. (10)

The solution to this optimization problem, subject to the market clearing conditions in Equation (7),

provides the optimal portfolio holding of each investor and thereby the general equilibrium prices and

allocations.

Every portfolio with a non-zero cost has a return rx =
x′y

x′p
− 1, where x′p is the cost (value) of

the portfolio and x′y is its payoff. Thus, the equivalent representation of the maximization problem

23Other extensions of the mean-variance space to R3 have been proposed. For example, Kraus and Litzenberger (1976)
extend it to mean-variance-skewness space.
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in Equation (10) is

max
xi∈Bi

Fi

(
E
[
xi′ (1+ r)

]
, Std

[
xi′ (1+ r)

]
,Std

[
xi′ (1+ r)

]
f
[
xi′ (1+ r)

])
, (11)

where

Bi =
{
xi ∈ Rn+1 |

(
x̄i − xi

)′
1 = 0

}
; (12)

x ∈ Rn+1 is the values in terms of consumption units allocated to each asset instead of asset units;

r ∈ Rn+1 is the vector of returns of the assets in the economy; and 1 ∈ Rn+1 is a vector of 1s.

Modern portfolio theory asserts that, in an efficient market, a rational investor holds an asset

portfolio that maximizes the expected return for a given level of risk. The maximization problem in

Equation (11) generalizes this concept to ambiguity: a rational (risk- and ambiguity-averse) investor

holds an asset portfolio that maximizes the expected return for a given level of risk and a given level

of ambiguity.24 With this notion, a portfolio x is efficient if there is no other portfolio with the same

risk, the same ambiguity, and a strictly higher expected return.

The preferences for risk and ambiguity define sets of portfolios over which the investor is indifferent.

Every such indifference set represents a specific level of expected utility. A rational investor chooses

from among all feasible portfolios the one placing her on the indifference set that represents the highest

level of expected utility.

3 Equilibrium prices and asset allocations

To characterize the mean-variance preferences and to measure risk by the variance of returns, it is

commonly assumed that returns are normally distributed (Lintner, 1965; Merton, 1973; Acharya and

Pedersen, 2005), so that the probability distributions are completely characterized by the mean and the

variance of returns. To maintain our settings as closely as possible to those of the standard CAPM, it

is assumed that returns are normally distributed; however, the parameters governing the distributions,

mean and variance, are uncertain. This assumption allows for a closed-form formalization of the effect

a change in a portfolio composition has on its degree of ambiguity. Since the EUUP model and its

derived ambiguity measure are not restricted to a special class of probability distributions, the model

that the current paper introduces can be generalized to other classes of probability distributions,

including elliptically distributed returns.25 In addition, all other assumptions of the standard CAPM

24In particular, given two portfolios with identical risk and ambiguity, a rational (risk- and ambiguity-averse) investor
would prefer the portfolio with the higher expected return; given two portfolios with identical expected return and
risk, she would prefer the portfolio with the lower ambiguity; given two portfolios with identical expected return and
ambiguity, she would prefer the portfolio with the lower risk.

25The normal probability distribution is a subclass of elliptical distributions, which are fully characterized by the first
two moments, mean and variance (Owen and Rabinovitch, 1983; Zhou, 1993).
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are maintained.26

Formally, r ∼ N(µr,Σrr), where Σrr is a symmetric, positive definite matrix of rank n + 1.

Since ambiguity is present, µr and Σrr are uncertain, and determined by a (joint) prior P ∈ P,

with probability ξ. Each P ∈ P is associated with a (joint) normal probability density function ϕ (·)

according to which r may be distributed. The second-order probability distribution ξ, determining

which P ∈ P is realized, is assumed to induce a symmetric distribution over each entry of µr. The

assumption that the set of probability distributions P consists of parametric (normal) probability

distributions implies that a change in the parameters of the distributions may cause a change in the

risk, Var [r], as well as in the ambiguity, f2 [r]. Risk may be changed directly by the change in the

parameters. In the particular case of the normal distribution, an increase in the parameter Σrr is an

increase in risk. Ambiguity may be changed because the change in the parameters alters the priors

within the set of priors. Further, in the class of continuous parametric probability distributions, a

change in the parameters of the distribution alters the partition of the state space (Papoulis and Pillai,

2002); thereby, changes the degree of ambiguity. By Lemma 3 in Appendix A.1, in the particular case

of normal distributions, an increase in the parameter Σrr decreases the degree of ambiguity.

3.1 Optimal portfolio selection

To solve for investor i’s optimal portfolio, the maximization problem in Equation (11) can be written

explicitly as27

max
xi∈Bi

E
[
xi′ (1+ r)

]
− γi 12Var

[
xi′r

]
− ηi 1

2E[xi′(1+r)]
Var

[
xi′r

]
f2
[
xi′r

]
. (13)

The Lagrangian of this maximization problem can then be written as

L
(
xi, θ

)
= E

[
xi′ (1+ r)

]
− γi

1

2
Var

[
xi′r

]
(14)

−ηi
1

2E
[
xi′ (1+ r)

]Var [xi′r
]
f2
[
xi′r

]
− θ

(
x̄i − xi

)′
1.

Using the Lagrangian, the next theorem identifies the optimal portfolio. To this end, the next theorem

defines r ∈ Rn as the return vector of the risky and ambiguous assets, and rf ∈ R as the return of

the risk-free asset.28 Accordingly, henceforth, x∗i ∈ Rn is investor i’s optimal portfolio of risky and

ambiguous assets.

26That is, markets are efficient in the sense that all information is available to all investors, who behave competitively.
All of them have equal access to all assets in a market with no taxes and no commissions, and they can short any asset
and hold any fraction of any asset.

27Note that the variance is invariant to uniform linear shifts in outcomes, and the ambiguity it invariant to uniform
linear shifts in distributions (Lemma 3 in A.1).

28In Sharpe (1964), investors can borrow or lend unlimited quantities at a constant risk-free rate of return which is
exogenous. Here, following Mossin’s (1966) approach, the quantity of the risk-free assets is limited and the risk-free rate
is endogenously determined in general equilibrium.
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Theorem 3. Investor i’s optimal portfolio of risky and ambiguous assets, x∗i ∈ Rn, satisfies

x∗i =

 γi + ηi
f2
[
x∗i′r

]
E
[
x∗i
f (1 + rf ) + x∗i′ (1+ r)

]
 (E [Σrr] +Σµrµr) + ηi

Var
[
x∗i′r

]
E
[
x∗i
f (1 + rf ) + x∗i′ (1+ r)

]Θ
−1

× (E [r]− 1rf )

1 + ηi
1

2

Var
[
x∗i′r

]
E2
[
x∗i
f (1 + rf ) + x∗i′ (1+ r)

]f2
[
x∗i′r

] , (15)

where r ∈ Rn is the vector of returns of the risky and ambiguous assets; 1 ∈ Rn is a vector of 1s;

x∗if ∈ R is the investor’s optimal allocation to the risk-free asset; rf is the risk-free rate of return; and

Θ satisfies
∂f2

[
x∗i′r

]
∂x∗i = Θx∗i2, as detailed in Lemma 6 in Appendix A.1.

In Theorem 3, x∗i describes the optimal values that investor i allocates to each of the risky and

ambiguous assets. The difference between the value of her total initial endowment and the total

value allocated to the risky and ambiguous assets defines the optimal allocation to the risk-free asset,

which can be positive (lending) or negative (borrowing). The total value allocated to the risky and

ambiguous assets can also be positive (long position) or negative (short position). However, in general

equilibrium, the investor either has positive holdings in every risky and ambiguous asset, or negative

holdings in every risky and ambiguous asset, as shown in Section 3.3.

Investor i’s optimal allocation is a function of her aversion to risk, γi, and aversion to ambiguity, ηi.

When she is neutral to ambiguity (ηi = 0), her optimal allocation is

x∗i =
1

γi
(E [Σrr] +Σµrµr)

−1 (E [r]− 1rf ) ,

and, in the absence of ambiguity, her optimal allocation is

x∗i =
1

γi
Σ−1

rr (E [r]− 1rf ) ,

similar to standard asset pricing models (Sharpe, 1964; Treynor, 1965).

An important insight delivered by Theorem 3 is that the optimal allocation (optimal asset portfolio)

in the presence of ambiguity is different from the optimal allocation in the absence of ambiguity. Since

the allocation to each asset determines its equilibrium price, the prices of assets in the presence of

ambiguity would also be different from those in the absence of ambiguity. Theorem 3 implies that

accounting for ambiguity has the potential to provide an explanation for observable asset allocations

and prices, thereby helps resolve some asset pricing anomalies (Brennan and Xia, 2001; Fama and

French, 2008).29 Extant literature highlights the discrepancy between the observed asset allocations

29A few studies use different approaches to analyze the effect of ambiguity on optimal asset allocations. Pflug and
Wozabal (2007) consider an optimal portfolio problem with a confidence set of probability distributions. Garlappi et al.
(2007) and Boyle et al. (2012) consider a similar problem with a confidence interval for the estimated mean returns, and
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and the predicted optimal ones (Canner et al., 1997). The asset allocations, suggested in Theorem 3,

may be empirically compelling to the extent that they are consistent with asset allocation puzzles.

