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Abstract

We propose a novel dynamic mixture vector autoregressive (VAR) model in which time-

varying mixture weights are driven by the predictive likelihood score. Intuitively, the

state weight of the k-th component VAR model in the subsequent period is increased

if the current observation is more likely to be drawn from this particular state. The

model is not limited to a specific distributional assumption and allows for straight-

forward likelihood-based estimation and inference. We conduct a Monte Carlo study

and find that the score-driven mixture VAR model is able to adequately filter the mix-

ture dynamics from a variety of different data generating processes which most other

observation-driven dynamic mixture VAR models cannot appropriately cope with. Fi-

nally, we illustrate our approach by an application where we model the conditional

joint distribution of economic and financial conditions and derive generalized impulse

responses.
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1 Introduction

Regime-switching models have a long tradition in macroeconomics and finance. The most

common approaches to capture regime-dependent non-linearities are the Markov-switching

(MS) vector autoregressive (VAR) model (Krolzig 1997; based on the seminal work by Hamil-

ton 1989, 1990), the threshold VAR model (Tsay 1998), and the smooth transition VAR

model (Weise 1999; Camacho 2004). More recent papers propose mixture VAR (MVAR)

models with K different components (or states), each being linear Gaussian VAR processes,

and so-called mixture weights. These weights can be constant over time (Fong et al. 2007),

time-varying based on a Markovian process (Kalliovirta et al. 2016), or time-varying using

observable covariates (Burgard et al. 2019).

We propose a flexible alternative approach to construct MVAR models with time-varying

mixture weights which are driven by past observations of the endogenous variables. To infer

the direction and intensity of the weight updating within our Score-driven Mixture Vector

Autoregression (SMVAR), we follow the generalized autoregressive score (GAS)1 approach

developed by Creal et al. (2013) and Harvey (2013). They propose to update parameters of

econometric models towards the direction of the gradient of the log likelihood function, the so-

called score, evaluated at the current observation.2 Consequently, time-varying parameters

are pushed towards the direction of steepest ascent of the observational likelihood function

as indicated by the gradient. Blasques et al. (2015) show that such an update reduces the

Kullback–Leibler divergence (Kullback and Leibler 1951) between the true and model-implied

conditional density in each step.

The derived updating scheme for the weight of each mixture component uses the scaled

conditional density of the component model evaluated at the current observation. Intuitively,

the procedure increases the weights of those mixture components that appear particularly

1Also referred to as score-driven (SD) model or dynamic conditional score (DCS) model.
2GAS models have been applied successfully in numerous applications in time series analysis and financial

econometrics. See, for example, Harvey and Lange (2017) and Gorgi et al. (2019) for applications in volatility
modeling or Oh and Patton (2018) and Bernardi and Catania (2019) for systemic risk applications.
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likely given the current observation. Interestingly, this updating mechanism is similar to

those for univariate score-driven Markov switching models (Bazzi et al. 2017) and more

general dynamic adaptive mixture models (Catania 2021). Moreover, the (unconditional)

scaled observation density is also used as a driving variable in the dynamic MVAR models of

Kalliovirta et al. (2016) and Burgard et al. (2019). We justify their ad-hoc modeling choice

within a GAS framework and provide a reasoning for using scaled component observation

densities to capture mixture weight dynamics. The proposed SMVAR is more flexible than

other dynamic MVAR approaches and not restricted to a Gaussian component model. In

fact, parametric distributions for the component models can be freely specified. The (con-

ditional) likelihood function of the SMVAR model can be evaluated directly and allows for

straightforward likelihood-based estimation and inference.

We perform a Monte Carlo study to investigate the abilities and limitations of several

dynamic MVAR models in recovering mixture dynamics from various data generating pro-

cesses. First, we examine the performance of the SMVAR in comparison to the MVAR

assuming static mixture weights and the Gaussian MVAR (GMVAR) of Kalliovirta et al.

(2016). We find that the SMVAR always outperforms the GMVAR in filtering the mixture

weights. This is particularly pronounced in data generating processes for which the mixture

weights are constant over an extended period of time, such as constant weights or structural

breaks. One reason for this is that the GMVAR updates the weights always according to

the most recent scaled observation density of a mixture component and does not encompass

situations in which weights are constant. The updating mechanism in the GMVAR facili-

tates an elegant verification of theoretical properties such as stationarity, ergodicity, and a

known (stationary) distribution. However, this comes at the cost of lower flexibility to cap-

ture weight processes that are not Markovian, as our simulation study shows. The SMVAR

solves this issue and allows for more flexibility by including a constant and an autoregressive

(AR) part in the mixture weight dynamics. Second, we compare the filtering ability of the

SMVAR against the Logit MVAR (LMVAR) of Burgard et al. (2019) which uses signals of
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the covariate factor to derive the mixture weight dynamics. Our results show that the SM-

VAR performs better than the LMVAR if the employed signal includes less then 50% of the

true covariate information. Hence, the SMVAR is not only useful if the explaining factors

for the dynamics are unknown, but also helpful as complement to an LMVAR analysis if the

considered factors are uncertain.

As an empirical application, we model the joint distribution of the National Financial

Conditions Index and real GDP growth for the period 1971q1−2020q4 using a two-state SM-

VAR. We show that the mixture weights identify a (tranquil) normal regime and a (volatile)

economic and financial crisis regime. In particular, all NBER recessions are accompanied by

large values of the crisis state weight with the mild and short recession of 2001 being the

only exception. Moreover, the recessions are anticipated by a drastic change in the mixture

weights (or indicated with only a short delay in the case of the 1990−1991 recession). On

average, the economy is in the normal state during 75% of the time. Finally, our application

also highlights the appealing feature of utilizing an AR term in the mixture weight dynamics.

In this specific example, the persistence in the mixture weights amounts to 90% and leads

to a smooth development of the weights over time.

An analysis of the model dynamics is carried out with generalized impulse response

functions based on Koop et al. (1996). We find that adverse shocks on economic growth

and financial conditions significantly increase the conditional probability for switching into a

crisis regime for several quarters with economic shocks having a larger impact. The increased

switching probability enlarges the set of possible trajectories after a shock and considerably

alters the impact of the growth shock on financial conditions as compared to the component-

wise impulse response where a regime switch has been ruled out.

The remainder of the paper is organized as follows. Section 2 introduces and discusses a

general framework that almost all (dynamic) mixture vector autoregressions have in common.

