
Trends and Observations in Computer Go
Gian-Carlo Pascutto, gcp@sjeng.org

Up until 2006, computer Go had progressed at a snail's pace, with the best programs being as 
strong as the average amateur. However, the discovery of a new Monte Carlo Tree Search 
method set things in motion,
and they would not slow down.

Advances  in  computer  vision,  neural  networks,  graphics  hardware,  reinforcement  and 
supervised  learning,  pattern  scoring  and  tree  search  have  propelled  computer  go  players 
convincingly past humans in the 12 years that followed. The time has come where everyone 
with a personal computer can potentially have a professional lever sparring opponent and 
analysis partner. We will discuss what is still missing to make the picture complete.

The initial  breakthrough was made by the introduction of  an efficient  Monte Carlo  Tree 
Search method applicable to Go. For the first time, the strength of a Go program scaled with 
hardware. The ad hoc basis of the algorithm was quickly improved by linking the discovery 
with existing research on ... playing slot machines. In some ways, humanity was doomed at 
that point: further, inevitable increases in the speed of hardware would continuously improve 
the strength of the machines. In 1989 Feng-hsiung Hsu drew a graph plotting the speed vs 
strength of existing chess computers, and made a prediction about what would be needed to 
beat the world champion. He delivered with Deep Blue 7 years later. In 2006 the distance to 
human Go champions was big enough that no-one would draw such a plot, but the end result 
has turned out to be no different.

A second breakthrough was made by the re-introduction of neural networks into Go. Once a 
poster child of AI in the 1980's, but later discarded, advances such as convolutional networks, 
solutions to  vanishing gradient  problem, residual  stacks and optimizations such as  Batch 
Normalization  made  them  powerful  imagine  recognition  techniques,  and  advances  in 
graphics hardware quickly made very large networks practical. Multiple teams quickly found 
out that their performance was just as good in Go, and a second jump in performance was 
achieved, propelling us more quickly to the end goal.

The  last  jump came from improved  reinforcement  learning  methods.  With  the  programs 
within  striking distance,  a  last  step needed to  be made for  the  apprentice  to  surpass  the 
master. By finding improved methods to let the programs improve from their own mistakes, 
computers finally surpassed the best humans.

Being at this point now, it is time to make the results usable to Go players. Leela Zero has 
replicated  the  above  research  in  such  a  way  that  the  needed  software  and  networks  are 
available to anyone. What do we need for good performance of a Go program, how do we 
make use of it, what have we learned so far, and what parts are still missing or could be 
improved?