3.2 Two-fund separation

The identification of the optimal portfolio allocation in Theorem 3 delivers an important property:

a description of the optimal relative proportion of the value allocated to each risky and ambiguous

asset.

Theorem 4. In general equilibrium, the relative proportional allocation of any two risky and ambigu-

ous assets j and h satisfies

x∗ij
x∗ih

=
E [rj ]− rf
E [rh]− rf

, (16)

for each investor i.

Theorem 4 suggests an ambiguity-adjusted version of the optimal allocation in a risk-only economy

(Sharpe, 1964; Treynor, 1965). In the presence of ambiguity, the relative proportions of risky and

ambiguous assets might be different from those in the absence of ambiguity due to the ambiguity

premium that affects asset expected returns (Theorem 1). The description of the optimal allocation

in Theorem 4 delivers an important insight: the two-fund separation theorem holds true also in the

presence of ambiguity.

Theorem 5. Suppose n risky and ambiguous assets, whose returns are normally distributed with

uncertain means and uncertain variances, and a risk-free (and ambiguity-free) asset.

(i) There exists a unique pair of efficient portfolios (mutual funds): one containing only the risk-

free asset and the other containing only the risky and ambiguous assets, such that independent of

preferences (attitudes toward risk and ambiguity) or wealth, all investors are indifferent between

choosing portfolios from the original n+ 1 assets or from these two funds.

(ii) The return of the risky and ambiguous fund is normally distributed with an uncertain mean and an

uncertain variance.

(iii) The relative proportion of an investor’s initial wealth invested in the jth risky and ambiguous asset

is the same for any investor i, independent of her preferences for risk and ambiguity.

Theorem 5 is an ambiguity-adjusted version of the Markowitz-Tobin separation theorem (Merton,

1973, Theorem 1). Tobin’s (1958) separation theorem asserts that, in equilibrium, any investor holds

the risk-free asset and a unique optimal portfolio of risky assets, called the market portfolio. Theorem 5

Maenhout (2004) explores the effect of model uncertainty, which may be interpreted as ambiguity.
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shows that Tobin’s insight holds true also in the presence of ambiguity. This implies that investment

decisions can be broken into two separate phases: the first phase considers the choice of a unique

optimal risky and ambiguous asset portfolio (the market portfolio); the second phase considers the

allocation of funds between the risk-free asset and the risky and ambiguous asset portfolio (the market

portfolio).

Investors may have different intensities of aversion to risk and to ambiguity. Nevertheless, in

their investment decisions, they are different only in their decisions regarding the proportions of funds

allocated to the risk-free asset and to the risky and ambiguous portfolio (the market portfolio). Thus,

in equilibrium, every investor holds risky and ambiguous assets in the same relative proportions as

the assets in the market portfolio, which means the same relative proportions as represented by the

market value of assets (Theorem 3). The nature of the market portfolio in the presence of ambiguity,

however, is different from Tobin’s market portfolio.30 Whereas Tobin’s market portfolio demonstrates

minimum risk for a given expected return, in the presence of ambiguity, the market portfolio has

minimum consolidated risk and ambiguity for a given expected return, but not necessarily a minimum

risk. The reason being the tradeoff between risk and ambiguity.31

Since investors are different in their intensities of aversion to risk and to ambiguity, the proportions

of the risk-free asset and the market portfolio they choose to hold may be different. More conservative

investors, for example, choose to allocate a larger proportion of their initial wealth to the risk-free

asset. More aggressive investors may even decide to borrow money, i.e., to make a negative allocation

to the risk-free asset, in order to invest more than their initial wealth in the market portfolio.

3.3 Equilibrium

To extract the optimal allocation, Theorem 3 constitutes n equations for each investor, describing

her demand for the n risky and ambiguous assets in the economy. These equations can also be

used to identify the demand for the risk-free asset. To determine a general equilibrium, the equality

between demand and supply must be satisfied for each asset. That is, the market clearing condition

in Equation (7) must be satisfied. Since the budget constraint in Equation (12) holds true for every

investor i at their optimum, summing the budget constraint equations over all investors delivers the

required market clearing condition in Equation (7), which completes the conditions describing the

general equilibrium.

30In a model of investors with neutral preferences for parameter uncertainty, Klein and Bawa (1976) and Brown (1979)
show that the market portfolio in the presence of parameter uncertainty is different from the market portfolio in the
absence of parameter uncertainty, due to the Bayesian approach used.

31A few recent studies investigate the negative relation between risk and ambiguity (e.g., Brenner and Izhakian, 2018;
Augustin and Izhakian, 2020).

18



As in Mossin (1966), the equilibrium allocation represents a Pareto optimum. That is, due to the

property of a competitive equilibrium, in which preferences are concave, it would be impossible to

increase one investor’s expected utility by a new allocation without reducing the expected utility of

at least one other investor. It is important to note that, in equilibrium, the problem of negative asset

holdings is ruled out. By Theorems 4 and 5, in equilibrium, the relative proportion invested in any

risky and ambiguous asset is the same for every investor. Thus, if one investor has a negative relative

allocation to a given asset, then all other investors have a negative relative allocation to that asset,

implying a violation of the market clearing condition. Therefore, the equilibrium (relative) allocation

is positive for all risky and ambiguous assets.

Corollary 1. In equilibrium, every risky and ambiguous asset j has a strictly positive proportion in

the market portfolio and, therefore, a strictly positive capital market value.

Furthermore, the market portfolio is unique and, therefore, so is the equilibrium.

Corollary 2. In equilibrium, the proportions of assets in the market portfolio are unique. Therefore,

the market portfolio and the equilibrium are unique.

To recognize the uniqueness of the market portfolio, note that since the market is in equilibrium,

which is governed by supply and demand, the proportion of each asset in the market portfolio is

determined by its capital market value divided by the capital value of the whole market. The capital

market value of an asset (the total worth of its shares) is unique, which implies that the proportion

of each asset in the market portfolio is unique. Therefore, the market portfolio is unique.

3.4 Fund allocation decision

Suppose that the capital asset market is in equilibrium. The total resources available to investor i are

wi = x̄i ′1, where x̄i is the value in terms of consumption units of all the assets that investor i brings

to the market (including the risk-free asset). Based on the equilibrium prices and her attitudes toward

risk and ambiguity, each investor allocates these resources into an optimal portfolio with a particular

expected return, a particular level of risk, and a particular level of ambiguity. By Theorem 5, this

portfolio consists of two funds: one containing only the risk-free asset and the other containing all the

risky and ambiguous assets—the market portfolio, denoted m.

To maximize her consumption, ci, conditional on her preferences for risk and ambiguity, investor i

chooses a proportion α of her resources, wi, to invest in the market portfolio and a proportion 1− α
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to invest in the risk-free asset. Thus, investor i’s maximization problem can be simplified to

max
α

E
[
ci
]
− γi 12Var

[
ci
]
− ηi 1

2E[ci]Var
[
ci
]
f2
[
ci
]
, (17)

where

ci = wi
(
(1− α) (1 + rf ) + α (1 + rm)

)
,

and E
[
ci
]
> 0. That is, α is the investor’s decision in equilibrium. This means that all investors

solve the same optimization problem to maximize expected return, conditional on the degrees of risk

and ambiguity. Since all investors have the same investment opportunities to choose from, the same

information, and the same decision procedure, every portfolio selected by a rational investor is in the

set of efficient portfolios, i.e., the set of portfolios that maximize the expected return for a given level

of risk and a given level of ambiguity.

4 The capital market line

The set of feasible efficient portfolios defines the capital market line (CML). In the mean-variance-

ambiguity space, a rational investor maximizes the expected return for given degrees of risk and

ambiguity. Therefore, all portfolios lying on the CML are efficient in the sense that they attain

the maximum expected return for a given degree of consolidated risk and ambiguity. The CML

identifies the reward (in terms of expected return) of efficient portfolios per unit of consolidated risk

and ambiguity borne; i.e., the price of risk and ambiguity. Therefore, in equilibrium, subject to the

investor’s aversion to risk and to ambiguity, every investment decision is made on the CML. The CML

is described as follows.

Definition 1. The capital market line is defined by

E [r] = rf + Std [r]
√
1 + f2 [r]

E [rm]− rf

Std [rm]
√
1 + f2 [rm]

. (18)

Definition 1 is obtained geometrically by the piecewise line segment originating from the risk-free

rate, rf , and passing through the market portfolio’s expected return, E [rm], in the three-dimensional

mean-variance-ambiguity space. The CML in Definition 1 implies that the ratio between the expected

excess return, E [r] − rf , and the consolidated risk and ambiguity borne, Std [r]
√
1 + f2 [r], is the

same for every investor, regardless of her intensity of aversion to risk or to ambiguity. This ratio is

also the same for every asset, including the market portfolio.

