
A static method for computing

the score of a Go game.

Andrea Carta

http://www.micini.net/

Abstract

There are two approaches that may be used in order to let a soft-
ware compute the score of a Go game. The most common is the
so-called �dynamic� approach, implemented by every software capable
of playing: �dynamic� means that further moves are played at the end
of the game in order to capture any dead stone, to �ll dame points
and so on, until the score is easily computed just by counting the
remaining empty points on the goban. The other one is the so-called
�static� approach: �static� means that the �nal position is instead eval-
uated without playing any further move; for example, to determine if
a group of stones is dead or alive, eyes, liberties and other proper-
ties are counted and properly processed by the evaluation algorithm.
The static approach was �rst theorized in 2003 by professor Hyun-Soo
Park [PLK03], who eventually developed a method [Par07] for com-
puting the score of a game and claimed good results for the time �
2007 � but only described it in broad outline.

In this paper a similar, albeit more radical and extensive approach
to the problem is shown instead: not only how to decide life or death
for any group of stones is clearly explained, but also all the issues that
often arise at the end of a game are addressed. Otherwise such issues
� dame points, kos, seki, potential snapback positions, forced con-
nections � could make it impossible to compute the score accurately.
The algorithm, despite being very complex and certainly not suitable
for any software capable of playing (which should make use of the dy-
namic approach instead), greatly helps the understanding of the basic
patterns of the game; also, it's usually very fast as it does not require
� as in the dynamic approach � to play further �nal moves.

http://www.micini.net/


page 2

1 Introduction

Computing the score at the end of a Go game, especially if close, is not
a trivial matter, and the mere existence of �counting methods� proves that
(see, for example https://senseis.xmp.net/?JapaneseCounting). Auto-
matic computing is even more di�cult, and that's why any software capable
of playing implements the so-called �dynamic� approach, which consists of
playing further moves after the end of a game in order to remove any dead
stone, �ll dame points and kos and eventually counting the remaining empty
points on the goban in order to compute the exact score. Such a process
may be long, as a lot of moves may be required to reach the proper �nal
position (assuming the game has not been resigned too early). For example,

Figure 1: The �nal position of the 2nd game in the match AlphaGo vs. Lee
Sedol.

https://senseis.xmp.net/?JapaneseCounting)


page 3

the outcome of the second game of the match between AlphaGo and Lee
Sedol � resigned by White after 211 moves � doesn't look so unreadable to
the human eye (�gure 1), yet GNU Go � whose scores are especially reliable
� has to play 36 more moves before being able to compute the score. More
further moves are played, more unlikely the score will be: it's easily veri�able
that this game's GNU Go's evaluation � 6.5 points for Black � strongly
depends on such moves, and could change if they were played in a di�erent
order (although the outcome of the game would not likely change). That's
the reason why a �static� approach has been theorized many years ago by
professor Hyun-Soo Park [PLK03], in order to avoid the uncertainty due to
the moves played after the end of the game, and determine once and for all
which stones are dead, how to count dame points and so on.

2 Limits of Park's approach

Professor Park's approach was based upon the following elements:

1. grouping the stones into �strings�, that are stones physically connected:
in �gure 2 there are three black strings shown, numbered 1 to 3;

Figure 2: Three black strings.

2. counting strings' properties, such as eyes, eyelikes/special eyes (empty
points almost surrounded by friendly stones and that could possibly be-
come eyes), extension points, connection points (empty points between
two strings that could be used to connect them), group territory (ter-
ritory under the in�uence of the strings belonging to a �group�, which
is a collection of strings whose connection cannot be prevented, as in
�gure 2, where strings 1 and 2 can be connected anyway because if
white A, black B and vice versa; strings 3 does not belong to the group



page 4

because White, unless the white stones may be killed, will play C and
prevent the connection between strings 2 and 3);

3. assigning a score to each string, depending on the aforementioned prop-
erties; a huge table, listing all possible combinations of the properties
and the resulting score (from 100 � certainly alive � to 508 �certainly
dead) was provided: this score was named �stability� because, in a way,
alive strings are �stable� and vice versa;

4. making use of a recursive algorithm (presented in a subsequent pa-
per [Par07]) for computing the score of a game: with each pass of the
algorithm the �deadest� strings are removed from the goban and the
remaining ones' score is computed again (because removing a string
usually improves the stability of the surrounding ones), until no dead
strings remain. Eventually dame points are �lled and the game's score
is computed in the usual way, just by counting the remaining empty
points on the goban.

