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1 Introduction

In this paper, we propose a novel strategy to identify shocks in a vector autoregressive

(VAR) model. We extend what is arguably the simplest estimation and identification

approach, that is, least squares parameter estimation and recursive identification of

shocks. Based on the work by Gafarov et al. (2018), we propose to estimate the VAR

parameters under the restriction that economic theory is not violated, but stick to a

recursive identification of shocks. This leads to a mathematical optimization problem

under non-linear constraints, for which we propose an augmented Lagrange solution

approach. As an illustration, we estimate a standard monetary policy transmission

VAR model under the additional constraint that the impulse response functions (IRFs)

for output and prices (the interest rate) after a contractionary monetary policy shock

should not be positive (negative) for a period of h months after the shock. Hence, our

approach resembles the idea of sign restrictions (Uhlig, 2005), but imposes restrictions

right away during the estimation process and not on the IRFs in a “second stage.”

However, since the identification scheme is fixed, a situation could arise where the

parameters of the data-generating process (DGP) might not fulfill the economic restric-

tions. As a consequence, the estimated coefficients may no longer resemble the DGP

and, therefore, are biased. To address this issue, we employ a penalized regression ap-

proach that allows for a rotation of the Cholesky matrix in addition to the parameter

restrictions. The resulting optimization procedure favors identification schemes with

as little as possible departures from the initial recursive identification scheme to fulfill

the economic restrictions. At the same time, this procedure should prevent biased VAR

estimates.

To investigate the abilities and limitations of our approach, we first conduct a

Monte Carlo simulation where we show that — if the economic parameter constraints

are valid for the DGP — the restricted (but unrotated) VAR produces consistent esti-

mates while having a similar small sample performance as the standard VAR. How-

ever, if the DGP does not fulfill the economic restrictions, we can only enforce the

constraints by allowing for a (substantial) estimation bias. In this case, the “almost
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recursively identified approach” that slightly rotates the initial propagation of shocks

can prevent the bias while generating theory-consistent impulse responses.

Second, we estimate a standard monetary policy transmission VAR for the euro area

and the period January 1999–December 2019. Our results indicate that a restriction

on the first two months in the IRFs of output, prices, and the interest rate is sufficient

to get rid of the price puzzle and the counterintuitive response of output found in a

standard Cholesky-identified VAR. This holds for both, the recursively identified VAR

with parameter restrictions and the model where we additionally allow for a (small)

rotation of the Cholesky matrix. However, the almost recursively identified approach

outperforms the Cholesky identification as it features virtually no change in the model

parameters and no noteworthy decrease in the model’s fit.

The additional flexibility of this approach is underscored by the possibility of hav-

ing non-zero responses on impact for output and inflation, which is by definition ruled

out in the recursive identification scheme. Consequently, in particular the “almost re-

cursively identified approach with parameter restrictions” is a useful complement to

the Bayesian sign restriction approach commonly used in empirical macroeconomic

studies as it leads to a solution without an estimation bias, generates theory-consistent

impulse responses, and is as close as possible to the recursive scheme.

The remainder of this paper is organized as follows. Section 2 briefly introduces

VAR models and identification via Cholesky decomposition. Thereafter, a recursive

identification scheme with restrictions in the estimation process is proposed, before we

additionally allow for a rotation of the Cholesky matrix in the non-linear optimization

procedure. Section 3 compares the small sample properties of both restricted VAR

specifications in a Monte Carlo study to those of a standard VAR. Section 4 provides

an empirical application for the euro area. Section 5 concludes.
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2 VAR Models with Different Identification Approaches

2.1 Recursive Identification

In a first step, we introduce the standard estimation and recursive identification ap-

proach for VAR models.1 The VAR model of order p for a K-dimensional time series

vector xt can be written in its reduced form as:

yt = δ+A1yt−1 +A2yt−2 + . . .+Apyt−p +ut, t = 1, . . .T (1)

where the Ai (i = 1, . . . ,p) are K ×K-dimensional coefficient matrices, ut is a indepen-

dently and identically distributed K-dimensional vector of random errors with mean

E(ut) = 0 and covariance matrix E(utu
⊤
t ) = ΣU , and δ is the K-dimensional vector of

intercepts. The model can be stacked in matrix notation as follows:

Y = Zβ + U, (2)

with

Y :=
[
xp+1,xp+2, . . . ,xT

]⊤ ∈R(T−p)×K , Zt :=
[
1,x⊤t ,x

⊤
t−1, . . . ,x

⊤
t−p+1

]⊤ ∈R(Kp+1),

Z :=
[
Zp,Zp+1, . . . ,ZT−1

]⊤
∈R(T−p)×(Kp+1), U :=

[
up+1,up+2, . . . ,uT

]⊤ ∈R(T−p)×K ,

and

β :=
[
δ,A1,A2, . . . ,Ap

]⊤
∈R(Kp+1)×K .

