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We extend the branching di�usion Monte Carlo method of Henry-Labordère e.a.
[11] to the case of parabolic PDEs with mixed local-nonlocal analytic nonlineari-
ties. We investigate branching di�usion representations of classical solutions, and
we provide su�cient conditions under which the branching di�usion represen-
tation solves the PDE in the viscosity sense. Our theoretical setup directly leads
to a Monte Carlo algorithm, whose applicability is showcased in a stylized high-
dimensional example. As our main application, we demonstrate how the method-
ology can be used to value �nancial positions with defaultable, systemically im-
portant counterparties.
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1 Introduction

The objective of this article is to derive probabilistic representations of solutions of a certain
class of nonlinear parabolic partial di�erential equations with nonlocal terms in the nonlinear-
ity. The representation is based on a branching di�usion mechanism with jumps at branching
times and makes it possible to compute solutions by direct (non-nested) Monte Carlo simula-
tion, leading to a numerical algorithm that does not su�er from the curse of dimensionality.
The class of partial di�erential equations under consideration in this article takes the form

∂tu(t, x) +A[u](t, x) +

∫

Ξ
f
(
t, x, ξ,J [u](t, x, ξ)

)
γ(dξ) = 0, (PDE)
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whereA denotes the in�nitesimal generator of an Itō di�usion, i.e. a (possibly degenerate) lin-
ear partial di�erential operator of second order; J is a nonlocal operator; and the nonlinearity
f is analytic in the jump terms.
In recent years, starting with [10], there has been signi�cant progress in the realm of proba-
bilistic representations of partial di�erential equations with analytic nonlinearities acting on
zeroth- and �rst-order derivatives. We refer in particular to [12] for the zeroth-order case and
[11] for the �rst-order case. We also refer to [4] for an extension of the branching di�usion
approach to the case of locally analytic nonlinearities, [3] for the case of Lipschitz nonlinear-
ities, [13] for higher-order partial di�erential equations, and [1] for an extension to elliptic
equations. The main contribution of this article is to extend the branching di�usion approach
to the case of nonlocal terms inside the nonlinearity. This extension is achieved by introducing
jump marks in the branching di�usion underlying the probabilistic representation result: We
consider a branching di�usion similar to the one introduced in [12] with the additional feature
that, at each branching time, a subset of o�spring particles jumps away from their parent’s
position. We refer to the resulting object as a branching di�usion with jumps.1

Our main motivation behind the derivation of a probabilistic representation is to open up the
possibility to apply numerical algorithms for nonlocal nonlinear PDEs in high dimensions via
Monte Carlo simulation. The e�ectiveness and e�ciency of such algorithms is showcased in
an example of a nonlocal nonlinear PDE, which we solve in dimensions up to 100. In addition,
we show how our Monte Carlo methodology can be used in the pricing of (equivalently, the
computation of credit valuation adjustments for) �nancial positions where the counterparty
is a systemically important �nancial institution whose default causes a devaluation of the un-
derlying. This jump-at-default model represents a particularly realistic setup for wrong-way
risk; see, e.g., [5], [17] and [19]. Our Monte Carlo approach complements existing methods
by making it possible to price systemic defaultable positions for settings where the underlying
dynamics are not tractable by PDE methods as in, e.g., [6] or [14].
The remainder of the article is organized as follows: Section 2 provides the stochastic construc-
tion of the branching di�usion with jumps and derives a probabilistic representation of classical
solutions of (PDE) in terms of it. In Section 3 we conversely establish su�cient conditions for
the branching di�usion representation to yield a viscosity solution of (PDE). Section 4 illus-
trates how the branching di�usion representation allows for e�cient simulation of solutions
via the Monte Carlo method in a stylized high-dimensional example. Finally, in Section 5 we
showcase our methodology in the context of pricing with a systemically important, defaultable
counterparty.

1This is not to be confused with the straightforward notion of branching jump-di�usions, where jump terms
appear in the in�nitesimal generator A; see also the discussion below Theorem 2.4.
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2 Branching Di�usion Representations for Nonlocal PDEs

Throughout this paper, we �x a time horizon T > 0, a non-empty set I ⊆ Nm0 of multi-indices,
and a jump distribution γ on an abstract measurable space (Ξ,B). The goal of this section is
to provide a stochastic representation of a classical solution u : [0, T ]×Rd → R of a nonlocal
partial di�erential equation of the form

∂tu(t, x) +A[u](t, x) +

∫

Ξ
f
(
t, x, ξ,J [u](t, x, ξ)

)
γ(dξ) = 0, (PDE)

u(T, x) = g(x), (BC)

where
A[u](t, x) , µ(t, x)T Dx u(t, x) +

1

2
tr
[
σ(t, x)σ(t, x)T D2

x u(t, x)
]

is the in�nitesimal generator of a di�usion process; the nonlinearity

f : [0, T ]× Rd × Ξ× Rm → R, f(t, x, ξ, y) ,
∑

i∈I
ci(t, x, ξ)y

i

is (multivariate) analytic2 in y with measurable coe�cients ci : [0, T ]×Rd×Ξ→ R for i ∈ I ;
and the jump operator J is given by

J`[u](t, x, ξ) , u
(
t,Γ`(t, x, ξ)

)
for ` ∈ [1 : m]

where the jump maps Γ` : [0, T ]× Rd × Ξ→ Rd, ` ∈ [1 : m], are measurable.

2.1 Preliminaries

For n ∈ N, we denote by Nn ,
⋃n
ν=1 Nν the set of all N-words with length at most n and

by N ,
⋃
n∈NNn the set of �nite N-words. We work on a probability space (Ω,A,P) that

supports the following random variables, all of which are taken to be mutually independent:
• A family {W (k)}k∈N of independent Rd-valued Brownian motions that serve as driving

noise for the emerging di�usion processes with in�nitesimal generator A.
• A family {∆(k)}k∈N of i.i.d. Rd-valued random variables with distribution γ.
• A family {τ (k)}k∈N of i.i.d. R+-valued random variables serving as lifetimes of the par-

ticles underlying the branching mechanism. We assume that the distribution of τ (k),
k ∈ N, admits a continuous density ρ : R+ → R+ such that

F (T ) ,
∫ ∞

T
ρ(s)ds > 0 for all T > 0. (2.1)

• A family {I(k)}k∈N of i.i.d. I-valued random variables modeling the number of o�spring

2We use standard multi-index notation and write yi ,
∏m
`=1 y

i`
` for y ∈ Rm and |i| , ∑m

`=1 i`, i ∈ Nm0 . The
case of a multivariate polynomial obtains if I is �nite.
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of each particle as well as marks for their initial positions. We assume that

pi , P[I(k) = i] > 0 for all i ∈ I, k ∈ N and
∑

i∈I
|i|pi <∞.

In the following, we describe the branching mechanism and the spatial dynamics separately to
�nally obtain the branching di�usion representation of (PDE).

2.2 Branching Mechanism

We �x an initial time t ∈ [0, T ]. The branching mechanism is de�ned by recursion on succes-
sive generations, for each ω ∈ Ω.
Given a particle of generation n ∈ N labeled k = (k1, . . . , kn) ∈ Nn, we denote its parent
particle by k− , (k1, . . . , kn−1) ∈ Nn−1. The branching time of particle k is given by T (k)

t ,
(T

(k−)
t + τ (k)) ∧ T ; on the event {T (k)

t < T} the particle k is removed at time T (k)
t and

branches into |I(k)| descendants, which are labeled by (k1, . . . , kn, kn+1) ∈ Nn+1 for kn+1 ∈
[1 : |I(k)|]. We attach the jump mark J (k) , 1 to the �rst I(k)

1 particles, the mark J (k) , 2

to the following I(k)
2 particles, etc., so each o�spring particle k carries a mark J (k) ∈ [1 : m].

This iteration is well-de�ned and uniquely determines the branching dynamics if we assume
that the mechanism starts with a single particle with label (1) of generation 1 at time t and

(1)− , () , ∅ and T ∅t , t.