Our proposed model — which includes local likelihood optimal mixture dynamics — is

presented and discussed in Section 3. A Monte Carlo study evaluating the performance of
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the novel model is conducted in Section 4. The empirical application is presented in Section

5. Section 6 concludes.

2 (Dynamic) Mixture Vector Autoregressions

Let (yt)
∞
t=1 denote the d-dimensional time series that is is defined on a probability space

(Ω,F ,P) and equipped with a filtration Ft = σ ({yt, . . . , y1}) representing the information

set available at time t. We assume the existence of K different states of the economy with

yt being driven by a different VAR specification in each state. The state of the economy is

represented by a sequence of random vectors st = (s1,t, . . . , sk,t)
> where in every period t

either sk,t = 1 (state k is active in period t) or sk,t = 0 holds (k = 1, . . . , K and
∑K

k=1 sk,t = 1).

A general MVAR model with K mixture components is then given by

yt =
K∑

k=1

sk,t

(
Φk0 +

pk∑

i=1

Φkiyt−i + Ω
1
2
k εt

)
(1)

where εt is a d-dimensional sequence of independently spherically distributed random vectors

with an identity dispersion matrix and positive definite Ωk. We additionally assume εt to be

independent of ys for s < t and to be conditionally independent of st given Ft−1.

The state vector process st is not observable in general. We model a probability distribu-

tion pinning down the so-called mixing weights αi,t = P [si,t = 1|Ft−1] to derive a probability

density for the time series of interest yt. Given a particular specification of these weights,

the conditional probability density function (pdf) can be obtained by

p(yt|Ft−1) =
K∑

k=1

αk,tpk(yt|Ft−1) (2)

where pk(yt|Ft−1) is the conditional pdf of the k-th VAR model component.

To this point, the empirical framework nests a variety of mixture VAR models. First,

there is the special case of constant mixture weights, that is, αi,t ≡ αi. The properties and
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estimation approaches for this MVAR model are discussed in Fong et al. (2007). Second,

the popular MSVAR model (Krolzig 1997) is also a special case of the MVAR framework

above, in which the mixture weights are given by αi,t = P [si,t = 1|s1,t−1, s2,t−1, . . . , sK,t−1].

Third, the dynamic MVAR models of Kalliovirta et al. (2016) and Burgard et al. (2019) —

that differ in the specification of the dynamic mixture weights αi,t — are encompassed as

well. Our novel specification also builds on the common framework above. However, it is

much more flexible than the other dynamic specifications and optimal with regard to a local

likelihood criterion.

3 Score-Driven Mixture Vector Autoregressions

We introduce the score-driven mixture VAR for a general number of mixture components K

and discuss its properties. In particular, we compare the SMVAR to other dynamic MVAR

specification and present an likelihood-based estimation strategy.

3.1 Score-Driven Mixture Weights

The updating scheme for the mixtures must ensure that weights sum up to one in each

period, that is, the weights should result from the K-dimensional probability simplex SK =
{
α ∈ RK |∑K

i=k αk = 1
}

. We achieve this by using a mapping h : RK−1 → SK with h(α̃t) =

αt for α̃t ∈ RK−1. This ensures that the time-varying mixture weights αt sum up to one,

while the dynamics of α̃t are modeled in the unrestricted domain space. We now define the

parameter updating, in line with Creal et al. (2013) and Harvey (2013), as

α̃t = ω +

p∑

i=1

AiS
−1
t ∇t−i +

q∑

i=1

Biα̃t−i (3)
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with3

∇t =
∂ ln p(yt|Ft−1)

∂α̃t

= Jh(α̃t) ·




p1(yt|Ft−1)

p(yt|Ft−1)
...

pK(yt|Ft−1)

p(yt|Ft−1)




(4)

where Jh(αt) is the Jacobian of the mapping h, ω is a (K − 1)-dimensional parameter

vector, and Ai, Bi are (K − 1) × (K − 1)-dimensional parameter matrices. Intuitively,

this updating increases the future weights of the components with the highest observation

density in the current period. St is a matrix that scales the impact of the observations on the

parameter updating. A common choice is the Fisher information matrix It = E
(
∇t∇>t |Ft−1

)

or the Cholesky factor thereof to relate the scaling to the variance of the likelihood score.4

However, the Fisher information of observation densities cannot be derived in closed-from in

our particular mixture model. Therefore, for simplicity, we continue with another frequent

choice and set St equal to the identity matrix, that is, St = I.5

The mixture weight updating derived in Eqs. (3) and (4) is particularly appealing since

it relates the updating direction and intensity for the next period to the relative observation

density of the component to be updated in the current period. Put differently, if the weighted

observation density of the k-th component is high (low) in the current period compared to

the overall observation density of all states, the mixture weight of state k will be increased

(decreased) in the following period. Another attractive feature of the score-driven mixture

weights updating is that it is invariant with respect to the component distribution models.

3A derivation of the score ∇t is provided in A.1.
4Using the Cholesky factor is particularly attractive as the parameter process exhibits unit variances in

this case.
5The literature on GAS Models acknowledges that the choice of the scaling does not crucially affect the

model performance in many applications. Accordingly, we find that using a numerically computed Fisher
information via It = Jh(αt)HtJh(αt)

> with

(Ht)i,j =

∫
pi(yt|Ft−1)pj(yt|Ft−1)

p(yt|Ft−1)
dyt (5)

does not crucially improve the model performance.
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Hence, the updating is valid not only for Gaussian component models (as its is assumed for

many dynamic mixture VAR specifications), but also for other distributions.

Next, we have to specify the particular parameter updating to implement the SMVAR

model. One possible choice is the logistic transformation where the mapping is defined as

hk(α̃) =





exp(α̃k)

1 +
∑K−1

i=1 exp(α̃i)
, k = 1, . . . , K − 1

1−∑K−1
j=1

exp(α̃j)

1 +
∑K−1

i=1 exp(α̃i)
, k = K

(6)

with the Jacobian given by6

(Jh(α̃))k,l =





exp(α̃k)
(

1 +
∑K−1

i=1 exp(α̃i)
)
− exp(2α̃k)

(
1 +

∑K−1
i=1 exp(α̃i)

)2 , k = l, k 6= K

− exp(α̃k) exp(α̃l)(
1 +

∑K−1
i=1 exp(α̃i)

)2 , k 6= l, k 6= K

− exp(α̃l)(
1 +

∑K−1
i=1 exp(α̃i)

)2 , k = K

. (7)

This logistic transformation is also used by Bazzi et al. (2017) for creating score-driven

dynamics of the conditional probability in univariate MS models. There are alternative

transformations that could be considered, for example, those used by Catania (2021) for the

more general dynamic adaptive mixture class. However, we did not encounter any striking

improvement in our VAR context and, consequently, decided to keep the rather simplistic

logistic transformation.