Eq. (2) can be estimated by equation-wise ordinary least squares to obtain β̂.

To obtain the IRFs for time horizon ζ, we write the fitted VAR(p) model in its mov-

ing average (MA) representation:

yζ = Φ0uζ +Φ1uζ−1 +Φ2uζ−2 + . . . , (3)

1For thorough discussion of VAR(p) models we recommend the textbook by Lütkepohl (2005).
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where Φ0 := IK and Φt can be computed recursively using the coefficient matrices

A1, . . . ,Ap of the VAR(p) model according to

Φt :=
t∑

i=1

Φt−iAi , (4)

with Ai := 0 for i > p. Accordingly, Φt is a non-linear function of the model parameters

for t > 1.

Our interest is in studying the response of a variable to an impulse of another vari-

able. For instance, let the first variable in Y be the one giving the impulse. Then we

create a vector u0 = (1,0, . . . ,0)⊤ being the impulse at time point 0. The response on the

time points 1, . . . ,ζ is given by

y0 = u0, y1 = Φ1u0, y2 = Φ2u0, . . .

leading to the cumulative impact at time t of

ψ̃t =
t∑

i=0

Φiu0.

The reduced form innovations in ut tend to be correlated with each other and do

not feature a structural interpretation. For the purpose of identifying the uncorrelated

structural shocks, the residual covariance matrix is factorized with a matrix P such

that Σu = P R⊤RP ⊤. R is a (orthogonal) rotation matrix of dimension K and is assumed

to be the identity matrix for this and the next subsection. In subsection 2.3, a general

rotation matrix will be allowed.

The identification problem therefore boils down to choosing one of the infinitely

many orthogonal matrices P̃ := P R⊤ that decompose the covariance matrix. One pop-

ular approach is to choose the matrix P with a Cholesky factorization. Given a de-

termined P , the structural shocks are defined as ũt = P̃ −1ut and are orthogonal (i.e.,

E
(
Ũt

)
= IK ). Given P, the MA representation (3) can be written in terms of structural

innovations as

yζ = Ψ0ũζ +Ψ1ũζ−1 +Ψ2ũζ−2 + . . . , (5)
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with Ψi := Φi P̃ leading to the cumulative orthogonal impact of

Ψ̃t =
t∑

i=0

ΨiŨ0.

2.2 Recursive Identification with Parameter Restrictions

Recursive identification of shocks might lead to theoretically counterintuitive IRFs

(see also Figure 1 in Section 4.2.1 below). Accordingly, one might need to assume

some predefined short-run behavior of the IRFs based on economic theory. As a first

modification to the standard recursively identified VAR, we propose to impose this

theory-conform behavior of the IRFs as restrictions in the estimation process.

We start with the matrix notation from Eq. (2). As an illustration, we assume that

the response of the second variable given an impulse of the first variable should be

non-positive at time points t + 1, t + 2, and t + 3. Hence, the estimated model should

reflect this theoretical restriction. Put differently, we use information from economic

theory to impose a prior on the reduced-form estimation. The resulting optimization

problem is finding the parameter vector vec(β) that minimizes the sum of squared

residuals (SSR) of the VAR(p) model under the restriction that the IRFs generated by

the set of model parameters satisfies the sign restrictions:2

minimize
vec(β)

vec(U)⊤vec(U) (6)

subject to U = Y−Zβ,

(Ψ̃t+1)12 ≤ 0,

(Ψ̃t+2)12 ≤ 0,

(Ψ̃t+3)12 ≤ 0.