In the following, we only refer to k ∈ N as a particle if either k = (1) or if k− is a particle and
kn ∈ [1 : |I(k−)|]. Figure 1 below visualizes this branching mechanism.

We denote the random set of all particles of generation n ∈ N alive at time s ∈ [t, T ] by

Knt (s) ,
{{

k ∈ Nn : k is a particle and T (k−)
t ≤ s < T

(k)
t

}
if s ∈ [t, T ),{

k ∈ Nn : k is a particle and T (k)
t = T

}
if s = T.

The set of all particles of generation n alive before or at time s is given by

Knt (s) ,
⋃

r∈[t,s]

Knt (r).

Finally, the set of all particles alive at time s and the set of all particles alive before or at time s
are de�ned as

Kt(s) ,
⋃

n∈N
Knt (s) and Kt(s) ,

⋃

n∈N
Knt (s), respectively.

For ease of notation, we subsequently write

Knt , Knt (T ), Kt , Kt(T ), Knt , Knt (T ), Kt , Kt(T ).

4

Electronic copy available at: https://ssrn.com/abstract=3519164



t = T ∅t

(1)

T
(1)
t

(1, 1)

(1, 2)

(1, 3)

T
(1,1)
t

T
(1,2)
t

T
(1,3)
t

(1, 1, 1)

(1, 3, 1)

(1, 3, 2)

†

T
(1,1,1)
t

T
(1,3,1)
t

T
(1,3,2)
t

(1, 3, 2, 4)

†

†

†

T = T
(1,3,2,4)
t

Figure 1 Illustration of the branching mechanism (without jump marks).

As in Proposition 2.4 in [11], the total number of particles is almost surely �nite, i.e.

#Kt <∞;

see also Theorem IV.1.1 in [2] and Chapter VI §§12f. in [9].

2.3 Branching Di�usion Dynamics

The next step is to specify the dynamics of the individual particles. We �rst impose some
standard regularity assumptions on the coe�cient functions in the in�nitesimal generator A.

Assumption 1. The functions

µ : [0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×d

are measurable and satisfy the following Lipschitz and linear growth conditions: There exists a
constant L > 0 such that

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|, t ∈ [0, T ], x, y ∈ Rd,
|µ(t, x)|2 + |σ(t, x)|2 ≤ L2

(
1 + |x|2

)
, t ∈ [0, T ], x ∈ Rd. �

Under this assumption, classical results such as Theorem 3.21 in [18] imply that the stochastic
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di�erential equation

X
t,x
s = x, s ∈ [0, t],

dX
t,x
s = µ

(
s,X

t,x
s

)
ds+ σ

(
s,X

t,x
s

)
dW s, s ∈ [t, T ], (2.2)

admits a pathwise unique strong solution for each starting con�guration (t, x) ∈ [0, T ]× Rd.
Here,W is anRd-valued Brownian motion on (Ω,A,P) that is independent of all other random
variables that occurred so far. The natural �ltration of Xt,x augmented by all P-nullsets is
denoted by F

t,x
= {Ft,xs }s∈[0,T ]. An application of the results in Chapter 3.7 of [18] yields the

following:

Lemma 2.1 (Properties of the Di�usion). The random �eld {Xt,x
s }s,t∈[0,T ],x∈Rd de�ned via (2.2)

can be chosen such that it satis�es the following conditions:
(i) Continuity with respect to initial data: The map

X : [0, T ]× Rd × [0, T ]→ Rd, (t, x, s) 7→ X
t,x
s ,

is almost surely continuous.

(ii) Flow property: For all (t, x) ∈ [0, T ]× Rd and any [t, T ]-valued Ft,x-stopping time τ ,

X
τ,X

t,x
τ

τ+s 1{τ+s≤T} = X
t,x
τ+s1{τ+s≤T}, s ∈ [0,∞).

(iii) Strong Markov property: For all (t, x) ∈ [0, T ]×Rd and s ∈ [0,∞), for any [t, T ]-valued
F
t,x-stopping time τ , and for every bounded measurable function h : [0, T ] × Rd → Rd,

we have

E
[
h
(
τ + s,X

t,x
τ+s

)
1{τ+s≤T}

∣∣∣Ft,xτ
]

= E
[
h
(
τ + s,X

t,x
τ+s

)
1{τ+s≤T}

∣∣∣
(
τ,X

t,x
τ

)]
. �

The branching di�usion is constructed by attaching to each particle in the branching mecha-
nism a di�usion with the same dynamics as X , but with a di�erent driving noise and a suit-
able initial condition. To make this precise, we �x x ∈ Rd and de�ne for each k ∈ Kt with
k = (1, k2, . . . , kn) ∈ Nn an associated di�usion X(k) = Xk,t,x = {Xk,t,x

s }
s∈[T

(k−)
t ,T

(k)
t ]

as
the unique strong solution of

X
(k)

T
(k−)
t

= ΓJ(k)

(
T

(k−)
t , X

(k−)

T
(k−)
t

,∆(k−)
)

dX(k)
s = µ

(
s,X(k)

s

)
ds+ σ

(
s,X(k)

s

)
dW (k)

s , s ∈
[
T

(k−)
t , T

(k)
t

]
.

Note that this iteration is well-de�ned starting from X
(1)
t = x. It follows that X(k) has the

same dynamics as X , but with the di�erent, independent, driving noise W (k). The lifetime of
X(k) coincides with the lifetime of the particle k. Moreover, the initial value of X(k) is the
terminal value of the di�usionX(k−) associated with its parent particle k−, plus an additional
jump whose size is given by the jump map ΓJ(k) corresponding to its mark J (k) and the jump
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parameter ∆(k−). For later reference, we encode all information available up to generation
n ∈ N by setting

Fn , σ
(
W (k), τ (k),∆(k), I(k) : k ∈ Nn

)
.

For notational convenience, we furthermore write F0 , {∅,Ω} for the trivial σ-algebra. Fi-
nally, for n ∈ N0, we enlarge these σ-algebras by the branching time information of one future
generation, i.e. we set

Gn , Fn ∨ σ
(
τ (k) : k ∈ Nn+1

)
.

For n ∈ N and k ∈ Knt , we observe that

conditional on Gn−1, the laws of X(k) and X
T

(k−)
t ,X

(k)

T
(k−)
t on

[
T

(k−)
t , T

(k)
t

]
are identical.

We stress that X(k) and X
T

(k−)
t ,X

(k)

T
(k−)
t do not coincide pathwise since the dynamics of X(k)

are driven by W (k), while those of X
T

(k−)
t ,X

(k)

T
(k−)
t are driven by W . Replacing the driving

Brownian motion with a new, independent one for each o�spring particle – without changing
its distribution – will be the key step in the branching representation below.

2.4 Branching Di�usion Representation

We now address the branching di�usion representation of classical solutions of (PDE). To
begin with, we specify suitable boundedness assumptions on the coe�cient functions ci and
the terminal condition g.

Assumption 2. The functions g : Rd → R and ci : [0, T ] × Rd × Ξ → R, i ∈ I , in (PDE)
and (BC) are bounded and measurable.

In order for the possibly in�nite series in the nonlinearity of (PDE) to be de�ned unambigu-
ously, we subsequently agree on the following de�nition of classical solutions.

De�nition 2.2 (Classical Solution). Under Assumption 2, a continuous function

u : [0, T ]× Rd → R, (t, x) 7→ u(t, x)

is said to be a classical solution of (PDE) with terminal condition (BC) if
(i) u ∈ C1,2([0, T )× Rd);
(ii) for each (t, x) ∈ [0, T )× Rd, it holds that

∑

i∈I

∫

Ξ

∣∣ci(t, x, ξ)J [u](t, x, ξ)i
∣∣γ(dξ) < +∞;

(iii) and u satis�es (PDE) for each (t, x) ∈ [0, T )× Rd and (BC) for each x ∈ Rd. �
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We are now in a position to establish the main result of this section, which allows us to repre-
sent a classical solution of (PDE) by means of a functional of the branching di�usion. The key
idea is to introduce randomization across subsequent generations and subsequently exploit the
conditional independence structure.