3.2 Two-Component Models

For simplicity, we present and discuss the properties of the SMVAR model only for the two-

regime case. The model outlined in the following is also used in the simulation study in

6A derivation of the Jacobian is provided in A.2
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Section 4 and the empirical application in Section 5. In a two-regime model, the observation

density simplifies to

p(yt|Ft−1) =
exp(α̃t)

1 + exp(α̃t)
p1(yt|Ft−1) +

1

1 + exp(α̃t)
p2(yt|Ft−1). (8)

Note that one internal latent process α̃t suffices to describe the dynamic weights α1,t =

exp(α̃t)/[1 + exp(α̃t)] and α2,t = 1/[1 + exp(α̃t)] of the states k = 1 and k = 2, respectively.

Similarly, the Jacobian of the logistic transformation can be expressed as

Jh(α̃) =

(
exp(α̃)

(1 + exp(α̃))2
,
− exp(α̃)

(1 + exp(α̃))2

)
(9)

for K = 2. Hence, we can derive the mixture weight updating as

α̃t+1 = ω + a
exp(α̃t)

(1 + exp(α̃t))2
p1(yt|Ft−1)− p2(yt|Ft−1)

p(yt|Ft−1)
+ bα̃t. (10)

The updating scheme in Eq. (10) is highly intuitive. An update of the mixture weights

is induced by a non-zero value of the scaled difference of the two state observation densities

[p1(yt|Ft−1)− p2(yt|Ft−1)] /p(yt|Ft−1). If the current observation yt is more likely to be

drawn from the first component VAR model (indicated by p1(yt|Ft−1) > p2(yt|Ft−1) in the

numerator), the latent variable α̃t+1 is increased. This induces an increase in the weight of

state 1 α1,t+1 in the following period and a decrease in the weight of state 2 α2,t+1. The

scaling term exp(α̃)/[1 + exp(α̃)]2 results from the chosen weight transformation h.

3.3 Differences to Other Dynamic Mixture VAR Models

We briefly discuss other dynamic MVAR models and relate them to the SMVAR described

in the previous subsections.
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3.3.1 Gaussian Mixture Vector Autoregression

The Gaussian Mixture Vector Autoregressive model of Kalliovirta et al. (2016) employs the

same baseline model as described in Section 2, but with Gaussian innovations and equal

lag lengths for the VAR components representing the different states, hence pk = p for

k = 1, . . . , K. For the weight updating, they stack p lags of the time series model in a dp-

dimensional vector yt = vec(yt, yt−1, . . . , yt−p+1)
>. Hence, the regime component k features

the common density

pk(yt) = (2π)−dp/2 det(Σk)−
1
2 exp

{
−1

2
(yt − 1p ⊗ µk)>Σ−1k (yt − 1p ⊗ µk)

}
(11)

with unconditional mean µk and covariance matrix Σk, which are functions of parameter

matrices Φ0,Φ1, . . . ,Φp. The weight updating sets the weight as the ratio of the observation

density pk of each separate regime over the overall observation density p of the mixture

model, that is,

αk,t = αk
pk(yt−1)

p(yt−1)
(12)

where α = (α1, . . . , αK)> ∈ RK are unknown parameters. This parameterization also ensures

that the dynamic weights stay within the unit simplex, that is,
∑K

k=1 αk,t = 1. Kalliovirta

et al. (2016) show that the resulting process is stationary (if the component VARs are

stationary) as well as ergodic and establish asymptotic normality of the maximum likelihood

(ML) estimator.

The forcing variables for the dynamic weighting in the GMVAR in Eq. (12) and the

SMVAR in Eq. (4) are conceptually similar. Both approaches infer information from ratios

between component model densities and the density of the overall mixture model. While

the SMVAR relies on conditional observation densities, the common density of p recent

observations pins down the dynamic weights in the GMVAR. However, the SMVAR offers
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more flexibility in describing the data. First, our model allows to specify component models

with different lag lengths. Second, the SMVAR model allows reducing or increasing the

number of observations considered for the weight updating, whereas the GMVAR always

uses the p most recent observations, as determined by the component VARs’ lag length.

Third, our model explicitly allows for non-Gaussian innovations in the component VARs.

Fourth, another crucial difference is the AR term in the score-driven updating in Eq. (4).

This allows modeling persistence in the mixture weights and typically reduces the number

of lags required in the updating scheme.

3.3.2 Logit Mixture Vector Autoregression

The Logit Mixture Vector Autoregressive model of Burgard et al. (2019) also employs the

same baseline model as described in Section 2, but defines the conditional mixture weights

using a logit model. Hence, the conditional mixture weights are given by

αk,t =
exp {γkxt−1}∑K
j=1 exp {γjxt−1}

(13)

with xt−1 being a vector of Ft−1-measurable predictors and γk being a regime-dependent

parameter vector. The set of predictors may include external variables and lags of the

endogenous variables of the VAR. In addition, Burgard et al. (2019) and Bennani et al. (2020)

use the component ratio from Eq. (12) of the GMVAR as predictor of the weight dynamics.

Hence, the component ratio driving the SMVAR mixture update is also used as driving

variable. Both, the LMVAR and the SMVAR, use a logistic transformation for mapping

weights onto the unit interval. However, the SMVAR maps an unrestricted internal latent

process, whereas the LMVAR directly models the weights as dependent variables within an

internal multinomial logit regression. The main advantage of the LMVAR is that external

information can be incorporated into the mixture dynamics. Yet, this comes at the cost of

potential misspecification. In contrast, the SMVAR does not require prespecified predictors
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and the simulation study in Section 4 shows that it tracks mixture dynamics quite adequately

without using external predictor information, thereby avoiding specification errors.