2Note that we consider the impact of an impulse not to be seen at time 0, that is, no instantaneous
reaction on the full system is assumed. Mathematically, however, this would not impose major changes.
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More generally, one can write for a response size matrix Ri ∈ RK×K and a sign

restriction matrix Si ∈RK×K for each forecast point i

(Si)jk :=



−1, if response j from impulse k is to be greater than (Ri)jk
1, if response j from impulse k is to be lower than (Ri)jk
0, if response j from impulse k is not to be restricted

(7)

the following optimization problem with · being the element-wise multiplication op-

erator and ζ the final prediction period:

minimize
vec(β)

vec(U)⊤vec(U) (8)

subject to U = Y−Zβ,

St+i · Ψ̃t+i −Rt+i ≤ 0, ∀i = 1, . . . ,ζ.

While the loss function is convex, the restrictions are non-linear. Hence, the overall

optimization problem is not convex anymore, and a non-linear optimization procedure

has to be applied. We choose to use an augmented Lagrange approach implemented in

the function auglag of the R package alabama (Varadhan 2015).

Algorithm 1: Residual Bootstrap for the Restricted VAR(p) Model

Estimate the model parameters using the restricted approach and save the

residuals in the matrix U = Y−Zβ.;

for r = 1,. . .,R bootstrap resamples do

1.) Sample with replacement U r∗ from U .;

2.) Generate the bootstrapped time series Y r∗ and Zr∗ recursively, starting

with the first observation and the sampled residuals.;

3.) Estimate the restricted VAR(p) model and save the parameter esti-

mates and the IRFs.

end

Compute bootstrapped confidence intervals for the IRFs and standard errors

for the model parameters.
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The model uncertainty is taken into account using a residual bootstrap in analogy

to Lütkepohl (2000). The bootstrapping procedure is described in Algorithm 1.

2.3 Almost Recursive Identification with Parameter Restrictions

In contrast to a standard VAR(p) model, we restrict the parameter space to force the

resulting IRFs to satisfy a priori economically meaningful sign constraints. Since the

structural shocks are still recursively identified via the unique Cholesky factorization

of the innovations’ covariance matrix, the economic restrictions can only be satisfied

by (substantially) adjusting the VAR coefficients. As long as the recursively identified

shocks are met by the true parameters of the DGP, the procedure leads to consistent

estimates. However, if this is not the case, the estimates of the restricted optimization

approach will be considerably biased and inconsistent. In order to tackle this issue, we

propose an extended constrained estimation procedure that relaxes the assumption of

recursively identified shocks as a second modification to the standard approach.

Let P be the Cholesky factor of the innovations’ covariance matrix and R(θ) an or-

thogonal rotation matrix, which is parameterized by the vector θ from an adequate

parameter space Θ such that R(0) = IK . For example, the rotations can be parameter-

ized with θ ∈ [−π,π] and

R(θ) =



cos(θ) −sin(θ)

sin(θ) cos(θ)




(9)

for K = 2 dimensions.3 The rotated Cholesky factor P̃ (θ) = P R(θ) implies a valid iden-

tification of shocks because of P̃ (θ)P̃ (θ)′ = P R(θ)R(θ)′P ′ = P P ′ = ΣU . The additional

parameter vector θ allows to satisfy economic restrictions on the structural IRFs by ad-

ditionally modifying the identification scheme and therefore does not strictly restrict

the space of the VAR parameter vector β.

Since the particular identification of structural shocks does not affect the likelihood

objective function, we introduce a Lp-regularization term ∥θ∥p for the angle θ. As the

3Similar tractable parameterizations exist for higher dimensions and can be used in the discussed
approach. For example, we use the Tait-Bryan angles with θ ∈ [−π,π]3 for the case of K = 3 dimensions
in the following empirical application.
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rotation matrix coincides with the identity matrix when θ = 0, the procedure favours

identification schemes with small deviations from the original recursive identification.

Hence, this identification scheme should break the recursive scheme only as much as

necessary to fulfill the economic restriction and — at the same time — to prevent

biased VAR parameter estimates. The new optimization problem is given by:

minimize
vec(β), θ

1
T

vec(U)⊤vec(U) +λ∥θ∥p (9)

subject to U = Y−Zβ,

St+i · Ψ̃t+i −Rt+i ≤ 0, ∀i = 1, . . . ,ζ,

where Ψ̃t is now the IRF computed with the rotated structural shocks and λ is a data-

dependent hyperparameter that controls the trade-off between residual minimization

and recursive identification. The bootstrap procedure is identical to the one in Algo-

rithm 1.