Remark 2.3 (Randomization). We �x a particle k ∈ Knt of generation n ∈ N. By a slight abuse
of notation, we drop any indices pertaining to the initial position (t, x) and write

X , X
T (k−),X

(k)

T (k−) and (∆, τ, I) , (∆(k), τ (k), I(k)).

Under suitable regularity and integrability assumptions, any classical solution u of (PDE) ad-
mits a Feynman-Kac representation3 of the form

u
(
T (k−), X

(k)

T (k−)

)
= E

[
g
(
XT

)
+

∫ T

T (k−)

f
(
r,Xr,∆,J [u]

(
r,Xr,∆

))
dr
∣∣∣Fn−1

]

= E
[
g
(
XT

)
+

∫ T

T (k−)

∑

i∈I
ci
(
r,Xr,∆

)
J [u]

(
r,Xr,∆

)i
dr
∣∣∣Fn−1

]
. (2.3)

The key idea underlying the branching di�usion representation is to represent the right hand
side recursively in terms of the branching di�usion X(k), thus eliminating the integral, sum
and nonlinearity within the conditional expectation. More precisely, we claim that

u
(
T (k−), X

(k)

T (k−)

)

= E
[
1{T (k)=T}

g
(
X

(k)
T

)

F (T − T (k−))
+ 1{T (k)<T}

cI
(
T (k), X

(k)

T (k) ,∆
)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), X

(k)

T (k) ,∆
)I ∣∣∣Fn−1

]
.

(2.4)

Let us start by considering the �rst summand in (2.4). Since T (k) = (T (k−) + τ) ∧ T and X
and X(k) have the same conditional distribution given Gn−1, we have

E
[
1{T (k)=T}

g
(
X

(k)
T

)

F (T − T (k−))

∣∣∣Fn−1
]

= E
[
1{τ≥T−T (k−)}

g
(
XT

)

F (T − T (k−))

∣∣∣Fn−1
]
.

But then, since τ is independent of Fn−1 and X , we can simply integrate with respect to the
density of τ and use the de�nition of F in (2.1) to obtain

E
[
1{T (k)=T}

g
(
X

(k)
T

)

F (T − T (k−))

∣∣∣Fn−1
]

= E
[ g

(
XT

)

F (T − T (k−))
F (T−T (k−))

∣∣∣Fn−1
]

= E
[
g
(
XT

)∣∣Fn−1
]

as in (2.3). The second term in (2.4) is slightly more involved, but can be handled similarly:

3As demonstrated in its proof, this holds in particular under the conditions of Theorem 2.4.
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First, we use the conditional identity in law given Gn−1 of X and X(k) to obtain

E
[
1{T (k)<T}

cI
(
T (k), X

(k)

T (k) ,∆
)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), X

(k)

T (k) ,∆
)I ∣∣∣Fn−1

]

= E
[
1{T (k)<T}

cI
(
T (k), XT (k) ,∆

)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), XT (k) ,∆

)I ∣∣∣Fn−1
]
.

Next, independence of I and τ from all other objects involved allows us to integrate with
respect to the associated probability mass function and density, and we obtain

E
[
1{T (k)<T}

cI
(
T (k), XT (k) ,∆

)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), XT (k) ,∆

)I ∣∣∣Fn−1
]

= E
[∫ T

T (k−)

∑

i∈I
ci
(
r,Xr,∆

)
J [u]

(
r,Xr,∆

)i
dr
∣∣∣Fn−1

]
.

Combining the above equations, we have therefore argued that

E
[
1{T (k)<T}

cI
(
T (k), X

(k)

T (k) ,∆
)

ρ(T (k) − T (k−))pI
J [u]

(
T (k), X

(k)

T (k) ,∆
)I ∣∣∣Fn−1

]

= E
[∫ T

T (k−)

∑

i∈I
ci
(
r,Xr,∆

)
J [u]

(
r,Xr,∆

)i
dr
∣∣∣Fn−1

]

and thus (2.4) holds. The key advantage of (2.4) is that the nonlinearity is represented via

J [u]
(
T (k), X

(k)

T (k) ,∆
)I

=

m∏

`=1

u
(
T (k),Γ`

(
T (k), X

(k)

T (k) ,∆
))I` ,

where it is possible to iterate over all generations of particles, using conditional independence
across generations: Indeed, the terms Γ`(T

(k), X
(k)

T (k) ,∆
(k)) appearing as arguments in the

function u correspond to the initial positions of the particles of generation n+ 1. This leads to
the branching di�usion representation made rigorous in Theorem 2.4 below. �
We next state the �rst main result of this paper: A branching di�usion representation of clas-
sical solutions of (PDE).

Theorem 2.4 (Branching Representation of Classical Solutions). Suppose Assumptions 1 and 2
hold, let u : [0, T ] × Rd → R be a classical solution of (PDE) satisfying (BC) and �x (t, x) ∈
[0, T ]× Rd. For each n ∈ N0, iteratively de�ne the random variables4 Gt,x0 , Ct,x0 , 1,

Gt,xn , Gt,xn−1

∏

k∈Kn

g(X
(k)
T )

F (T − T (k−))
and Ct,xn , Ct,xn−1

∏

k∈Kn\Kn

cI(k)(T
(k), X

(k)

T (k) ,∆
(k))

ρ(T (k) − T (k−))pI(k)

4For notational convenience, we suppress the dependence on (t, x) on the right hand sides of these de�nitions
but highlight here that X(k) = Xk,t,x and T (k) = T

(k)
t as well as Kn = Knt and Kn = Knt .
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and

Rt,xn ,
∏

k∈Kn+1

g(X
(k)
T )

F (T − T (k−))

×
∏

k∈Kn+1\Kn+1

cI(k)(T
(k), X

(k)

T (k) ,∆
(k))J [u]

(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

ρ(T (k) − T (k−))pI(k)
,

and set
Ψt,x
n , Gt,xn Ct,xn Rt,xn and Ψt,x , lim

n→∞
Ψt,x
n . (2.5)

Suppose that
(i) the family {Ψt,x

n }n∈N0 is uniformly integrable;
(ii) for every (s, y) ∈ [t, T ]× Rd, it holds that

∑

i∈I
E
[∫ T

s

∫

Ξ

∣∣ci(r,Xs,y
r , ξ)J [u]

(
r,X

s,y
r , ξ

)i∣∣γ(dξ)dr
]
< +∞;

(iii) for any (s, y) ∈ [t, T ]× Rd, the local martingale

M s,y ,
∫ ·

s
Dx u(r,X

s,y
r )σ(r,X

s,y
r )dW r

is a martingale.
Then Ψt,x is integrable and u admits the branching di�usion representation

u(t, x) = E[Ψt,x]. �

Before we turn to the proof, note that unwinding the de�nitions we have Ψt,x = Gt,xCt,x where

Gt,x =
∏

k∈K

g(X
(k)
T )

F (T − T (k−))
and Ct,x =

∏

k∈K\K

cI(k)(T
(k), X

(k)

T (k) ,∆
(k))

ρ(T (k) − T (k−))pI(k)

so the branching di�usion representation in Theorem 2.4 can be written more explicitly as

u(t, x) = E
[∏

k∈K

g(X
(k)
T )

F (T − T (k−))

∏

k∈K\K

cI(k)(T
(k), X

(k)

T (k) ,∆
(k))

ρ(T (k) − T (k−))pI(k)

]
.