3.4 Estimation and Inference

We estimate the vector θk = (Φ′0, vec(Φk1)
′, . . . , vec(Φk,pk)′, vech(Ωk)′) containing the VAR

parameters for each component submodel. Furthermore, we estimate the parameters charac-

terizing the mixture weight updating θs = (ω′, vec(A1)
′, . . . , vec(Ap)

′, vec(B1)
′, . . . , vec(Bp)

′)

as well as possible additional parameters characterizing the distribution of ϕ collected in

vector θ. In summary, this yields the complete parameter vector ϑ = (θ, θ1, . . . , θk, θs) with

at least (1+d+d(d+1)/2)K+(p+q)K2+
∑K

k=1 pkd
2 entries. The conditional (log) likelihood

function of the SMVAR model can be evaluated directly with

lnL = ln
T∏

t=1

p(yt|Ft−1) (14)

=
T∑

t=1

ln
K∑

k=1

αk,tpk(yt|Ft−1) (15)

=
T∑

t=1

ln
K∑

k=1

αk,tϕ
(

Ω
− 1

2
k (yt − Φk0 − Φk1yt−1 − . . .− Φkpkyt−pk)

)
(16)

where αk,t is defined as in Eq. (3).

Inference is conducted in the standard fashion for ML estimators as suggested by Creal

et al. (2013) for GAS models. If ϑ stacks all the static parameters of the model, standard

asymptotic theory for ML estimators would suggest that, under some regularity conditions,

the following holds:
√
T
(
ϑ̂− ϑ

)
d→ N

(
0, I−1(ϑ)

)
(17)

with the Fisher information matrix I(ϑ) := −E
(
∂2lt/∂ϑ∂ϑ

>) where lt is the log-likelihood

contribution of the i-th observation evaluated at ϑ.

Likelihood functions of mixture models often suffer from having many plausible local
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optima. It is therefore advisable to use various starting values for the optimization to obtain

what is likely to be the global maximum. For this reason, we employ the OQNLP multistart

heuristic algorithm of Ugray et al. (2007). For deriving standard errors, we numerically

compute the Fisher information matrix with a finite difference scheme.

3.5 Impulse Responses

A popular VAR-based tool for investigating the impact of shocks in empirical macroeco-

nomics is the impulse response analysis. Given a fitted and identified VAR model as well as

initial values, responses of a shock with known size and sign can be calculated in a straight-

forward manner. However, this conventional approach is not applicable for the SMVAR due

to its crucial non-linearities and incompletely known initial values. Instead, we follow Koop

et al. (1996) and compute generalized impulse response functions (GIRFs) given by

GI (n, νt,Ft−1) = E (yt+n|νt,Ft−1)− E (yt+n|Ft−1) (18)

where n is the number of periods ahead and νt a shock that occurs in period t.7 Hence, equa-

tion (18) defines the impulse response as difference between the n-period ahead prediction

given the shock and the corresponding prediction in absence of the shock. For a meaningful

economic interpretation, the shock νt should be identified. This can be achieved by defining

the structural shocks ut such that εt = Lut for a d-dimension matrix L. We then assume

that the shock νt affects the VAR system via Lνt.

We follow a Monte Carlo approach to derive the generalized impulse responses to the

shock νt in (18). The main idea is to simulate a large number of random sequences (yt+n(Ft−1))
N
n=0

where the shocks (ut+n)Nn=0 are randomly drawn. Furthermore, a second series (yt+n(νt,Ft−1))
N
n=0

is constructed for which the same random shocks are used but additionally ut = νt is im-

posed. Then, we can use the means of these artificially drawn series to approximate the

7Virolainen (2020) uses the same concept to derive impulse responses for a structural version of the
GMVAR model.
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expectations in (18) and compute GI by taking differences. The procedure is described in

more detail in Algorithm 1.

Algorithm 1: Generalized Impulse Responses for the SMVAR

1.) Estimate the model parameters of the SMVAR and pick an information set Ft−1

(usually represented by a sequence (yi)
t−1
i=0).

2.) for r = 1,. . .,R do

2.a) Draw N+1 random shocks u
(r)
t , u

(r)
t+1 . . . u

(r)
t+N from N(0,Id).

2.b) Compute the reduced form shocks ε
(r)
t+n = Lu

(r)
t+n for n = 0, . . . , N .

2.c) Iterate the SMVAR with the reduced form shocks
(
ε
(r)
t+n

)N
n=0

to compute
(
y
(r)
t+n(Ft−1)

)N
n=0

.

2.d) Iterate the SMVAR with the time t shock νt and the reduced form shocks
(
ε
(r)
t+n

)N
n=1

to compute
(
y
(r)
t+n(νt,Ft−1)

)N
n=0

.

2.e) Calculate

GI(r)(n, νt,Ft) = y
(r)
t+n(νt,Ft−1)− y(r)t+n(Ft−1)

for n = 0, . . . , N .

end

3.) Form averages over the Monte Carlo replications:

ĜI(n, νt,Ft) =
1

R

R∑

r=1

GI(r)(n, νt,Ft)

To avoid conditioning on an information set, another Monte Carlo loop can be added

around Algorithm 1 in which ĜI is integrated over draws from the historical sequence (yi)
t−1
i=0.

Moreover, the algorithm can be easily adjusted for different distributions that are possible

in the SMVAR framework by replacing the innovation distribution in step 2.a).
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4 Monte Carlo Study

We conduct a simulation study to investigate the performance of the SMVAR model in

comparison to alternative (dynamic) MVAR models in the literature.

4.1 Data-Generating Processes

We base the Monte Carlo study on simulated time series with dimension d = 2 that are

affected by two regimes or states (K = 2). The two regimes feature conditional normal

distributions with the following parameter configurations:

yt =s1,t







0

1


+




0.5 0.2

0.2 0.5


 yt−1 +




0.5 0

0.2 0.5


 εt


 (19)

+s2,t






−1

0


+




0.6 0

0.4 0.6


 yt−1 +




0.2 0

0.8 0.2


 εt


 . (20)

We consider several dynamic processes to describe the evolution of the mixture weight

in the data-generating process (DGP). These include deterministic paths, such as a time-

constant weight, a structural break, and a cycle. In addition, we simulate a Markovian

regime-switching model that depends on prior realizations of the latent variable st. The

processes in the simulation study are summarized in Table 1.

Table 1: Mixture Processes for Simulation Study

Model Mixture Weights (αt)

I Constant 0.5

II Break 0.8 · 1
(
t < T

2

)
+ 0.2 · 1

(
t ≥ T

2

)

III Cycle 0.5 + 0.45 · sin (4πt/T )

IV Markov-Switching 0.95 · 1(st−1 = 1) + 0.10 · 1(st−1 = 2)
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We simulate the DGP with different mixture weight dynamics for time series lengths T =

200, 500, 1000 and then estimate the parameter vector ϑ for a SMVAR with lags p = q = 1

and K = 2 using likelihood optimization.8 In addition, we fit an MVAR, a GMVAR, and an

LMVAR as benchmark to evaluate the performance of our SMVAR model.