Although remarkable, Park's work was far from exhaustive: the algorithm
presented in [Par07] was just outlined, without the necessary details, and he
never wrote any software despite claiming good results on a large number of
games (362) found on the British Go Association's website1. He compared
his algorithm's outcome � a mean error of 4.15 points � with CGoban's
and HandTalk's, two of the most famous Go playing softwares back then, and
was satis�ed with what looked like a successful comparison (the softwares'
mean error being 8.66 and 5.96 respectively). But not only this outcome
is unsatisfying in absolute terms (an error of 4+ points is not negligible):
the aforementioned lack of details makes it impossible to check the results
and try to reproduce the outcome on a di�erent set of games (for example
the 624 games provided by Dave Dyer [Dye07] on which we tested the new
algorithm). Even trying to guess the missing details is futile, as the same
problem occurs before, when computing strings' stability: in [PLK03] a de-
tailed method to determine the properties of a string is only provided for
eyes (shown in �gure 3), eyelikes and special eyes, and only works for eyes
� of course the easiest property to determine � as the examples shown in
the paper are far from clear and not free from inconsistencies. No method
at all is provided for counting extension and connection points, and the ex-
amples shown are trivial (�gure 4), with no enemy stones nearby disrupting
the extensions/connections, as it's common during a game. Once again, no
method is provided for the essential task of identifying the territory under

1 Also, these games don't seem to be online anymore.



page 5

Figure 3: How to determine if a point on the goban is an eye.

Figure 4: Extension points (for both black and white stones), with each
in�uence zone outlined separately.

the in�uence of a group of stones: only some examples are shown, as in �g-
ure 5, and not much can be inferred from them. Last but not least, the huge
table that should determine the stability score of a string given its properties
is not that accurate: sometimes a match cannot be found, and occasionally
two are found instead. These cases are sporadic, but occur nonetheless, and
trying to improve the table to handle them is futile, as the criteria employed



page 6

Figure 5: Territory controlled by both groups, outlined separately.

in the �rst place to build it are far from clear.

Eventually the guesses required for writing a program capable of seriously
testing Park's ideas are too many; and even guessing everything right would
not be enough, as there are many yose's issues that Park never addressed:
kos, stones remaining in atari, local snapback positions, forced connections,
big eyes2. That's the reason why the mean error of his algorithm is more
than 4 points. Only seki are addressed, as not only they often occur, but may
also change dramatically the outcome of a game (Park wrote another paper
notably addressing the seki issue: [PK05]). In the end, a real improvement
is possible only if we start from scratch and keep only Park's basic ideas, as
will be shown in the next section.

3 The new scoring algorithm

The �rst thing the algorithm does is to identify the strings: this is done by
scanning the whole goban for stones, left to right, top to bottom, and each
time a stone is found either it is added to a pre-existing string (if a stone of
the same colour does exist either on the intersection immediately above or
on the one immediately at left) or it becomes the �rst stone of a new string.

After that, all the strings are sorted into �groups�, that are collections
of strings not tangibly connected, but whose connection cannot be pre-
vented. To determine if a connection cannot be prevented, it is important

2 �Big eyes� are the known con�gurations including a lot of empty points, that may or
may not become two eyes � the �rabbit ears�, for example.



page 7

to check empty points between the strings involved, looking for �full connec-
tion points�, as A/B in �gure 6 (if White A, Black B and vice versa) as well
as �half connection points�, as C or D in �gure 6 (if Black moves, C or D
may be played connecting the two strings; if White moves, C or D may be
occupied and the connection prevented). Figure 6 shows the simplest cases,
but full/half connection points may have other shapes, for example involving
two-points jumps and knight jumps, given that no � or few � enemy stones
are found nearby and the points in-between are empty. The presence of either

Figure 6: Full and half connection
points for strings 1 and 2.

Figure 7: A group made of two
strings that cannot be killed de-
spite having only one eye.

a �full connection point� between two strings or at least two �half connection
points� is a su�cient condition to consider the strings logically (albeit not
tangibly) connected (in �gure 6 both conditions are true); a �group� is a col-
lection of strings that are logically connected, standing out as a single one.
This idea, that the strings belonging to a group stand out as a single one �
except for strings in atari � is a major improvement over professor Park's
algorithm, that never contemplated groups except when computing the terri-
tory under their in�uence. Figure 7 shows why this is a major improvement:
both black strings encompass a single eye and � according to Park � should
be dead, but because of the full connection point at A/B are alive instead,
as trying to kill them with White A would be met with Black B, and vice
versa.