Proof of Theorem 2.4. Since limn→∞Ψt,x
n = Ψt,x and {Ψt,x

n }n∈N0 is uniformly integrable, it
follows from Vitali’s theorem that Ψt,x is integrable and limn→∞ E[Ψt,x

n ] = E[Ψt,x]. Hence, to
prove the result, it su�ces to show that

u(t, x) = E[Ψt,x
n ] for each n ∈ N0. (2.6)
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Step 1. Using Itō’s lemma and the fact that u solves (PDE) subject to (BC), we have

u(s, y) = u(T,X
s,y
T )−

∫ T

s

[
∂tu(r,X

s,y
r ) +A[u](r,X

s,y
r )
]
dr −M s,y

T

= g(X
s,y
T ) +

∫ T

s

∫

Ξ
f
(
r,X

s,y
r , ξ,J [u]

(
r,X

s,y
r , ξ

))
γ(dξ)dr −M s,y

T

for any (s, y) ∈ [t, T ] × Rd. Fix a particle k ∈ Kn of generation n ∈ N, write X(k) ,
X
T (k−),X

(k)

T (k−) , and note that (T (k−), X
(k)

T (k−)) isFn−1-measurable. Choosing (s, y) = (T (k−), X
(k)

T (k−))
in the Itō representation above, taking conditional expectations and using (ii) and (iii) we obtain

u(T (k−), X
(k)

T (k−)) = E
[
g(X

(k)
T ) +

∫ T

T (k−)

∫

Ξ
f
(
r,X

(k)
r , ξ,J [u]

(
r,X

(k)
r , ξ

))
γ(dξ)dr

∣∣∣Fn−1
]
.

Since ∆(k) has distribution γ, is independent of Fn−1 and X(k) and ∆(k) are independent, it
follows that

u(T (k−), X
(k)

T (k−)) = E
[
g(X

(k)
T ) +

∫ T

T (k−)

f
(
r,X

(k)
r ,∆(k),J [u]

(
r,X

(k)
r ,∆(k)

))
dr
∣∣∣Fn−1

]
,

and by the argument in Remark 2.3 this can be further rewritten as

u(T (k−), X
(k)

T (k−)) = E
[
1{T (k)=T}

g
(
X

(k)
T

)

F (T − T (k−))

+ 1{T (k)<T}
cI(k)

(
T (k), X

(k)

T (k) ,∆
(k)
)

ρ(T (k) − T (k−))pI(k)
J [u]

(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)∣∣∣Fn−1

]
.

(2.7)

Step 2. We establish (2.6) by induction on n. For n = 0, let k = (1) be the only particle of
generation 1, recall that F0 is trivial, and note that (2.7) rewrites as

u(t, x) = E
[
1{T (k)=T}

g
(
X

(k)
T

)

F (T − T (k−))

+ 1{T (k)<T}
cI(k)

(
T (k), X

(k)

T (k) ,∆
(k)
)
J [u]

(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

ρ(T (k) − T (k−))pI(k)

]

= E
[
Rt,x0

]
= E

[
Ψt,x

0

]
.

Now, let n ∈ N and suppose that the claim is true for n− 1, i.e.

u(t, x) = E
[
Ψt,x
n−1

]
= E

[
Gt,xn−1Ct,xn−1Rt,xn−1

]
. (2.8)

Let k ∈ Kn be an arbitrary particle of generationn. On the event {k ∈ Kn\Kn} = {T (k) < T},
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the particle k branches into |I(k)| o�spring particles (k, kn+1), kn+1 ∈ [1 : |I(k)|], of which the
�rst I(k)

1 have mark 1, i.e. jump to Γ1

(
T (k), X

(k)

T (k) ,∆
(k)
)
, the next I(k)

2 have mark 2, i.e. jump
to Γ2

(
T (k), X

(k)

T (k) ,∆
(k)
)
, and so forth. Thus, on the event {k ∈ Kn \ Kn}, we have

J [u]
(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

=

m∏

`=1

u
(
T (k),Γ`

(
T (k), X

(k)

T (k) ,∆
(k)
))I(k)`

=

|I(k)|∏

kn+1=1

u
(
T (k), X

(k,kn+1)

T (k)

)
=

∏

k∈Kn+1
, k−=k

u
(
T (k−), X

(k)

T (k−)

)

=
∏

k∈Kn+1
, k−=k

E
[
1{T (k)=T}

g
(
X

(k)
T

)

F (T − T (k−))

+ 1{T (k)<T}
c
I(k)

(
T (k), X

(k)

T (k)
,∆(k)

)
J [u]

(
T (k), X

(k)

T (k)
,∆(k)

)I(k)

ρ(T (k) − T (k−))p
I(k)

∣∣∣Fn
]
,

where the �nal identity is due to (2.7). Thus using Fn-conditional independence of individual
o�spring particles, we have

∏

k∈Kn\Kn
J [u]

(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

= E
[ ∏

k∈Kn+1

(
1{T (k)=T}

g
(
X

(k)
T

)

F (T − T (k−))

+ 1{T (k)<T}
c
I(k)

(
T (k), X

(k)

T (k)
,∆(k)

)
J [u]

(
T (k), X

(k)

T (k)
,∆(k)

)I(k)

ρ(T (k) − T (k−))p
I(k)

)∣∣∣∣Fn
]

= E
[
Rt,xn

∣∣Fn
]
. (2.9)

But then, using (2.9) and the de�nition ofRt,xn−1, we obtain

Rt,xn−1 =
Gt,xn
Gt,xn−1

Ct,xn
Ct,xn−1

∏

k∈Kn\Kn
J [u]

(
T (k), X

(k)

T (k) ,∆
(k)
)I(k)

=
Gt,xn
Gt,xn−1

Ct,xn
Ct,xn−1

E
[
Rt,xn

∣∣Fn
]
.

Plugging this into (2.8) yields the claim since (Gt,xn , Ct,xn ) is Fn-measurable and thus

u(t, x) = E
[
Gt,xn−1Ct,xn−1Rt,xn−1

]
= E

[
Gt,xn Ct,xn E

[
Rt,xn

∣∣Fn
]]

= E
[
Ψt,x
n

]
.

Remark 2.5. A su�cient condition for (ii) in Theorem 2.4 to hold is that ‖u‖∞ ≤ 1 and∑
i∈I ‖ci‖∞ < +∞; (iii) holds if Dx u and σ are bounded. If u is bounded, similar arguments

as in Section 3.2 can be used to obtain su�cient conditions for (i). �
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The branching di�usion representation in Theorem 2.4 can be extended in several ways: Upon
combining our approach with that in [11], one can also treat mixed local-nonlocal nonlinear-
ities that include �rst-order derivatives. Moreover, the notion of branching di�usions with
jumps can also be extended to that of branching jump-di�usions with jumps, allowing for an
additional (linear) nonlocal term in the in�nitesimal generator.

3 Viscosity Solutions and Branching Di�usion Representations

In the previous section, our point of view was to start with a classical solution of (PDE) and de-
rive its branching di�usion representation. This result was achieved under the assumption that
a classical solution exists. In this section, we study the converse question: Can the branching
di�usion representation be used to de�ne a solution of the PDE? It is clear that the branching
di�usion representation does in general not yield a su�ciently regular solution to qualify as a
classical solution, hence we subsequently work with the weaker concept of viscosity solutions.
The main result of this section gives su�cient conditions under which the branching di�usion
representation de�nes a viscosity solution of (PDE). We then derive conditions under which the
family {Ψt,x}(t,x)∈[0,T ]×Rd is uniformly integrable, which implies one of the key assumptions
needed to obtain the viscosity property of the branching di�usion representation.

3.1 Viscosity Solutions of Nonlocal Nonlinear PDEs

We �rst provide a de�nition of viscosity solutions of (PDE) appropriate to deal with the non-
local terms in the nonlinearity.

De�nition 3.1 (Viscosity Solution). Suppose Assumption 2 holds and let u : [0, T ] × Rd → R
be a continuous function such that

∑

i∈I

∫

Ξ

∣∣ci(t, x, ξ)J [u](t, x, ξ)i
∣∣γ(dξ) < +∞ for all (t, x) ∈ [0, T )× Rd.