4.2 Simulation Results

First, we discuss the performance of the SMVAR and GMVAR with respect to filtering the

mixture dynamics of DGPs I to IV. Afterwards, we compare SMVAR and LMVAR in the

presence of external factor-driven mixture dynamics.

4.2.1 Comparison of SMVAR and GMVAR

Figure 1 shows the average SMVAR and GMVAR estimates of αt fitted to 1000 Monte Carlo

replications alongside the true weights for Models I, II, and III.9 The shaded areas indicate

90 percent confidence bands. The left panel of Figure 1 displays the results for the SMVAR,

which shows similar adequate performance for all three DGPs. As all observation-driven

models, the SMVAR needs some time to account for changes in the modeled process. Apart

from that, we clearly see that the SMVAR is able to track the true mixture weight processes

well. In particular, it can quite nicely adopt to structural breaks after a reasonable amount

of periods.

The right panel of Figure 1 shows the result for the GMVAR. First of all, we document

that the constant DGP I can be recovered on average, but the variation is particularly large

when compared to the SMVAR. The reason for this result can be deduced from the used

updating mechanism in Eq. (12). To accommodate a constant α1,t, we would need to have

α1 = 0.5 when abstracting from the unlikely and practically irrelevant scenario in which the

ratio p1(yt−1)/p(yt−1) is constant over time. Hence, the DGP I with α1,t ≡ αk = 0.5 is not

8It is worth noting that the SMVAR is always incorrectly specified with respect to the DGPs.
9Note that a similar graphical representation for the averages of the stochastic behavior of the processes

(Model IV) is not possible. We refer to Table 2 for an evaluation of these.
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Figure 1: Filtered Mixture Weights
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Notes: Figure shows filtered mixture weights α1,t averaged over 1000 replication of the DGPs (I)
Constant, (II) Break, and (III) Cycle. Solid lines display the true α1,t. The left (right) panel shows
the averages of SMVAR (GMVAR) estimates as dashed lines. Shaded areas indicate 90 percent
confidence bands.

nested by the GMVAR. The SMVAR benefits here from the additional constant parameter

ω that allows for incorporating the static case. The same problem is visible in the break
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process (II) that is estimated with huge confidence bands. The two constant levels cannot

be captured correctly — even on average — because of the only parameter α1 that has to

serve as average weight and changing probability for drawing from state 1 at the same time.

Interestingly, the level of the mixture weight is underestimated with almost the same size

before and after the break. Hence, a constant in the mixture process, as included in the

SMVAR, could be expected to crucially improve the GMVAR performance. An observation

in favor of the GMVAR is that the break in DGP II is acknowledged much faster than by the

SMVAR. The cycles are captured quite well by the GMVAR, although the confidence bands

are still larger than for the SMVAR. In particular, the turning points are acknowledged

faster. A reason for this faster detection of breaks and turning points is that the GMVAR

depends only on the most recent observations and not on its own past value. This allows

for an early detection of such structural changes, but comes with the drawback of lacking

flexibility to capture persistent processes adequately.

Table 2 shows the average mean squared error (MSE) and the average mean absolute

error (MAE) for the estimate of the mixture weight α1,t from an MVAR, a GMVAR, and

an SMVAR model with 1000 Monte Carlo replications and different sample sizes T . The

results are in line with the graphical inspection of Figure 1. The SMVAR shows a better

performance than the GMVAR for all DGPs and sample lengths T . The improved perfor-

mance is particularly visible for the constant mixture weight DGP I. It is also worth noting

that the performance of the SMVAR considerably improves with increasing sample size T ,

whereas the other two approaches only make an incremental progress (if any) with increas-

ing T . The DGP for which both dynamic approaches show an almost similar performance

is the Markov-Switching DGP IV. This is not surprising since the GMVAR is constructed

with a Markovian structure and the simulation results confirm that this model is particular

useful when the dynamics in the mixture weights are associated with the latent state variable

st. However, the non-Markovian SMVAR is able to track such Markov-Switching mixture

dynamics as well, as indicated by the slightly lower errors.
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Table 2: Average Estimation Error Comparison (MVAR, GMVAR, SMVAR)

MSE MAE

DGP T MVAR GMVAR SMVAR MVAR GMVAR SMVAR

200 0.0074 0.1287 0.0176 0.0669 0.3219 0.1048
I Constant 500 0.0021 0.1075 0.0057 0.0364 0.2895 0.0577

1000 0.0010 0.0957 0.0027 0.0257 0.2715 0.0392

200 0.1080 0.0893 0.0432 0.3005 0.2325 0.1470
II Break 500 0.1024 0.0797 0.0165 0.3000 0.2183 0.0849

1000 0.1014 0.0777 0.0108 0.3000 0.2140 0.0667

200 0.1211 0.0893 0.0355 0.3008 0.2238 0.1443
III Cycle 500 0.1171 0.0813 0.0186 0.2978 0.2126 0.1048

1000 0.1155 0.0789 0.0117 0.2966 0.2090 0.0835

200 0.1960 0.0622 0.0493 0.4108 0.1330 0.1107
IV Markov-Switching 500 0.1981 0.0603 0.0331 0.4310 0.1294 0.0798

1000 0.2026 0.0602 0.0331 0.4407 0.1292 0.0798

Notes: Table shows the average mean squared error (MSE) and the average mean absolute error
(MAE) for the estimate of the mixture weight α1,t from a MVAR, a GMVAR, and a SMVAR model
with 1000 Monte Carlo replications and different sample sizes T .

As bottom line of this Monte Carlo study, we can conclude that the SMVAR is able to

recover a variety of different mixture dynamics and performs better than its closest competi-

tor model, the GMVAR. The latter has nice theoretical properties because of its particular

updating scheme but lacks the flexibility to accommodate a wide range of practically relevant

DGPs, which the SMVAR is able to handle adequately.

4.2.2 Comparison of SMVAR and LMVAR

The LMVAR of Burgard et al. (2019) uses covariates to explain the mixture weight dynamics.

This is particular useful if such covariates are known or proposed by theory. However, it is

evident that this method is not favorable if such covariates are not available. In the following,

we will examine the case in which the explanatory value of the external factor is a priori
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uncertain.