The described method can also be applied to arbitrary point identification schemes

represented by a matrix P with P P ′ = ΣU . It is particularly useful in situations where

economically meaningful IRFs are not feasible under strict enforcement of the identi-

fication scheme. We continue to use the Cholesky factorization as a traditional target

to shrink to.

3 Simulation Study

In the following, we investigate the small sample properties of our restricted VAR spec-

ifications (without and with an additional rotation of the Cholesky factorization) using

a Monte Carlo study and compare it to the performance of the standard (unrestricted)

case. We consider a two-dimensional VAR model with p = 2 lags as DGP, that is, we

sample from

xt = A1xt−1 +A2xt−2 +ut, (10)
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with (Ak)i,j = a(k)
i,j . The DGP is calibrated based on the industrial production and inter-

est rate time series that are also used in the empirical application in Section 4. Accord-

ingly, the parameter matrices in (10) are set as:

A1 =



0.83 0.89

0.05 1.14




and A2 =




0.17 −1.08

−0.03 −0.24



.

Table 1 shows average estimates of 1000 Monte Carlo replications and the correspond-

ing root mean squared error (RMSE) in parentheses for three different sample sizes

T = 100,250,1000. Each simulated sample has been drawn after discarding 100 burn-

in periods. The DGP features the price puzzle that is sometimes observed empirically

in monetary policy transmission models. In the given setting, this results because of

the MA coefficient (Ψ1)1,2 = a(1)
1,2P2,2 = 0.89 ∗ 0.25 > 0 being positive while (Ψt)1,2 < 0 for

t > 5.

The benchmark estimator is given by a recursively identified VAR(2) model referred

to as “Unrestr.” in the following. The most promising scenario for the constrained

estimator arises when the IRF puzzle in the standard VAR model occurs due to an in-

correctly predicted sign of (Ψt)1,2. We reproduce this setting by running a restricted

VAR estimation with the first impulse response required to be positive (column “Re-

stricted +”). The economic sign restriction is then in line with the DGP. In addition, we

compute an estimator constraining the first impulse response to be negative (column

“Restricted −”). Such a misspecification could arise if the sign restriction on the IRF

is correct, but the puzzle results from a non-recursive identification scheme and not

from incorrectly estimated parameters.

Table 1 shows that the performance of the correctly specified restricted estimator

(with a positive sign restriction) does not crucially differ from the one of the unre-

stricted VAR. The results are even identical in the larger samples with T = 250 and

T = 1000. This implies that the restricted estimator successfully solves the poten-

tial impulse response puzzle while the estimation performance does not deteriorate in

comparison to the standard VAR estimator.
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However, the constrained VAR with a negative sign restriction is misspecified as

the true parameter is not included in the restricted parameter space. This causes con-

siderably biased estimates as shown in the columns “Restricted −” of Table 1. Hence,

the recursive identification with parameter restrictions clearly has some limitations if

the economic restriction on the impulse response is not fulfilled by the DGP.

This potential estimation bias stems from the inflexibility of the recursive identi-

fication scheme. In the columns labeled “Restricted Rot.”, we further report results

of a constrained estimator that allows rotating the Cholesky factorization (which has

been fixed so far) in addition to the negative sign restriction. The results reveal that

the estimation bias largely vanishes when additionally rotating the covariance matrix

factorization. Even the RMSEs show similar values as the unrestricted VAR. This is

particularly remarkable as the employed L2-penalization yields a rotation of, on aver-

age, only 13 degrees. Hence, the procedure that uses economic restrictions and rota-

tions leads to an identification that is close to the recursive scheme while avoiding an

estimation bias and an impulse response puzzle.

To summarize, if the economic parameter constraints are valid for the DGP, the

restricted (but unrotated) VAR produces consistent estimates while having a similar

small sample performance as the standard VAR. However, if the DGP does not fulfill

the economic restrictions, we can only enforce the constraints by allowing for a (sub-

stantial) estimation bias. In this case, the “almost recursively identified approach” that

slightly rotates the initial propagation of shocks can prevent the bias while generating

theory-consistent impulse responses.