We say that
1. u is a viscosity subsolution of (PDE) if for all (t, x) ∈ [0, T ) × Rd and all test functions
ϕ ∈ C1,2([0, T ]× Rd) with ϕ(t, x) = u(t, x) and ϕ ≥ u we have

−∂tϕ(t, x)−A[ϕ](t, x)−
∫

Ξ
f(t, x, ξ,J [u](t, x, ξ))γ(dξ) ≤ 0;

2. u is a viscosity supersolution of (PDE) if for all (t, x) ∈ [0, T )×Rd and all test functions
ϕ ∈ C1,2([0, T ]× Rd) with ϕ(t, x) = u(t, x) and ϕ ≤ u we have

−∂tϕ(t, x)−A[ϕ](t, x)−
∫

Ξ
f(t, x, ξ,J [u](t, x, ξ))γ(dξ) ≥ 0;

3. u is a viscosity solution of (PDE) if it is both a viscosity sub- and supersolution. �
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With this de�nition in place, we can state our second main result.

Theorem3.2 (Viscosity Property of the Branching Representation). For all (t, x) ∈ [0, T ]×Rd,
let Ψt,x be given as in (2.5) and de�ne

u : [0, T ]× Rd → R, (t, x) 7→ u(t, x) , E
[
Ψt,x

]
. (3.1)

In addition to Assumptions 1 and 2, assume that the SDE coe�cients µ, σ and the PDE coe�cients
ci, i ∈ I , and g are continuous. Moreover, suppose that the following conditions are satis�ed for
all (t, x) ∈ [0, T ]× Rd:

(i) There exists ε > 0 such that the family {Ψs,y}(s,y)∈Bε(t,x) is uniformly integrable.

(ii) There exist δ > 0 and a measurable function ζ : I × Rd → R such that
∣∣ci(s, y, ξ)J [u](s, y, ξ)i

∣∣ ≤ ζ(i, ξ) for all (s, y) ∈ Bδ(t, x)

with ∑

i∈I

∫

Ξ
|ζ(i, ξ)|γ(dξ) < +∞.

(iii) It holds that

∑

i∈I
E
[∫ T

t

∫

Ξ

∣∣∣ci
(
s,X

t,x
s , ξ

)
J [u]

(
s,X

t,x
s , ξ

)i∣∣∣γ(dξ)ds
]
< +∞.

Then u is a viscosity solution of (PDE). �

Note that if
∑

i∈I ‖ci‖∞ < +∞ and ‖u‖∞ ≤ 1 (as in Remark 2.5), then conditions (ii) and (iii)
are satis�ed; su�cient conditions for (i), which simultaneously imply boundedness of u, are
given in Section 3.2 below.

Proof. Note that the uniform integrability assumption (i) implies that Ψt,x ∈ L1(P) and hence u
is well-de�ned. Moreover, Lemma 2.1 and continuity of ci, i ∈ I , and g guarantee that (t, x) 7→
Ψt,x is continuous, so u is continuous by Vitali’s theorem. Finally, condition (ii) guarantees that
u satis�es the integrability conditions required on viscosity solutions in De�nition 3.1.
Step 1. We �x (t, x) ∈ [0, T )× Rd. As before, we drop the index (t, x) in some of the random
variables and processes to simplify notation. Moreover, we set

(
X, I,∆

)
,
(
X(1), I(1),∆(1)

)
.

We �rst observe that
1{T (1)=T}Ψ

t,x = 1{T (1)=T}
g(XT )

F (T − t)
as well as

1{T (1)<T}Ψ
t,x = 1{T (1)<T}

cI(T
(1), XT (1) ,∆)

ρ(T (1) − t)pI
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×
∏

k∈K\{(1)}

g
(
X

(k)
T

)

F (T − T (k−))

∏

k∈K\(K∪{(1)})

cI(k)
(
T (k), X

(k)

T (k) ,∆
(k)
)

ρ(T (k) − T (k−))pI(k)

= 1{T (1)<T}
cI(T

(1), XT (1) ,∆)

ρ(T (1) − t)pI

|I|∏

k2=1

Ψ
T (1),X

(1,k2)

T (1) .

Using the de�nition of the branching di�usion and conditional independence structure, we �nd
that

E
[ |I|∏

k2=1

Ψ
T (1),X

(1,k2)

T (1)

∣∣∣F1
]

=

|I|∏

k2=1

m∑

`=1

1{J(1,k2)=`}E
[
Ψs,y

]∣∣
(s,y)=(T (1),Γ`(T (1),X

T (1) ,∆))

= J [u]
(
T (1), XT (1) ,∆

)I
.

Putting these equations together and using the tower property of conditional expectation, it
follows as in Remark 2.3 that

u(t, x) = E
[
E[Ψt,x|F1]

]

= E
[
1{T (1)=T}

g(XT )

F (T − t) + 1{T (1)<T}
cI
(
T (1), XT (1) ,∆

)
J [u]

(
T (1), XT (1) ,∆

)I

ρ(T (1) − t)pI

]

= E
[
g
(
XT

)
+

∫ T

t

∫

Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
. (3.2)

For ε > 0, we now introduce the stopping time

τε , inf
{
s ≥ t : |Xs − x| ≥ ε

}
∧ (t+ ε) ∧ T.

From (3.2), the �ow property and the strong Markov property of X as noted in Lemma 2.1, in
combination with the conditional version of Fubini’s theorem, which is applicable by (iii), it
follows that u satis�es the dynamic programming representation

u(t, x) = E
[
u
(
τε, Xτε

)
+

∫ τε

t

∫

Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
. (3.3)

Step 2. From the dynamic programming representation (3.3), the viscosity property of u follows
by standard arguments. To keep the presentation self-contained, we provide a proof of the
subsolution property (the supersolution property is established analogously). We �x a test
functionϕ ∈ C1,2([0, T ]×Rd) withϕ(t, x) = u(t, x) andϕ ≥ u. By the dynamic programming
representation and Itō’s lemma, we �nd that

ϕ(t, x) = u(t, x)

= E
[
u
(
τε, Xτε

)
+

∫ τε

t

∫

Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
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≤ E
[
ϕ
(
τε, Xτε

)
+

∫ τε

t

∫

Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]

= E
[
ϕ(t, x) +

∫ τε

t
∂tϕ(s,Xs) +A[ϕ](s,Xs)

+

∫

Ξ
f
(
s,Xs, ξ,J [u]

(
s,Xs, ξ

))
γ(dξ)ds

]
.

For (s, y) ∈ [0, T ]× Rd, we now de�ne

Iϕ(s, y) , ∂tϕ(s, y) +A[ϕ](s, y) +

∫

Ξ
f(s, y, ξ,J [u](s, y, ξ))γ(dξ)

to arrive at
E
[∫ τε

t
Iϕ(s,Xs)ds

]
≥ 0.

From condition (ii) and dominated convergence, it follows that I is continuous. But then

0 ≤ E
[∫ τε

t
Iϕ(s,Xs)ds

]
≤ E[τε − t] max

(s,y)∈Bε(t,x)
Iϕ(s, y)

and thus, since E[τε − t] > 0,
max

(s,y)∈Bε(t,x)
Iϕ(s, y) ≥ 0.

Letting ε ↓ 0 allows us to conclude that Iϕ(t, x) ≥ 0, so u is a viscosity subsolution in the
sense of De�nition 3.1.

3.2 Su�icient Conditions for Uniform Integrability of {Ψt,x}
In this section, we provide a rami�cation of the results in [11] for branching di�usions with
jumps to give su�cient conditions for uniform integrability of {Ψt,x} as required in Theo-
rem 3.2.

Theorem 3.3 (Integrability Conditions). Let κ ∈ (1,∞) and de�ne

C1 , ‖g‖κ∞
F (T )κ−1

and C2 , sup
i∈I, t∈[0,T ]

(‖ci‖∞
ρ(t)pi

)κ−1

.

Then the family {Ψt,x}(t,x)∈[0,T ]×Rd is bounded in Lκ(P), and in particular uniformly integrable,
in either of the following two cases:

(i) It holds that
C1

F (T )
∨ C

κ
κ−1

2 ≤ 1.

