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1 Introduction

Risk premia for holding financial assets vary over time (Campbell and Shiller (1988), Fama

and French (1989), Lettau and Ludvigson (2001), Cochrane (2011)). Traditional factor asset

pricing models (for example, Fama and French (1993) and Carhart (1997)) describe these

premia with risk prices (lambdas) demanded by investors for each unit of exposure (beta)

to a financial or macroeconomic source of risk. Although the predominant methods to test

asset pricing models like the two-step regression procedure of Fama and MacBeth (1973)

(in the following referred to as the FMB procedure) rely on constant lambdas and betas,

the appropriateness of this assumption has been largely doubted (Jagannathan and Wang

(1996), Ghysels (1998)).

Recent estimation approaches (Adrian et al. (2015), Gagliardini et al. (2016), Adrian

et al. (2019)) formulate lambdas as functions of instrument variables generating the risk

price dynamics. These approaches are advantageous for testing asset pricing theories which

suggest drivers of risk premia. However, employing inappropriate explaining instruments

or leaving out relevant ones may yield to misleading results if one is mainly interested

in filtering time-varying risk premia. Empirical research in dynamic asset pricing would

therefore benefit from methods that allow for exploring risk price and exposure dynamics

implied solely by the cross-sectional model specification rather than dynamics prescribed by

additional external forecast variables. Knowledge of these agnostic dynamics can in turn

offer a better understanding of risk premia dynamics in asset pricing theories. In addition,

financial professionals can benefit from adequately predicted risk premia time series in their

hedging and forecasting duties.

The method presented in this paper allows for estimating dynamic versions of cross-

sectional factor asset pricing models without specifying forecast or instrument variables for

driving time dynamics. In every period, the idea is to evaluate current pricing errors with

an observation density, implied by the factor model, to disentangle how much mispricing can

be attributed to variation in parameters and update them accordingly. For the choice of the
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direction and intensity of this parameter updating, I follow the general approach by Creal

et al. (2013) and Harvey (2013) who propose to update parameters in econometric models

towards the direction of the gradient of the log likelihood, the so-called score, evaluated

at the current observation. Hence, parameters are pushed towards the direction with the

steepest increase in the likelihood function pointed out by the gradient. I therefore model

betas and lambdas as unobserved components whose dynamics are driven by the scaled

score of the observation density evaluated at the current observation in order to reduce the

one-step-ahead prediction error.

This Generalized Autoregressive Score (GAS)1 framework by Creal et al. (2013) has been

applied successfully in numerous applications in time series analysis and financial economet-

rics.2 This papers’ main contribution is the introduction of a general framework for dynamic

asset pricing models with GAS parameter dynamics. The resulting score-driven likelihood-

based asset pricing model (SLAPM) works for every linear (cross-sectional) factor model

that can be analyzed using the traditional FMB procedure and generates latent risk price

and exposure dynamics. Lambda and beta series are estimated from asset returns and cross-

sectional risk factor data only. Estimation and inference can be carried out according to the

maximum likelihood principle.

Optimal updating schemes for time-varying lambdas and betas with respect to the ob-

servational likelihood are derived in case of elliptically distributed asset returns and show

an intuitive relation to the FMB estimates. The updating corrects lambdas and betas with

respect to local cross-sectional errors that are produced when employing FMB with constant

parameters and thus can be regarded as a local FMB correction. Moreover, the updating

reduces the impact of extreme observations when considering heavy-tailed distributions. In

particular, the filtered lambdas and betas are therefore more robust against outliers in the

data.

1Also referred to as Score-Driven (SD) model or Dynamic Conditional Score (DCS) model.
2See, for example, Harvey and Lange (2017) and Gorgi et al. (2019) for applications in volatility modeling

or Oh and Patton (2018) and Bernardi and Catania (2019) for systemic risk applications.
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A Monte Carlo study investigates the ability of a Gaussian SLAPM with constant betas

to filter risk price dynamics in a setting with realistic signal-to-noise ratio. The performance

of the SLAPM is compared to that of a dynamic asset pricing model developed by Adrian

et al. (2015) (in the following referred to as DAPM) which employs noisy signals of different

strengths of the true instrument factor driving the lambda dynamics of the data-generating

process. In an asset return panel of 25 assets and 500 time observations, a DAPM would

need to be informed with a signal containing more than 80% of the information from the

true data-generating process to at least be able to compete with a SLAPM as measured by

a Diebold and Mariano (1995) test.

Moreover, the simulation study is extended to asset-specific return predictions. Predictive

regressions as benchmarks are not able to systematically outperform the SLAPM return

forecasts in simulated panels even if they are informed with the correct predictors. The

SLAPM can therefore compensate its disadvantage from missing predictor information by

filtering cross-sectional return data through the lens of a cross-sectional factor pricing model.

Results from the simulation study therefore supports the view that a substantial portion of

systematic time series predictability, that is usually studied in a univariate context, should

be inferable from cross-sectional pricing errors if the cross-sectional factor model is correctly

specified.

An empirical application to the international macro-finance model of Lustig et al. (2011)

illustrates the SLAPM’s ability to filter time-varying currency premia. Opie and Riddiough

(2020) propose a method for gobal currency hedging that exploits predictable components in

the two common risk factors of Lustig et al. (2011) estimated with economically motivated

forecast factors. A comparison with SLAPM-implied risk premia suggests that currency

premium forecast factors capture most risk price movements. However, sudden downfalls

in carry trade risk premia that fall in line with currency crashes, that are suspected as

potential cause of carry trade risk premia due to Brunnermeier et al. (2008), disconnected

from macroeconomic conditions are captured by the SLAPM only. Although these currency
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crashes are not predictable from economic conditions, they matter for in-sample filtering of

currency risk premia.

The DAPM of Adrian et al. (2015) is considered as main benchmark for comparisons.

Both the DAPM and SLAPM rely on the same beta pricing equation but differ in the

construction of risk price dynamics (external forecasters vs. recursive observation-driven up-

dating) and estimation methodology (three-step linear regressions vs. maximum likelihood).

Adrian et al. (2019) employ an enhanced version of the DAPM approach that allows for non-

linear relations between risk prices and forecast variables. Risk prices and exposures being

affine-linear transformations of instruments are also employed in Gagliardini et al. (2016),

Chaieb et al. (2018) and Gagliardini et al. (2019) with a focus on large unbalanced panels

of individual stock returns. The functioning and intentions of these methods are different

to mine. Their aim is to filter economic meaningful variation in risk prices explained by

forecasting factors whereas this work investigates the portion of risk price movement that

can be learned from observed cross-sectional model pricing errors only.

Early contributions already allow for instrument-free dynamics of risk prices by conduct-

ing cross-sectional FMB regressions period by period as in Fama and MacBeth (1973) and

Ferson and Harvey (1991). The approach presented in the following differs from the tra-

ditional one by explicitly modelling an intertemporal relation between lambdas of different

time periods that can be fitted and analyzed whereas period-by-period FMB risk price esti-

mates are not explicitly connected over time and extremely volatile. The risk price updating

mechanism in my approach can be understood as an attempt to infer how much of this risk

price volatility stems from actual parameter movements.

The paper is organized as follows. Section 2 introduces and discusses the proposed score-

driven dynamic asset pricing framework and closes by laying out a strategy for likelihood-

based estimation and inference. A Monte-Carlo study evaluating the performance of the

SLAPM is conducted in Section 3. The empirical application to a cross-sectional currency

model is presented in Section 4. Section 5 concludes.

4



2 A Score-driven Likelihood Asset Pricing Framework

The following chapter introduces a framework for score-driven likelihood-based asset pric-

ing models. The model setup is described first and is followed by a derivation for optimal

parameter-updating schemes in case of elliptical distributions. Before turning to the appli-

cations in the following section, the estimation strategy is explained and discussed.

2.1 Model Setup

The basic model setup outlined in the following is in line with the approach presented in

Adrian et al. (2015) but differs in the specification of risk price and exposure dynamics that

are driven by scores of the observation density instead of forecasting variables.

Let rt = (r1
t , . . . , r

N
t )> denote the N-dimensional vector representing the excess returns

of N different assets at time t ∈ {0, . . . , T}. Let the underlying data-generating processes

be defined on a probability space (Ω,F ,P), equipped with a filtration Ft = σ ({rt, . . . , r0})

representing the set of information available at time t. Suppose the risk in the economy is

described in terms of K risk factors covered in the state vector ft that follows an adapted

V AR(1) process given by

ft+1 = µ+ Φft + ut+1, t = 0, . . . , T − 1. (1)

with ut being i.i.d. disturbances. The modelling approach is not restricted to this choice

and more general models like VAR(p) processes may be taken into consideration to better

capture the distribution of ft as this is particularly important for maximum likelihood (ML)

estimation. I decide to stick to the VAR(1) model for the sake of brevity and because

factors are mostly returns with if-at-all first order auto-correlation (Fama and French (1993),

Carhart (1997)).

Assume the existence of a unique stochastic discount factor (SDF) mt that prices every
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asset i ∈ {1, . . . N} according to

Et(mt+1r
i
t+1) = 0. (2)

The Euler equation (2) can be reformulated to

Covt(mt+1, r
i
t+1) = −Et(mt+1)Et(rit+1) (3)

with Et and Covt denoting the conditional expectation and covariance with respect to time

t information Ft. Let the K×K matrix Σu,t be the possibly time-varying covariance matrix

of the risk factor innovations ut. Regressing the demeaned return of asset i on the factor

innovations ut+1 yields an idiosyncratic noise term ei,t+1 that is orthogonal to ut+1. Taken

together with (3) the return can be decomposed to

rit+1 = Et(rit+1) + (rit+1 − Et(rit+1)) (4)

= −Covt(mt+1, r
i
t+1)

Et(mt+1)
+ β>i ut+1 + ei,t+1 (5)

with βi,t = Σ−1
u,tCovt(ut+1, r

i
t+1) being the K-dimensional vector of risk exposures. Let the

SDF be affine-linear in the economy’s risk factor innovations i.e.

mt+1 − Et(mt+1)

Et(mt+1)
= −λ>t Σ−1

u,tut+1 (6)

with time-invariant price of risk vector λt of dimension K. Plugging the SDF into the return

decomposition (5) yields a standard beta representation given by

rit+1 = λ>t Σ−1
u,tCovt(ut+1, r

i
t+1) + β>i ut+1 + ei,t+1 (7)

= β>i,tλt + β>i,tut+1 + ei,t+1. (8)

The decomposition (8) therefore consists of a predictable risk premium β>i,tλt that prices risk

exposures and another unpredictable component β>i,tut+1 depending on risk factor innova-
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tions. Representation (8) may be interpreted as a system of seemingly unrelated regressions

(SUR) with time-varying coefficients and identical regressors that can be stacked to

rt+1 = βt(λt + ut+1) + et+1 (9)

with βt = (β1,t, . . . , βN,t)
>. What essentially distinguishes the approach proposed here from

prior contributions is the specification of the dynamics of the time-varying (N + 1)K-

dimensional3 parameter vector θt = (λ>t , vec(βt)
>)>. Whereas for example Adrian et al.

