
VideoKifu, or the automatic

transcription of a Go game.

Andrea Carta∗

http://www.micini.net/

Mario Corsolini∗

http://www.oipaz.net/

Abstract

In two previous papers [CC15, CC16] we described the techniques
we employed for reconstructing the whole move sequence of a Go
game. That task was at �rst accomplished by means of a series of pho-
tographs, manually shot, as explained during the scienti�c conference
held within the LIX European Go Congress (Liberec, CZ). The pho-
tographs were subsequently replaced by a possibly unattended video
live stream (provided by webcams, videocameras, smartphones and so
on) or, were the live stream not available, by means of a pre-recorded
video of the game itself, on condition that the goban and the stones
were clearly visible more often than not.

As we hinted in the latter paper, in the last two years we have im-
proved both the algorithms employed for reconstructing the grid and
detecting the stones, making extensive usage of the multicore capa-
bilities o�ered by modern CPUs. Those capabilities prompted us to
develop some asynchronous routines, capable of double-checking the
position of the grid and the number and colour of any stone previ-
ously detected, in order to get rid of minor errors possibly occurred
during the main analysis, and that may pass undetected especially in
the course of an unattended live streaming. Those routines will be
described in details, as they address some problems that are of general
interest when reconstructing the move sequence, for example what to
do when large movements of the whole goban occur (deliberate or not)
and how to deal with captures of dead stones � that could be wrongly
detected and recorded as �fresh� moves if not promptly removed.

∗ Both authors contributed equally.

http://www.micini.net/
http://www.oipaz.net/

page 2 VideoKifu

1 Introduction

Beyond the graphical user interface, VideoKifu1 mainly consists of two con-
tinuously interacting engines: the grid tracking routines and the stone de-
tection routines. Both engines are in turn split in two parts: a main one
running as fast as possible in real time and a slower yet more accurate one
running as a separate asynchronous thread.

When the recording of a game proceeds smoothly there is no need for
the separate supervising routines, nevertheless during several real life exper-
iments we realised that unforeseen events do occur, quite frequently indeed,
sometimes causing situations that require a manual intervention to be solved.
We added the supervising routines in order to minimise such manual inter-
ventions to a minimum (hopefully none). They slowly but constantly checks
for inconsistencies between the location of the grid computed by the program
and the actual one in the frames, as well as between the recognized stones
and the actual ones. When a di�erence is detected for a pre�xed number of
consecutive frames, a warning is issued to the main routines that may use
the info to amend the situation.

The program's structure is depicted in �gure 1. Initialisations2 and out-
puts3 excepted, these are its main tasks:

• Initial grid location.
Based on linear Hough transform, the details of the algorithm are ex-
pounded in [CC16, �2.1]. Since then it received only minor improve-
ments, mostly regarding how to counter shifts of the grid caused by a
border of the goban wrongly recognised as a grid line.

• Frame acquisition and �ltering.
Mostly carried out by means of OpenCV4 functions.

• Grid tracking.
This task is implemented by three di�erent routines. A fast one based
on the MatchTemplate function of OpenCV, always running as a main
process and described in [CC16, �2.2]. Since it is able to track only
small movements of the grid, there are two more powerful routines
running in separate threads whose purpose is to track large movements:
the former is the same used for the initial grid location, usable in the
�rst part of a game (when grid lines are mostly visible); the latter is a

1 http://www.oipaz.net/VideoKifu.html
2 Such as selecting video source, choosing rules and entering other info about the game.
3 Such as SGF �le, kifu, log �les and HTML pages.
4 http://opencv.org/

http://www.oipaz.net/VideoKifu.html
http://opencv.org/

Andrea Carta & Mario Corsolini page 3

Figure 1: �owchart of VideoKifu's operation.

page 4 VideoKifu

routine based on the circular Hough transform, described in section 2,
usable in the last part of a game (when lots of stones are visible).

• Stones detection.
This task too is split in two parts: one always running as a main process,
whose basic functioning is described in [CC15, �3], while various speci�c
issues are addressed in [CC16, �3] (modi�cations needed to deal with
a video stream instead of a series of photographs) and in section 4
(where the tricky problem of dealing with captures is tackled). The
second part of the task is the one running as a separate asynchronous
thread; it is a boosted version of the main routine and it is described
in section 3.