The expected return of an optimal portfolio rewards for three elements: the time value of money,

the risk borne, and the ambiguity borne. By Definition 1, the reward for the time value of money

is equal to the risk-free rate, rf . The reward for risk is a premium, proportional to the amount of
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risk borne, which is proportional to the holdings in the market portfolio. The reward for ambiguity

consists of two elements: a fixed participation premium and a premium proportional to the amount

of ambiguity borne, which is proportional to the holdings in the market portfolio. To observe this, let

r0 be the return of a portfolio with infinitely small proportional holdings in the market portfolio; i.e.,

r0 = (1− α) rf+αrm |α→0. In this case the risk associated with this portfolio is Std [r0] = 0. However,

once an investor holds any portion of the market portfolio, she bears a fixed amount of consolidated

risk and ambiguity, Std [r0]
√
1 + f2 [r0], for which she is rewarded by a positive participation premium

of magnitude E [r0]−rf . The next corollary elicits this consolidated risk and ambiguity and its related

premium.

Corollary 3. The expected rate of return of a portfolio with infinitely small proportional holdings in

the market portfolio is

E [r0] = rf + (E [rm]− rf )

√
f2 [rm]

1 + f2 [rm]
, (19)

rewarding for its consolidated risk and ambiguity Std [r0]
√
1 + f2 [r0] = Std [rm]f [rm].

Corollary 3 implies that any non-zero holding of risky and ambiguous assets exposes the investor

to the discrete inherited market ambiguity.32 Thus, in the presence of ambiguity, all the risky and

ambiguous portfolios with Std [r]f [r] ∈ (0, Std [rm]f [rm]] are unfeasible, which implies that the CML

has a segment of unfeasible portfolios. In this respect, Bossaerts et al. (2010) find that investors who

are sufficiently averse to ambiguity have open sets of prices for which they refuse to hold ambiguous

portfolios. Figure 2 depicts the two-dimensional section of the mean-variance-ambiguity space that

contains the CML.

The portfolio with expected return E [r0] is referred to as the zero-beta portfolio (Merton, 1973).

In the absence of ambiguity, the reward per unit of risk is equal to
E[rm]−rf
Std[rm] . In this case, Defini-

tion 1 reduces to the standard CML (Sharpe, 1964; Lintner, 1965; Mossin, 1966) in which the rate

of substitution between a unit of expected excess return and a unit of risk is constant. Analogously,

in the presence of ambiguity, the CML is a straight line, which means that the rate of substitution

between a unit of expected excess return and a unit of uncertainty (consolidated risk and ambi-

guity) is constant. However, the consolidated risk and ambiguity, Std [r]
√
1 + f2 [r], is not linear

in the proportion allocated to the market portfolio. In particular, by Lemma 3 in Appendix A.1,

Std [αrm]
√
1 + f2 [αrm] = Std [rm]

√
α2 + f2 [rm].

In general equilibrium, by Corollary 3, the expected return of the market portfolio is at least as

32Note that, since the risk associated with E [r0] is zero, the entire consolidated risk and ambiguity is attributed to
the normalized ambiguity Std [rm]f [rm].
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CML

Std [rm]
√
1 + f2 [rm]Std [rm]f [rm]

E [r]

rf

E [r0]

E [rm]

Figure 2: The capital market line

high as the expected return of the zero-beta portfolio, which is at least as high as the risk-free rate.

The risk-free rate is lower than the expected return of the portfolio with the minimum possible risk

and ambiguity, i.e., the global minimum risk and ambiguity portfolio; otherwise, all investors with

mean-variance-ambiguity preferences would attempt to short this portfolio, a situation that cannot

represent an equilibrium.33

By Definition 1 and Corollary 3, regardless of their aversion to risk and ambiguity, in the mean-

variance-ambiguity space (E [r] , Std [r] , Std [r]f [r]) all investors share the same goal: to maximize the

expected excess return for a given level of consolidated risk and ambiguity (uncertainty). Therefore,

in equilibrium, each investor can be thought of as solving the following maximization problem:

max
x∈B

E[x′r]−E[r0]
Std[x′r]

√
1+f2[x′r]−Std[r0]

√
1+f2[r0]

, (20)

where

B =
{
x ∈ Rn | x′1 = 1

}
;

and x is the proportional capital value of her assets relative to the capital value of her total assets.

Therefore, excluding the risk-free asset, x can also be viewed as the relative proportion of each asset

in the market portfolio, which is determined by its capital market value divided by the capital value

of the market portfolio.

33For the same reason, in an economy with no ambiguity, the risk-free rate is lower than the expected return of the
portfolio with the minimum possible risk (Cochrane, 2005).
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5 Capital asset pricing

The simplified maximization problem in Equation (20) can be utilized to extract the expected return

of assets. To this end, a calculus of variations-type argument can be applied to extend the classical

CAPM to account for ambiguity. In the obtained closed-form pricing model, labeled the Capital

Asset Pricing Model under Ambiguity (ACAPM), the expected return of an asset corresponds to its

ambiguity and risk, relative to the market ambiguity and risk, rather than to its own ambiguity and

risk. The next theorem, which is the central result of the current paper, introduces the ACAPM.

Theorem 6. Suppose that the rates of return are normally distributed with uncertain means, µ, and

uncertain variances, σ2. The expected return of asset j is then

E [rj ] = rf + ζPj (E [rm]− rf )︸ ︷︷ ︸
Participation Premium

+ βR
j

(
1− ζPj

)
(E [rm]− rf )︸ ︷︷ ︸

Risk Premium

+ βA
j

(
1− ζPj

)
(E [rm]− rf )︸ ︷︷ ︸

Ambiguity Premium

. (21)

Zeta participation is

ζPj =

√
f2 [rm]

1 + f2 [rm]
I{j ̸=f}, (22)

where the indicator function I{j ̸=f} takes the value one for non risk-free assets, and zero otherwise.

Beta risk is

βR
j =

Cov [rm, rj ]

Var [rm]

1 + f2 [rm]

1 + f2 [rm] + Λ [rm, rm]
. (23)

Beta ambiguity is

βA
j =

Λ [rm, rj ]

1 + f2 [rm] + Λ [rm, rm]
, (24)

where

Λ [rm, rj ] =

∫
E [ϕ (r |µm, σm)] Cov

[
ϕ (r |µm, σm) , ϕ (r |µm, σm)λ

(
r |µm, µj , σ

2
m, σm,j

)]
dr (25)

and

λ
(
r |µm, µj , σ

2
m, σm,j

)
=

r − µm

σ2
m

(
σm,j

σ2
m

(r − µm) + µj

)
− σm,j

σ2
m

. (26)

Theorem 6 decomposes the price of an asset, in terms of expected return, into four components:

the price of time, the price of risk, the price of ambiguity, and the price of market participation. The

price of time, rf , is the pure risk-free rate of return, rewarding for the time value of money. The price

of risk, βR
j (1 − ζPj ) (E [rm]− rf ), is an additional expected return, rewarding for the systematic risk

borne, referred to as the risk premium. The price of ambiguity, βA
j (1 − ζPj ) (E [rm]− rf ), is a second

additional expected return, rewarding for the systematic ambiguity borne, referred to as the ambiguity
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premium. The participation price, ζPj (E [rm]− rf ), is a third discrete additional fixed expected return,

rewarding for the exposure to the fundamental ambiguity in the market, referred to as the participation

premium. All three premia are independent of investors’ attitudes toward risk and ambiguity, and

depend only on beliefs (information).

A marginal exposure to the market portfolio implies a proportional marginal exposure to risk. In

contrast, a marginal exposure to the market portfolio exposes the investor to a discrete fixed level of

ambiguity, for which the participation premium is rewarding. In other words, when moving away from

pure risk-free and ambiguity-free holdings, there is a discrete change in ambiguity, which exposes the

investor to the fundamental ambiguity of the market portfolio. The sum of these three premia—the

uncertainty premium—on the market portfolio, E [rm]− rf , is the aggregate excess return, rewarding

for risk and ambiguity borne by the market portfolio, m. The participation, risk, and ambiguity premia

on asset j are proportional to the uncertainty premium on m, as determined by the coefficients ζPj , β
R
j

and βA
j , respectively.

In the absence of ambiguity, µ and σ are certain for all assets, and so are µm, σm, and σm,j . In

this case, Theorem 6 reduces to the classical CAPM, in which only the systematic risk is rewarded.

This also holds true when all investors are ambiguity neutral, since then they compound probabilities

linearly.

Corollary 4. In the absence of ambiguity or in an economy with ambiguity-neutral investors, for

every asset j,

ζPj = 0, βR
j =

Cov [rm, rj ]

Var [rm]
, and βA

j = 0.

In Theorem 6, beta risk, βR
j , measures the sensitivity of asset j’s return to the market return. It

corresponds to the covariation of asset return and market return, which is assessed using expected

probabilities (linearly compounded first- and second-order probabilities). Since there is uncertainty

about probabilities, when investors are sensitive to ambiguity, the risk premium is adjusted for this

uncertainty through ζPj . In Theorem 6, beta ambiguity, βA
j , measures the sensitivity of asset j’s return

probabilities to the market return probabilities. It corresponds to the covariation of asset return prob-

abilities and market return probabilities, which is assessed using the second-order probabilities (the

joint probability distribution of the uncertain parameters µ and σ). This correspondence is formulated

by λ in the expression of beta ambiguity in Equation (24). By Equation (26), in λ, the component

µj − σm,j

σ2
m

µm reflects the uncertainty about the location of asset j’s return distribution.34 The addi-

34The difference µj − σm,j

σ2
m

µm can also be interpreted as the unexpected mean return. In this respect, Merton (1980)

argues that the mean return (the location of the distribution) is difficult to estimate precisely.
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tional component
σm,j

σ2
m

reflects the uncertainty about the precision of asset j’s return distribution (the

uncertainty about σ2
j ). Since return distributions are fully characterized by their mean and variance

(normally distributed), the uncertainty of the location and precision jointly generate the uncertainty

of the return distribution.