(2015) assume that λt is affine-linear in a forecasting variable that has to be specified and

time-varying betas are derived from a non-parametric kernel-based approach, the approach

discussed here will suggest both sets of varying parameters to be driven by recent observa-

tions from the return panel and cross-sectional pricing factors ft.

The GAS model4 proposed by Creal et al. (2013) provides an opportunity to introduce

time variation into general models with specified observation densities. The basic idea is

to let the time-varying parameters of a model be updated proportionally to the score of

the observation density i.e. the derivative of the logarithmic density with respect to the

parameter that should become time-varying. Thus, the parameter vector is pushed in the

direction indicated by the gradient. This is the direction in which the update would yield

the steepest increase in the observation density. The approach can therefore be understood

as a parameter update optimizing the local likelihood in period t.

In the framework described above, asset returns rt as well as risk factor realizations ft

are observed and the conditional observation density p(rt, ft|Ft−1, θt−1) has to be specified.

Given such a specification, the GAS updating scheme for the dynamic vector of risk prices

3K lambdas and N betas per lambda.
4Models of this type are also known as dynamic conditional score (DCS) or score-driven models. See

Harvey (2013).
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and exposures is then given by:

θt = ω +

p∑

i=1

Aist−i+1 +

q∑

j=1

Bjθt−j (10)

st = I−1
t ∇t, ∇t =

∂ ln p(rt, ft|Ft−1, θt−1)

∂θt−1

. (11)

Equation (10) determines the updating mechanism for the time-varying parameter θt. Here,

ω is an (N+1)K-dimensional vector of intercepts and Ai, Bj are (N+1)K×(N+1)K matrices

of coefficients for i = 1, . . . , p and j = 1, . . . , q. The updating process therefore consists of a

constant part, an adjustment of the observation density score, and an autoregressive part.

The centerpiece of score-driven models is the specification of the innovation sequence st.

This is done by setting st proportional to the so-called score ∇t defined in (11). Creal et al.

(2013) leave open to scale the impact of the score sequence to make models more robust to

outliers. I follow their proposal to employ the inverted Fisher information matrix I−1
t for

scaling. The specific definition in our framework is It = Et−1(∇t∇′t) with Et−1 being the

expectation operator with respect to p(rt, ft|Ft−1, θt−1). This bears the advantage that the

scaling depends directly on the variance of the score and yields an intuitive interpretation of

the updating scheme if elliptically distributed residuals are assumed as will be shown below.5

Given that E(∇t∇′t) is finite, the innovation st is a martingale difference sequence implying

that θt in (10) is an ARMA process that inherits the features of this class of time series.

This holds particularly for stationarity conditions.

A possible alternative to specify score-driven risk parameters would be to model st in

(10) as i.i.d. innovation. This would head towards a variant of the popular Kalman filter.

However, remark the crucial difference that in a Kalman filter setting st would be another

independent source of randomness whereas the mechanism in (11) just relates st to the

innovations et and ut that are already existent in the model. The mechanism therefore

captures systematic variations in idiosyncratic and factor innovations to generate movements

5Other popular scalings use an identity matrix or the Cholesky factor of the inverse Fisher information.
The latter choice may be attractive to achieve unit variance of the scaled score process st.
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in risk exposures and prices. This will become clearer when specifying distributions in the

following.

2.2 Optimal Parameter Updating for Elliptically Distributed Re-

turns and Factors

To compute the score ∇t, assumptions on the distributions of the innovations ut and et

have to be made. I consider the distribution families from the general class of ellipti-

cal distributions6 to allow for flexibility in fitting the data while keeping the framework

tractable. The general N-dimensional density of such distributions can be formulated as

p(x) = |Ω|− 1
2ψ (x′Ω−1x, ν) with a dispersion matrix Ω ∈ RN×N , a degrees-of-freedom param-

eter ν ∈ R>0, and a characteristic generator ψ : R≥0 × R>0 → R≥0
7 . The elliptical class

includes not only the normal distribution, as can be seen by choosing the generator to be

ψ(x, ν) = (2π)−N/2 exp (−x/2), but also many other distributions like the Laplace and the

Student’s t-distribution that are popular for fitting financial returns.

Quite intuitive formulas can be derived for the driving martingale difference sequences

st of time-varying risk prices and exposures can be derived when assuming zero cross-

information quantities i.e. Iλ,βt = Iβ,λt = 0 . This assumption additionally assures the

validity of the derived updating schemes below, when betas or lambdas are assumed to be

constant what often yields more parsimonious models. Explicit calculations can be found in

Appendix A. The scaled scores turn out to be



sλt

sβt


 = C(ẽt, ψ

e)




(β>t−1Ω−1
e βt−1)−1β>t−1Ω−1

e rt − (λt−1 + ut)

vec(et(λt−1 + ut)
>(λt−1λ

>
t−1 + Et−1(utu

>
t )))


 (12)

6See Fang et al. (1990) or Chapter 6 of Embrechts et al. (2015) for a comprehensive treatment of elliptical
distributions.

7The general definition of elliptical distributions includes a location parameter vector µ ∈ RN . However,
a zero mean of the innovation terms is assumed throughout the paper and µ is therefore neglected for
convenience.
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with scalar factor

C(ẽt, ψ
e) = −

N
ψe1
ψe

2Et−1

(
‖ẽt‖2

(
ψe1
ψe

)2
) . (13)

where ‖·‖ refers to the Euclidean norm and ẽt = Ω
−1/2
e et is the standardized idiosyncratic

residual.

The updating sequence (10) in conjunction with the scaled scores in (12) can be regarded

as a scaled difference of the generalized least squares (GLS) coefficient estimate from cross-

sectionally regressing rt on β and λt−1 + ut. The driving mechanism therefore intuitively

corrects local deviations in the cross-sectional fit. This observation can be related to the very

popular estimation approach of Fama and MacBeth (1973) in which constant risk prices are

estimated with a cross-sectional regression of the average portfolio returns r on their betas

i.e. the risk price estimate is given by (β>Ω−1
e β)−1β>Ω−1

e r. The correction step proposed

by (12) for the lambda essentially enforces this average prescription. Finding λt−1 + ut

to be greater than (β>t−1Ω−1
e βt−1)−1β>t−1Ω−1

e rt would be interpreted as an overestimation of

the market price of risk plus factor innovation. The resulting sλt would be negative (given

that C(ẽt, ψ
e) > 0) and would downsize the market price of risk for the next period. The

term C(ẽt, ψ
e) as well as the coefficient matrices A1, . . . Ap reveal how much of the local

estimation error can be possibly attributed to a change in risk prices and not to factor or

idiosyncratic innovations. This mechanism points out the difference of the proposed method

to the time-varying lambda framework in Fama and MacBeth (1973) which would choose

λt in each period to minimize the cross-sectional regression error. This comes with the

drawback that time-varying lambdas become unrealistically volatile because cross-sections

are fitted independently period by period and do not draw information from connections

between lambdas of different time periods. The optimal beta updating analogously adjusts

to the local OLS error from regressing rt on λt−1 + ut as prescribed by the stacked SUR
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model in (9) while assuming a stochastic regressor ut
8.

Also remark the similarities to the popular generalized conditional heteroscedastictiy

(GARCH) time series models by Engle (1982) and Bollerslev (1986). If the time-varying

parameter in (10) would be the conditional variance of a zero-mean time series εt, i.e. θt = σ2
t

and the score be the squared current observations, i.e. st = ε2
t , the famous GARCH(p,q)

updating equation would be obtained.9 This updating is quite intuitive since in a setting with

a constant variance parameter, it would be estimated via the mean of squared observations.

The statistic of new incoming information ε2
t in relation to past observation therefore tells

whether it is likely that the variance has increased (if ε2
t is relatively high) or has decreased

vice versa. SLAPM works with the same principle as parameters are increased/decreased

according to the cross-sectional pricing errors after adjusting for risk factor innovations.

With regard to the distributional assumption it is striking that the particular choice of

the elliptical return distribution does not alter the direction of the score and therefore also

does not alter the direction of the parameter updating. However, the scalar part depends on

the common distribution of asset-specific residuals represented by ψe. Updating steps are

therefore weighted with regard to the shape of the particular distribution.

A particularly simple updating scheme is achieved when assuming normally distributed

innovations, as C(ẽt, ψ
e) ≡ 1 holds in this case.10 The effect of the scaling becomes

clear when looking at the Student’s t-updating sequence, where the scalar part is given

by C(ẽt, ψ
e) = ν+N+2

ν+e′tΩ
−1
e et

.11 The division by ‖ẽt‖2 = e′tΩ
−1
e et down-weighs the impact of

scores when observing extreme values and therefore takes the more pronounced tails of the

return distribution into account. Hence, imposing this updating structure makes the market

price of risk more robust to outliers in the data. Therefore, it might henceforth be beneficial

for tractability to assume a distribution that yields a simple updating scheme such as the

8Note that ft is actually assumed to be observed and not ut. Assuming ut being an observed factor itself
would analogously yield an updating according to the corresponding error from regressing rt on λt−1 + ut
while assuming deterministic ut.

9Creal et al. (2013) argue that the Gaussian GARCH(1,1) model is indeed a GAS-model.
10See Corollary 3 and its proof in the technical appendix.
11See Corollary 4 and its proof in the technical appendix.
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Gaussian distribution. However, such a simplification would come at the cost of incorrectly

weighting the magnitude of extreme observations.