2 Improving grid's tracking

In [CC16, �2.1] we described the algorithm used at the beginning of an anal-
ysis to identify the initial location of the goban (or, to be more precise, of
the grid of lines painted on it), based on a double application of the linear
Hough transform. As expected, experiments in the �eld con�rmed that such
algorithm maintains a good rate of success even when many stones have been
played, concealing large parts of the grid: it generally succeeds provided that
at least half of the points on the goban are empty and visible. Furthermore, it
executes fast enough5 to be used as a superintending separate task to double
check the accuracy of the recognised grid.

That check is necessary if we want to permit unattended analysis, as the
automatic micro-recalibration (described in [CC16, �2.2]) is able to follow
movements of the grid not larger than about one stone's radius between
consecutive frames. That is enough to manage vibrations and light bumps
on the goban or on the table or on the camera, but it would be useless
in case of a strong bump or any other kind of major disturbance a�ecting
the framing. Furthermore, another issue arose during games with plenty of
moves: in order to counteract unavoidable long-term drift phenomena, we
evaluate a linear regression of the pixels on the external line of the grid; that
works well if a large part of the external lines are visible, but it could fail
when those lines are covered by lots of stones. In that case the algorithm
strongly relies on the small parts of the lines left free, so it could get confused
by player's hands or arms or even heads, if their edges appear in the frame

5 About 0.3 seconds for a clean 1080p frame on our usual (not so new) personal com-
puter of reference, equipped with an Intelr CoreTM i7-4770 CPU @ 3.40GHz and inte-
grated HD Graphics 4600.

Andrea Carta & Mario Corsolini page 5

in front of the points the program believes to be empty (and thus usable for
evaluating the aforesaid linear regression). In those situations even the edges
of a stone not yet recognized may alter the outcome of the recalibration.

So we modi�ed the linear Hough routine in order to use it for asyn-
chronous checks as well. It is not super-fast, yet it is quite usable: it usu-
ally completes its computation while the main routines analyse about three
frames. To avoid accidental errors a new grid is not accepted unless it re-
mains stable for at least two or three consecutive frames (depending on cir-
cumstances and on the amount of points covered by stones). So, should the
framing really be a�ected by some disturbance, the adjustment is usually
computed within nearly two seconds. In most situation this is not a prob-
lem, even when the game has a fast pace, as the program is able to detect
multiple stones in a single frame, once the correct location of the grid has
been restored; otherwise we rely on the techniques expounded in section 3.

The real hindrance is that unfortunately it is not possible to use the linear
Hough routine to check the correctness of the grid for an entire game: when
the grid lines are mostly concealed it simply fails, so it is not usable in the
�nal part of medium to long games (the so called yose). This is particularly
harmful as the �nal moments of a Go game are usually the most agitated ones,
with lots of moves played in a fast pace and with both players paying more
attention to the clock than to the table or the tripod holding the camera:
thus an accuracy check of the grid is particularly needed.

It is theoretically possible to use circular or elliptical Hough transform
in order to reconstruct the location of the grid starting from the position
of the known stones, either in the original frame (in which stones appear
elliptical due to perspective e�ects) or in a recti�ed one (in which they are
almost circular, provided the perspective has not substantially changed from
the last correct grid). The circular Hough transform usually requires the
same amount of time to be calculated as the linear one, while the elliptical
transform is quite slower, especially because it could not be always possible to
predict the eccentricity of the ellipses to be searched. That happens because
the camera recording the game is usually put on the side of the goban, so the
farthest stones are seen from a lower angle of view: in such a situation the
shape that stones project onto the camera plane is deeply in�uenced by their
thickness, which may substantially vary among di�erent stone sets (moreover
they may even be �at on one side). Even the shape projected in the recti�ed
plane may vary, but in this case at least a good portion of the outline of
the stones is almost circular, allowing the circular Hough transform to detect
them, provided the search parameters are not too strict.

Circular transform is thus preferable and we exploited it to devise a new
algorithm able to pinpoint the location of the grid in yose.

page 6 VideoKifu

2.1 Use of circular Hough transform

First of all we create a small recti�ed image of the part in the new frame
covered by the last known grid. The reason it has to be small6 can be seen
in �gure 2, showing one of the �nal frames of the Metta-Martinelli game in
Bologna Tournament 2018. Even with a good (high) angle of view, rectifying
an angled image like the one depicted on the left of the �gure means to stretch
its upper side more than its lower side. Stretching too much would blur the
borders of the stones, making them invisible to the edge detector (Canny
�lter, in this case).