The greater the absolute value of Λ [rm, rj ], the greater the sensitivity of asset j’s return distri-

bution to the market return distribution and, accordingly, the greater the absolute value of βA
j . A

positive Λ [rm, rj ] implies a positive relation between asset j’s ambiguity and the market ambiguity,

resulting in a positive βA
j and a positive ambiguity premium. A negative Λ [rm, rj ] implies a nega-

tive relation between asset j’s ambiguity and the market ambiguity, resulting in a negative βA
j and a

negative ambiguity premium. The intuition for a negative βA
j is that investors are willing to pay (in

terms of a negative premium) for holding the asset in order to hedge against the ambiguity in the

market portfolio. For an asset with a positive βA
j (a positive covariation of asset return probabilities

and market return probabilities), investors ask for an additional positive premium as a reward for

bearing ambiguity.

The risk-free asset bears no risk and no ambiguity; accordingly, all three premia are identically

zero.

Corollary 5. For the risk-free asset,

ζPf = 0, βR
f = 0, and βA

f = 0.

It is possible for asset j to be characterized by βR
j ̸= 0 and βA

j = 0. This may happen when

the market return probabilities and asset j’s return probabilities are perfectly known.35 Notice that,

when the market return probabilities are uncertain, an asset with no ambiguity (with perfectly-known

probabilities) may still have a non-zero beta ambiguity if the correlation between the asset return and

the market return is uncertain. In this case, zeta participation would be positive. It is also possible for

an asset to be characterized by βR
j = 0 and βA

j ̸= 0. This may happen when the covariance between rj

and rm, assessed using the expected probabilities, is zero; e.g., when E [σrm,j ] = 0 and Cov [µm, µj ] = 0

(Lemma 1 in Appendix A.1). A special case is the zero-beta portfolio (or asset), for which βR
0 = 0 and

βA
0 = 0.

Corollary 6. For the zero-beta portfolio,

ζP0 =

√
f2 [rm]

1 + f2 [rm]
, βR

0 = 0, and βA
0 = 0.

35For example, when µj and σj are both certain (i.e., a risk-only asset) or the ambiguity of the market portfolio is
perfectly diversified in equilibrium, then Λ [rm, rj ] = 0 and βA

j = 0.
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Corollary 6 suggests that, in the presence of ambiguity, the excess return of the zero-beta portfolio

is not identically zero. Merton (1973) shows that the expected return of a risky asset may differ from

the risk-free rate, even for an asset with no systematic risk. He attributes this difference to shifts in

the investment opportunity set that are correlated with a zero-beta portfolio. In the ACAPM, this

difference is attributed to the zeta participation, which is non-zero even when the beta risk (systematic

risk) and the beta ambiguity (systematic ambiguity) are identically zero. Moreover, in the ACAPM,

the additional hedging portfolio, implied by Merton’s three-fund theorem, is not required.36

A special case considers the market portfolio, as defined in the next corollary.

Corollary 7. For the market portfolio,

ζPm =

√
f2 [rm]

1 + f2 [rm]
,

βR
m =

1 + f2 [rm]

1 + f2 [rm] + Λ [rm, rm]
and βA

m =
Λ [rm, rm]

1 + f2 [rm] + Λ [rm, rm]
.

Corollary 7 implies the following.

Corollary 8. For the market portfolio,

ζPm + βR
m

(
1− ζPm

)
+ βA

m

(
1− ζPm

)
= 1.

Thus,

βR
m + βA

m = 1.

Corollary 8 implies that βR
m + βA

m = 1, while in the classical CAPM βR
m = 1. In this respect,

the ACAPM can be viewed as decomposing the observable beta of the market portfolio into three

components: the first is derived from the systematic risk, the second from the systematic ambiguity,

and the third from the participation in the ambiguous market.

An important property of beta risk and beta ambiguity is stressed in the next proposition.

Proposition 1. Beta risk and beta ambiguity are both additive. That is,

βR
x = x′βR and βA

x = x′βA,

where β is a vector of the assets’ betas, and x is a vector of the proportions of the assets in the

portfolio.

Proposition 1 suggests that the beta ambiguity (risk) of an asset portfolio is the value-weighted

36In Merton (1973), the betas are formally defined by the correlations between the state variables dominating the
instantaneous investment opportunities and a non-tangency hedging portfolio.
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average of the beta ambiguity (risk) of the individual assets comprising the portfolio. It implies that,

similarly to the classical CAPM, the ACAPM is a linear beta pricing model. Consider a portfolio

consisting of n risky and ambiguous assets with proportions x = (x1, . . . , xn)
′. The expected excess

return of portfolio x can then be expressed as

E [rx]− rf = x′E [r]− rf =

(
x′ζP + x′βR

(
1− ζP

)
+ x′βA

(
1− ζP

))
(E [rm]− rf ) ,

where ζP is a vector of the assets’ zeta participation.

In the ACAPM, an optimal portfolio has the maximal expected return for a given level of con-

solidated risk and ambiguity. Since risk and ambiguity diversification do not necessarily coincide,

systematic risk and systematic ambiguity are optimal but not necessarily minimal. Similar to the

classical CAPM, investors are rewarded via a higher rate of return for the systematic risk and am-

biguity borne, while the idiosyncratic risk and ambiguity are not rewarded. However, idiosyncratic

risk in the ACAPM is different than in the standard CAPM, since in the latter optimal portfolios

have minimal risk. This difference in measuring idiosyncratic risk may help explain the idiosyncratic

volatility anomaly (Ang et al., 2006; Liu et al., 2018).

The ACAPM suggests that there may be a tradeoff between risk diversification and ambiguity

diversification. Theoretically, Uppal and Wang (2003) and Boyle et al. (2012) show that the presence

of ambiguity leads to a strong bias in portfolio holdings (under diversification), such that full risk

diversification is not optimal. Empirically, risk and ambiguity can be inversely related, such that

risk reduction incurs higher ambiguity (Izhakian and Yermack, 2017; Brenner and Izhakian, 2018;

Augustin and Izhakian, 2020). This inverse relation implies that, in the presence of ambiguity, a full

risk diversification may not be optimal. Recall that, in the presence of ambiguity, the equilibrium

asset proportions comprising the market portfolio may be different from those in the absence of

ambiguity. By identifying the equilibrium prices, Theorem 6 characterizes the optimal amounts of risk

and ambiguity, accounting for the tradeoff between the two.

Theorem 6 generalizes the classical CAPM and shows that the ambiguity premium on an asset is

proportional to the part of its ambiguity that is derived from the market ambiguity. In earlier models,

the ambiguity premium is attributed to the entire ambiguity of the market (e.g., Izhakian and Ben-

ninga, 2011; Ui, 2011) or of the asset (e.g., Chen and Epstein, 2002; Epstein and Ji, 2013). Theorem 6

adds to this literature the insight that the ambiguity premium corresponds to the covariation of asset

ambiguity with market ambiguity.
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6 The security market line

In the ACAPM, the security market line (SML) characterizes the linear relation between systematic

risk and ambiguity (captured by beta risk and beta ambiguity) and expected return. By Theorem 6,

the SML of the classical CAPM can be generalized to accommodate ambiguity and be defined as

follows.

Definition 2. The security market line is defined by

E [rj ] = rf + ζPj (E [rm]− rf )︸ ︷︷ ︸
Intercept

+
(
βR
j + βA

j

) (
1− ζPj

)
(E [rm]− rf )︸ ︷︷ ︸
Slope

. (27)

In Definition 2, the intercept of the SML, E [r0] = rf + ζPj (E [rm]− rf ), captures the time value of

money and the participation premium. The slope of the SML, (1 − ζPj ) (E [rm]− rf ), is the adjusted

risk and ambiguity premium on the market portfolio. The coefficient βR
j + βA

j corresponds to asset j’s

level of systematic risk and ambiguity.

Figure 1 provides a graphical representation of the SML in the presence and the absence of ambi-

guity. The x-axis depicts the magnitude of βR
j +βA

j , and the y-axis depicts the expected rate of return.

The sloped dashed line describes the SML in the absence of ambiguity, and the solid sloped line de-

scribes it in the presence of ambiguity. The SML slope in the presence of ambiguity is flatter than in

the absence of ambiguity. Specifically, in the presence of ambiguity, the slope is (1− ζPj ) (E [rm]− rf ),

while in the absence of ambiguity, it is E [rm] − rf . This implies that, in the presence of ambiguity,

assets with relatively low standard beta risk have a greater excess return (equity premium) than in

the classical CAPM; assets with relatively high standard beta risk have a smaller excess return than

in the classical CAPM.