Moreover, only the updating scheme for risk exposures βt does depend on the distribution

of the factor innovations ut (via Et−1(utu
>
t )). Optimal risk price updating is not altered at all

by different factor model specifications. Hence, in a constant beta setting, one could easily

introduce some statistical features like heavy tails and asymmetries in the model without

giving up a simple updating scheme by adjusting the distribution of ut. However, this does

not open up the possibility to allow these features idiosyncratically for specific assets in the

cross-section as this would come with the necessity to leave the class of elliptical distributions.

With the specified distributions for the residuals, (12) completes the dynamic asset pricing

model framework consisting of the equations (1), (9), (10), and (12). I refer to it as the

(elliptical) SLAPM of orders p and q (SLAPM(p,q)).

2.3 Estimation and Inference

The elliptical SLAPM discussed so far ends up with a reduced-form representation that can

be estimated with an ML-procedure. The set of static parameter vectors and matrices to

be estimated is given by ω,A1, . . . Ap, B1, . . . Bq, µ,Φ,Ωe,Ωc, νe, and νu. This collection of

parameters needs to be chosen to maximize the log-likelihood function given by

L =
T∑

t=1

lnψe(e′tΩ
−1
e et, νe) + ln

T∑

t=1

ψu(u′tΩ
−1
u ut, νu)−

T

2
(ln |Ωe|+ ln |Ωu|) . (14)

Besides the problems associated with the enormous number of parameters, closed-form solu-

tions of the ML-estimators are not available due to the strong dependencies of the parameters

on each other. This makes it necessary to employ numerical optimization procedures.

The elliptical SLAPM(p,q) is quite general and can be further simplified by imposing

technical or economic restrictions, which would result in a more parsimonious model. As an

illustration of the framework, let us focus on a Gaussian SLAPM with constant betas which
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yields a reduced number of parameters. Although there is a large body of literature assum-

ing time-varying betas, empirical studies such as Braun et al. (1995) and Ghysels (1998)

document that changes in betas are rather slow-moving. Assuming constant betas and let-

ting the dynamics kick in from time-varying lambdas to achieve a parsimonious model could

therefore be justified in this regard. The Gaussianity of the asset’s residual distribution rep-

resented by the characteristic generator ψe ensures a simple and tractable updating scheme

for the time-varying lambda that adjusts for local Fama-MacBeth errors. These assumptions

turn out to be sufficient to reasonably filter risk price dynamics from asset as the following

simulation study and the empirical application document. However, for prediction purposes,

a more adequate fit to the statistical properties of return time series can be achieved by an

alternative specification of the factor innovation distributions ut as mentioned in the previous

section.

The complete reduced form Gaussian constant beta SLAPM(p,q) is then given by

ft+1 = µ+ Φft + ut+1, t = 0, . . . , T − 1 (15)

rt+1 = β(λt + ut+1) + et+1 (16)

λt = ωλ +

p∑

i=1

Aλi s
λ
t−i+1 +

q∑

j=1

Bλ
j λt−j (17)

sλt = (β>Ω−1
e β)−1β>Ω−1

e rt − (λt−1 + ut) (18)

The likelihood in (14) can be optimized in several steps. The parameters of the factor

VAR model (15) are estimated independently in a first stage where the ML-estimator is the

ordinary least squares estimator in the Gaussian case. This estimation approach may yield

inefficiencies because the factor innovations ut enter the idiosyncratic portfolio errors et via

the return equation (16). However, this effect is found to be negligible.

In the second step, the fitted residuals from (15) are plugged in and the likelihood is

numerically optimized with respect to the remaining GAS parameters λ0, ω
λ, Aλ1 , . . . A

λ
p ,
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Bλ
1 , . . . , B

λ
p , the dispersion matrix Σe and risk exposures β using a quasi-Newton proce-

dure. The number of parameters can be further reduced when assuming cross-sectionally

homoscedastic errors et for deriving the updating scheme in (18) that henceforth simpli-

fies to sλt = (β>β)−1β>rt − (λt−1 + ut). Because of the missing occurrence of Ωe in the

updating scheme, the maximum likelihood estimator of the dispersion matrix is given by

Ω̂e = 1
T

∑T
t=1 ete

>
t . This approach may weight innovations in the updating scheme incor-

rectly, in particular if idiosyncratic errors are highly correlated. However, one can construct

a correction by running a second maximum likelihood estimation with a pre-specified disper-

sion matrix estimated from a first estimation stage with homoscedastic errors in the spirit

of feasible GLS estimation approaches.

Inference is conducted in the standard fashion for ML-estimators as suggested by Creal

et al. (2013) for GAS models in general. General conditions for consistency and asymptotic

normality for general GAS models are provided in Blasques et al. (2014). If ϑ stacks all

the static parameters of the model, standard asymptotic theory for ML-estimators would

suggest that under some regularity conditions the following holds:

√
T
(
ϑ̂− ϑ

)
d→ N

(
0, I−1(ϑ)

)
(19)

with Fisher information matrix I(ϑ) := −E
(
∂2lt/∂ϑ∂ϑ

>) where lt is the log-likelihood

contribution of the i-th observation evaluated at ϑ. Since the use of a Gaussian SLAPM

is a potential source for model mis-specification, it could be advisable to rely on quasi ML

standard errors that can be derived with

√
T
(
ϑ̂− ϑ

)
d→ N

(
0, I−1(ϑ)J (ϑ)I−1(ϑ)

)
(20)

where J (ϑ) := limT→∞ T−1E
(

(∂L(ϑ)/∂ϑ) (∂L(ϑ)/∂ϑ)>
)

. Standard errors in the following

are derived by numerically differentiating the score function with a finite difference approx-

imation.
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3 Monte Carlo Study

The performance of the Gaussian constant beta SLAPM is evaluated with a Monte Carlo

study on forecasting risk prices and excess returns in the following. A main question to

answer is whether the SLAPM is able to filter risk price movements without knowing the

driving forces and how well it can compete with models making use of information about

the predictable component.

3.1 Data-Generating Process

The DAPM of Adrian et al. (2015) is considered as main benchmark method for comparison.

It assumes that factors in ft may be risk factors f1t or12 forecasting factors f2t in such a way

that ft = (f>1t , f
>
2t)
> and

rt+1 = β(λ0 + Λ1f2t) + βu1,t+1 + et+1 (21)

with u1,t+1 being the innovations to the risk factors f1t from the factor VAR model (1). The

DAPM can be estimated with a three-step linear regression approach and nests the constant

risk price model of Fama and MacBeth (1973).

The data-generating process employed for simulations is chosen in line with the DAPM

modeling approach with exactly one risk factor f1t and one forecasting factor f2t. This

poses a challenge for the SLAPM procedure that has to prove itself within the framework

of a competing model approach. In order to generate realistic returns we orientate on a

capital asset pricing model (CAPM) of an industrial portfolio cross-section from the Kenneth

French data library. The pricing factor supposed to be the market return that is found to

be fairly well represented by an ARMA(1,1)-process with GARCH(1,1)-residuals. Thus, the

heteroscedasticity in the return series is modeled to be sourced from the risk factor process.

12Adrian et al. (2015) explicitly include the possibility for factors to be both risk and forecasting factors.
For the simulation study, I abstain from this for simplicity.
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To get a candidate process for the forecasting factor, a DAPM with two forecasting factors

is fitted. The forecasting factors under consideration are the 10-year treasury yield obtained

from the H.15 statistical release of the Board of Governors of the Federal Reserve System

as well as the dividend yield of the S&P -500 index. Both series are found to be reasonable

stock return predictors in the past.13 For simplicity, the two predictors are combined to

form one forecast process by computing the linear combination of the two weighted by

coefficients from the fitted DAPM. The forecasting factor process dynamics are found to be

well-described by an AR(1)-process given by f2,t+1 = 0.005 + 0.98f2,t + u2,t, u2,t ∼ N
(
0, σ2

f

)

and σf = 0.11 that is used for simulation in the following. The high level of persistence with

AR(1)-coefficients near unity is often observed for return forecasting factors (Campbell and

Yogo (2006)) are in line with long-run risk models like Bansal and Yaron (2004) featuring

small but persistent predictable components. From the simulated risk and forecasting factor

processes, the risk price process is derived as λt = 0.38 + f2,t, where the intercept has been

calibrated to the industry portfolio data. The simulated return values are finally derived

from the beta representation according to (21). The first three betas take the values 0.5, 1

and 1.5 while the remaining are uniformly drawn from the interval [0.5, 1.5] that is roughly

the range observed for portfolio exposures when regressing portfolio returns on the market

risk factor.

[Figure 1 about here.]

Figure 3(a) shows an example draw of the simulated excess return of one portfolio from

cross-section (N = 25, T = 500) together with its conditional excess return βλt−1. The

conditional return in relation to the actual return can be regarded as only fairly small in

magnitude. This fits the observation that stock returns show only little predictability, if at

all.

13See Keim and Stambaugh (1986), Campbell (1987), Fama and French (1989), Campbell and Thompson
(2008) for evidence on long-run treasury yields and Campbell and Shiller (1988), Fama and French (1989),
Campbell and Thompson (2008), Cochrane (2008) for dividend yields.
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3.2 Predicting Risk Prices: Scores versus Forecasters

Because ET (rT+1) = βλT , predicting stock market returns for period T + 1 would need an

accurate estimation of λT . The performance of the SLAPM is therefore evaluated by its

ability to predict the one-period-ahead risk price in comparison to the corresponding ability

of the DAPM and FMB regressions. Predictions implied by the different approaches are:

SLAPM : λ̂SLAPMT = ω̂ + ÂsT + B̂λ̂SLAPMT−1 (22)

FMB : λ̂FMB
T = λ̂FMB (23)

DAPM : λ̂DAPMT = λ̂0 + Λ̂1f2,T . (24)

Given the simulated data set, λT is predicted with the three approaches mentioned above.

Since the part of the data-generating process concerning the market price of risk dynam-

ics completely follows the specification in Adrian et al. (2015), the DAPM estimator has

a trivially high information advantage over the other two approaches when using f2,t. To

circumvent this issue, the DAPM is fitted with employing a diffuse signal of the true fore-

cast factor realization ranging from pure noise to the true signal. The DAPM is therefore

estimated with a signal f̃κ2,t drawn from

f̃κ2,t = κf2,t + (1− κ)εt, εt
iid∼ N (0, σ2

f ) (25)

with κ ∈ [0, 1]. For κ = 0 the signal exhibits no information about the true factors and for

κ = 1 the DAPM exploits the true forecasting factor series. The results will of course heavily

depend on the variance of the noise term εt. I decide to set this variance parameter to be

equal to the variance of the true predictor process ft for improved comparability.