Figure 2: the �nal position of Carlo Metta [4d] vs. Alessandro Martinelli [1d],
Bologna Tournament 2018, IV round. Original frame (1440 × 1080 pixels)
on the left, �ltered recti�cation (500× 500 pixels) on the right.

Circular Hough transform is then applied to the recti�ed image. Pro-
jected stones should maintain an almost circular shape even when the goban
has been moved among frames, provided the perspective does not change too
much (a condition easily met as the goban usually lies on a table: its inciden-
tal movements should be coplanar � and rigid). In spite of that, usually the
circles found by the Hough transform are not always the same, even between
contiguous frames, and they are not always exactly located in the same spot.
The reason may vary: stones' shadows on the goban, re�ections (especially
on black stones), stones too tightly packed with overlapping borders, changes
in light conditions. . . they all contribute to alter the output of the circular
Hough transform. Besides, Canny �lter renders white stones slightly bigger
than black ones, adding another element of uncertainty in the transform.
For all those reasons, we deem as real stones only the circles that appear in

6 Compared to the original frames captured from the camera.

Andrea Carta & Mario Corsolini page 7

almost the same spot for at least two consecutive frames. In �gure 3 red dots
represent the centres of newly recognised circles, green dots are those recog-
nised for at least two consecutive frames (positional tolerance is the radius
of each dot); as shown, in that frame a few stones were not recognised at all.

Another step that must be taken is the one depicted in �gure 4: the slopes
of all the segments joining adjacent con�rmed stones are evaluated and their
mean value is used to amend incidental rotations of the goban (�gure 4, for
instance, needs to be rotated by 0.4◦ clockwise).

Figure 3: centres of the circles found
in �gure 2 (right).

Figure 4: segments joining adjacent
stones.

Once the centres are correctly rotated, their best match with known
stones is searched for. Movements of up to a third of goban's side between
frames are managed if at least about a half of the stones7 are in common
between the previous known position of the grid and the actual one in the
frame under analysis.

Once the pairing has been established between the centres of each recog-
nised circle and the coordinates of actual known stones, it is possible to
evaluate where the corners of the grid should be in the recti�ed image (even
if they are external) and to back-project them into the original frame. Accu-
racy is of paramount importance: as discussed, the recti�ed image is smaller
than the original frame, so, for instance, in case of a 1080p video source, an
error of one pixel in the former is back-projected into an error of about two
pixels in the latter.

7 To be more precise, the minimum common area could be as low as 4
9 of the goban.

page 8 VideoKifu

Experiments showed that using all the centres to compute the best �t-
ting back-projecting matrix leads to inaccurate results, while selecting four
centres produces better and stables ones. Anyway, as the stones are often
misplaced and their locations are not exactly found by the circular Hough
transform (�gure 3 is a piece of evidence), using only four centres is also
a source of potential inaccuracy, so we evaluate the weighted mean8 of the
back-projection matrix based on the four centres that enclose the maximum
area and up to seven other matrices based on as many other quadrilaterals,
whose vertices are randomly chosen from the external centres9 (as shown in
�gure 5).

The resulting location of the grid is usually quite accurate, as shown in
�gure 6, with accuracy increasing with the number of stones placed on the
goban. Actually, so accurate that we chose to switch from the algorithm
based on linear Hough transform to this one well before the linear algorithm
commences to fail. The computation is also very fast, as the transform is
applied to an image much smaller10 than the original frames: it usually runs
in 30 ms or less.

Figure 5: external centres and
quadrilateral of maximum area.

Figure 6: back-projection (in green) of the
evaluated grid.

3 Detecting errors in the placement of stones

In [CC15, �3.3.3] we described the algorithm used for detecting the stones:
its main idea was to compare the features (luminance, chrominance and so

8 Weights are the normalised areas of each quadrilateral.
9 That is the vertices of the convex hull of all the centres.
10 A black and white image of 0.25 Mpixels at most.

Andrea Carta & Mario Corsolini page 9

on) of the stones we were looking for with the ones' already detected on the
goban. Similar features (computed by means of an elaborate function) meant
the point under scrutiny was likely covered by a stone, and vice versa. This
algorithm is almost �awless and insensitive to typical disturbance (hands
passing over the goban and such), but under extreme circumstances may
fail. For example, stones completely out of centre are di�cult to detect,
and if the light is pale (such as inside a room when the sky is cloudy) the
goban looks grey and the chrominance feature becomes useless. This, in turn,
means the function is weakened and becomes more sensible to other kind of
errors (stones out of centre, disturbance, strong re�ections): this does not
prevent the stones to be detected but several seconds may pass before that,11

and in many circumstances (joseki and yose, for example) other stones may
be played in the while; if too many undetected stones are on the goban the
algorithm may fail and the analysis cannot continue.