In the algorithm's next step the strings properties are computed. These
properties are: eyes, special eyes, eyelikes (as in Park's algorithm), liberties,
territory under the in�uence of the whole group. Liberties are easy to count,



page 8

but they are not all alike, for example:

1. liberties that the opponent cannot occupy without putting him/herself
in atari, are worth twice;

2. liberties that can be occupied by a friendly stone without decreasing
the overall number, are worth 1/3 more;

3. liberties that can be occupied by a friendly stone, thus increasing the
overall number, are worth 1/2 more;

These subtle di�erences are important in life and death situations: two
strings competing for life may have the same number of liberties and, at
�rst glance, it might not be clear which one survives and which one dies; but
as liberties are not all alike, the winner is often easy to determine, and some-
times it's not the one with more liberties. An example is shown in �gure 8:
at �rst, it looks like the black string (2) has got more liberties � 3 � than
the white string (1) � just 2. But the two white liberties L1W and L2W are
worth twice (a black stone there would be in atari), occupying L2W would
not decrease the overall number, and occupying L1W would increase them:
so these two liberties are worth about 5. The three black liberties, L1B, L2B
and L3B only are worth 1/3 more, so about 4 overall. This means the black
string dies �rst (as indeed it does).

Figure 8: Liberties are not all
alike. Figure 9: Several eyes.

Eyes are easy to count once it becomes clear how to identify them. Fig-
ure 9 shows some con�gurations: the simplest one (on the upper left) was



page 9

already pointed out by Park: if the 4 �cardinal points�3 around an empty
one belong to the same string, this point is an eye. A second con�guration
is shown on upper right: the potential eye is real if at least 6 out of the 8
surrounding points are occupied by friendly stones and the remaining two
are empty corners (the eye belongs to all the strings possibly involved). On
the lower left, the last con�guration: 7 out of the 8 surrounding points are
occupied by friendly stones, with the last one empty. The reason why this
last con�guration works (the others are obvious) is shown on the picture's
lower right : if White 1, trying to steal the eye, then Black 2, and eventually
White 3 is met by Black 4 and vice versa.

A special eye is a point that looks �almost like an eye�: it occurs when at
least 6 out of the 8 surrounding points are occupied by friendly stones, and
at most one corner (not two) is occupied by an enemy stone. An eyelike is
a point that �has got eye potential�: it occurs when at least 5 out of the 8
surrounding points are occupied by friendly stones, and the remaining ones
are empty.

But what is the purpose of special eyes and eyelikes? In some cases
they may become true eyes, once the strings are sorted into groups and all
their properties are summed up: for example, if two special eyes/eyelikes are
contiguous, and at least one of them is a special eye, they become a true
eye (for the whole group, not for the single strings); also, if three eyelikes
are contiguous, they form a true eye too. To clarify the matter, an example
is shown in �gure 10: on the left there is a con�guration with one special
eye (�S�, surrounded by 6 friendly stones) and one eyelike (�E�, surrounded
by 5 friendly stones), contiguous � so, a true eye; on the centre and on the
right White does all he/she can in order to steal the eye, but fails; on the far
right the stone marked with �X� is missing, so the special eye too becomes
an eyelike, and as two contiguous eyelikes cannot become a true eye (three
are needed), this time White succeeds.

Figure 10: A special eye and an eyelike, contiguous, become a true eye; two
contiguous eyelikes cannot.

3 Given a point on the goban, the �cardinals� are the one immediately above, the one
on the left, the one on the right, the one just underlying.



page 10

The territory under the in�uence of a group is computed by means of the
famous Bouzy algorithm [Bou03], with 8 dilations and 21 erosions (instead
of the more common 5 dilations/21 erosions), and it's quite a simple task.

Contrary to Park's method, connection and extension points are not
needed, as they are of little help and are extremely di�cult to identify with
the necessary accuracy: the properties computed so far are all we need to
determine the only thing that matters, that is if a group of strings includes
two eyes or not. A group with two eyes is of course alive; if there's only one
eye, but also some eyelikes/special eyes (not contiguous) and some territory
the group is still alive. Even with no eyes, as long as a large territory (at
least six points) is controlled, the group is still alive. When a group is alive,
its stability is set to 100; when it's not, its stability is set to a value up to 520,
depending on the overall number of eyes, liberties and territory (the exact
formula is: 520 - eyes / 2 - liberties * 2 - territory / 2, much simpler than
the huge table Park designed). Although a stability > 100 implies the group
is dead, this is not always true, as the �deadest� groups are removed �rst,
making it possible for the remaining ones to come back alive (see �gure 11:
both strings 1/2 look dead, with no eyes, but black's stability is 518, white's
is 507, so the black string (1) is removed �rst, and the white one (2) becomes
alive, having now got 5 contiguous special eyes, that are the equivalent of
two true eyes. Thus, if Black A White B, killing the black string and leaving
a big eye inside the white one).