Figure 3(b) exemplary shows that the SLAPM seems to be quite effective in filtering

λt. The updating direction and turning points are anticipated correctly although with some

delay. Only peaks are hard to capture for the likelihood score-based filter. This means that
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extreme local cross-sectional errors resulting due to extreme changes in the risk price are

devoted with a too large share to factor and idiosyncratic innovations. The full-information

DAPM, as expected, captures the peaks slightly but has a tendency to overshoot.

For achieving a reliable evaluation of the SLAPM’s risk price forecast ability, several

N-T-panels with N ∈ {25, 50, 100} assets and T ∈ {250, 500, 1000} time observations are

simulated with S = 10 000 replications each. The predictive accuracy is evaluated with out-

of-sammple R2 (OOS-R2) proposed by Campbell and Thompson (2008). This is computed

as

R2
OOS = 1−

∑S
s=1

(
λ̂SLAPMT (s)− λT (s)

)2

∑S
s=1

(
λ̂iT (s)− λT (s)

)2 (26)

with benchmark forecast from i ∈ {FMB,DAPM}. Hence, whenever the quantity is posi-

tive, the SLAPM forecasts the risk price with a lower squared error than the benchmark and

vice versa if the quantity is negative. Diebold and Mariano (1995) (DM) tests on the null

hypothesis of equal forecast accuracy are conducted as well.

[Table 1 about here.]

Table 1 shows the results of the risk price forecasting exercise with shaded areas indi-

cating that the DM-test does not reject the null of equal forecast accuracy on a five percent

significance level. At first sight, the SLAPM always shows a positive OOS-R2 with respect to

forecasts from the Fama-McBeth regressions, and the null hypothesis of the DM test can be

rejected indicating superior forecast accuracy with respect to the FMB forecast. The same

holds for the DAPM forecasts with pure noise forecasters. The evidence therefore suggests

that the SLAPM succeeds in filtering information on the time variation in risk prices from

the return series.

The SLAPM appears to perform particularly well in panels with few time series obser-

vations as T = 250 where it outperforms the DAPM irrespective of the employed signal.

In particular, the DAPM forecast is still inferior when employing the true predictor. This

changes crucially with more observations in time. The DAPM with κ of 0.9 and 1 cannot
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be outperformed by the SLAPM in terms of the DM-test in a 25-500 panel whereas the

opposite still holds true for lower κ. This kind of ”break-even” κ appears to monotoni-

cally decrease with the sample length T. However, such a clear pattern is not observed for

the cross-sectional dimension N. This indicates that regression-based methods introducing

risk price dynamics with instruments or forecasters are particular promising for particular

long panels. This also suggests that the problem of inappropriate instruments may not be

resolved by solely increasing the cross-sectional dimension. However, if the sample length

is already large with T=1000, the DAPM seem to improve compared to the SLAPM with

increasing number of test assets N. Practically relevant panels often have around 500 or less

time observations. Remarkably, the SLAPM never gets outperformed by the DAPM even

with full information in this short to medium length panels. In the case of T = 500 that

would correspond to more than 40 years of monthly observations, the DAPM would need a

κ of at least 0.9 for not getting outperformed by the SLAPM.

The SLAPM therefore succeeds to filter risk price movements by solely evaluating period-

by-period cross-sectional asset pricing errors and can compete with the regression-based

models employing external information about the correct driving forces. Another baseline

is that even moderate noise in the predictor variable can seriously impair the accuracy of

the DAPM in forecasting risk prices. This speaks in favor of the SLAPM as promising

alternative not only in situations where forecasters are unknown, but also whenever there is

doubt about the correct ones. Regression-based approaches appear to be particular accurate

in panels with many time observations (T ≥ 1000) that would, however, require over 84

years of monthly and more than 250 years of quarterly observations.

3.3 Predicting Returns: Scores versus Predictive Regressions

The previous section compares empirical dynamic asset pricing methods by their ability

to forecast risk prices. This is motivated by the fact that return forecasts heavily rely an

adequately estimated lambda. However, when it comes to forecasting the specific return of
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asset i, it is also important to adequately estimate the risk exposure βi as its expected return

is given by ET
(
riT+1

)
= βiλT .

In order to investigate whether the results from the previous section translate into asset-

specific return predictability, the Monte Carlo study is repeated for univariate time series.

The return series of asset i is generated as described above with

rit+1 = βi(λ0 + Λ1f2t) + βiu1,t+1 + ei,t+1 (27)

= βiλ0 + βiΛ1f2t + βiu1,t+1 + ei,t+1 (28)

= α0 + α1f2t + εi,t+1 (29)

where α0 = βiλ0, α1 = βiΛ1 and εi,t+1 = βiu1,t+1 + ei,t+1. A tough benchmark for the

SLAPM to beat would therefore be a predictive regression employing the predictor f2t. This

benchmark is employed in the following, again with signals f̃κ2,t of different level of diffusion

κ in line with (25). Simple sample average forecasts are additionally considered such that

we have following three candidates:

SLAPM : r̂i,SLAPMT+1 = β̂SLAPMi λ̂SLAPMT (30)

Mean : r̂i,Mean
T+1 =

1

T

T∑

t=1

rit (31)

PReg : r̂i,PRegT+1 = α̂0 + α̂1f̃
κ
2,T (32)

where the coefficients α̂0 and α̂1 in PReg are estimated by regressing rit on f̃κ2,t−1. Simulations

are again conducted for several N-T-panels with S = 10 000 replications each. The first

three assets in the data-generating process have a low (β1 = 0.5), medium (β2 = 1) and high

(β3 = 1.5) beta. These assets are included in each N-T-panel and generate the three return

series under investigation.

[Table 2 about here.]
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Table 2 provides the results from forecasting simulated returns. Be aware that OOS-R2’s

are now given as percentages and the individual return mean squared forecast errors of the

alternative methods are much closer to each other than it is the case for risk price forecasts

in the previous section. The SLAPM forecasts outperform the Mean forecasts as can be seen

in the first rows of the panels (a), (b) and (c). The finding from the previous section, that

the proposed method is able to extract useful information of risk price movements, therefore

also holds for conditional means of asset-specific returns.

Another main observation is that only in one scenario the SLAPM forecasts is outper-

formed according to the DM-test in the simulated return panels. This is the panel with N=25

assets and T=500 observations when forecasting the high exposure asset return (β = 1.5)

and the alternative forecast is a predictive regression with correct predictor (κ = 1). Apart

from that case, correct predictors do not empower predictive regressions to generate more

adequate forecasts that the SLAPM in the other return panels. In particular, the SLAPM

even outperforms correctly specified predictive regressions in short panels (T=250). For a

κ lower or about 0.5, the SLAPM forecasts are also more adequate than the predictive re-

gressions with diffused predictor signals in longer panels (T = 500, 100). This holds for low,

medium as well as high beta asset returns.

With respect to the tough benchmark of predictive regressions that are perfectly specified

in the given simulation setting, the SLAPM performs considerably well in forecasting asset-

specific returns. The results indicate that the SLAPM is able to compensate its informational

disadvantage from lacking forecaster data by considering information from the whole cross-

section that is not available to predictive regression forecasts. They support the view that

if returns have a cross-sectional factor structure as proposed in the majority of asset pricing

models, systematic time series predictability, that usually studied in a univariate context,

should be inferable from cross-sectional pricing errors.
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4 Empirical Application

The Monte Carlo study in Section 3 provides evidence that the SLAPM performs particularly

well compared to predictive regressions in cross-sections simulated from correctly specified

models. The following empirical application intends to shed light on whether and to which

extent the SLAPM can detect predictable components in real world risk factors. I choose to

analyze a dynamic version of the international macro-finance model of Lustig et al. (2011)

that prices a cross-section of currency carry trades. These are popular speculative currency

trading strategies that usually invest money in currencies bearing high interest rates and

finance this investment with a credit in currencies with low interest rates. Lustig et al.

(2011) find that this cross-section can be priced by two risk factors only. The first factor

(DOL) is the return series of a currency market portfolio that holds an equally-weighted

position in each currency. This may be seen as an equivalent to the market factor in the

CAPM for equity cross-sections. The second factor (HML) is the return of a portfolio that

holds a long position in the high interest rate portfolio financed through a short position in

the low interest rate portfolio.

I chose this model as test object for the SLAPM for several reasons. Opie and Riddiough

(2020) show that each of the two currency risk factors indeed has a predictable component

that can potentially be detected. DOL and HML are furthermore actually executed trading

strategies for which forecasters have been researched. This facilitates the search for an

adequate forecasting benchmark. Moreover, the two currency factors fit the cross-sections

of carry trade returns very well. This to some extent secures that the performance of the

SLAPM is not crucially affected by cross-sectional model misspecification.

4.1 Data

The data to be consiered for the cross-sectional model and the following portfolio sorting

practice is in line with several contributions in international macro-finance that explain cross-
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sectional variations in currency cross-sections (Lustig et al. (2011), Menkhoff et al. (2012),

Mueller et al. (2017)). Data on currency portfolio return predictors is additionally collected

for a benchmark estimation of risk premia implied by economic forecast variables.

4.1.1 Currency Data

The currency data set consists of 48 spot exchange rates (sit in logs) and one-month-forward

exchange rates (fwdit in logs) from Thomson-Reuters Eikon with the US-dollar being the

base currency and covers the period from April 1986 to November 2018. Currency carry

trades are typically implemented with forward contracts. I therefore compute continuously

compounded returns of individual currency i as the return to a one dollar investment in the

corresponding one-month-forward contract, i.e.

rit+1 = fwdit − sit+1. (33)

Each currency is allocated into one of five equally-weighted portfolios sorted by their forward

discounts fdit = fwdit−sit.14 The first portfolio (C1) therefore includes the fifth of currencies

with the lowest interest rate differential to the US and the fifth portfolio (C5) the fifth

of currencies with the highest interest rate differential. Transaction costs are adjusted by

considering bid and ask quotes. The first risk factor of the model from Lustig et al. (2011)

is the return series of a currency market portfolio referred to as DOL-portfolio that holds an

equally-weighted position in each currency. This may be seen as an equivalent of the market

return factor in the CAPM for equity cross-sections. The second risk factor is the return of

a portfolio that holds a long position in the high interest rate portfolio C5 financed through

a short position in the low interest rate portfolio C1. This second factor is referred to as

HML.