To prevent such an unpleasant occurrence, a new algorithm has been
implemented: constantly running in a separate asynchronous process it scans
the whole goban looking for stones, closely examining all promising points,
and not only the ones that strongly resemble a stone; this way it is possible
to detect �dubious� stones that had been discarded by the main algorithm
for some of the aforementioned reasons and insert them, albeit lately, in the
move list (a warning will advice the user to check the order). If the pace is not
too fast, the stone may likely be detected before any other has been played,
and will be inserted in the correct place; but even if that were not the case
the analysis could restart without further errors (for example, when a stone
is missed the next ones are detected in the wrong order, as the algorithm
expects the wrong colour), something that otherwise could never happen.
The asynchronous algorithm is so powerful that it is capable to detect even
dozens of missing stones in a matter of seconds, bringing back to life an
analysis that would never have been restarted. It becomes even possible to
start an analysis when the game has already begun, something we thought
unsuitable before, partly because we weren't able to detect more than four
stones at the same time, partly because such moves cannot be detected in
the correct order, a situation that takes the user some time to be �xed.

Of course the algorithm should never fail because, should a not-existent
stone be detected, this would lead to disaster; that's why the presence of
a stone is double and tripled checked, in a much more accurate way than
the main algorithm's. Five frames instead of the usual three are needed
to deem the stone as real; and each time both the usual function and the
Hough transform are employed in order to check that. This means that the

11 In most cases it takes three frames to detect a stone, that is about half to one second.

page 10 VideoKifu

algorithm is slow, and cannot detect stones as fast as the main one; but,
given the fact they are not detected in the correct order and must be checked
in any case after the game, the issue does not matter.

Also, the algorithm scans for false positives, trying to detect and eliminate
them; but in this case the matter is much more delicate: there could be
many reasons why a stone is falsely detected (one of the most frequent will
be explained in the next section) and usually it has been played some time
before, so deleting it could worse matters. In such cases the stone is not
deleted but a warning is issued; the only case in which the stone is deleted
is when it had been the last move played, as in this case, and this case only,
no damage may be done because of its deletion (an example of such a case
will also be discussed in the next section).

4 Dealing with captures

In [CC16, �3.3] we described what looked like the best way to handle the
killing of several stones at once. That way proved to be inadequate, for
reasons we will now explain, while describing exhaustively the problem and
its solution.

When a capture occurs, VideoKifu must detect not only the killing stone,
but also the ones removed from the goban, and update its image accordingly.
If only a stone has been captured, the task is trivial. But the situation
drastically changes when several ones are captured at once. In such a case,
there are two possible ways to proceed:

• when the killing stone is detected, all the captured stones are immedi-
ately deleted from goban's image and VideoKifu begins waiting for the
next move;

• when the killing stone is detected, VideoKifu waits for all the captured
stones to be removed, and only after that begins waiting for the next
move.

Both ways are �awed. In the �rst way, if the captured stones are not
removed at once VideoKifu could � and likely will � detect these stones
and believe they have just been put on the goban: because their colour is now
expected to move, one of them will be mistaken for the next stone played and,
unless manually deleted, its presence will corrupt the whole move list, up to
the end of the game. That's why we thought the second way was the best one,
and wrote so in [CC16, �3.3], but eventually realised that was not true. It
happened that during a game White captured three black stones, and Black

Andrea Carta & Mario Corsolini page 11

played at once a snap-back move, killing in turn one white stone. The snap-
back move was played before VideoKifu had realized some black stones were
missing,12 and as one of them had reappeared, the program never stopped
waiting for it to eventually disappear, thus never restarting the analysis.