All possible portfolios, efficient and inefficient, lie on the SML, where the risk-free asset is a point

of discontinuity on the SML. Every non-zero (even very small) holding of a non-risk-free asset bears

an exposure to the market fundamental ambiguity, which is rewarded by a fixed discrete participation

premium of size E [r0] − rf . In other words, the SML reflects a fixed premium, attributed to the

ambiguity borne by stock market participation. Since market values (prices) also reflect both ambi-

guity and the participation premia, in the presence of ambiguity, the equilibrium asset proportions

comprising the market portfolio may be different from those in the absence of ambiguity.

The theoretical SML delivered by the ACAPM in Definition 2 offers a possible explanation for

the inconsistency between the empirical SML and the SML predicted by the classical CAPM. The

SML delivered by the ACAPM might be more consistent with the empirical findings than the SML

delivered by the classical CAPM, and may explain some well-known related anomalies, including the
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zero-beta anomaly—the expected return being higher than the risk-free rate, even for assets having no

systematic risk (Black et al., 1972; Merton, 1973); the beta anomaly—the empirical SML being too flat

to be explained by the theoretical prediction of the classical CAPM (Black et al., 1972; Frazzini and

Pedersen, 2014); the idiosyncratic volatility anomaly—the idiosyncratic volatility being (negatively)

priced in contrast to the prediction of the classical CAPM (Ang et al., 2006; Liu et al., 2018)37; and

the size and value anomalies—the additional positive premia associated with firms with small market

capitalization and high book-to-market ratio (Fama and French, 1992).

Other extensions to the SML have been proposed in the literature. For example, Merton (1973)

extends the standard CAPM to hedging portfolios using three funds; Kraus and Litzenberger (1976)

extend the standard CAPM to accommodate return skewness, also using three different funds; and

Acharya and Pedersen (2005) extend the standard CAPM to accommodate liquidity risk, consisting of

a constant liquidation cost premium. In contrast to other models, to draw the SML in the ACAPM,

only two funds are required: the risk-free asset and the market portfolio.

7 Performance measures

A natural application of the mean-variance-ambiguity preferences would be to measure portfolios’

performance relative to their associated risk and ambiguity. A broadly used performance measure is

the Sharpe (1966) ratio, which measures the reward in terms of excess return per unit of the total

(systematic and idiosyncratic) risk borne. This ratio can be extended to account for ambiguity using

the CML in the mean-variance-ambiguity space.38 Definition 1 implies that the risk and ambiguity

premium per unit of the total consolidated risk and ambiguity borne can be measured by

E [rj ]− rf

Std [rj ]
√

1 + f2 [rj ]
.

A second broadly used performance measure is the Treynor (1965) ratio, which measures the reward

in terms of excess return per unit of systematic risk borne. This ratio can be extended to account for

systematic ambiguity using the SML delivered by the ACAPM in Definition 2.39 Definition 2 implies

that the risk and ambiguity premium per unit of the systematic risk and ambiguity borne can be

measured by

E [rj ]− rf

ζPj +
(
1− ζPj

)(
βR
j + βA

j

) .
A third broadly used performance measure is the Jensen (1968) alpha, which measures the abnor-

37Notice that under the ACAPM, the idiosyncratic volatility is reformulated due to the new structure of the SML,
which redefines the set of the optimal portfolios.

38Modigliani and Modigliani (1997) adjust the Sharpe ratio for portfolio leverage.
39Hübner (2005) extends the Treynor ratio to multiple indices.
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mal return over the theoretical expected return. The Jensen alpha can be extended to account for

ambiguity, using the theoretical expected return defined by the SML in Definition 2, as follows:40

rj − rf − ζPj (E [rm]− rf )−
(
βR
j + βA

j

) (
1− ζPj

)
(E [rm]− rf ) .

8 Empirical implications

The main contribution of the ACAPM is portraying a more realistic picture of uncertainty and its

effects on capital asset pricing. A second main contribution of the ACAPM is providing a theoretical

foundation of cross-sectional empirical tests. With the new structure of the SML introduced in Defi-

nition 2, the ACAPM can be tested empirically, paving the way for further understanding of the effect

of ambiguity on capital asset pricing. In this regard, it is important to note that the slope coefficient

of a linear regression test of assets’ excess return on the market’s excess return does not capture the

effect of ambiguity, since linear regression tests assume a known unique covariance matrix. Therefore,

beta risk, beta ambiguity, and zeta participation must be computed directly, as formulated in Theo-

rem 6. This can be done using the methodology to compute ambiguity presented in recent literature

(e.g., Izhakian and Yermack, 2017; Brenner and Izhakian, 2018; Augustin and Izhakian, 2020). These

estimates can then be used as the first-stage estimates in Fama and MacBeth’s (1973) cross-sectional

regression tests.

The introduction of an additional uncertainty factor—ambiguity—into capital asset pricing alters

the SML and thereby the identification of overvalued and undervalued assets. Similar to the standard

SML, assets above the SML are considered undervalued, since for a given degree of risk and ambiguity

they yield a relatively high return, implying a relatively low price. Assets below the SML are considered

overvalued, since for a given degree of risk and ambiguity they yield a relatively low return, implying a

relatively high price. However, due to the different structure of the SML in Definition 2 relative to the

standard SML, assets that are classified undervalued by the standard SML may be classified overvalued

by the SML in the presence of ambiguity and vice versa. This insight has important implications for

valuation and investment decisions.

The new structure of the theoretical SML delivered by the ACAPM in Definition 2 may address

the inconsistency between the empirical evidence about the SML and the theoretical SML predicted

by the classical CAPM (Fama and French, 1992, 2004). The theoretical intercept of the SML delivered

by the ACAPM is higher than that in the classical CAPM (due to the participation premium), which

may explain the zero-beta anomaly (Black et al., 1972; Merton, 1973). Specifically, the intercept of

the SML in the ACAPM is E [r0] = rf + ζPj (E [rm]− rf ), while in the classical CAPM it is rf . The

40Connor and Korajczyk (1986) develop multi-factor counterparts of the Jensen alpha.
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theoretical slope of the SML in the ACAPM is flatter than that in the classical CAPM, which may

explain the beta anomaly (Black et al., 1972; Frazzini and Pedersen, 2014). Specifically, the slope

of the SML in the ACAPM is (1 − ζPj ) (E [rm]− rf ), while in the classical CAPM it is (E [rm]− rf ).

Since the SML delivered by the ACAPM can be estimated from the data, it may help explain these

well-known asset pricing anomalies.

The SML in the ACAPM defines the set of optimal portfolios in the presence of ambiguity, and is

different from the SML in the classical CAPM. Therefore, it also redefines the idiosyncratic risk and

the idiosyncratic uncertainty (the consolidated idiosyncratic risk and ambiguity). This difference in

defining and measuring idiosyncratic risk may help explain the idiosyncratic volatility anomaly (Ang

et al., 2006; Liu et al., 2018). The size and value anomalies (Fama and French, 1992) may also be

explained by the ACAPM, since firms with high book-to-market ratios are characterized by highly

ambiguous investment opportunities (Herron and Izhakian, 2018, 2019).

9 Conclusion

This paper introduces a new capital asset pricing model that accounts for ambiguity—the uncertainty

of probabilities—a real-world situation in which probabilities of outcomes are not uniquely assigned.

It relaxes the main assumption of modern portfolio theory, according to which the probabilities of

returns are known, and instead assumes that probabilities are uncertain. In this view, the mean-

variance paradigm is generalized to a mean-variance-ambiguity paradigm, in which preferences are

characterized. The three-way tradeoff between risk, ambiguity, and expected return sheds new light

on capital asset pricing and optimal portfolio selection.

In general equilibrium, the mean-variance-ambiguity preferences deliver an important fundamental

result: the Tobin two-fund separation theorem holds true in the presence of ambiguity. That is,

optimally, every investor holds only two funds: the risk-free asset and the market portfolio (a unique

optimal portfolio of risky and ambiguous assets). The proportions allocated to these two funds are

determined by the investor’s aversions to risk and to ambiguity. Asset proportions, comprising the

market portfolio, may be different from those in the absence of ambiguity, since in the presence of

ambiguity, market values (prices) also reflect ambiguity and participation premia.

The mean-variance-ambiguity preferences provide the theoretical underpinning for the extension of

the classical capital asset pricing model (CAPM) to the Capital Asset Pricing Model under Ambiguity

(ACAPM). In this extended model, a closed-form representation of beta ambiguity, in addition to the

ambiguity-adjusted beta risk, is obtained. Asset prices in this model correspond to their systematic

risk and systematic ambiguity borne. In addition, asset prices consist of an added fixed participation

31



premium, generated by the market fundamental ambiguity. A natural application of the proposed

model is the generalization of the Treynor (1965) and Sharpe (1966) ratios to account for ambiguity,

allowing for the measurement of portfolios’ performance relative to their consolidated risk and ambi-

guity borne. A generalization of the Jensen (1968) alpha is demonstrated as well. These measures are

applicable in capital-budgeting estimations and in evaluating professionally managed portfolios.