[Figure 2 about here.]

14This sorting is equivalent to sorting on the interest rate differential if the covered interest parity holds.
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Figure 2 shows cumulative log return of both the DOL and the HML portfolio. The

profitability of both series seem to vary substantially over time and therefore suggest that

risk premia to be filtered are time-varying as well.

4.1.2 Forecasting Factors

I tested several potential currency premium forecasters motivated from the literature15 with

the regression-based dynamic asset pricing approach of Adrian et al. (2015) and include those

that show a significant impact on time-varying DOL and HML risk prices in the benchmark

dynamic asset pricing model. The included factors are:

Absolute Average Forward Discount. Cary trade returns stem from favorable spot rate

changes and/or differentials in interest rates proxied by forward discounts. If the average

forward discount is high in magnitude, the potential for high carry trade returns is increased

as returns from interest differentials would be realized if unfavorable spot rate changes hold

off. Moreover, Lustig et al. (2014) also find that returns to the dollar factor can be predicted

with average forward discounts. I construct the absolute average forward discount |fdt| with

fdt =
1

|It|
∑

i∈It
fdit (34)

where It is the index set of available currencies in month t.

FX volatility. Carry trades tend to perform particularly bad in times of high uncertainty and

are negatively related to measures of foreign exchange market volatility (Bhansali (2007),

Menkhoff et al. (2012), Bakshi and Panayotov (2013)). As a measure of FX market uncer-

15I mainly considered the forecasting factors proposed in Bakshi and Panayotov (2013) and Opie and
Riddiough (2020).
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tainty I compute global FX volatility in line with Menkhoff et al. (2012), i.e.

V OLt =
1

Tt

∑

τ∈Tt

(
1

|Iτ |
∑

i∈Iτ
|riτ |
)

(35)

where riτ is the log-return of currency i, Tt the number of trading days in month t, and Iτ

the index set of available currencies on trading day τ .

Commodity returns. Typical commodity currencies frequently show up in the high-yielding-

interest portfolio and commodity currency exchange rate predictability from associated com-

modity price returns is documented in several studies (Chen and Rogoff (2003), Rossi (2013)).

Commodity prices are proxied by the industrials subindex of the CRB spot commodity in-

dex (CRBt). Bakshi and Panayotov (2013) provide regression evidence for carry trade

predictability of returns to the CRB index.

Intermediary capital. Adrian et al. (2011) and Brunnermeier and Pedersen (2009) stress the

importance of the funding conditions of financial intermediaries for currency risk premia.

I consider the aggregated capital ratio (Crt) of financial intermediaries referred to as the

primary dealers by the New York Fed taken from He et al. (2017).

Dollar competitiveness. The broad dollar index of the Federal Reserve Board (FRBt) is

considered as well. This index is a trade-weighted average of nominal dollar exchange rates

against currencies of a broad group of major US trading partners. A stronger dollar is sus-

pected to represent the shadow costs of bank balance sheet capacity (Avdjiev et al. (2019))

and could therefore proxy an impact on currency returns via a bank risk-taking channel.

Following Bakshi and Panayotov (2013) and Opie and Riddiough (2020), I compute for

all forecasting factors except the absolute average forward discount 3-month the average log
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growth rates, i.e.

∆Ft =
1

3
log

(
Ft
Ft−1

)
(36)

for forecasting factor Ft.

4.2 Empirical Results

The pricing equation in line with our baseline framework of Section 2 is given by

rit+1 = βDOLi (λDOLt + uDOLt+1 ) + βHML
i (λHML

t + uHML
t+1 ) + ei,t+1 (37)

In order to introduce time dynamics in risk prices, a Gaussian constant beta SLAPM(1,1)

is employed with non-diagonal elements in the parameter matrices Aλ1 and Bλ
1 from the

updating scheme (17) being restricted to zero.16 In this way a more parsimonious model is

obtained with two risk price updating equations given by

SLAPM : λjt = ωj + ajsj,t + bjλ
j
t−1 (38)

with scalar parameters ωj, aj and bj with j = DOL,HML. Two established benchmark spec-

ifications are considered to investigate whether the SLAPM approach can actually improve

on filtering risk premia and explain return variations in cross-section and time simultane-

ously. The first benchmark is the constant risk price specification underlying classical Fama

and MacBeth (1973) regressions. Estimates and standard errors for this specification are

achieved by estimating a DAPM according to Adrian et al. (2015) without forecast variables

that nests the FMB estimators but adjust for cross-asset correlation in the residuals. The

second benchmark is a DAPM that explains risk price variations with the forecasting factors

16The diagonalization mutes the impact of scaled scores and and factor innovation on the parameter
updating of the other factor. However, including those effects in the present application do not improve the
model performance.
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described above. I therefore fit a regression

DAPM : λjT = λ0 + Λj,fd
1 |fdt|+ Λj,∆V OL

1 ∆V OLt + Λj,∆CRB
1 ∆CRBt

+ Λj,∆Cr
1 ∆Crt + Λj,∆FRB

1 ∆FRBt (39)

with the method of Adrian et al. (2015) for each of the two cross-sectional risk factors

j = DOL,HML.

[Table 3 about here.]

Table 3 provides estimates of risk price parameters from the SLAPM model as well as

the two benchmark specifications. The first two columns show the parameter estimates

of the SLAPM model along with standard errors in parenthesis. Latter are calculated by

inverting a numerically computed Fisher information matrix as described in section 2.3. The

column shows positive estimates of the parameters aDOL and aHML that are significant on

a one percent level. Hence, the contemporaneous model errors st significantly impact their

corresponding price of risk and are therefore informative for inferring variation in risk premia.

The autoregressive parameters bDOL and bHML are both significant but fairly moderate in

magnitude. Both factor risk price processes are therefore crucially varying with a moderate

level of persistence. The third and fourth column show the estimation result for the DAPM.

Shocks to FX volatility have a significant impact on both risk prices (at least on a five percent

significance level), whereas the other factors either forecast DOL or HML risk prices. The

fifth and sixth column show constant risk price estimates when assuming no time-variation.

In line with Lustig et al. (2011), the DOL risk price is found close to zero, whereas the HML

risk price is significant and close to unity.

[Figure 3 about here.]

I turn next to the currency risk premia series filtered from the two dynamic approaches

under investigation. These premia are computed via the conditional expectation of the
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corresponding currency trading strategy. More precisely, the DOL and HML risk premium

series are derived as

r̂pDOLt+1 : = Êt (DOLt+1) = Êt

(
1

5

5∑

i=1

rCit+1

)
(40)

=
1

5

5∑

i=1

(
β̂DOLCi λ̂DOLt + β̂HML

Ci λ̂HML
t

)
(41)

and

r̂pHML
t : = Êt (HMLt+1) = Êt

(
rC5
t+1 − rC1

t+1

)
(42)

= (β̂DOLC5 − β̂DOLC1 )λ̂DOLt + (β̂HML
C5 − β̂HML

C1 )λ̂HML
t (43)

where Êt represents the conditional mean operator implied by the corresponding method.

Figure 3 shows filtered risk premia implied by the SLAPM (continuous line) and the

DAPM (dotted line). Consider the filtered DOL risk premia series in panel (a) first. Both

approaches find a series that is fluctuating around some level just above zero showing negative

as well as positive values. This variation may explain that the DOL risk premium, although

providing reasonable explanatory power in the cross-section of carry trade returns (Lustig

et al. (2011), is usually estimated with a insignificant price of risk. The DAPM-filtered risk

premia show more pronounced swings in general and a substantial downward spike during

the global financial crisis that is much less pronounced in the SLAPM-filtered series.

The filtered carry premia shown in panel (b) show more persistent dynamics with series

implied by the two competing dynamic approaches run quite close to each other. Both series

capture periods of relatively high premia in the 2000s and after 2015 in line with the increased

profitability of carry trades in these times. However, there are some differences. First, the

SLAPM-implied carry trade premia show more substantial drops in which the expected

carry return even turns negative though with fast recovery. Most of these crucial drops do

not refer to recession periods (with the recent global financial crisis being an exception)
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but fall together with huge currency movements disconnected from macroeconomic shocks,

as have been already documented for carry trade returns by Brunnermeier et al. (2008).

One example of such a disconnected currency movement is the strong appreciation of the

Japanese yen, a typical short-leg carry currency, in October 1998, accompanied by a huge

drop in the SLAPM-implied carry return premium. In line with the observed disconnect,

the downward spikes are not entirely captured by the DAPM-implied premia that infer risk

price movements from economic forecast variables. An exception is the drop in the global

financial crises wich is estimated with almost the same magnitude by both approaches. A

second difference is the interpretation of the recent carry return race that started around

2015 as can be seen in Figure 2. Whereas the DAPM refer to these returns as being expected

due to the higher estimated risk premia, the SLAPM propagates less increased risk premia

and devotes a higher fraction of realized carry return to idiosyncratic innovations.

The next step is to achieve insights whether the SLAPM shows a better picture of the

actual risk price dynamics or it is just unable to retrieve the same amount of information

about risk price dynamics that the DAPM is capable of due to its time series model.

[Figure 4 about here.]

The unconditional model fits the carry trade cross-section quite well already. This is

indicated by Figure 4(a) that shows a scatter plot of realized average returns against average

returns from the fitted unconditional model. Hence, their is not much potential for improve-

ment in the model performance in fitting average portfolio returns. However, whereas the

DAPM, the scatter plot of which is shown in Figure 4(b), can not improve the fit over the

unconditional model, the SLAPM appears to improve the average fit of the low interest rate

portfolio C1, as indicated in Figure 4(c).

Dynamic models are unlikely to show their merits by comparing time averages of returns.