It is quite obvious that such an occurrence must be avoided at all costs,
so we went back to the �rst way to handle captures, trying to �nd a way that
could prevent stones not immediately removed to be mistaken for new moves.
The asynchronous process was crucial in accomplishing that, because it can
detect false positives, that are empty points on the goban mistaken for stones;
also, if the false positive coincides with the move last played it is deleted
at once, and this is exactly what we needed. It is easy to understand the
reason: as we explained before, when the captured stones are not immediately
removed from the goban one of them will possibly be detected, mistaken for
the new move and added to the move list; but once eventually removed it
will become a false positive and the asynchronous process will delete it from
the move list, as indeed it's the last move played. If, in the same situation, a
snap-back is played � as we saw happen � the stone will be detected all the
same, but not being removed any time soon the asynchronous process will
do nothing and the move will correctly remain in the move list. Kos, when
stones are repeatedly played and removed, are not a concern, as only one
stone is involved and cannot be put again on the goban before other moves
are played.

The whole process can be summarized as follows:

• when the killing stone is detected, all the captured stones are removed
from the program's goban's image at once and VideoKifu begins waiting
for the next move;

• if the stones are not removed from the real goban at once VideoKifu will
again detect one of them, wrongly assuming it is the expected move;

• when this stone is eventually removed (something that must happen
before any other move is played) the asynchronous process will ac-
knowledge it as a false positive and will delete it from the move list,
restoring the correct situation;

• should the stone be played again, this time for real, before being deleted
from the move list, the asynchronous process will do nothing;

• should a di�erent move be played before VideoKifu could delete the
wrong one from the move list, this time the main routine will see that

12 In [CC16, �3.3] it was pointed out that VideoKifu's purpose is detecting stones, not
the opposite: detecting empty points instead is di�cult and requires some time.

page 12 VideoKifu

the stone last played has disappeared and will replace the last move
with the real one.

Captures of many stones at once are not common, but occur in most
games nonetheless; the process we have just described should hopefully han-
dle all kind of situations that could arise from such an event.

5 Conclusion

At the moment � July 2018 � we have 18 games available, one of them
recorded by two di�erent cameras (a DSLR in video mode and a tablet).
The outcomes of the analyses are shown in table 1 (in the �Frames� column
the upper numbers indicate the frames saved in the video, the lower ones are
the actual ones processed by VideoKifu; in live analyses the program saves
just the frames actually analysed, and that's why the two real/processed
values are identical).

It was only at Pisa 201813 that we stumbled upon a serious problem:
there was no room for a tabletop tripod and we found out our Logitech C615
webcam cannot correctly focus past one meter. It was therefore di�cult to
detect and track the grid (many of its lines were blurred) and also many times
the stones were detected later than usual. In the end we could only analyse
the Spallanzani-Piccinno and the Piccinno-Sanzone games without manual
interventions (applying an appropriate �UnSharp Mask� �ltering), because
they were played under a good light, while the two ones played by Francesco
Potortì, that were more blurred and played under a worse light, require too
many manual interventions before reaching the end. We stumbled upon a
similar problem at Pisa 2016,14 when we recorded two games at 480p by
means of a smartphone, and the low resolution, paired with the small screen,
prevented us to correctly focus the goban; this makes the grid di�cult to
detect (USM �lter helps) but, once detected, no further problems occur and
the analysis never require manual intervention. A peculiar case is the game
between Niccolò Sgaravatti and Carlo Metta, played at Bologna 2018:15 it
was recorded by means of an inadequate, rented notebook, equipped with an
old two (instead of the required four) core CPU, and although no problems
were encountered, the analysis was so slow that a serious lag soon manifested
and, once in yose, grew up to two minutes; therefore too many moves were
detected at the same time, of course in random order, and eventually we

13 http://www.europeangodatabase.eu/EGD/Tournament_Card.php?&key=T180310D
14 http://www.europeangodatabase.eu/EGD/Tournament_Card.php?&key=T161022B
15 http://www.europeangodatabase.eu/EGD/Tournament_Card.php?&key=T180609B

http://www.europeangodatabase.eu/EGD/Tournament_Card.php?&key=T180310D
http://www.europeangodatabase.eu/EGD/Tournament_Card.php?&key=T161022B
http://www.europeangodatabase.eu/EGD/Tournament_Card.php?&key=T180609B