4 Empirical Application

In the following, we estimate a standard monetary policy VAR for the euro area and

the period January 1999–December 2019.
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4.1 Data and Preliminary Steps

Our data set includes the (i) the industrial production index (IP, in logs), (ii) the har-

monized index of consumer prices inflation rate, and (iii) a composite indicator of the

monetary policy stance as endogenous variables. As monetary policy indicator, we use

the European Central Bank’s main refinancing operations rate (MRO rate) until Octo-

ber 2008.4 After that date, we replace the MRO rate with the shadow short rate by

Krippner (2015), which provides a quantification of all unconventional monetary pol-

icy measures in a single shadow interest rate and also allows for negative interest rates.

In our view, this is the most parsimonious description of monetary policy in normal

times and crisis times in a single variable.5 Figure A1 in the Appendix plots the three

series over time.

All variables enter the VAR model linearly de-trended, following Burgard et al. (2019).6

The selection of the lag structure is based on three criteria. First, there should be no

autocorrelation left in the residuals of the VAR models. Second, the IRFs should con-

verge to zero, at least asymptotically. Third, either model should be as parsimonious

as possible, that is, redundant (i.e., insignificant) lags should be removed. Employing

three lags yields no autocorrelation in the standard VAR as well as in the restricted and

rotated VAR. However, there would still be autocorrelation left at the 10% significance

level in the industrial production equation of the unrotated VAR with estimations re-

strictions on the first two, three, and six lags. To ensure comparability across models

and to avoid any risk of remaining serial correlation in the residuals, we choose a lag

length of four for all VARs in the following empirical application. In this case, Ljung-

Box (1978) tests indicate no autocorrelation at any reasonable significance level for all

models considered. Including additional lags in either model only leads to a less sharp

identification of the IRFs due to a loss in the degrees of freedom.

4Note that replacing the MRO rate with the EONIA leaves the results virtually unchanged.
5We decided not to use the shadow rate by Wu and Xia (2016) for several reasons. During the recent

years, this variables has be subject to criticism (e.g., Krippner, 2020) since its underlying assumptions
lead to rather “extreme” values (e.g., almost –8% for the euro area in 2019). In addition, employing this
variable in our context leads to highly persistent monetary policy shocks that die out very slowly.

6Note that this is equivalent to including a linear trend in the VAR system. The trends are statistically
significant in all three cases at the 5% level.
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4.2 Empirical Results

4.2.1 Benchmark

Figure 1: Impulse Responses of Recursively Identified VAR

Notes: Solid lines represent median IRFs (in percentage points) to a contractionary monetary
policy shock of 25 basis points. Dark gray shaded (light gray shaded) areas indicate 68% (95%)
confidence bands derived by bootstrapping and 500 replications. Cholesky decomposition is
based on the ordering: (i) industrial production, (ii) inflation, and (iii) interest rate.

Figure 1 shows median IRFs after a contractionary monetary policy shock of 25 bps

in a standard recursively identified VAR. Whereas the medium-term responses of out-

put (13–29 months after the shock) and inflation (17–35 months after the shock) to a

contractionary monetary policy shock are well in line with a priori expectations, the

short-term responses are not. Output and prices increase and we have evidence for the

well-known “price puzzle” (Eichenbaum, 1992).7

7In addition to this empirical issue, it is also debatable from a theoretical point of view that prices do
not respond contemporaneously to monetary policy shocks. In a standard New Keynesian model, some
firms are able to react contemporaneously to shocks and others are not, which implies that prices are
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Various approaches such as, for instance, the inclusion of commodity prices (Sims,

1992) or identification with the help of high frequency data (Faust et al., 2004) have

been employed to get rid of these initially counterintuitive responses. Since Uhlig

(2005), the most commonly used method is to restrict the responses of some variables

in the VAR system to be positive or negative for a certain period of time or to employ

a penalty function approach. That is, identification is based on IRFs that satisfy the

restrictions imposed by the researcher. All counterintuitive responses are discarded

(or penalized) in the process of identifying a monetary policy shock.8

Figure 2: Impulse Responses of Sign-Restricted VAR

Notes: Solid lines represent median IRFs (in percentage points) to a contractionary monetary
policy shock of 25 basis points. Dark gray shaded (light grey shaded) areas indicate 68% (95%)
credible sets based on 5,000 accepted MCMC draws. Responses of output and prices (the
interest rate) after a contractionary monetary policy shock are assumed to be negative (positive)
for 12 months after the shock.

sticky (but not fixed). Nevertheless, zero restrictions on impact for prices (and output) after a monetary
policy shock are also assumed in other recent papers (e.g., Peersman, 2011; Gambacorta et al., 2014;
Galı́ and Gambetti, 2015).