I therefore turn to a comparison of pricing errors. The two metrics being considered are the
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root mean squared error (RMSE) computed for each test asset i as

RMSEi =

√√√√ 1

T − 1

T∑

t=2

ê2
i,t (44)

with ê2
t being the fitted residuals from the corresponding model and the root mean squared

forecast error (RMSFE), computed as

RMSFEi =

√√√√ 1

T − 1

T−1∑

t=1

(
rt+1 − β̂DOLi λ̂DOLt − β̂HML

i λ̂HML
t

)2

. (45)

In addition to the performance of the SLAPM and the two benchmarks, I evaluate the pricing

ability of the SLAPM with risk prices shifted one period backward and refer it as ”in-sample”

SLAPM. Returns for period t+ 1 are usually predicted using the time t estimate of the risk

price λt and the corresponding exposures. Remark that λt+1 is by construction updated

towards the optimal risk price given the return and cross-sectional factor realizations in time

t+ 1. Hence, an improved ex-post prediction for rt+1 would be based on λt+1 instead of λt.

This ex-post prediction is not available in a out-of-sample exercise but would be the natural

candidate when filtering risk prices in-sample.

[Table 4 about here.]

Table 4 shows the RMSE and RMSFE of the both SLAPM variants and the two bench-

marks. Let us concentrate on the improvement of incorporating economic predictors first.

In the first two rows of panel (a) we observe that the RMSE of the DAPM compared to the

unconditional model is lower for every portfolio, except C2. The improved pricing ability is

particularly evident for the extreme portfolios and returns to the two factors DOL and HML.

The third row in panel (a) shows the RMSEs from the SLAPM model. The RMSE regarding

the HML factor returns is smaller than that for the unconditional model but slightly higher

compared to the DAPM. Striking is that the SLAPM generates even lower RMSE’s for the

low interest portfolio C1, as suspected from visual inspection with the scatter plots, and the
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DOL factor returns. However, the SLAPM is less successful in pricing the cross-section with

a RMSE of 0.880 on average. Both, DAPM and the in-sample SLAPM achieve a RMSE of

about 0.849. A comparison of RMSFEs is shown in panel (b) of table (6). Here, the SLAPM

RMSFEs, except for C2, lie between those of the unconditional model and the DAPM. The

SLAPM forecasts are constructed such that the one-period ahead prediction error is min-

imized at the current observation. This construction yields the RMSFEs of the in-sample

SLAPM predictions are well below those of the DAPM and the unconditional model.

In sum, Table 4 documents that the SLAPM, inferring information from the cross-

sectional model only, can indeed compete with the DAPM employing economic time se-

ries predictors with regard to mean squared (forecast) errors. The results suggest that the

DAPM is more capable in forecasting. This is because it exploits information in economic

forecast variables that becomes available to the SLAPM with a delay. From an in-sample

perspective, the SLAPM appears to track movements in risk prices more adequate. This

particularly holds for the DOL risk price that is estimated with substantially lower mean

squared errors. Hence, the DOL risk premium for investing in the whole currency market

against the U.S. dollar appears to fluctuate less than predicted with economic forecast vari-

ables. Results concerning HML premium for investing in a long-short carry trade suggest

that the economically motivated forecast model captures most of the predictable components

that are exploited for global currency hedging in Opie and Riddiough (2020). However, these

forecast variables do not entirely capture risk price movements due to currency crashes dis-

connected from macroeconomic conditions that are suspected being the cause for carry trade

premia as argued by Brunnermeier et al. (2008). In line with the idea that carry premia are

a copensation for crash risk, carry premia depress after crash occurrence and build up in the

aftermath until the next crash occurs. This is reasonable if expecting crashes being unlikely

to occur right after each other. Of course, the SLAPM can not predict these crashes either,

but takes them into account in in-sample filtering of risk premia.
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5 Conclusions

The paper introduced an empirical dynamic asset pricing framework that allows for time-

varying lambdas and betas which are unobserved processes filtered from the cross-section

of asset returns and the asset pricing model’s factor structure in line with the more general

GAS model from Creal et al. (2013). It is applicable to a wide range of linear factor models

in the finance literature. A main advantage is that no forecasters or instruments are required

to describe the time dynamics of risk prices or exposures. A Monte-Carlo study provides

evidence that the method is capable of filtering substantial risk price movements from a

model with correctly specified cross-sectional factors under a realistic signal to noise ratio.

Moreover, it can compete with a dynamic estimation approach taking signals of true time

series drivers into account. The results point towards a non-negligible source of possible

misspecification in the time series model that can be circumvented by employing the SLAPM

framework.

Updating schemes for the SLAPM class with elliptically distributed innovations have been

derived. It turns out that the risk price updating direction within this class is unaffected

by the distributional assumptions but the magnitude of the price movement depends on the

shape of the corresponding probability density function. A particular tractable model with

respect to complexity and computational burden for estimation is the presented SLAPM(1,1)

specification with constant betas and normally distributed innovation terms. Its use have

been illustrated by an empirical application filtering adequate series of currency risk premia

that reveal movements not displayed by methods using economic forecast factors.
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Appendix

The following technical derivations prove the main results of SLAPM models with elliptically dis-
tributed innovations. To be clear about the setting in which the following results hold the elliptical
SLAPM(p,q)-model is summarized in the following definition:

Definition 1. Let (rt)
T
t=1 and (ft)

T
t=1 time series of dimensions N and K respectively. We define

the elliptical SLAPM(p,q)-model as the system given by

ft+1 = µ+ Φft + ut+1 (46)

rt+1 = βtλt + βtut+1 + et+1 (47)

θt = ω +

p∑

i=1

Aist−i+1 +

q∑

j=1

Bjθt−j , θt =

(
λt

vec(βt)

)
(48)

st =

(
sλt
sβt

)
=

(
Iλt Iλ,βt
Iβ,λt Iβt

)−1(∇λt
∇βt

)
= I−1

t ∇t (49)

pu(ut) = |Ωu|−
1
2ψu

(
u′tΩ

−1
u ut, νu

)
, pe(et) = |Ωe|−

1
2ψe

(
e′tΩ
−1
e et, νe

)
(50)

with observational density score∇t, associated Fisher information matrix I−1
t , elliptical density gen-

erators ψe, ψu : R≥0×R>0 → R≥0 and parameter vectors/matrices µ,Φ, ω,A1, . . . , Ap, B1, . . . , Bq,Ωu,
Ωe, νu, νe of appropriate dimensions.

Before dealing with the main technical results of the paper, I provide a lemma collecting some
helpful properties of spherically distributed random vectors. A n-dimensional random vector x
is spherically distributed if x = rs, where s is uniformly distributed on the (n − 1)-dimensional
unit sphere and r is a non-negative random number that is independent of s (Fang et al. (1990)).
Moreover, let ‖x‖ denote the euclidean norm of an random vector x.

Lemma 1. Suppose the n-dimensional random vector x follows a spherical distribution, then:

(i) x and x
‖x‖ are independent.

(ii) E
(

x
‖x‖

x>
‖x‖

)
= 1

nIn

Proof. See proofs of Theorem 2.3 and Theorem 2.7 in Fang et al. (1990).

We now turn to the derivation of general formulas for the scores and information matrices for
SLAPM models with elliptical distribution assumptions represented by density generator functions
ψe and ψu. An explicit parameter updating scheme in the case of zero cross-information quantities
(Iλ,βt = Iβ,λt = 0) will be derived in Corollary 2. Further results provide scores and information
quantities for Gaussian and Student’s-t SLAPM models.

Proposition 1. The score and corresponding Fisher information matrix in the updating scheme
of an elliptical SLPAM(p,q)-model are given by

∇t =

(∇λt
∇βt

)
= −2

ψe1
ψe

(
β>t−1Ω−1

e et
(λt−1 + ut)⊗ Ω−1

e et

)
(51)
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and

It =

(
Iλt Iλ,βt
Iβ,λt Iβt

)

= CI(ψe)
(

β>t−1Ω−1
e βt−1 λ>t−1 ⊗ β>t−1Ω−1

e

λt−1 ⊗ Ω−1
e βt−1 ((λt−1λ

>
t−1 + E

(
utu
>
t

)
)⊗ Ω−1

e

)
(52)

with

CI(ψe) =
4

N
Et−1

(
‖ẽt‖2

(
ψe1
ψe

)2
)

(53)

where ẽt = Ω
−1/2
e et and ψe1 is the partial derivative with respect to the first component.

Proof. The common observational density of ut and et can be derived with the given density
functions. We find

p(et, ut|Ft−1, θt) = p(et|ut,Ft−1, θt)p(ut|Ft−1, θt)

= |Ωe|−
1
2ψe

(
e>t Ω−1

e et, νe

)
|Ωu|−

1
2ψu

(
u>t Ω−1

u ut, νu

)

and the log-likelihood

lt = ln p(et, ut|Ft−1, θt)

= −1

2
ln |Ωe| −

1

2
ln |Ωu|+ lnψe

(
e>t Ω−1

e et, νe

)
+ lnψu

(
u>t Ω−1

u ut, νu

)
.

The components of the score can be computed as

∂lt
∂θ

=
∂

∂θ
lnψe

(
e>t Ω−1

e et, νe

)

=
ψe1
ψe

∂

∂θ

(
e>t Ω−1

e et

)

= 2
ψe1
ψe

∂et
∂θ

Ω−1
e et

with ψe1 being the first derivative of ψ with respect to its first component. The score functions of
risk prices and exposures can then be obtained as follows:

∇λt =
∂lt
∂λt−1

= 2
ψe1
ψe

∂et
∂λt−1

Ω−1
e et = −2

ψe1
ψe
β>t−1Ω−1

e et
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and

∇βt =
∂lt

∂vec(βt−1)
= 2

ψe1
ψe

∂et
∂vec(βt−1)

Ω−1
e et

= 2
ψe1
ψe

(
∂

∂vec(βt−1)
(rt − βt−1(λt−1 + ut))

)
Ω−1
e et

= −2
ψe1
ψe

(
∂

∂vec(βt−1)
(vec(βt−1(λt−1 + ut)))

)
Ω−1
e et

= −2
ψe1
ψe

(
∂

∂vec(βt−1)
(((λt−1 + ut)

> ⊗ IN )vec(βt−1))

)
Ω−1
e et

= −2
ψe1
ψe

((λt−1 + ut)⊗ IN )Ω−1
e et

= −2
ψe1
ψe

((λt−1 + ut)⊗ IN )(1⊗ Ω−1
e et)

= −2
ψe1
ψe

((λt−1 + ut)⊗ Ω−1
e et).