Andrea Carta & Mario Corsolini page 13

#
Game:

Moves
Resolution Frames Manual

place (notes) device re/pr interventions

1.
Carta-Corsolini:

96
640×480 24,844

none
friendly game (13×13) DSLR 6,211

2.
Carta-Corsolini:

96
1920×1080 29,795

none
friendly game (13×13) tablet 5,959

3.
Pignelli-Albano:

233
1440×1080 268,017

none
Pisa 2015 tablet 67,004

4.
Pantalone-Balzaretti:

143
1920×1080

16,740 none
Pisa 2016 (live) webcam

5.
De Lazzari-Greenberg:

231
640×480 128,093

none
Pisa 2016 smartphone 24,336

6.
Ragno-Gioia:

190
640×480 66,947

none
Pisa 2016 smartphone 22,316

7.
Telesca-Metta:

260
1920×1080 78,274

none
Pisa 2016 tablet 15,654

8.
Martinelli-van den

262
1280×720 100,469

none
Busken: Roma 2016 smartphone 33,490

9.
Potortì-De Lazzari:

242
1920×1080

5,434
many (bad fo-

Pisa 2018 (live) webcam cus and light)

10.
Nunziati-Potortì:

199
1600×1080 116,736 many (bad fo-

Pisa 2018 webcam 23,347 cus and light)

11.
Piccinno-Sanzone:

174
1600×1080 154,341 none (with

Pisa 2018 webcam 30,868 USM �ltering)

12.
Spallanzani-Piccinno:

271
1920×1080

16,164
none (with

Pisa 2018 (live) webcam USM �ltering)

13.
Mieli-Fanti:

139
960×720

16,071 none
Roma 2018 (live) smartphone

14.
Ragno-Fanti:

113
960×720

20,756 none
Roma 2018 (live) smartphone

15.
Martinelli-Forte:

240
1920×1080 166,290

none
Roma 2018 tablet 33,258

16.
Martinelli-Parton:

252
1920×1080 79,497

none
Roma 2018 tablet 26,499

17.
Hueber-Fanti:

207
960×720

24,502
none in the

Bologna 2018 (live) smartphone program

18.
Metta-Sgaravatti:

128
1440×1080

1,637 none
Bologna 2018 (live) smartphone

19.
Metta-Martinelli:

166
1440×1080

27,347 none
Bologna 2018 (live) smartphone

Table 1: analysed videos, available online at VideoKifu's homepage.

page 14 VideoKifu

decided to stop the recording after 128 moves (each one correctly detected),
believing the live analysis had become futile by then. Another peculiar case
was the Hueber-Fanti game of the same tournament: it was necessary to
slightly move the bowl of white stones as it was in such a position that one
stone inside the bowl appeared in the frames as if it was over the goban.

All the other games present no problems at all: the grid is detected at
once, correctly tracked throughout the game, and all the stones are detected
in the correct order (with a few exceptions when, usually in yose, three or
more stones are detected at the same time, something the user is always
warned of). Also, when the analysis were live, each one of them reached the
end of the game without problems, except for the aforementioned ones at
Pisa 2018.

Of course, further improvements are still desirable; for example we are
looking for ways to improve the frames' pre-�ltering in order to reduce the
possible blurring and the e�ect of bad light (we found out that arti�cial light
is preferable to natural one, as it enhances the colour's di�erence between
the white/black stones and the yellowish/ochre goban). We are also trying
to further improve the grid tracking routine, which is bound to the precision
of the HoughLines/HoughCircles OpenCV functions, which in turn is not
always reliable as it should be expected.

At the moment, if the hardware employed is good (a four core CPU is
mandatory, as well as good quality cameras, with manual focus and no dis-
tortions, something that unfortunately rules out most webcams), VideoKifu
v1.1.0 should be able to correctly analyse any game, both live and deferred,
without errors or manual interventions.

References

[CC15] Andrea Carta and Mario Corsolini. A New Approach to an Old
Problem: the Reconstruction of a Go Game through a Series of Pho-
tographs. In Proceedings of the Second International Go Game Sci-

ence Conference, pages 7�18. European Go Congress (Liberec, CZ),
MatfyzPress Publishing House (Charles University, Prague), July
2015. ISBN 978-80-7378-299-3. https://arxiv.org/abs/1508.

03269

[CC16] Andrea Carta and Mario Corsolini. Moving to VideoKifu: the last
steps toward a fully automatic record-keeping of a Go game. Journal
of Baduk Studies, 13(2):45�63, December 2016. https://arxiv.

org/abs/1701.05419

https://arxiv.org/abs/1508.03269
https://arxiv.org/abs/1508.03269
https://arxiv.org/abs/1701.05419
https://arxiv.org/abs/1701.05419

	Front matter
	Abstract
	Introduction
	Improving grid's tracking
	Use of circular Hough transform

	Detecting errors in the placement of stones
	Dealing with captures
	Conclusion
	References