The predictions of the classical CAPM are inconsistent with existing empirical findings, suggesting

that the slope of the empirical SML is flatter, and the intercept is higher than predicted by the

traditional theory; inconsistencies that generate multiple anomalies. The model that the current paper

introduces may help explain these empirical inconsistencies and the related anomalies, including the

zero-beta anomaly (Black et al., 1972; Merton, 1973); the beta-anomaly (Black et al., 1972; Frazzini

and Pedersen, 2014); the idiosyncratic volatility anomaly (Ang et al., 2006; Liu et al., 2018); and the

size and value anomalies (Fama and French, 1992).

The novel theoretical model, the ACAPM, introduced in this paper, provides important insights

that pave the way for further research into the three-way risk-ambiguity-return relation. This model

provides a theoretical foundation for empirical cross-sectional tests of the three-way tradeoff between

risk, ambiguity, and expected return. A notable merit of the model is that it is trackable, applicable,

and can be utilized in empirical studies, improving our understanding of capital asset pricing in the

financial markets. The model can also be used in other applications, including portfolio selection and

value at risk.

For more than half a century, the standard CAPM has been criticized for not portraying a realistic

picture reflecting the empirical evidence regarding the risk-return relation. While advancing the

literature toward addressing this puzzle, the model introduced in this paper may be further developed

to support broader settings. The concepts introduced in this paper may also stimulate further thinking

that will advance the literature toward a better understanding of the implication of ambiguity.
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A Appendix

A.1 Lemmata

Lemma 1. Suppose that y and z are distributed with uncertain means, µy and µz, and uncertain

variances, σ2
y and σ2

z . Their covariance, computed using the expected probabilities, is then

Cov [y, z] = E [σyz] + Cov [µy, µz] .

Lemma 2. Let f : R → R be some function. The volatility of the probabilities of x, Var [φ (x)], is

then uncorrelated with f(x). That is, Cov
[
f(x),Var [φ (x)]

]
= 0, implying that

E
[
f(x)Var [φ (x)]

]
= E

[
f(x)

]
E
[
Var [φ (x)]

]
,

where E is the expectation taken using either any P ∈ P or the expected probabilities; and Cov is the

covariance taken using either any P ∈ P or the expected probabilities.

Lemma 3. Let δ and α be constants. When r is normally distributed with an uncertain mean and an

uncertain variance, f2 [δ + αr] =
1

α2
f2 [r] for any α ̸= 0, and f2 [δ + αr] = 0 for α = 0.

Lemma 4. The expression

I =

∫
E

[
ϕ (r |x′µr,x

′Σrrx)

((
(r − x′µr)

2

x′Σrrx
− 1

)
Σrrx

x′Σrrx
+

(r − x′µr)µr

x′Σrrx

)]
Var [ϕ (r |x′µr,x

′Σrrx)] dr

is identically a vector of zeros.

Lemma 5. The expression

I =

∫
E
[
ϕ (r |µm, σm)λ

(
r |µm, µj , σ

2
m, σj,m

)]
Var [ϕ (r |µm, σm)] dr

is identically zero.

Lemma 6. Suppose that P consists of only normal probability distributions. The ambiguity f2 [x′r]

of the return x′r of asset portfolio x then satisfies

∂f2 [x′r]

∂x
= Θx2,

where

Θ =

∫
E [ϕ (r |x′µr,x

′Σrrx)] Cov

[
ϕ (r |x′µr,x

′Σrrx) , ϕ (r |x′µr,x
′Σrrx)

(
(r − x′µr)

2

x′Σrrx
− 1

)
Σrr

x′Σrrx

]
dr.
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A.2 Proofs

Proof of Lemma 1. The covariance can be written explicitly

Cov [y, z] =
∫ ∫

E [φ (y, z)] (y − E [y]) (z − E [z]) dydz =

∫ ∫
E [φ (y, z)] (y − E [µy]) (z − E [µz]) dydz,

where φ (y, z) stands for the joint distribution of y and z; and E [µy] is the expectation taken using

the second-order probabilities. The expectation over probabilities can be taken out to obtain

Cov [y, z] = E

[∫ ∫
φ (y, z)

(
(y − µy) + (µy − E [µy])

)(
(z − µz) + (µz − E [µz])

)
dydz

]
.

Organizing terms provides

Cov [y, z] = E

[∫ ∫
φ (y, z) (y − µy) (z − µz) dydz

]
+ E

[∫ ∫
φ (y, z) (y − µy) (µz − E [µz]) dydz

]
+

E

[∫ ∫
φ (y, z) (µy − E [µy]) (z − µz) dydz

]
+ E

[∫ ∫
φ (y, z) (µy − E [µy]) (µz − E [µz]) dydz

]
,

which simplifies to

Cov [y, z] = E [σyz] + Cov [µy, µz] .

Proof of Lemma 2. Let y = φ (x), then Var [φ (x)] can be written Var [y|x] = E[y2|x] − E2 [y|x] .

In turn, Cov
[
Var [φ (x)] , f(x)

]
can be written explicitly

Cov
[
Var [φ (x)] , f(x)

]
= E

[(
E[y2|x]− E2 [y|x]− E

[
E[y2|x]− E2 [y|x]

])(
f(x)− E [f(x)]

)]
= E

[
f(x)

(
E[y2|x]− E2 [y|x]

)]
− E

[
f(x)E

[
E(y2|x)− E2 [y|x]

]]
.

Applying the tower property to the first term and the law of iterated expectations to the second term

(e.g., Goldberger, 1991, page 47, T8), provides

Cov
[
Var [φ (x)] , f(x)

]
= E

[
f(x)

(
E[y2]− E2 [y]

)]
− E

[
f(x)E

[
E[y2]− E2 [y] | x

]]
.

By Karlin and Taylor (2012, page 8), E
[
f(x)E [g(y)|x]

]
= E

[
f(x)g(y)

]
. Therefore,

E

[
f(x)E

[
E[y2]− E2 [y] | x

]]
= E

[
f(x)

(
E[y2]− E2 [y]

)]
,

which completes the proof.

Proof of Lemma 3. Since Var [δ] = 0, Var
[
δ + αr | σ2

]
= α2σ2. Thus, the ambiguity of δ + αr

can be written explicitly

f2 [δ + αr] =

∫
E

[
1√

2πασ
e−

(r−δ−αµ)2

2α2σ2

]
Var

[
1√

2πασ
e−

(r−δ−αµ)2

2α2σ2

]
dr.

38



When α ≠ 0, changing the integration variable to r + δ and then to αr, provides

f2 [δ + αr] =

∫
E

[
1√

2πασ
e−

(r−µ)2

2σ2

]
Var

[
1√

2πασ
e−

(r−µ)2

2σ2

]
αdr =

1

α2
f2 [r] .

When α = 0, the probability of δ is constant and thus f2 [δ] = 0.

Proof of Lemma 4. Changing the order of integration provides

I = E

[∫
ϕ
(
r |x′µr,x

′Σrrx
)(((r − x′µr)

2

x′Σrrx
− 1

)
Σrrx

x′Σrrx
+

(r − x′µr)µr

x′Σrrx

)
Var

[
ϕ
(
r |x′µr,x

′Σrrx
)]

dr

]
.

By Lemma 2,

I = E


∫

ϕ
(
r |x′µr,x

′Σrrx
)(((r − x′µr)

2

x′Σrrx
− 1

)
Σrrx

x′Σrrx
+

(r − x′µr)µr

x′Σrrx

)
dr

×

∫
ϕ
(
r |x′µr,x

′Σrrx
)
Var

[
ϕ
(
r |x′µr,x

′Σrrx
)]

dr

 ,

which implies

I = E




Σrrx

x′Σrrx

∫
ϕ
(
r |x′µr,x

′Σrrx
)((r − x′µr)

2

x′Σrrx
− 1

)
dr

+
µr

x′Σrrx

∫
ϕ
(
r |x′µr,x

′Σrrx
) (

r − x′µr

)
dr


×

∫
ϕ
(
r |x′µr,x

′Σrrx
)
Var

[
ϕ
(
r |x′µr,x

′Σrrx
)]

dr


= 0.

Proof of Lemma 5. Writing the integral explicitly by substituting Equation (26) for

λ
(
r |µm, µj , σ

2
m, σm,j

)
provides

I =

∫
E

[
ϕ (r |µm, σm)

(
r − µm

σ2
m

(
σm,j

σ2
m

(r − µm) + µj

)
− σm,j

σ2
m

)]
Var [ϕ (r |µm, σm)] dr.

Changing the order of integration provides

I = E

[∫
ϕ (r |µm, σm)

(
r − µm

σ2
m

(
σm,j

σ2
m

(r − µm) + µj

)
− σm,j

σ2
m

)
Var [ϕ (r |µm, σm)] dr

]
.

By Lemma 2,

I = E


∫

ϕ (r |µm, σm)

(
r − µm

σ2
m

(
σm,j

σ2
m

(r − µm) + µj

)
− σm,j

σ2
m

)
dr

×

∫
ϕ (r |µm, σm)Var [ϕ (r |µm, σm)] dr


= E

[
µj

σ2
m

∫
ϕ (r |µm, σm) (r − µm) dr

∫
ϕ (r |µm, σm)Var [ϕ (r |µm, σm)] dr

]
= 0.