Figure 11: Both strings (1/2) are dead, but the inner one dies �rst, letting
the other live, as shown on the right.

By the way, �deadest� strings cannot be removed at once: before doing
such a thing seki and snap-back positions must be dealt with, as they may
change the stability of the strings. Seki are not so easy to identify, even for
the human eye, but they may be de�ned as follows: two strings sharing all
their liberties (2 to 4, eyes do not count), with at least three stones each.
Some examples are shown in �gure 12: on the left, the inner string has only
got two stones, so this is not a seki; on the right, the positions is very much



page 11

alike, but the stones are now three, and a seki occurs.
Snap-back positions involve two strings sharing their only liberty: of

course both strings look dead, but if one of them cannot kill the other without
being killed in turn then a �snap-back� occurs: a typical example is shown
in �gure 13, with the white string coming back to life after White 2 despite
having being killed by Black 1. When a snap-back occurs, the surviving
string will have its stability changed to 100. The same is true for seki, with
both strings' stability set to 100.

Figure 12: On the left, no seki; on the
right, seki.

Figure 13: A snap-back posi-
tion.

Only now it is possible to proceed with the removal of the �deadest�
strings, starting with the ones whose stability is set to 520; if there are no
such strings, the ones with stability 519 are removed and so on. After each
passage the remaining strings' stability is computed again (and seki and snap-
backs are again checked) and the removing process restarted, until there are
no more strings to remove. At this point it is already possible to compute the
score by means of the Bouzy algorithm, but the result would not be much
better than Park's (who did not consider snap-backs) and in most games
would be wrong, albeit not by much.

To really improve on the result it is mandatory to handle dame/ko �lling
and above all �forced connections�. A forced connection is a point that can-
not be left empty as otherwise, after all dame have been �lled, either some
friendly, alive stones would die or some enemy, dead stones would live: of
course this is an issue that both players are well aware of when computing
the score by hand and handle without too much thinking, even when leav-
ing dame empty; but a score-counting software is another matter, and needs
explicit guidelines, as forced connections are points that cannot be counted
as territory, either �lled or empty. A �rst example is shown in �gure 14: the
point marked with �D� is a dame and, once �lled, the point marked with
�F� should also be �lled at once, to prevent the large black string marked
with �1� to be killed. That's why �F� is called a forced connection. A second
example is shown in �gure 15: the white string marked with �X� is ostensibly
dead (its stability is 518); but, should Black do nothing, will come back to



page 12

life, �rst with White 1, then with White 2. That's the reason why Black 2
is mandatory before it's too late, thus becoming a forced connection.

Figure 14: A forced connection,
without which the black stones
would be killed.

Figure 15: Another forced con-
nection, without which the white
stones would survive.

Forced connections are not always easy to see, even for a human player,
and the Bouzy algorithm would consider them territory; also, they are the
main reason why Park's algorithm, which ignores them, is not that accurate,
with a mean error of 4+ points.

So, after having restored the original position � before the removal of
dead strings � dame must be located. This task may be accomplished by
means, once again, of the Bouzy algorithm: as dame points are not controlled
by either player their �intensity� is exactly 04.

When all the dame have been located, they are �lled with black stones,
and the stability of all the strings on the goban is computed again: if some
of them are found to be in atari, their last liberty is located and �lled with a
stone of the same colour: this point is marked as a potential �forced connec-
tion� (as in in �gure 14). If the string remains in atari despite that, either the
last liberty (of course a new one, acquired through the connection) is again
�lled or some dead enemy string is killed, if possible, in order to acquire
more liberties. Either case the connection is found (unless the string in atari
is dead, something that can happen only if its stability has been wrongly
computed) and marked as potential �forced�.