We simulate from the same VAR model from Eq. (20) with a mixture process given by

αt =
1

1 + exp {−0.5xt}
(21)

and an external covariate drawn from the AR(1) model xt = 0.97xt−1 +ut with ut
iid∼ N (0, 1)

and x1 = 0. Again, we use 1000 Monte Carlo replications of different sample sizes T =

200, 500, 1000. We then compare the estimates of a SMVAR model with those of a LMVAR.

Note that the dynamics of αt follow an LMVAR model in Eq. (13) with K = 2. Hence, if

we estimate an LMVAR given the true covariate xt, it will trivially outperform our model.

The interesting question is what happens if we provide the LMVAR estimator with a noisy

signal x̃t of xt. We derive the signal with

x̃t = ρxt + (1− ρ)ũt, ũt
iid∼ N

(
0, σ2

)
(22)

where σ2 = 16.9205 is equal to the unconditional variance of the process xt. Hence, the

information content of the signal ranges from pure noise (ρ = 0) to perfect information

(ρ = 1).

Table 3 shows the average MSE and the average MAE for the estimate of the mixture

weight α1,t from a SMVAR and an LMVAR model. We see clearly that the LMVAR using

the true covariate outperforms all models (as expected). More revealing are the cases where

the SMVAR outperforms the LMVAR, that is, when the signal is noisy (ρ = 0, 0.2, 0.4). The

breakeven point for which both methods are on par can be located slightly above a ρ of

0.5. Hence, over 50% of the signal’s variation must come from the true covariate to justify

using the LMVAR in this setting. Noise ratios of 50% or more are not uncommon for many

economic and, in particular, financial variables. Hence, the main takeaway from this exercise

is that the SMVAR is not only favorable if no adequate covariates are known. In addition,

it can serve as a worthwhile complement to an LMVAR analysis if the considered covariates
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Table 3: Comparison of Average Estimation Errors: SMVAR vs. LMVAR

T SMVAR LMVAR

ρ = 0 0.2 0.4 0.6 0.8 1

(a) MSE

200 0.0442 0.0921 0.0859 0.0681 0.0370 0.0125 0.0053
500 0.0381 0.0984 0.0932 0.0709 0.0348 0.0086 0.0016

1000 0.0372 0.1036 0.0977 0.0730 0.0345 0.0077 0.0007

(b) MAE

200 0.1623 0.2507 0.2414 0.2107 0.1479 0.0819 0.0531
500 0.1544 0.2668 0.2588 0.2205 0.1453 0.0681 0.0300

1000 0.1527 0.2768 0.2675 0.2253 0.1449 0.0640 0.0206

Notes: Table shows the average mean squared error (MSE) and the average mean absolute error
(MAE) for the estimate of the mixture weight α1,t from a SMVAR and an LMVAR model with 1000
Monte Carlo replications and different sample sizes T . The parameter ρ indicates the informational
content of the covariate provided to the LMVAR.

are of questionable quality.

5 Empirical Application

Our empirical application aims at highlighting real-financial linkages. Our variable selection

is inspired by Adrian et al. (2021). Hence, we choose the quarter-over-quarter annualized

growth rate of real GDP as indicator for real economic activity.10 To capture financial

conditions, we rely on the National Financial Conditions Index (NFCI) provided by the

Federal Reserve Bank of Chicago.11 The NFCI is a weighted average of 105 indicators of

risk, credit, and leverage in the financial system, each expressed relative to its sample average

and scaled by its sample standard deviation (SD). Positive (negative) values of the NFCI

are associated with tighter-than-average (looser-than-average) financial conditions.

10Source: https://fred.stlouisfed.org/series/GDPC1.
11The data set and some background can be found here: https://www.chicagofed.org/publications/

nfci/index.
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Figure 2: NFCI and Real GDP Growth

Notes: Positive (negative) values of the normalized NFCI indicate tighter-than-average (looser-
than-average) financial conditions. Real GDP Growth QoQ is shown in percentage. Shaded areas
are NBER recessions.

Our sample starts in 1971q1 with the first observation of the NFCI and ends in 2020q4.12

Figure 2 shows both series over time. All (gray-shaded) NBER recessions are accompanied

by positive values of the NFCI with the mild and short recession of 2001 being an exception.

In addition, the Covid-19 recession is also only associated with a short-lived surge in the

12The null hypothesis of non-stationarity can be rejected at the 1% level for both series.
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NFCI. Real GDP growth is lower and financial conditions tighten during recessions, so that

economic and financial conditions are negatively correlated (ρ = −0.24; ρ = −0.33 when

excluding the year 2020).

5.1 Empirical Results

We estimate a two-state SMVAR with p = q = 1 to examine the joint distribution of the

NFCI and real GDP. Both AIC and BIC are in favor of one lag in each of the two regimes. We

estimate a slightly reparameterized internal updating process for the unrestricted mixture

weights that is given by

α̃t+1 = α̃ + a
exp(α̃t)

(1 + exp(α̃t))2
p1(yt|Ft−1)− p2(yt|Ft−1)

p(yt|Ft−1)
+ b
(
α̃t − α̃

)
. (23)

where α̃ = ω/(1− b) is the unconditional mixture weight in case the process is stationary.

Figure 3 shows the evolution of the transformed mixture weights αt = exp(α̃t)/[1 +

exp(α̃t)] over time. All recessions (except the one in 2001) are characterized by a low value

of the mixtures weights αt. In addition, the recessions are captured in a timely manner

and even anticipated in the case of both oil crises in the 1970s and early-1980s, the Global

Financial Crisis of 2008−2009, and the Covid-19 slump of 2020. Only the recession of

1990−1991 is captured with a minimal delay of two quarters. Since the latter recession and

the one of 2001 are accompanied with only a minor tightening of financial conditions (if

at all), we can interpret the mixture weights as indicator for joint economic and financial

conditions. This is reassuring as the aim of the SMVAR is to capture the joint distribution

of the two variables.

Table 4 shows the coefficients of the SMVAR model and the (co-)variances for both states

as well as the estimates for GAS mixture weight updating procedure of Eq. (10). Standard

errors can be found in parentheses. The variance parameters Ω1,1 for the NFCI and Ω2,2

for real GDP growth indicate that the regime on the right-hand side of Table 4 is the more
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Figure 3: Development of αt over Time

Notes: Figure shows the probability of being in the normal state as indicated by the estimated
mixture weights αt. Shaded areas are NBER recessions.

volatile state. In addition, we observe a positive value for the constant of the NFCI equation

in this state, whereas the corresponding value for the other state is negative. Put differently,

the financial conditions are, ceteris paribus, tighter in the regime on the right-hand side.