8Uhlig (2017) provides an intuitive introduction into identification via sign restrictions.
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Figure 2 shows median IRFs after a contractionary monetary policy shock of 25

bps for the same VAR model as in Figure 1, but based on sign restrictions. The shock

is assumed to decrease output and prices on impact and for 12 months thereafter and

to increase the interest rate for the same period (following Principle 16 on p. 124 in

Uhlig, 2017). Even with this less “agnostic” identification scheme as the one in Uhlig

(2005), the response of output becomes “insignificant” quickly once the restrictions

are lifted. In general, the responses are less precisely measured as in the recursive

identification scheme.

As illustrated by the two sets of impulse responses, both, recursive identification

and identification via sign restrictions have some drawbacks, which our proposed ap-

proaches aim to overcome.

4.2.2 Impulse Responses with Restrictions

In a first step, we estimate a linear VAR model under the restriction that the IRFs for

industrial production and inflation should be non-positive during the first month af-

ter a contractionary monetary policy shock.9 In addition, the response of the interest

rate indicator is restricted to be non-negative on impact and during the first month.10

Figure 3 shows the results with the dashed lines replicating the median IRFs of the un-

restricted model in Figure 1. The left panel shows the results with the sign restrictions

only, whereas in the right panel we additionally allow for a rotation of the Cholesky

factorization. Figure 3 illustrates that this restriction is already sufficient to get rid of

the “price puzzle” in both cases. It is also sufficient to prevent a significant positive

response of industrial production one month after the shock. However, two months

after the shock we still find a (brief) positive response in both panels.

9Note that the instantaneous response of both variables is already restricted to zero due to the recur-
sive identification scheme in the left panel of Figure 3.

10Note that this restriction is implemented for comparability reasons to the sign restriction approach
in Bayesian VAR but non-binding in our application.
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Figure 3: Impulse Responses with 1-Month Restriction

Panel A: No Rotation Panel B: Rotation of Cholesky Matrix

Notes: Solid lines represent median IRFs (in percentage points) to a contractionary monetary
policy shock of 25 basis points without (panel A) and with (panel B) a rotation of the Cholesky
matrix in addition to the parameter restrictions. Dark gray shaded (light gray shaded) areas
indicate 68% (95%) confidence bands derived by bootstrapping and 500 replications. Dashed
lines show unrestricted median IRFs taken from Figure 1.
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Consequently, we increase the number of restricted months to two and, in a second

step, estimate a linear VAR model under the restriction that the IRFs for industrial

production and inflation (the interest rate) should be non-positive (non-negative) dur-

ing the first two months after a contractionary monetary policy shock. Figure 4 shows

the results with the dashed lines replicating the median IRFs of the unrestricted model

in Figure 1.

Again, the left panel shows the results with sign restrictions only, whereas in the

right panel we additionally allow for a rotation of the Cholesky factorization. A re-

striction on the first two months is indeed sufficient for obtaining non-positive median

responses for industrial production and inflation in both panels. Figure 4 also docu-

ments that the differences between the original IRFs and the restricted ones are only

visible during the first 18–24 months after the shock. After two years, the median IRFs

are virtually the same for all variables and in both panels.

Figures A2 and A3 in the Appendix show the IRFs with restrictions on the first three

and six months, respectively. In these figures, the dashed lines resemble the median

IRFs from Figure 4 with restrictions on the first two months. It becomes evident that

more persistent restrictions do not induce a substantial difference to the case with a

restriction on the first two months, which is the “least invasive” case that yields theory-

conform IRFs. Consequently, the following discussion will refer to the unrestricted

case and the case with restrictions on the first two months (without and with a rotation

of the Cholesky factorization).
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Figure 4: Impulse Responses with 2-Month Restriction

Panel A: No Rotation Panel B: Rotation of Cholesky Matrix

Notes: Solid lines represent median IRFs (in percentage points) to a contractionary monetary
policy shock of 25 basis points without (panel A) and with (panel B) a rotation of the Cholesky
matrix in addition to the parameter restrictions. Dark gray shaded (light gray shaded) areas
indicate 68% (95%) confidence bands derived by bootstrapping and 500 replications. Dashed
lines show unrestricted median IRFs taken from Figure 1.
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4.2.3 Discussion

Table 2 shows the months, during which the responses to a contractionary monetary

policy shock are significant when considering 68% confidence bands.