Proof of Lemma 6. Writing the ambiguity measure explicitly provides

f2
[
x′r
]

=

∫
E

[
1√

2πx′Σrrx
e
− (r−x′µr)

2

2x′Σrrx

]
Var

[
1√

2πx′Σrrx
e
− (r−x′µr)

2

2x′Σrrx

]
dr.
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Differentiating the expected probability with respect to x provides

I =
∂f2 [x′r]

∂E [·]
∂E [·]
∂x

=

∫
E

 e
− (r−x′µr)2

2x′Σrrx

√
2πx′Σrrx

((
(r − x′µr)

2

x′Σrrx
− 1

)
Σrrx

x′Σrrx
+

(r − x′µr)µr

x′Σrrx

)Var

 e
− (r−x′µr)2

2x′Σrrx

√
2πx′Σrrx

 dr.

By Lemma 4, I = 0. Differentiating the variance of probabilities with respect to x provides

II =
∂f2 [x′y]

∂Var [·]
∂Var [·]
∂x

= 2

∫
E

 e
− (r−x′µr)2

2x′Σrrx

√
2πx′Σrrx

Cov

 e
− (r−x′µr)2

2x′Σrrx

√
2πx′Σrrx

,
e
− (r−x′µr)2

2x′Σrrx

√
2πx′Σrrx

((
(r − x′µr)

2

x′Σrrx
− 1

)
Σrrx

x′Σrrx
+

(r − x′µr)µr

x′Σrrx

) dr.

Since r is symmetrically distributed around x′µr, and every entry of µr is symmetrically distributed,

II = 2

∫
E

 e
− (r−x′µr)

2

2x′Σrrx

√
2πx′Σrrx

Cov

 e
− (r−x′µr)

2

2x′Σrrx

√
2πx′Σrrx

,
e
− (r−x′µr)

2

2x′Σrrx

√
2πx′Σrrx

(
(r − x′µr)

2

x′Σrrx
− 1

)
Σrrx

x′Σrrx

 dr.

Thus,

∂f2 [x′r]

∂x
= I + II = Θx2,

where

Θ =

∫
E [ϕ (r |x′µr,x

′Σrrx)] Cov

[
ϕ (r |x′µr,x

′Σrrx) , ϕ (r |x′µr,x
′Σrrx)

(
(r − x′µr)

2

x′Σrrx
− 1

)
Σrr

x′Σrrx

]
dr.

Proof of Theorem 1. The first-order Taylor expansion of the right hand side (RHS) of Equation (8)

with respect to K, around 0, is

RHS = U(E [c]−K) = U (E [c])−KU′ (E [c]) + o (|c|) .

By Equations (3), the left hand side (LHS) of Equation (8) can be written

LHS =

∫
E [φ (c)] U (c) dc+ (28)

η

∫
c≤k

U(c) E [φ (c)] Var [φ (c)] dc− η

∫
c≥k

U(c) E [φ (c)] Var [φ (c)] dc+R2 (c) .

The second-order Taylor expansion of the first component of Equation (28) with respect to c, around
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E [c], is

I =

∫
E [φ (c)]

(
U(E [c]) + U′ (E [c]) (c− E [c]) +

1

2
U′′ (E [c]) (c− E [c])2 + o

(
|c− E [c]|2

))
dc

= U(E [c]) +
1

2
U′′ (E [c])Var [c] + o

(
E
[
|c− E [c]|2

])
.

By Judd (2003), the first-order Taylor expansion of U
(√

c2
)
with respect to c2, around E2 [c], can be

written41

U(c) =


U(E [c])−U′ (E [c])

1

2E [c]

(
c2 − E2 [c]

)
+ o

(
|c− E [c]|2

)
, c < k

U(E [c]) + U′ (E [c])
1

2E [c]

(
c2 − E2 [c]

)
+ o

(
|c− E [c]|2

)
, c ≥ k.

Since E [c] is relatively close to k and U (k) = 0, then U (E [c]) ≈ 0. Therefore, accounting for the sign

switch of E [φ (x)] when moving from a negative to a positive utility across k (Wakker and Tversky,

1993),42 the last two terms in Equation (28) can be written43

II = −η

∫
E [φ (c)] Var [φ (c)]

(
U′ (E [c])

1

2E [c]

(
c2 − E2 [c]

))
dc+RII,2 (c) ,

where RII,2 = o
(∫

E
[
|φ (c)− E [φ (c)]|3

]
cdc
)
as

∫
|φ (c)− E [φ (c)]| dc → 0 (see Izhakian, 2020,

Theorem 2). Since, by Lemma 2, Var [φ (c)] and
(
c2 − E2 [c]

)
are uncorrelated,

II = −ηU′ (E [c])
1

2E [c]

∫
E [φ (c)]

(
c2 − E2 [c]

)
dc

∫
E [φ (c)] Var [φ (c)] dc+RII,2 (c) .

Combining the LHS and the RHS (I and II), and substituting Equation (1) for U (E [c]) provides

K = γ 1
2Var [c] + η 1

2
1

E[c]Var [c]f
2 [c] +R2 (c) .

By I and II, R2 (c) = o
(
E
[
|c− E [c]|2

])
+ o
(∫

E
[
|φ (c)− E [φ (c)]|3

]
cdc
)
. Since,

o
(∫

E
[
|φ (c)− E [φ (c)]|3

]
cdc
)
is equivalent to o

(
E
[
|c− E [c]|3

])
, then R2 (c) = o

(
E
[
|c− E [c]|2

])
as |c− E [c]| → 0.

Proof of Theorem 2. To simplify notations, the superscript i, denoting an investor, is omitted.

By Equation (9),
∂F

∂E [c]
= 1+ η

1

2

Var [c]
E2 [c]

f2 [c] > 0,
∂F

∂Std [c]
= −γStd [c]− η

Std [c]
E [c]

f2 [c] ≤ 0, and

∂F

∂f [c]
= −η

Var [c]
E [c]

f [c] ≤ 0.

Proof of Theorem 3. To simplify notations, the superscript i, denoting an investor, is omitted.

41Judd (2003) shows that the Taylor expansion of f(x) can be improved by the change of variable x = h(y), i.e.,
writing x as a non-linear transformation of y, to obtain h-linearization, and expanding f(h(y)) with respect to y. Here,
the linearization is applied by c2.

42By Wakker and Tversky (1993), the sign switch is determined by a linear shift, which ensures that capacities
(perceived probabilities) are nonnegative. This can also be viewed through the Choquet integration over negative

functions, which takes the form

∫
fdQ =

∫
(f + c) dQ− c, where c > 0 such that f + c > 0.

43Note that II is of the order of cubic probabilities. Thus, it is smaller by two orders of magnitude than the probabilities,
and therefore smaller by two orders of magnitude than I.
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Let x ∈ Rn be the portfolio consisting of the risky and ambiguous assets, and r ∈ Rn be the vector of

returns on these assets. The Lagrangian in Equation (14) can then be written explicitly

L (xf ,x, θ) = E
[
xf (1 + rf ) + x′ (1+ r)

]
− γ

1

2
Var

[
x′r
]

(29)

−η
1

2

Var [x′r]

E [xf (1 + rf ) + x′ (1+ r)]
f2
[
x′r
]
− θ

(
(x̄f − xf ) + (x̄− x)′ 1

)
.

By Lemma 1, the variance of returns can be written Var [x′r] = x′E [Σrr]x + x′Σµrµrx. The first

order condition of the Lagrangian is, therefore,

∂L
∂x

= E [1+ r]−
(
E [Σrr] + E

[
Σ′

rr

]
+Σµrµr +Σ′

µrµr

)
xγ

1

2
(30)

−
(
E [Σrr] + E

[
Σ′

rr

]
+Σµrµr +Σ′

µrµr

)
xη

1

2

f2 [x′r]

E [xf (1 + rf ) + x′ (1+ r)]

+E [1+ r] η
1

2

Var [x′r]

E2 [xf (1 + rf ) + x′ (1+ r)]
f2
[
x′r
]

−∂f2 [x′r]

∂ (x)
η
1

2

Var [x′r]

E [xf (1 + rf ) + x′ (1+ r)]
+ 1θ = 0.

Since all covariance matrices are symmetric, and by Lemma 6,

∂L
∂x

= E [1+ r]

(
1 + η

1

2

Var [x′r]

E2 [xf (1 + rf ) + x′ (1+ r)]
f2
[
x′r
])

(31)

− (E [Σrr] +Σµrµr)x

(
γ + η

f2 [x′r]

E [xf (1 + rf ) + x′ (1+ r)]

)
−Θxη

Var [x′r]

E [xf (1 + rf ) + x′ (1+ r)]
+ 1θ = 0.

The additional conditions are

∂L
∂xf

= 1 + rf + (1 + rf ) η
1

2

Var [x′r]

E2 [xf (1 + rf ) + x′ (1+ r)]
f2
[
x′r
]
+ θ = 0 (32)

and

∂L
∂θ

= (x̄f − xf ) + (x̄− x)′ 1 = 0. (33)

By Equation (32),

θ = − (1 + rf )

(
1 + η

1

2

Var [x′r]

E2 [xf (1 + rf ) + x′ (1+ r)]
f2
[
x′r
])

. (34)

Substituting for θ into Equation (31), provides

0 = (E [r]− 1rf )

(
1 + η

1

2

Var [x′r]

E2 [xf (1 + rf ) + x′ (1+ r)]
f2
[
x′r
])

(35)

− (E [Σrr] +Σµrµr)x

(
γ + η

f2 [x′r]

E [xf (1 + rf ) + x′ (1+ r)]

)
−Θxη

Var [x′r]

E [xf (1 + rf ) + x′ (1+ r)]
.