(ii) The power series
∑

i∈I ‖ci‖∞x|i| is nonzero5 and has an in�nite radius of convergence, and
5Otherwise (PDE) becomes linear; for that case the branching approach becomes unnecessary.
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the terminal time T > 0 is su�ciently small in that

T <

∫ ∞

C1

(
C2

∑

i∈I
‖ci‖∞x|i|

)−1
dx. �

Proof. Fix some (t, x) ∈ [0, T ]× Rd. By de�nition of Ψt,x, we have

∣∣Ψt,x
∣∣κ =

∏

k∈K

∣∣g
(
X

(k)
T

)∣∣κ

F (T − T (k−))κ

∏

k∈K\K

∣∣cI(k)
(
T (k), X

(k)

T (k) ,∆
(k)
)∣∣κ

∣∣ρ(T (k) − T (k−))pI(k)
∣∣κ .

With this, under condition (i), and since F is decreasing we immediately �nd that

E
[
|Ψt,x|κ

]
≤ E

[∏

k∈K

C1

F (T )

∏

k∈K\K
C

κ
κ−1

2

]
≤ E

[∏

k∈K

C1

F (T )
∨ C

κ
κ−1

2

]
≤ 1

and the proof is complete. Let us therefore subsequently assume that we are in case (ii); we
follow the approach of [11, Theorem 3.12]. The basic idea is to identify an upper bound χ∞
for |Ψt,x|κ that can itself be regarded as a branching estimator for an ODE admitting a global
solution. First note that

E
[
|Ψt,x|κ

]
≤ E

[∏

k∈K

C1

F (T − T (k−)
t )

∏

k∈K\K

C2‖cI(k)‖∞
ρ(T (k) − T (k−))pI(k)

]
. (3.4)

Now consider the the following ODE to be solved backwards in time:

η̇(t) + C2

∑

i∈I
‖ci‖∞η(t)|i| = 0, t ∈ [0, T ]; η(T ) = C1. (3.5)

De�ne the map

ϕ : [C1,∞)→ [0,∞], y 7→ ϕ(y) ,
∫ y

C1

(
C2

∑

i∈I
‖ci‖∞x|i|

)−1
dx.

Since the power series is non-degenerate, ϕ is a continuous mapping that is strictly increasing
where �nite. Upon rearranging and integrating the ODE, note that η ∈ C1([0, T ]) is a solution
of (3.5) if and only if

−
∫ T

t

(
C2

∑

i∈I
‖ci‖∞η(t)|i|

)−1
η̇(s)ds =

∫ T

t
1ds, t ∈ [0, T ]; η(T ) = C1,

and the substitution x , η(s) shows that this is the case if and only if

ϕ(η(t)) =

∫ η(t)

C1

(
C2

∑

i∈I
‖ci‖∞x|i|

)−1
dx = T − t, t ∈ [0, T ].
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Since ϕ is strictly increasing where it is �nite, the latter statement is equivalent to

T ∈ range(ϕ) ∩ R =
{
ξ ∈ R : 0 ≤ ξ ≤

∫ ∞

C1

(
C2

∑

i∈I
‖ci‖∞z|i|

)−1
dz
}
.

Thus condition (ii) on T is both necessary and su�cient to guarantee the existence of a solution
η of ODE (3.5) on [0, T ]. With this, we are now able to de�ne

χn ,
∏

k∈
n⋃
ν=1
Kν

C1

F (T − T (k−))

∏

k∈
n⋃
ν=1
Kν\Kν

C2‖cI(k)‖∞
ρ(T (k) − T (k−))pI(k)

∏

k∈Kn+1

η(T (k−))

as well as

χ∞ , lim
n→∞

χn =
∏

k∈K

C1

F (T − T (k−))

∏

k∈K\K

C2‖cI(k)‖∞
ρ(T (k) − T (k−))pI(k)

.

By analogous arguments as in Remark 2.3, we obtain

η(t) = η(T ) +

∫ T

t
C2

∑

i∈I
‖ci‖∞η(s)|i|ds = E[χ1] = . . . = E[χn], t ∈ [0, T ]; n ∈ N.

But then, thanks to (3.4) and Fatou’s lemma, it follows that

E
[
|Ψt,x|κ

]
≤ E[χ∞] ≤ lim inf

n→∞
E[χn] = η(t) ≤ sup

t∈[0,T ]
η(t) <∞,

and the proof is complete.

Under the conditions of Theorem 3.3, it follows in particular that {Ψt,x}(t,x)∈[0,T ]×Rd is bounded
in L1(P), so the function u : [0, T ]× Rd → R, u(t, x) , E[Ψt,x] is in fact bounded.
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4 Monte Carlo Simulation: A High-Dimensional Example

The representation (3.1) derived in Theorem 3.2 makes it possible to compute solutions of (PDE)
by direct (non-nested, plain vanilla) Monte Carlo simulation. To illustrate the e�ectiveness and
e�ciency of the branching Monte Carlo algorithm, we consider the following stylized problem
in d ≥ 1 dimensions:

∂tu(t, x) +
1

2d2
∆u(t, x) +

∫

Rd

∑

i∈I
ci(t, x)u(t, x)i1u(t, x+ ξ)i2γ(dξ) = 0

u(T, x) = cos(1Td x).

Here ∆ denotes the Laplace operator in Rd; the time horizon is T = 1; γ is the discrete uniform
distribution supported on6 {−(π/2)ei ∈ Rd : i ∈ [1 : d]}; and the set of possible descendants
is given by I , {i ∈ N2

0 : |i| ≤ 2} with coe�cients

c(0,0)(t, x) = (α+ 1/(2d)) cos(1Td x) exp{α(T − t)}+ cos(1Td x)2/d− 1/(2d),

c(1,0)(t, x) = (−1) · cos(1Td x) exp{−α(T − t)}/d,
c(0,1)(t, x) = (−1) · c(1,0)(t, x),

c(2,0)(t, x) = c(0,2)(t, x) = exp{−2α(T − t)}/(2d),

c(1,1)(t, x) = (−2) · c(2,0)(t, x),

where α = 0.2. It is not hard to verify that the solution is given in closed form by

u(t, x) = cos(1Td x)eα(T−t) = cos
(∑d

i=1xi
)
eα(T−t), (t, x) ∈ [0, T ]× Rd.

We refer to u as the exact solution and use it as a benchmark to quantify the error of the
estimates produced by our algorithm. All subsequent simulation results correspond to the
initial con�guration (t, x) = (0, 1d), i.e. we determine u∗ , u(0, 1d).
The choice of parameters for the branching di�usion is reported in Table 1.

Parameter Value
Law(τ (1)) Γ(κ, θ) with κ = 0.5 and θ = 2.5
p(0,0) 1/3

p(1,0), p(0,1), p(1,1) 1/6
p(2,0), p(0,2) 1/12

Table 1 Parameters of the branching di�usion.

Our simulation study is conducted as follows: Given a spatial dimension d ∈ N and a number
of Monte Carlo simulations N , a simulation run consists of computing the estimator ûd,N of
u∗ as the average of N i.i.d. copies {Ψ0,1d

n }n∈[1:N ] of Ψ0,1d . All numerical computations are
implemented in Matlab.7 Table 2 presents the simulation results for the estimator ûd,N for

6Here ei denotes the ith unit vector in Rd.
7Hardware: Intel Core i7-6700 (3.40 GHz) with 31.2 GiB RAM; Linux Mint OS (18.1 Serena); no parallelization.
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several values of d and N .
HHHHHN

d 3 5 10 20 50 100

102 -1.6463 (0.255) 0.3150 (0.130) -0.9049 (0.131) 0.4225 (0.068) 1.2471 (0.122) 1.3105 (0.109)
103 -1.2254 (0.124) 0.3240 (0.043) -1.0134 (0.037) 0.4909 (0.019) 1.1319 (0.038) 1.0323 (0.034)
104 -1.2643 (0.054) 0.3573 (0.014) -1.0311 (0.012) 0.5013 (0.006) 1.1668 (0.012) 1.0488 (0.011)
105 -1.1758 (0.017) 0.3492 (0.005) -1.0260 (0.004) 0.4956 (0.002) 1.1797 (0.004) 1.0549 (0.003)
106 -1.2064 (0.007) 0.3485 (0.001) -1.0262 (0.001) 0.4969 (0.001) 1.1791 (0.001) 1.0536 (0.001)
u∗ -1.2092 0.3465 -1.0248 0.4984 1.1786 1.0532

Table 2 Simulation results for ûd,N , standard deviation in brackets.