Define the normalized error ẽt = Ω
−1/2
e et with Ω

1/2
e being the Cholesky factor of the corresponding

dispersion matrix. Remark that ẽt is spherically distributed and therefore fulfills the conditions for
applying Lemma 1. The Fisher information matrix can then be computed as

It = Et−1

(
∂lt
∂θ

∂l>t
∂θ

)

= Et−1

((
2
ψe1
ψe

)2 ∂et
∂θ

Ω−1
e et(Ω

−1
e et)

>∂e
>
t

∂θ

)

= Et−1

((
2
ψe1
ψe

)2 ∂et
∂θ

Ω
− 1

2
e ẽtẽ

>
t Ω
− 1

2
e

∂e>t
∂θ

)

= 4Et−1

(
‖ẽt‖2

(
ψ1

ψ

)2 ∂et
∂θ

Ω
− 1

2
e Et−1

(
ẽt
‖ẽt‖

(
ẽt
‖ẽt‖

)> ∣∣∣ ut
)

Ω
− 1

2
e

∂e>t
∂θ

)

=
4

N
Et−1

(
‖ẽt‖2

(
ψ1

ψ

)2 ∂et
∂θ

Ω
− 1

2
e Ω

− 1
2

e
∂e>t
∂θ

)

=
4

N
Et−1

(
‖ẽt‖2

(
ψ1

ψ

)2
)
Et−1

(
∂et
∂θ

Ω−1
e

∂e>t
∂θ

)

= CI(ψe) Et−1

(
∂et
∂θ

Ω−1
e

∂e>t
∂θ

)

with CI(ψe) = 4
NEt−1

(
‖ẽt‖2

(
ψe1
ψe

)2
)

. The fourth and fifth equality holds because of Lemma 1(i)

and (ii), respectively.17 Information quantities with respect to factor risk prices and exposures can

17 ∂et
∂θ being independent of et is exploited as well.
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then be computed as follows:

Iλt = CI(ψe)β>t−1Ω−1
e βt−1

Iβt = CI(ψe)Et−1

(
((λt−1 + ut)⊗ IN )Ω−1

e ((λt−1 + ut)
> ⊗ IN )

)

= CI(ψe)Et−1

(
((λt−1 + ut)⊗ IN )(1⊗ Ω−1

e )((λt−1 + ut)
> ⊗ IN )

)

= CI(ψe)Et−1

(
((λt−1 + ut)⊗ Ω−1

e )((λt−1 + ut)
> ⊗ IN )

)

= CI(ψe)Et−1

(
((λt−1 + ut)(λt−1 + ut)

>)⊗ Ω−1
e

)

= CI(ψe)(λt−1λ
>
t−1 + E(utu

>
t ))⊗ Ω−1

e

(
Iλ,βt

)>
= Iβ,λt = CI(ψe)Et−1

(
((λt−1 + ut)⊗ IN )Ω−1

e βt−1

)

= CI(ψe)Et−1

(
(λt−1 + ut)⊗ Ω−1

e βt−1

)

= CI(ψe)(λt−1 ⊗ Ω−1
e βt−1).

Corollary 2. The scaled scores of an SLAPM(p,q) with characteristic distribution generator ψe

and assuming (Iλ,βt )> = Iβ,λt ≡ 0 is given by

(
sλt
sβt

)
= C(ẽt, ψ

e)

(
(β>t−1Ω−1

e βt−1)−1β>t−1Ω−1
e rt − (λt−1 + ut)

vec(et(λt−1 + ut)
>(λt−1λ

>
t−1 + Et−1(utu

>
t )))

)

with

C(ẽt, ψ
e) = −2ψe1

ψe
CI(ψe)−1 = −

N
ψe1
ψe

2Et−1

(
‖ẽt‖2

(
ψe1
ψe

)2
) .

Proof. Employing the results from Proposition 1 while assuming zero cross information quantities
i.e. Iλ,βt = Iβ,λt = 0 we can derive the following formulas for the driving martingale difference
sequences of time-varying risk prices and exposures. For λt we find:

sλt = (Iλt )−1∇λt
= −2

ψe1
ψe
CI(ψe)−1(β>Ω−1

e β)−1β>Ω−1
e (et))

= C(ẽt, ψ
e)(β>Ω−1

e β)−1β>Ω−1
e (rt − β(λt−1 + ut))

= C(ẽt, ψ
e)
[
(β>Ω−1

e β)−1β>Ω−1
e rt − (λt−1 + ut)

]
. (54)
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For βt, we analogously find:

sβt = (Iβt )−1∇βt
= −2

ψe1
ψe
CI(ψe)−1((λt−1λ

>
t−1 + Et−1(utu

>
t ))⊗ Ω−1

e )−1((λt−1 + ut)⊗ Ω−1
e et)

= C(ẽt, ψ
e)((λt−1λ

>
t−1 + Et−1(utu

>
t ))⊗ Ω−1

e )−1((λt−1 + ut)⊗ Ω−1
e )et

= C(ẽt, ψ
e)(((λt−1λ

>
t−1 + Et−1(utu

>
t ))(λt−1 + ut))⊗ IN )vec(et)

= C(ẽt, ψ
e)vec(et(λt−1 + ut)

>(λt−1λ
>
t−1 + Et−1(utu

>
t )))

Corollary 3 (Gaussian Residuals). The score and the corresponding Fisher information matrix of
the elliptical SLAPM(p,q)-model with Gaussian residuals are given by

∇t =

(
β>t−1Ω−1

e et
(λt−1 + ut)⊗ Ω−1

e et

)

and

It =

(
β>t−1Ω−1

e βt−1 λ>t−1 ⊗ β>t−1Ω−1
e

λt−1 ⊗ Ω−1
e βt−1 ((λt−1λ

>
t−1 + Ωu)⊗ Ω−1

e

)
.

Proof. The characteristic generator of the multivariate normal density is given by ψe(x, ν) =
(2π)N/2e−x/2. By observing that ψe solves the differential equation ψe1 = −1

2ψ
e, we find that

−2ψe1/ψ
e = 1 and

CI(ẽt, ψe) =
4

N
Et−1

(
‖ẽt‖2

(
ψe1
ψe

)2
)

=
4

N
Et−1

(
‖ẽt‖2

(−ψe/2
ψe

)2
)

=
1

N
Et−1

(
‖ẽt‖2

)
=

1

N
Et−1

(
ẽ>t ẽt

)
=

1

N

N∑

i=1

Et−1

(
ẽ>it ẽit

)
= 1

because ẽt ∼ N(0, IN ). Moreover, normally distributed factor innovations yield E
(
utu
>
t

)
= Ωu.

The assertion now follows with Proposition 1.

Corollary 4 (Student’s t Residuals). The score and the corresponding Fisher information matrix
of the elliptical SLAPM(p,q) with residuals following a Student’s t distribution are given by

∇t =
νe +N

νe + e>t Ω−1
e et

(
β>t−1Ω−1

e et
(λt−1 + ut)⊗ Ω−1

e et

)

and

It =
νe +N

νe +N + 2

(
β>t−1Ω−1

e βt−1 λ>t−1 ⊗ β>t−1Ω−1
e

λt−1 ⊗ Ω−1
e βt−1 ((λt−1λ

>
t−1 + νu

νu−2Ωu)⊗ Ω−1
e

)
.
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Proof. The characteristic generator of the multivariate Student’s t density is given by

ψ(x, νe) =
Γ
(
νe+N

2

)

(νeπ)
N
2 Γ
(
νe
2

)
(

1 +
x

νe
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2

(55)

and can be used to compute

−2
ψe1
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The scaling term of the information quantity can be reformulated as follows:

CI(ẽt, ψe) =
4

N
Et−1

(
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)2
)
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1

N
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)2
)
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(
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N

)2
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(
Z

(
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N + Z

)2

)
(57)

with Z := ‖ẽt‖2 /N . Since ‖ẽt‖2 being a sum of N squared t-distributed random numbers with
degrees-of-freedom-parameter ν, we know that Z ∼ F (N, νe) (see, for example, p.22 in Fang et al.
(1990)). Knowing the probability density function of Z, we can compute the desired expected value:
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where we used the integral representation of the beta function B(x, y) =
∫∞

0 tx−1(1+t)−x−ydt in the
fourth equation and the identities B(x+1, y) = B(x, y)·x/(x+y) and B(x, y+1) = B(x, y)·y/(x+y)
in the fifth and sixth equations respectively.
Inserting (58) into (57) yields CI(ẽt, ψe) = νe+N

νe+N+2 and therefore proves the assertion in conjunction

with Proposition 1 and E
(
utu
>
t

)
= νu

νu−2Ωu.
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(a) Exemplary Simulated Return Series

(b) Exemplary Simulated Risk Price Series

Figure 1: Exemplary simulated Return and Lambda. The figure shows simulated excess returns
together with the conditional expectation βλt−1(panel (a)) and the associated lambda series (panel (b)).
The simulated cross-section consists of N = 25 assets and T = 500 observations. The considered lambda
forecasters in panel (b) are a Gaussian constant beta SLAPM(1,1) specification (SLAPM), a constant risk
price specification estimated fitted with the classical approach of Fama and MacBeth (1973) (FMB) and the
regression-based dynamic asset pricing model of Adrian et al. (2015) (DAPM) with the correct forecasting
factor (κ = 1).
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Figure 2: Cumulative DOL and HML Log Returns. The figure shows time-varying cumulative log
returns to the DOL and HML portfolio. DOL is a equally-weighted portfolio of every currency available and
HML is a carry trade portfolio with a long position in a interest rate currency portfolio and a short position
in a low interest rate portfolio. Shaded areas refer to NBER recessions. The sample period is 1986:04 -
2018:11.
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(b) HML Risk Premium

Figure 3: Risk Price Dynamics in the Carry Cross-Section. The figure shows time-varying risk
premia of the DOL (rpDOLt ) as well as the HML (rpHML

t ) factor from the two dynamic estimation approaches.
SLAPM refers to results from a Gaussian SLAPM(1,1) model with constant risk exposures. DAPM refers
to results from the regression-based approach of Adrian et al. (2015) using forecast variables discussed in
Section 4.1.2. Test assets are five currency portfolios sorted on forward discount. The sample period is
1986:04 - 2018:11. Shaded areas refer to NBER recessions.
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(a) Unconditional Model
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(b) DAPM
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(c) SLAPM

Figure 4: Scatter Plots Carry Cross-Section. This figure shows plots of observed against model-implied
average returns estimated using the three different estimation approaches. SLAPM refers to results from a
Gaussian SLAPM(1,1) model with constant risk exposures. DAPM refers to results from the regression-based
approach of Adrian et al. (2015) using forecast variables discussed in Section 4.1.2. Unconditional model
estimation is conducted with a DAPM without forecast variables. Test assets are five currency portfolios
sorted on forward discount. The sample period is 1986:04 - 2018:11.
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Table 1: Risk Price Forecast Simulation OOS-R2

The table shows the OOS-R2 of Gaussian constant beta SLAPM(1,1) risk price forecasts against competing
benchmark models. The eight simulated panels have different numbers of assets N, time observations T
and are replicated 10 000 times each. Benchmarks are a constant risk price specification estimated fitted
with the classical approach of Fama and MacBeth (1973) and the regression-based dynamic asset pricing
model of Adrian et al. (2015) (DAPM). The share of information from the correct forecaster made available
to the DAPM is denoted with κ. Shaded areas indicate that the Diebold and Mariano (1995) test with null
hypothesis of equal forecast accuracy can not be rejected.