Organizing terms completes the proof.

Proof of Theorem 4. Immediately obtained from Equation (15).
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Proof of Theorem 5. (i) By Theorem 4, the relative proportion of any two risky and ambiguous

assets is the same for any investor, independent of their preferences or wealth. Therefore, for any

investor, the holding of n risky and ambiguous assets is equivalent to holding a portion of the fund

containing the risky and ambiguous assets.

(ii) Since all risky and ambiguous assets comprising the fund are normally distributed, the return

of the fund is normally distributed (e.g. Papoulis and Pillai, 2002), with an uncertain mean and an

uncertain variance.

(iii) Immediately by Theorem 4.

Proof of Theorem 6. Suppose that the investor decides to allocate 1− α− ε of her wealth to the

risk-free asset, α > 0 to the market portfolio, and ε to some asset j. The maximization problem in

Equation (20) can then be written

max
α,ε

E [(1− α− ε) r0 + αrm + εrj ]− E [r0]

Std [1 + (1− α− ε) rf + αrm + εrj ]
√
1 + f2 [1 + (1− α− ε) rf + αrm + εrj ]− Std [r0]

√
1 + f2 [r0]

.

Since Std [·] and, by Lemma 3, f2 [·] are invariant to linear constant shifts in returns, the maximization

problem reduces to

max
α,ε

E [(1− α− ε) r0 + αrm + εrj ]− E [r0]

Std [αrm + εrj ]
√
1 + f2 [αrm + εrj ]− Std [r0]

√
1 + f2 [r0]

.

The first order condition with respect to α, evaluated at α = 1 and ε = 0, is

0 =
E [rm − r0]

Std [rm]
√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

− (36)

E [rm − r0](
Std [rm]

√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

)2
√
1 + f2 [rm]

Std [rm]
Var [rm]−

E [rm − r0](
Std [rm]

√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

)2 Std [rm]√
1 + f2 [rm]

1

2

∂f2 [αrm + εrj ]

∂α

∣∣∣∣
α=1,ε=0

.

Let

Λ [rm, rm] =
1

2

∂f2 [αrm + εrj ]

∂α

∣∣∣∣
α=1,ε=0

=
1

2

∫
E

e− (r−µm)2

2σ2
m√

2πσ2
m

λ
(
r |µm, σ2

m

)Var

e− (r−µm)2

2σ2
m√

2πσ2
m

 dr +∫
E

e− (r−µm)2

2σ2
m√

2πσ2
m

Cov

e− (r−µm)2

2σ2
m√

2πσ2
m

,
e
− (r−µm)2

2σ2
m√

2πσ2
m

λ
(
r |µm, σ2

m

) dr,

where

λ
(
r |µm, σ2

m

)
=

r (r − µm)

σ2
m

− 1.
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By Lemma 5,

Λ [rm, rm] =

∫
E

e− (r−µm)2

2σ2
m√

2πσ2
m

Cov

e− (r−µm)2

2σ2
m√

2πσ2
m

,
e
− (r−µm)2

2σ2
m√

2πσ2
m

λ
(
r |µm, σ2

m

) dr. (37)

Thus, by Equation (36),

E [rm − r0] = E [rm − r0]

(
1 +

Λ [rm, rm]

1 + f2 [rm]

)
Std [rm]

√
1 + f2 [rm]

Std [rm]
√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

.(38)

The first order condition with respect to ε, evaluated at α = 1 and ε = 0, is

0 =
E [rj − r0]

Std [rm]
√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

− (39)

E [rm − r0](
Std [rm]

√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

)2
√
1 + f2 [rm]

Std [rm]
Cov [rm, rj ]−

E [rm − r0](
Std [rm]

√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

)2 Std [rm]√
1 + f2 [rm]

1

2

∂f2 [αrm + εrj ]

∂ε

∣∣∣∣
α=1,ε=0

Let

Λ [rm, rj ] =
1

2

∂f2 [αrm + εrj ]

∂ε

∣∣∣∣
α=1,ε=0

=
1

2

∫
E

e− (r−µm)2

2σ2
m√

2πσ2
m

λ
(
r |µm, µj , σ

2
m, σm,j

)Var

e− (r−µm)2

2σ2
m√

2πσ2
m

 dr +∫
E

e− (r−µm)2

2σ2
m√

2πσ2
m

Cov

e− (r−µm)2

2σ2
m√

2πσ2
m

,
e
− (r−µm)2

2σ2
m√

2πσ2
m

λ
(
r |µm, µj , σ

2
m, σm,j

) dr,

where

λ
(
r |µm, µj , σ

2
m, σm,j

)
=

r − µm

σ2
m

(
σm,j

σ2
m

(r − µm) + µj

)
− σm,j

σ2
m

.

By Lemma 5,

Λ [rm, rj ] =

∫
E

e− (r−µm)2

2σ2
m√

2πσ2
m

Cov

e− (r−µm)2

2σ2
m√

2πσ2
m

,
e
− (r−µm)2

2σ2
m√

2πσ2
m

λ
(
r |µm, µj , σ

2
m, σm,j

) dr. (40)

Thus, by Equation (39),

E [rj − r0] = E [rm − r0]

(
Cov [rm, rj ]

Var [rm]
+

Λ [rm, rj ]

1 + f2 [rm]

)
Std [rm]

√
1 + f2 [rm]

Std [rm]
√
1 + f2 [rm]− Std [r0]

√
1 + f2 [r0]

.(41)

The ratio of Equations (41) and (38) is

E [rj − r0]

E [rm − r0]
=

Cov[rm,rj ]
Var[rm] +

Λ[rm,rj ]
1+f2[rm]

1 + Λ[rm,rm]
1+f2[rm]

,
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which implies

E [rj − r0]

E [rm − r0]
=

Cov [rm, rj ]

Var [rm]

1 + f2 [rm]

1 + f2 [rm] + Λ [rm, rm]
+

Λ [rm, rj ]

1 + f2 [rm] + Λ [rm, rm]
.

By Corollary 3,

E [r0] = rf + (E [rm]− rf )

√
f2 [rm]

1 + f2 [rm]
.

Substituting E [r0] and organizing terms completes the proof.

Proof of Proposition 1. The portfolio return is the proportion-weighted average return of the

assets in the portfolio. The covariance of the portfolio return and the market return is the weighted

average of the covariances of the assets return and the market return. Thus, by Theorem 6,

βR
x =

Cov [rm,x′r]

Var [rm]

1 + f2 [rm]

1 + f2 [rm] + Λ [rm, rm]
= x′Cov [rm, r]

Var [rm]

1 + f2 [rm]

1 + f2 [rm] + Λ [rm, rm]
= x′βR.

By the same consideration, the λ of a portfolio is the proportion-weighted average λs of the assets in

the portfolio. Thereby, the same holds true for the Λ and βA
x of the portfolio: Λ [rm,x′r] = x′Λ [rm, r]

and βR
x = x′βA.

Proof of Corollary 1. In equilibrium, the market clearing condition in Equation (7) holds true

for every asset. Thus, xj > 0 and the relative value of the asset is
xj

x′1 > 0.

Proof of Corollary 2. In equilibrium, the market value of every asset is unique (otherwise, the

law one price is violated and arbitrage opportunities exist), which implies that the proportion of each

asset in the portfolio is unique. Therefore, the market portfolio and the equilibrium are unique.

Proof of Corollary 3. The expected rate of return of a portfolio, whose risk tends to zero, can be

written

E [r0] = lim
α→0

(1− α) rf + αE [rm] .

Thus, by Equation (18) and Lemma 3,

E [r0] = rf + lim
α→0

αStd [rm]

√
1 +

1

α2
f2 [rm]

E [rm]− rf

Std [rm]
√
1 + f2 [rm]

= rf + (E [rm]− rf )

√
f2 [rm]

1 + f2 [rm]
.

The consolidated risk and ambiguity associated with E [r0] satisfies

Std [r0]
√
1 + f2 [r0] = lim

α→0
αStd [rm]

√
1 +

1

α2
f2 [rm] = Std [rm]f [rm] .

Proof of Corollary 4. In the absence of ambiguity, µm, σm, µj , σj and σm,j are constants. Thus,

f2 [rm] = 0 and Λ [rm, rj ] = 0. Equations (22), (23), and (24) then complete the proof.
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Proof of Corollary 5. Substituting rf for rj in Equations (22), (23) and (24) completes the proof.

Proof of Corollary 6. Immediately by Equations (22), (23) and (24).

Proof of Corollary 7. Immediately by Equations (22), (23) and (24).

Proof of Corollary 8. By Equation (21), ζPm+βR
m

(
1− ζPm

)
+βA

m

(
1− ζPm

)
= 1, which implies that

βR
m + βA

m = 1.
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