To quantify the accuracy of the Monte Carlo algorithm, we further denote the relative error
compared to the exact solution by

errrel(ûd,N ) , |ûd,N − u
∗|

|u∗|

and report our simulation results in Table 3.

HHHHHN
d 3 5 10 20 50 100

102 33.6% (36.1%) 30.1% (26.7%) 8.9% (7.2%) 9.9% (7.8%) 7.8% (5.7%) 7.9% (6.3%)
103 13.5% (14.5%) 10.9% (8.8%) 3.1% (2.4%) 3.3% (2.4%) 2.5% (2.0%) 2.6% (2.1%)
104 4.4% (4.3%) 3.5% (2.6%) 0.8% (0.6%) 1.0% (0.8%) 0.8% (0.7%) 0.7% (0.6%)
105 1.6% (1.4%) 1.0% (0.8%) 0.3% (0.2%) 0.3% (0.2%) 0.3% (0.2%) 0.2% (0.2%)
106 0.6% (0.4%) 0.3% (0.3%) 0.1% (0.1%) 0.1% (0.1%) 0.1% (0.1%) 0.1% (0.1%)

Table 3 Relative error errrel(ûd,N ), standard deviation in brackets.8

The algorithm is able to achieve high levels of accuracy even for high dimensions of d = 50
and d = 100, provided N is su�ciently large. Note that in this example the precision of the
results actually increases with the dimension d; this is in line with Theorem 3.3, as in the above
speci�cation the norm ‖ci‖∞ appearing in the constant C2 decreases with d.
At the same time, the running times required to achieve these levels of accuracy are rather
modest; the exact values are reported in Table 4.

8 Estimates and standard deviations are based on 100 mutually independent simulation runs of ûd,N .
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HHHHHN
d 3 5 10 20 50 100

102 0.1 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
103 0.1 (0.0) 0.2 (0.0) 0.2 (0.0) 0.1 (0.0) 0.2 (0.0) 0.2 (0.0)
104 1.4 (0.1) 1.5 (0.1) 1.5 (0.1) 1.5 (0.1) 1.6 (0.1) 3.2 (0.1)
105 14.3 (0.5) 14.4 (0.3) 14.4 (0.3) 14.6 (0.3) 15.2 (0.3) 16.7 (0.3)
106 140.8 (1.1) 140.5 (1.4) 141.2 (1.3) 142.5 (1.0) 162.2 (4.6) 185.5 (14.9)

Table 4 Running time (in seconds) to compute ûd,N , standard deviation in brackets.8

Finally, Figure 2 displays the relative error, the standard deviation, and the running time as
functions of the number of Monte Carlo samples N . As expected from the Central Limit The-
orem, the slope in the logarithmic plot of the standard deviation is approximately −1/2. The
running times also demonstrate that there is no curse of dimensionality e�ect.
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Figure 2 Simulation results.
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5 Valuation with Systemically Important Counterparties

In this section we illustrate the usefulness of the theory developed in this article in the valuation
of �nancial positions with systemic counterparty credit risk. Speci�cally, we assume that the
counterparty in a given �nancial position is a systemically important bank (SIB);9 its systemic
importance is captured by jumps in the underlying risk factors, or equivalently devaluations
in risky asset prices, that occur upon the SIB’s default. This model setup was �rst proposed
by [19]; see also [5] and [17]. We wish to stress that our focus here is on situations where
�nite-di�erence or �xed point methods for the pricing PDE (as developed by, e.g., [6] or [14])
are not applicable.

5.1 Valuation with Systemic Risk

We consider a �nancial market that is free of arbitrage; the underlying probability measure
(denoted by P in the preceding sections) is taken as the relevant risk-neutral pricing measure
Q. The �nancial market consists of a locally riskless money market account B = {Bt}t∈[0,T ]

and d ∈ N dynamically traded risky assets with pricesX = {Xt}t∈[0,T ] given by an Rd+-valued
semimartingale such that X/B is a local Q-martingale. The �nancial position whose price is
to be determined promises a time-T payo� g(XT ) where g is a bounded measurable function
of the underlyings X , provided the counterparty does not default before time T .
Crucially, the counterparty in this �nancial position is a defaultable, systemically important
bank (SIB). This means that (i) the �nancial position is subject to credit risk; and (ii) if and
when the SIB counterparty defaults, there is a negative impact on risky asset prices X , which
simultaneously a�ects the value of the �nancial position g(XT ). Assuming fractional recovery
of post-default mark-to-market value as in [7], risk-neutral pricing yields

Vt
Bt

= EQ
t

[
1{τ>T}

g(XT )

BT
+ 1{τ≤T}

h(Vτ )

Bτ

]
on {τ > t} (5.1)

where V represents the value of the �nancial position provided the counterparty has not de-
faulted; τ is the (original) counterparty’s default time; and the recovery value the investor
retrieves is given by h(Vτ ), where h(v) , Rv+ − v− with a recovery rate R ∈ [0, 1]. Note
that in (5.1), Vτ represents the time-τ mark-to-market price of an identical �nancial position
with an SIB counterparty that has not defaulted, but is otherwise identical to the original one,
immediately after the original counterparty’s default. In particular, Vτ is based on post-default
risky asset prices Xτ = Xτ− + ∆Xτ .
Speci�cally, we assume that default events are modeled within a classical reduced-form frame-
work, and that the risk-neutral dynamics ofX are given by an Rd+-valued jump di�usion. Thus
the SIB counterparty’s default time is given by

τ , inf{t ≥ 0 : Yt 6= 0}
9A list of banks classi�ed as globally systemically important by the Financial Stability

Board is available at http://www.fsb.org/work-of-the-fsb/policy-development/addressing-si�s/
global-systemically-important-�nancial-institutions-g-si�s.
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where Y = {Yt}t∈[0,T ] is a Cox process with intensity {λ(t,Xt)}t∈[0,T ], and the risk-neutral
dynamics of B and X are given by

dBt = r(t,Xt)Btdt

dXt = diag(Xt−)
[
µ(t,Xt−)dt+ σ(t,Xt−)dWt + ∆YtdYt

]
, X0 = x

where {∆n}n∈N are i.i.d. E , (−1,∞)d-valued and independent of Y and W , and

µ(t, x) , r(t, x)1d − λ(t, x)E[∆1].

In particular, the SIB counterparty’s default triggers a simultaneous devaluation in the �nancial
position’s underlyings of size ∆1. The corresponding pricing PDE is given by

∂tu(t, x)+A?[u](t, x)−r(t, x)u(t, x)+λ(t, x)

∫

E

(
h◦u

(
t, x+diag(ξ)x

)
−u(t, x)

)
ν(dξ) = 0

subject to the boundary condition u(T, x) = g(x), where ν denotes the distribution of ∆n,
n ∈ N, and the operator A? is given by

A?[u](t, x) , µ(t, x)T diag(x) Dx u(t, x) +
1

2
tr
[
diag(x)σ(t, x)σ(t, x)T diag(x) D2

x u(t, x)
]
.

Note that, similarly as in other credit risk valuation problems with recovery of mark-to-market
value, the pricing formula (5.1) and the corresponding pricing equation are inherently implicit,
with the price to be determined appearing inside the nonlinearity that represents the recovery
value (see, e.g., [6] or [14] and the references therein); with the additional complication that
jumps at default imply that this term is also non-local.