Once all the potential forced connections have been found, the task is
repeated again, this time �lling the dame with white stones: the forced
connection points that are found a second time become real and are marked
as such, as they need to be �lled whoever occupies the dame. The forced

4 The Bouzy algorithm computes a score for each empty point on the goban: if this
score, called �intensity�, is positive, the point is inside black territory; if negative, it's inside
white territory. If 0, it's a dame.



page 13

connections that are found just once are not real: they may be left empty
once the dame are �lled with the right colour (something that, once more,
the players are well aware of). As seen in �gure 15 there are other forced
connections to be found: the ones needed to avoid dead strings coming back
to life. So the task is repeated once more, this time searching for strings
whose stability changes to 100 after �lling the dame; if that occurs, these
strings need to be killed at once, and their last liberty becomes a forced
connection (for the opposite colour). That's not all: although the forced
connections do not alter the stability of the strings, they may cause new seki
to surface: these cases are infrequent, but occur nonetheless, and after all
forced connections have been found a new search for seki is needed. The
algorithm's last task is the identi�cation of kos, that are not as important as
forced connections, but have to �lled anyway: otherwise the Bouzy algorithm
will count them as territory (in a way, they are not so di�erent from forced
connections). Each open ko is �lled with a stone of the same colour, unless
the resulting string remains in atari; should that occur, a forced connection
saving the string is searched and, if not found, the ko is assigned to the
opposite colour, and �lled accordingly.

The whole task of looking for forced connections and kos is probably the
most complicated part of the algorithm (and many further small details have
been left out); not surprisingly, professor Park settled for a less accurate,
indeed much simpler algorithm, still able to score most games reasonably
well. But this task, although complicated and di�cult to implement, is
mandatory if we want the static method's outcome to match the dynamic's,
as this last is obviously able to �gure out, move after move, and subsequently
handle, all the issues that take a static method all sort of calculations to be
identi�ed and correctly treated.

Once identi�ed all connections, both forced and kos, the position after
the removal of dead strings is restored and the strings in seki are reinstated;
the Bouzy algorithm computes the score, then all connection points (forced
and kos) are subtracted from respective territories/areas. Also, if handicap
stones are present and scoring rules are chinese (area), their number must be
added to the white area. The resulting score is usually correct, as we'll see
in the last section.

4 Conclusion

The algorithm has been turned in a software routine capable of comput-
ing the score of a Go game after reconstructing the �nal position from



page 14

the SGF �le; this routine is embedded in VideoKifu5 and is called when
the game analysis ends. The routine has been extensively tested on the
so-called �Dyer's suite� (downloadable at http://www.real-me.net/ddyer/
go/scored-games.zip), which includes 624 games played between japanese
professionals. Dave Dyer, now retired, is an engineer specialised in graphical
plugins and image manipulation; years ago he tried to write a software capa-
ble of playing Go games, but only completed the scoring routine, and tested
it on a collection of 2000 games, of which 624 (the �Dyer's suite�) have an
exact score. This is probably the biggest collection of games suitable for such
testing, even bigger than the one employed by Park in 20076. Dyer's rou-
tine's results are not much detailed, nor his software is available for further
testing. He claims that he �can calculate the correct score for about 75%. In

the other 25%, the most common errors are to be o� by 1 point due to a �ne

point of endgame play. Occasionally, it turns out that territories aren't really

�nal, just determined in the eyes of the pros. Gross errors, where tsumego is

judged incorrectly and a wildly inaccurate score is calculated, are very rare.�.
We must remember that Dyer's method is dynamic, although many static
ideas are present (for example, a �problem solver� determines which strings
are alive and which ones are dead), so a very good result, such as the one he
claims, is to be expected (but there is the drawback: the method it's very
slow, taking several minutes on each game).

When our algorithm is tested on Dyer's suite, the results are as follows:

- 337 games (54%) are scored correctly;

- 223 games (36%) are wrong by 1 point;

- 50 games (8%) are wrong by 2 points;

- 7 games (1%) are wrong by 3 points;

- 7 games (1%) are wrong by 4 or more points.

The mean error is 0.83 points: not only this outcome is a huge improve-
ment over Park's results, but it looks so good that it might be possible to
employ the algorithm for professional purposes, such as publicly scoring im-
portant games and analyse their subtleties. The reason behind the residual
error is hinted in Dyer's comment �a �ne point of endgame play... territories

aren't �nal, just determined in the eyes of the pros�, and an example will
clarify the matter. Figure 16 shows the �nal position of one of Dyer's games,
whose o�cial score is B+4. According to the algorithm the score should be
B+3 instead: that's because the position in the corner, as depicted in the
�gure, is not that clear, although the two black strings 1/2 are alive and the
two white strings 3/4 are dead (string (4) is even in atari). But, should ever