Table 2: Significance of Impulse Responses

Unrestricted Restricted (Two Months)
No Rotation Rotation

Industrial Production 13 – 29 1 – 2; 4 – 26 0 – 24
Inflation 17 – 35 1 – 33 0 – 32
Interest Rate 0 – 11 0 – 9 0 – 8

Notes: Table shows the lags, during which the responses to a contractionary monetary policy
shock are significant when considering 68% confidence bands.

The IRFs of industrial production and inflation become significant much earlier

in both restricted cases, but also become insignificant three to five months earlier.

The IRFs of the interest rate itself is affected to a smaller extent as the ones for the

restricted cases become insignificant two to three months earlier; that is, monetary

policy shocks are found to be less persistent under parameter restrictions. Finally, it is

also worth noting that the almost recursive identification in the right column allows for

an instantaneous non-zero response of output and prices to a monetary policy shock

and is therefore less restrictive and in line with the implications of the standard New

Keynesian model.

Table 3 shows the peak responses to a contractionary monetary policy shock (in per-

centage points) alongside the month during which the response was found in paren-

theses.

Table 3: Peak Responses

Unrestricted Restricted (Two Months)
No Rotation Rotation

Industrial Production –0.28 (18) –0.36 (14) –0.31 (14)
Inflation –0.038 (21) –0.051 (15) –0.047 (13)

Notes: Table shows the peak responses to a contractionary monetary policy shock (in percentage
points) alongside the month during which the response was found in parentheses.

The size of the peak responses is slightly larger when the estimation restrictions

are in place, in particular for the unrotated case. A contractionary monetary policy
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shock of 25 bps leads to a reduction of 28–36 basis points in industrial production

and to a decrease of 3.8–5.1 basis points in the inflation rate. The peak for industrial

production is found 18 months after the shock in the unrestricted case and after 14

months in both restricted cases. The corresponding peaks for inflation are found after

21 months (unrestricted) and 13–15 months (restricted cases). Hence, similar to the

overall significance, the peaks are four to eight months earlier due to the restriction

in the estimation process. All estimated peaks, however, are in line with the usual

estimates for the outside lag in the transmission of monetary policy shocks to which

central bankers often refer (e.g., the European Central Bank in its monetary policy

strategy).

Least squares estimation is naturally providing the best fit to the data in terms of

the SSR. Any restriction in the estimation process leads to an increase in this measure.

To evaluate the size of the loss in fit, Table 4 shows the decrease in fit (in %) of the

restricted models as compared to the unrestricted one. The loss in fit amounts to 2.45%

and 1.73% in the industrial production equation and the inflation equation in the case

of the restricted, but unrotated model.11 This corroborates the results of the simulation

study where we detect a bias in the unrotated model with negative sign restrictions. In

contrast, the loss in fit is negligible in the rotated model.

Table 4: Decrease in Fit (SSR in %)

No Rotation Rotation
Industrial Production 2.45 0.0009
Inflation 1.73 0.0004
Interest Rate 0.17 0.0003

Notes: Table shows the decrease (in %) in the sum of squared residuals in the restricted models
as compared to the unrestricted model.

Finally, we test whether the individual coefficients are different in the restricted

cases as compared to the unrestricted model. Table A1 in the Appendix illustrates this

for both cases with, again, sign restrictions on the first two months. In the case of the

restricted, but unrotated model we find that the first lag of industrial production is

11An in-depth analysis reveals that the decrease in fit is driven by the restriction on the first two lags
in the case of the IP equation, whereas for inflation the restriction on the first lag is particularly relevant.
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significantly different from the parameter of the unrestricted model at the 5% signif-

icance level. For the other coefficients of that specification, we find some numerically

visible differences that are not statistically significant. However, the coefficients for

the rotated model are virtually the same as compared to the unrestricted case, which

is also in line with the negligible decrease in fit in Table 4 and the results of the simu-

lation study.