Hence, we can interpret this as crisis regime. The NFCI is similarly persistent in both

states. Changes in last period’s real GDP growth lead to a decrease in the current period’s

NFCI with a numerically larger effect in the crisis regime. Finally, GDP is found to be

persistent in the normal state, whereas the effect is negative (albeit insignificant) during

crisis times.13

Turning to the GAS parameters, we find a high degree of persistence in the weights as

indicated by the estimate of 0.90 for the AR part b of Eq. (23). This is also the reason

for the smooth development of αt over time. The coefficient for the weight update part a is

positive and significant, implying that the scaled observation density evaluated at the current

observation is informative for detecting changes in future mixture weights. Finally, the

estimate for the average mixture weight α = exp
(
α̃
)
/
(
1 + exp

(
α̃
))

is 0.75. Consequently,

the economy is, on average, in 75% of the time in the normal state.

13This negative coefficient might also be the reason of why the GDP intercept is larger in the crisis state.
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Table 4: Estimation Results

(a) VAR Parameters

Normal Regime Crisis Regime

NFCIt ∆GDPt NFCIt ∆GDPt

NFCIt−1 0.7490 0.0162 0.7506 0.8000
(0.0268) (0.3418) (0.0858) (1.5886)

∆GDPt−1 -0.0134 0.1058 -0.0211 -0.2059
(0.0033) (0.0524) (0.0082) (0.1485)

const −0.1433 0.0203 0.3026 0.0507
(0.0163) (0.0023) (0.1366) (0.0130)

(b) (Co-)Variance Parameters

Normal Regime Crisis Regime

Ω1,1 0.1168 0.7647
(0.0085) (0.0704)

Ω1,2 0.0025 -0.0089
(0.0015) (0.0085)

Ω2,2 0.0177 0.0723
(0.0011) (0.0067)

(c) GAS Parameters

α 1.1230
(0.8108)

a 3.3267
(0.7807)

b 0.9006
(0.0459)

Notes: Table shows the coefficients of the SMVAR model and the (co-)variances for both states as
well as the estimates for GAS mixture weight updating procedure of Eq. (10). Standard errors are
in parentheses.
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5.2 Impulse Response Analysis

We further elaborate on macro-financial linkages with a generalized impulse response anal-

ysis. Shocks are recursively identified with a Cholesky decomposition where we rule out

an instantaneous impact of financial shocks on the relatively slow moving GDP growth se-

ries. We consider two types of adverse shocks: (i) an economic shock that decreases GDP

growth by four SD and (ii) a financial shock that increases the NFCI by four SD. GIRFs

are simulated according to Algorithm 1 with R = 10000 Monte Carlo replications. The

pre-shock observation of the time series is assumed to be equal to the unconditional mean

in the assumed initial regime.

In a first exercise, we look at the component-specific GIRFs for which we rule out regime

shifts. The black lines in the left panel of Figure 4 show the mean responses in the normal

times regime under the assumption that no shift into the crisis regime may occur. The grey-

shaded areas indicate 68% confidence bands. We find that the impact of the economic shock

on GDP growth fades out quickly, which is no surprise since we use quarter-over-quarter

growth rates. The adverse economic shock significantly reduces the NFCI on impact with

a peak effect of −0.076 SD. With respect to the financial shock, we see a greater degree of

persistence as its impact dies out only slowly. The financial shock also reduces GDP growth

significantly with a peak effect of −1.8 basis points (bps).

The right panel of Figure 4 shows the GIRFs that occur within the crisis regime. Again,

we rule out a shift into the other regime. The qualitative behavior of the impulse responses

is very similar to the behavior in the normal state. In terms of magnitude, we find a

significantly larger peak response of real GDP growth (−4.7 bps as compared to −1.8 bps

in the normal regime) after a financial shock. One reason for this difference might be the

size of the financial shock, which is roughly 2.5 times larger in the crisis regime. However,

there is one crucial difference that cannot be explained by the relative shock size across

regimes. The impulse response of the NFCI to the economic shock has the opposite sign. It

appears that while an adverse economic shock leads to a slight easing of financial conditions
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in normal times, the opposite can be found in a crisis. Here, we find a peak effect of 0.133

SD (as opposed to −0.076 SD in the normal regime). One reason for this could be that

countermeasures against economic shocks also improve financial conditions in normal times,

whereas this is not the case in crisis times. This holds in particular if the economic shock

does not trigger a change into the crisis regime (as ruled out by assumption).

Looking at the component-wise impulse responses — which are equivalent to those of

linear VAR models — is one way to analyze time series dynamics. However, the SMVAR

explicitly models regime probabilities that recursively depend on prior observations. Hence,

the SMVAR not only allows to take the possibility of regime shifts into account, but also

to analyze the impact of shocks on the mixture weights. Consequently, we can investigate

the impact of an economic or financial shock on the probability of a switch into the crisis

regime. Figure 5 shows the GIRFs to an economic and a financial shock of four SD starting

in the normal regime.

There are four striking findings worth discussing. First, the qualitative results concern-

ing the persistence of the shocks are similar when introducing possible regime shifts. The

economic (financial) shock decreases (increases) the shock variable significantly on impact

and the effect is rapidly (slowly) dying out. Similarly, GDP growth decreases shortly af-

ter a financial shock with a similar pattern as in the case of both component-wise impulse

responses.

Second, the confidence bands largely increase for all impulse responses. This is a phe-

nomenon that can be observed for dynamic MVAR models in general. The impulse responses

largely differ depending on whether the initial shock triggers a regime shift or not. In our

case, we see in the lower panel of Figure 5 that both shocks significantly decrease the mix-

ture weight and therefore make a shift into the crisis regime more likely. Subsequently, the

trajectories of the variables may strongly differ depending on whether a crisis was triggered

or not. Confidence bands may therefore be much less informative as compared to a linear

VAR but still provide some insight into the range of possible variable developments.
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Figure 4: Component-wise Impulse Responses

Normal Regime Crisis Regime

Notes: Figure shows generalized impulse responses (black lines) to an economic and a financial
shock of four SD within the normal regime (left panel) and the crisis regime (right panel). Regime
shifts are ruled out. Grey-shaded areas indicate 68% confidence bands.
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Figure 5: Impulse Responses with Mixture Dynamics

Notes: Figure shows generalized impulse responses (black lines) to an economic and a financial
shock of four SD starting in the normal regime. Grey-shaded areas indicate 68% confidence bands.