5.2 Branching Di�usion with Jumps Approach

In order to solve the pricing equation, we follow §5 in [10] and approximate the recovery
function h by a polynomial. Thus we assume without loss that ‖g‖L∞ ≤ 1 (since g is bounded,
this can always be achieved by appropriate rescaling) and approximate the recovery value
function using v± ≈∑M

m=0 α
±
mv

m, v ∈ [−1, 1]; we obtain

∂tu(t, x) +A?[u](t, x)−
[
r(t, x) + λ(t, x)

]
u(t, x)

+

∫

E

M∑

m=0

[
Rα+

m − α−m
]
λ(t, x)u

(
t, x+ diag(ξ)x

)m
ν(dξ) = 0. (5.2)

Hence, setting I , {(`,m) ∈ [0 : M ]2 : ` = 0 or m = 0} we can rewrite (5.2) as

∂tu(t, x) +A?[u](t, x) +

∫

E

∑

i∈I
ci(t, x)u

(
t, x+ diag(ξ)x

)i
ν(dξ) = 0, (5.3)

u(T, x) = g(x),
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Figure 3 Approximation of h by a polynomial.

where the coe�cients c(`,m), (`,m) ∈ I , are given by

c(0,m)(t, x) , [Rα+
m − α−m]λ(t, x) for m ∈ [0 : M ]

c(1,0)(t, x) , −[r(t, x) + λ(t, x)] and c(`,0)(t, x) , 0 for ` ∈ [2 : M ].

Since (5.3) is a special case of (PDE), the branching di�usion with jumps approach developed
in this paper can be applied to compute the solution via u(0, x) = E[Ψ0,x] with

Ψ0,x ,
∏

k∈K

g(X
(k)
T )

F (T − T (k−))
×

∏

k∈K\K, I(k)=(1,0)

−
r(T (k), X

(k)

T (k)) + λ(T (k), X
(k)

T (k))

ρ(T (k) − T (k−))p(1,0)

×
M∏

m=0

∏

k∈K\K, I(k)=(0,m)

[Rα+
m − α−m]λ(T (k), X

(k)

T (k))

ρ(T (k) − T (k−))p(0,m)

.

HereX(k) , Xk,0,x, k ∈ K , K0, is a branching di�usion with jumps as speci�ed in Section 2,
where the dynamics of each individual particle k ∈ K are given by

dX
(k)
t = diag

(
X

(k)
t−
)[
µ
(
t,X

(k)
t−
)
dt+ σ

(
t,X

(k)
t−
)
dWt

]
, t ∈ [T (k−), T (k)],

with initial conditions

X
(1)
0 = x and X

(k)

T (k−) ,
{
X

(k−)

T (k−) if I(k) = (1, 0),

X
(k−)

T (k−) + diag
(
∆(k−)

)
X

(k−)

T (k−) else.
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5.3 Numerical Illustration

While our setup and Monte Carlo methodology allow for general di�usion dynamics and ar-
bitrary dimensionality in the underlying risky assets, for illustration we use a baseline Black-
Scholes-Merton model, enhanced by the SIB’s credit risk with constant default intensity and
devaluations captured by the model of Kou [16]. Thus we take Y as a Poisson process with
intensity λ ≥ 0; the riskless rate r ∈ R is constant; and g has a single underlying (d = 1) with
volatility σ > 0. Jumps at default are such that − log(1 + ∆) is exponentially distributed with
parameter η ≥ 0. We consider two �nancial positions representing a shifted put and shifted
discount call, respectively, i.e.

gshort(XT ) , (K −XT )+ − L and glong(XT ) = L− (K −XT )+.

Figure 4 provides an illustration of the corresponding payo�s.

0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

Figure 4 Payo� pro�les gshort and glong with K = 2 and L = 1.

To quantify the impact of systemic risk, we compare the valuations of the �nancial positions
gshort and glong in three benchmark scenarios that are identical in all respects, except the choice
of counterparty:

• SIB counterparty: The counterparty is systemically important, and their default triggers
devaluations in risky asset prices (see above).

• Non-SIB counterparty: The counterparty is non-systemic, but otherwise identical to the
SIB; in particular, it is defaultable with the same credit risk characteristics as the SIB.

• Default-free counterparty: There is no counterparty credit risk.10

In all three scenarios, the SIB is part of the model and will cause devaluations upon default; the
scenarios thus di�er only in the choice of counterparty and the resulting wrong- or right-way

10In this scenario, the pricing PDE becomes linear and can be solved in closed form; see, e.g., [15] or [16].
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risk. The implementation of the branching di�usion with jumps is based on the parameters
speci�ed in Table 6. In contrast to Section 4, where we deliberately employ a non-accelerated
standard Monte Carlo method for performance analysis, here we exploit standard techniques
for variance reduction such as control variates and parallelization, see [8] and [15].11 The
relevant model and simulation parameters are reported in Tables 5 and 6; note in particular
that the expected devaluation upon the SIB’s default is −50%.

Coe�cient T r σ R η x K L

Value 1 0.5% 25% 40% 1 1 2 1

Table 5 Market coe�cients.

Parameter Value
N 8.8 · 106

Law(τ) Γ(κ, θ) with κ = 0.5 and θ = 2.5
M 4(

α±0 , . . . , α
±
4

)
(0.06,±0.50, 0.82, 0.00,−0.41)

p(0,0) q0
p(`,0) qloc · q` for ` ∈ [1 : M ]
p(0,m) (1− qloc) · qm for m ∈ [1 : M ]

qloc
|r+λ|

|r+λ|+λ·∑M
m=0 |Rα

+
m−α−m|

qm
|c(1,0)|2·1{m=1}+|c(0,m)|·

∑M
m=0 |c(0,m)|

|c(1,0)|2+(
∑M

m=0 |c(0,m)|)2
for m ∈ [0 : M ]

Table 6 Simulation parameters.

Figures 5 through 7 display our simulation results for di�erent speci�cations of the default in-
tensity. Figure 5 illustrates the impact of systemic interaction for the �nancial position gshort:
Devaluations imply a positive correlation between the SIB’s default events and underperform-
ing risky asset prices, causing signi�cant wrong-way risk for short positions. While this is
qualitatively apparent, the quantitative size of this e�ect, in particular relative to the non-SIB
counterparty, is remarkable.
In Figure 6 we thus decompose the implied SIB spread (i.e., the di�erence between the value of
an otherwise identical �nancial position with a default-free counterparty and that with an SIB
counterparty) into (i) a pure credit risk component (green), which we identify with the spread
between the non-systemic defaultable counterparty and the default-free one, and (ii) a systemic
risk component (red), which is present only due to the counterparty’s systemic importance. It
is apparent that systemic risk is the main driver of the spread, accounting for 80− 85% of the
total spread across realistic default intensities.
Finally, Figure 7 demonstrates that the e�ect is reversed for long positions; we might refer
to this as right-way risk, i.e. negative correlation between the counterparty’s default and the
value of the �nancial position. Technically, the systemic risk component turns negative, and
the spread becomes signi�cantly smaller than for a non-systemic counterparty.
11The control variate is the default-free price.
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Figure 5 Valuation of gshort as a function of the counterparty’s default intensity (with 99%-con�dence
bands).
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Figure 6 Decomposition of the SIB spread into credit risk (green) and systemic risk (red).
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Figure 7 Valuation of g2 as a function of the counterparty’s default intensity (with 99%-con�dence
bands).

To conclude, this paper has developed a branching di�usion with jumps approach to solving
parabolic PDEs with nonlocal nonlinearities. We have showcased the performance of the re-
sulting non-nested Monte Carlo methodology, and we have demonstrated how it applies to the
valuation of �nancial positions with systemic counterparties and mark-to-market recovery.
Several extensions to the above pricing model are conceivable within the setup of this paper,
including stochastic recovery rates, shocks to state variables (e.g., volatilities), idiosyncratic
jumps in asset prices, and margin periods of risk.

Declarations of Interest. Daniel Ho�mann and Frank Seifried gratefully acknowledge �-
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