To summarize, a restriction on the first two months in the IRFs of output, prices,

and the interest rate is sufficient to get rid of the price puzzle and the counterintu-

itive response of output for both, the restricted VAR without and with a rotation of

the Cholesky factorization. However, the almost recursively identified approach out-

performs the Cholesky identification as it features virtually no change in the model

parameters and no noteworthy decrease in the model’s fit.

5 Conclusions

Recursively identified vector autoregressive models sometimes lead to theoretically

counterintuitive impulse responses. As a first step to overcome this problem, we pro-

pose to estimate the VAR parameters under the restriction that economic theory is

not violated, but stick to a recursive identification of shocks. We solve this optimiza-

tion problem under non-linear constraints using an augmented Lagrange solution ap-

proach and adjust the VAR coefficients so that these meet the theoretical requirements.

In a second step, we allow for a (minimal) rotation of the Cholesky matrix in addition

to the parameter restrictions.

Using a Monte Carlo simulation, we show that — if the economic parameter con-

straints are valid for the DGP — the restricted (but unrotated) VAR produces consis-

tent estimates while having a similar small sample performance as the standard VAR.

However, if the DGP does not fulfill the economic restrictions, we can only enforce

the constraints by allowing for a (substantial) estimation bias. In this case, the “almost

recursively identified approach” that slightly rotates the initial propagation of shocks

can prevent the bias while generating theory-consistent impulse responses.
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As an empirical application, we estimate a standard monetary policy VAR for the

euro area and the period January 1999–December 2019. Our results indicate that a

restriction on the first two months in the IRFs of output, prices, and the interest rate

is sufficient to get rid of the price puzzle and the counterintuitive response of output

for both, the restricted VAR without and with a rotation of the Cholesky factorization.

However, the almost recursively identified approach outperforms the Cholesky identi-

fication as it features virtually no change in the model parameters and no noteworthy

decrease in the model’s fit. The additional flexibility of this approach is underscored

by the possibility of having non-zero responses on impact for output and inflation,

which is by definition ruled out in the recursive identification scheme.

The key implication of our paper is to consider the “almost recursively identified

approach with parameter restrictions” as a useful complement to the Bayesian sign

restriction approach commonly used in empirical macroeconomic studies. This ap-

proach leads to a solution without an estimation bias, generates theory-consistent im-

pulse responses, and is as close as possible to the recursive scheme.
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Appendix

Figure A1: Macroeconomic Variables for the Euro Area

Notes: The “interest rate” is a composite indicator based on the main refinancing rate (until
October 2008) and the shadow short rate by Krippner (2015) (from November 2008 onwards) to
reflect the European Central Bank’s unconventional monetary policy measures since the onset
of the Global Financial Crisis. Data are taken from the European Central Bank (industrial
production, inflation, and main refinancing operations rate) and Leo Krippner’s homepage
(shadow short rate, www.ljkmfa.com).
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Figure A2: Impulse Responses with 3-Month Restriction

Panel A: No Rotation Panel B: Rotation of Cholesky Matrix

Notes: Solid lines represent median IRFs (in percentage points) to a contractionary monetary
policy shock of 25 basis points without (panel A) and with (panel B) a rotation of the Cholesky
matrix in addition to the parameter restrictions. Dark gray shaded (light gray shaded) areas
indicate 68% (95%) confidence bands derived by bootstrapping and 500 replications. Dashed
lines show median IRFs taken from Figure 4 with a restriction on the first two months only.
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Figure A3: Impulse Responses with 6-Month Restriction

Panel A: No Rotation Panel B: Rotation of Cholesky Matrix

Notes: Solid lines represent median IRFs (in percentage points) to a contractionary monetary
policy shock of 25 basis points without (panel A) and with (panel B) a rotation of the Cholesky
matrix in addition to the parameter restrictions. Dark gray shaded (light gray shaded) areas
indicate 68% (95%) confidence bands derived by bootstrapping and 500 replications. Dashed
lines show median IRFs taken from Figure 4 with a restriction on the first two months only.
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