N=25 N=50 N=100

T= 250 500 1000 T=250 500 1000 T=250 500 1000

FMB 0.587 0.699 0.775 0.594 0.692 0.741 0.652 0.686 0.724
DAPM κ = 0 0.664 0.738 0.790 0.676 0.730 0.759 0.723 0.719 0.744

0.1 0.661 0.734 0.787 0.674 0.727 0.756 0.720 0.717 0.741
0.2 0.650 0.723 0.777 0.663 0.716 0.746 0.711 0.708 0.728
0.3 0.625 0.697 0.755 0.640 0.691 0.721 0.691 0.684 0.699
0.4 0.582 0.648 0.708 0.599 0.642 0.670 0.657 0.635 0.639
0.5 0.518 0.563 0.620 0.537 0.559 0.574 0.607 0.549 0.527
0.6 0.440 0.433 0.464 0.460 0.435 0.402 0.547 0.414 0.330

0.7 0.369 0.273 0.217 0.386 0.281 0.126 0.490 0.246 0.021
0.8 0.319 0.124 -0.086 0.331 0.138 -0.230 0.449 0.091 -0.359

0.9 0.294 0.033 -0.321 0.301 0.046 -0.532 0.426 0.000 -0.661

1 0.288 0.010 -0.386 0.293 0.018 -0.642 0.419 -0.020 -0.758
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Table 2: Return Forecast Simulation OOS-R2(%)

The table shows the percentage OOS-R2 of Gaussian constant beta SLAPM(1,1) return forecasts against
competing benchmark models computed from simulations. The eight simulated panels have different
numbers of assets N, time observations T and are replicated 10 000 times each. Benchmarks are sample
mean forecasts (Mean) and forecasts from predictive regressions (PReg) with a diffuse signal of the correct
forecaster as regressor. κ is the share of information from the correct forecaster. Shaded areas indicate that
the Diebold and Mariano (1995) test with null hypothesis of equal forecast accuracy can not be rejected.

N=25 N=50 N=100

T= 250 500 1000 T=250 500 1000 T=250 500 1000

(a) β = 0.5
Mean 0.729 0.513 0.807 0.690 0.830 0.523 0.563 0.802 0.699
PReg κ = 0 1.053 0.764 0.968 1.115 1.044 0.531 0.971 0.954 0.830

0.1 1.106 0.755 0.979 1.127 1.088 0.520 0.991 0.951 0.842
0.2 1.143 0.716 0.962 1.116 1.109 0.493 1.006 0.926 0.824
0.3 1.146 0.632 0.903 1.072 1.086 0.445 1.011 0.869 0.757
0.4 1.100 0.501 0.794 0.992 1.004 0.377 1.000 0.778 0.630
0.5 1.004 0.339 0.644 0.885 0.862 0.297 0.975 0.664 0.453

0.6 0.881 0.184 0.484 0.772 0.689 0.227 0.948 0.551 0.263

0.7 0.758 0.065 0.347 0.675 0.524 0.178 0.928 0.460 0.102

0.8 0.652 -0.007 0.249 0.601 0.390 0.153 0.914 0.398 -0.012

0.9 0.570 -0.042 0.188 0.551 0.293 0.146 0.903 0.363 -0.079

1 0.509 -0.051 0.156 0.521 0.229 0.150 0.894 0.348 -0.112

(b) β = 1
Mean 0.877 0.671 1.064 0.628 0.772 0.881 0.714 0.857 1.042
PReg κ = 0 1.355 0.936 1.209 1.006 1.044 0.925 1.198 0.998 1.184

0.1 1.411 0.955 1.196 1.037 1.055 0.888 1.192 0.979 1.185
0.2 1.435 0.941 1.144 1.052 1.032 0.813 1.165 0.926 1.141
0.3 1.405 0.874 1.034 1.042 0.958 0.685 1.105 0.827 1.031
0.4 1.304 0.743 0.862 1.002 0.824 0.507 1.013 0.684 0.842

0.5 1.143 0.563 0.651 0.937 0.643 0.304 0.907 0.519 0.595

0.6 0.961 0.373 0.444 0.862 0.454 0.121 0.815 0.368 0.343

0.7 0.793 0.212 0.282 0.789 0.297 -0.007 0.755 0.256 0.137

0.8 0.658 0.098 0.179 0.725 0.187 -0.073 0.725 0.189 -0.001

0.9 0.557 0.027 0.128 0.673 0.122 -0.090 0.716 0.158 -0.077

1 0.486 -0.013 0.111 0.632 0.089 -0.078 0.716 0.150 -0.108

(c) β = 1.5
Mean 0.993 0.593 1.126 0.799 0.903 0.907 0.904 0.814 1.058
PReg κ = 0 1.451 0.768 1.289 1.169 1.062 0.884 1.342 0.968 1.203

0.1 1.503 0.783 1.277 1.166 1.086 0.856 1.353 0.937 1.215
0.2 1.521 0.759 1.220 1.135 1.077 0.791 1.339 0.869 1.186
0.3 1.481 0.675 1.102 1.066 1.013 0.679 1.283 0.755 1.094
0.4 1.368 0.521 0.916 0.962 0.883 0.519 1.181 0.598 0.925

0.5 1.193 0.313 0.686 0.841 0.696 0.334 1.044 0.428 0.694

0.6 0.993 0.099 0.462 0.733 0.493 0.165 0.907 0.282 0.449

0.7 0.810 -0.079 0.286 0.653 0.318 0.044 0.796 0.185 0.243

0.8 0.665 -0.202 0.173 0.602 0.190 -0.020 0.721 0.135 0.099

0.9 0.559 -0.275 0.116 0.572 0.108 -0.040 0.676 0.120 0.015

1 0.487 -0.312 0.097 0.556 0.062 -0.033 0.652 0.125 -0.026
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Table 3: Price of Risk Estimates

This table shows estimates of risk price parameters for the risk factors DOL and HML. The first two
columns show results from a Gaussian constant-beta SLAPM(1,1) with score coefficient a and
autoregressive coefficient b. Following four rows provide estimates from a dynamic asset pricing model in
line with Adrian et al. (2015). Forecasting factors a5re the absolute average forwars discount as well as
3-monthly log growth rates of FX volatility, the CRB commodity return, the aggregated intermediary
capital ratio of He et al. (2017) and the FRB dollar index. The last two columns show results from a
constant risk price specification estimated with Fama-MacBeth regressions. Standard errors are shown in
parentheses. They are computed with GMM for the Fama-MacBeth regression results and according to
Adrian et al. (2015) for the the two DAPM specifications. They both adjust for cross-asset correlation in
the residuals and for estimation error of the time-series betas. SLAPM standard errors are derived from
the numerically computed Fisher Information as described in Section 2.3. Test assets are 5
equally-weighted currency portfolios sorted on forward discount with monthly returns denoted in
percentages. The sample period is 1986:04 - 2018:11.

SLAPM DAPM Unconditional

DOL HML DOL HML DOL HML

const 0.075∗∗∗ 0.872∗∗∗ -0.111 -0.033 0.091 1.042∗∗∗

(0.026) (0.108) (0.153) (0.212) (0.102) (0.147)

a 0.836∗∗∗ 1.132∗∗∗

(0.072) (0.078)

b 0.208∗∗∗ 0.356∗∗∗

(0.061) (0.052)

∆FX Volatility -0.027∗∗∗ -0.029∗∗

0.010 0.015

∆Commodity Returns 0.305∗∗∗ 0.159∗

(0.058) (0.081)

Abs. Avg. Forward Discount 0.013 0.142∗∗∗

(0.015) (0.021)

∆Intermediary Capital -0.103∗∗∗ -0.043
(0.026) (0.037)

∆Broad Dollar Index 0.298∗∗ -0.064
(0.124) (0.172)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Mean Squared (Forecast) Error Comparisons

This table compares root mean squared errors and root mean squared forecast error across the three
estimation approaches of the currency cross-section model. SLAPM refers to results from a Gaussian
SLAPM(1,1) model with constant risk exposures. The in-sample version employs lambdas updated at the
current observation. DAPM refers to results from the regression-based approach of Adrian et al. (2015)
using forecast variables discussed in Section 4.1.2. Unconditional model estimation is conducted with a
DAPM without forecast variables. Test assets are five currency portfolios sorted on forward discount. HML
and DOL refer to errors from predicting the equally-weighted currency market return and returns to the
high-minus-low carry trade return, respectively. The sample period is 1986:04 - 2018:11.

C1 C2 C3 C4 C5 Avg DOL HML

(a) Root Mean Squared Error
Unconditional 0.889 0.878 0.879 0.932 0.949 0.905 0.269 0.937
DAPM 0.824 0.887 0.852 0.900 0.782 0.849 0.144 0.599
SLAPM 0.781 0.915 0.895 0.944 0.866 0.880 0.102 0.702
SLAPM (in-sample) 0.827 0.867 0.862 0.904 0.785 0.849 0.236 0.566

(b) Root Mean Squared Forecast Error
Unconditional 2.359 1.990 2.228 2.316 2.812 2.341 2.006 2.845
DAPM 2.244 1.930 2.149 2.219 2.652 2.239 1.909 2.620
SLAPM 2.297 1.992 2.225 2.310 2.756 2.316 1.994 2.700
SLAPM (in-sample) 2.153 1.879 2.088 2.157 2.388 2.133 1.852 2.131
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