5 http://www.oipaz.net/VideoKifu.html
6 Out of curiosity, Dyer too wrote his routine in 2007.

http://www.real-me.net/ddyer/go/scored-games.zip
http://www.real-me.net/ddyer/go/scored-games.zip
http://www.oipaz.net/VideoKifu.html


page 15

dame D be �lled, the two black strings will die instead: so two forced black
connections are needed, both in B1 and, in order to avoid a snap-back, in
B2. However, �lling dame D would in turn endanger the white stones in the
corner, so White too has to force connect in W1 and W2. The algorithm
correctly understands the situation, thus subtracting two points from both
territories, settling for a �nal score of B+3. So why did the players agree for
B+4? Because they simpli�ed matters, deeming alive the two black strings
without dealing with all the forced connections except for the one in W2,
too manifest to be ignored. So in the end this point alone was subtracted
from white territory, setting the score at B+4. Who is right? The algorithm

Figure 16: A situation the
players evaluated di�erently.

Figure 17: A situation the algorithm fails
to evaluate correctly.

or the players? An argument can be made for both cases; Dyer, as it's now
clear, thought the players were not taking too seriously the matter of forced
connections, and from time to time settled for a questionable score as long
as the winner stayed the same (this case being one of many). What matters
here is that this is the main cause of the aforementioned mean error of 0.83
points, and it's something that cannot be avoided, as it depends on a di�erent
judgement of the position by the players, not on some �aws in the algorithm.
There are only 5 games, out of 624, where the algorithm is really wrong:
the reasons vary, but the most common is the presence of �multistring seki�.
What they are is shown in �gure 17: black strings 1/2/3, along with white
string (4), share 3 inner liberties (L) and � should the outer dame (D) be
�lled � become part of an enormous seki. As this seki involves more than
the usual two strings, it is di�cult to identify even for the human player, and
it would become exceedingly complicated for the algorithm to detect (and
the algorithm is already anything but simple); so, being an extremely rare
occurrence, it has not been handled. By the way, the technique the algorithm



page 16

employs at the moment for seki's identi�cation could be improved, and it's
likely that sooner or later this issue will be �xed7: in that case the mean
error will decrease at 0.71 points, a value di�cult to achieve even by means
of the dynamic approach. Also, as pointed at the beginning, the algorithm
is fast (3 to 4 seconds for game8) and greatly helps to understand the basic
patterns of the game � what determines life and death, when connections
are mandatory and so on.

References

[Bou03] Bruno Bouzy. Mathematical morphology applied to computer
go. Internationatl Journal of Pattern Recognition and Arti�-

cial Intelligence, 17(2):257�268, March 2003. http://www.mi.

parisdescartes.fr/~bouzy/publications/Bouzy-IJPRAI.pdf

[Dye07] Dave Dyer. Scoring Completed Games, November 2007. http:

//www.real-me.net/ddyer/go/scoring-games.html

[NKM05] Xiaozhen Niu, Akihiro Kishimoto, and Martin Mueller. Recogniz-
ing Seki in Computer Go. Lectures Notes in Computer Science,
4250:88�103, 2005.

[Par07] Hyun-Soo Park. Score-Counting Algorithm for Computer Go.
Journal of the Institute of Electronics Engineers of Korea,
44(1):49�55, December 2007.

[PK05] Hyun-Soo Park and Kyung-Woo Kang. Evaluation of Strings in
Computer Go Using Articulation Points Check and Seki Judgment.
Lecture Notes on Arti�cial Intelligence, pages 197�206, 2005.

[PLK03] Hyun-Soo Park, Doo Han Lee, and Hang Joon Kim. Static Analy-
sis of String Stability and Group Territory in Computer Go. Jour-
nal of the Institute of Electronics Engineers of Korea, 40(6):392�
402, November 2003.

7 Although it's a very di�cult issue, as shown in [NKM05]
8 On a PC equipped with an Intelr CoreTM i5-2500 CPU @ 3.30GHz.

http://www.mi.parisdescartes.fr/~bouzy/publications/Bouzy-IJPRAI.pdf
http://www.mi.parisdescartes.fr/~bouzy/publications/Bouzy-IJPRAI.pdf
http://www.real-me.net/ddyer/go/scoring-games.html
http://www.real-me.net/ddyer/go/scoring-games.html

	Front matter
	Abstract
	Introduction
	Limits of Park's approach
	The new scoring algorithm
	Conclusion
	References