Third, we also notice that the likelihood of triggering a crisis is, on average, higher after

an economic shock than after a financial shock of equal relative size. More precisely, the

probability of a crisis increases by roughly 50 percentage points (pp) one period after a shock

to economic growth as compared to 22 pp in the case of a financial shock. Given an initial

normal times regime weight of 90%, the probability of switching into the crisis increases from

10% to 60% (32 %) in the case of an economic (financial) shock.

Fourth, the response of the NFCI after the economic shock largely differs from both
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component-wise responses that have opposing signs. The response in the full mixture model

is negative on impact in a magnitude similar to the normal regime but then turns positive

with a peak effect that is ten times larger than the peak effect of the same shock in the crisis

regime. Moreover, the shock lasts much longer in the full mixture model. This observed

dynamic is an example of how nonlinear VAR models — like the SMVAR — are able to

alter our understanding of responses to shocks. In the regime-specific impulse responses, the

linkage between both series is underestimated so that the growth shock has only a small effect

on the NFCI that vanishes quickly. However, in the SMVAR the initial growth shock not

only transmits directly though the normal times VAR model connections, but additionally

increases the probability of shifting into a crisis. If the economy switches into the crisis regime

(with a probability of around 60%), the subsequent trajectory will be affected by the higher

unconditional NFCI mean and the higher variance within the crisis regime. Conversely, with

a probability of 40% the economy will remain in the normal regime having a trajectory in

which the shock dies out after a few quarters. Taken together, this explains the high average

impact on the NFCI and the large confidence bands.

6 Conclusions

We proposed a novel dynamic mixture vector autoregressive model with time-varying mixture

weights, which are driven by earlier observations of the endogenous variables, the Score-

Driven Mixture Vector Autoregression. Our weight updating scheme follows the generalized

autoregressive score (or score-driven) approach developed by Creal et al. (2013) and Harvey

(2013). The derived scheme uses the scaled conditional density of the VAR component model,

evaluated at the current observation. Intuitively, the procedure increases the state weight for

the k-th component of the VAR model in the following period if the current observation is

more likely to be drawn from this particular state. The SMVAR is more flexible than other

dynamic MVAR approaches and allows for straightforward likelihood-based estimation and
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inference.

We performed a Monte Carlo study to investigate the ability of the SMVAR to recover

mixture dynamics from various data generating processes and find that the SMVAR outper-

forms the GMVAR in filtering mixture weights with non-Markovian dynamics. One reason

for this is the more flexible specification of our updating scheme as the SMVAR includes a

constant and an autoregressive part in the mixture weight dynamics, whereas the Gaussian

MVAR always updates the weights according to the recent scaled observation density. In

addition, the SMVAR is also helpful if the employed signal driving the mixture weights in

a Logit MVAR is uncertain. It can serve as a hedge against potential misspecification and

outperforms the Logit MVAR if the signal is too noisy.

In an empirical application, we modeled the joint distribution of the National Financial

Conditions Index and real GDP growth using a two-state SMVAR. We showed that the mix-

ture weights disentangle a (tranquil) normal regime and a (volatile) economic and financial

crisis regime. In addition, almost all NBER recessions are accompanied by large values for

the crisis state and also anticipated by a drastic change in the mixture weights. Our appli-

cation highlights once more the appealing feature of utilizing an AR term in the mixture

weight dynamics, which leads to a smooth development of the weights over time. General-

ized impulse response functions based on Koop et al. (1996) revealed that adverse shocks on

economic growth and financial conditions significantly increase the conditional probability

for switching into a crisis regime for several quarters with economic shocks having a larger

impact. The increased switching probability enlarges the set of possible trajectories after

a shock and considerably alters the impact of the growth shock on financial conditions as

compared to the component-wise impulse response where a regime switch has been ruled

out.
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Appendix

A Derivations for GAS Updating Equations

A.1 General weight updating

∇t =
∂

∂α̃t

ln p(yt|Ft−1) (A.1)

=
∂

∂α̃t

ln
K∑

k=1

αk,tpk(yt|Ft−1) (A.2)

=
∂h

∂α̃t

· ∂
∂α t

ln
K∑

k=1

αk,tpk(yt|Ft−1) (A.3)

= Jh(α̃t) ·
∂

∂α t

∑K
k=1 αk,tpk(yt|Ft−1)

p(yt|Ft−1)
(A.4)

= Jh(α̃t) ·




p1(yt|Ft−1)

p(yt|Ft−1)
...

pK(yt|Ft−1)

p(yt|Ft−1)




(A.5)

A.2 Jacobian of logit transformation

k = l, k 6= K

∂hk
∂α̃l

(α̃) =
∂

∂α̃l

exp(α̃k)

1 +
∑K−1

i=1 exp(α̃i)
(A.6)

=
exp(α̃k)

(
1 +

∑K−1
i=1 exp(α̃i)

)
− exp(α̃k) exp(α̃l)

(
1 +

∑K−1
i=1 exp(α̃i)

)2 (A.7)

=
exp(α̃k)

(
1 +

∑K−1
i=1 exp(α̃i)

)
− exp(2α̃k)

(
1 +

∑K−1
i=1 exp(α̃i)

)2 (A.8)
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k 6= l, k 6= K

∂hk
∂α̃l

(α̃) =
∂

∂α̃l

exp(α̃k)

1 +
∑K−1

i=1 exp(α̃i)
(A.9)

=
− exp(α̃k) exp(α̃l)(
1 +

∑K−1
i=1 exp(α̃i)

)2 (A.10)

(A.11)

k = K

∂hk
∂α̃l

(α̃) =
∂

∂α̃l

(
1−

K−1∑

j=1

exp(α̃j)

1 +
∑K−1

i=1 exp(α̃i)

)
(A.12)

= − ∂

∂α̃l

exp(α̃l)

1 +
∑K−1

i=1 exp(α̃i)
−

K−1∑

j=1,j 6=l

∂

∂α̃l

exp(α̃j)

1 +
∑K−1

i=1 exp(α̃i)
(A.13)

=
− exp(α̃l)

(
1 +

∑K−1
i=1 exp(α̃i)

)
+ exp(2α̃l) +

∑K−1
j=1,j 6=l exp(α̃j) exp(α̃l)

(
1 +

∑K−1
i=1 exp(α̃i)

)2 (A.14)

=
− exp(α̃l)(

1 +
∑K−1

i=1 exp(α̃i)
)2 (A.15)
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