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Abstract. In the near past, there have been many approaches to ‘implement’
constructive analysis, many of them with the use of functional programmig lan-
guages. In this paper we present a similar approach based on the iRRAM-package
which has been acknowledged as a fast package for exact real arithmetic in C++.

1 Introduction

Choosing the ‘right’ programming language for real arithmetic is not easy: There are
many arguments that speak for functional languages here, as a real number x can easily
be represented by sequences Φ : N → Q, and as functions f : R → R then cor-
respond to Ψ : (N → Q) → (N → Q); both structures can be easily expressed in
functional languages, see e.g. (Mül95; O’C05; BK08). However, in the past the usual
lazy evaluation in functional languages often lead to an abysmal performance of the
implementations. Today, performance is still the most important argument against func-
tional approaches. But parallel to improvements on functional programming itself, also
more and more experience from the object-oriented approaches is transferred into the
functional implementations. Additionally, exact real arithmetic based on functional pro-
gramming may now internally use imperative programming as well, e.g. in languages
like OCAML(BK08).

Object oriented languages like C++ make it easier to exploit all the possibilities of
current CPUs, simply because CPUs are working in an imperative way. In the end, the
optimal solution might be a library that incorporates the best parts of both progamming
schemes. Nevertheless, similar to the many existing programming languages, many fla-
vors of exact real arithmetic might survive. Software packages are always only an offer:
Their users might simply prefer imperative approaches over functional ones, or vice-
versa.

Furthermore, the imperative approaches are also improving in their expressiveness.
In this short paper, we want to address functional aspects that can be used in packages
like the iRRAM. We have the strong belief that even for the iRRAM, that has been
presented for the first time in 1996, still many further important improvements can
be implemented. A big question is where to make the cut between the elegance of
functional programming and the efficiency of imperative (or object-oriented) languages
in a mixed approach. In our opinion, the cut has to be done at a very high level; the
imperative approach should be followed as long as possible.
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Our main aim is an implementation that can be used for numerical computations
and that is competitive with ordinary arithmetic using double precision numbers with-
out any rigorous error control. So we work even below the level where usual questions
from computational complexity are considered. We believe that in this area, where bit
complexity is the issue, Turing machines are an appropriate model and differences be-
tween thinking in constructive and or in classical logic are not yet important.

The best fitting theoretical background to the implementation is TTE (Wei00). This
is reflected in many implementational details: We may use arbitrary representations
for R, as long as they are admissible; computability and complexity can be based on
Type-2-machines or oracle machines; continuity restrictions can be weakened using
multi-valued functions; I/O operations can model infinite computations with Type-2-
machines; metric spaces with dense subsets can be used, etc.

Main focus is on the area of low-precision computations, let us say up to about
1000 bits per number. Of course, in the cases where we need higher precision, the
implementation should provide this almost seamlessly. A further important aspect is that
we should be able to deal with billions of dependant operations. An illustrative example
is a naive implementation of the harmonic series (or rather an initial part thereof), where
e.g.

∑
n≤109 1/n can be computed (better: approximated) with double precision using

a simple loop in far less then 10 seconds today. If, for each of the 109 partial sums, we
would allocate an own object in an object-oriented language (in order to get arbitrary
precision later) and we would not release them again very soon, we would already
require a lot more main memory than standard computers provide today: Each object
takes about 50 bytes, so we would need around 50GB! Functional approaches might
suffer from the same problem, even if they are enhanced with object-oriented parts.

In the following we want to show that (basically) object-oriented implementations
are able to provide a lot of the expressiveness of (basically) functional implementations.
To do this, we extend the iRRAM package by a functional component. For a better un-
derstanding of this extension, we briefly present a few internals of the iRRAM package
that have been added since 2000, the date of the last publication on the development
of the iRRAM (Mül01). First versions of the functional approach presented here have
been developed in 2005; since the end of 2008 most of it is already part of the published
version of the iRRAM package.

2 Basic structure of the iRRAM

In order to understand the ideas behind the iRRAM, we should have a look at other
approaches to exact real arithmetic first.

A very natural view on real numbers is that they are (equivalence classes of) se-
quences of rational numbers, so computable real numbers can simply be implemented
as procedures in imperative languages. But the need for the implementation of real
functions, i.e. for computations with real numbers, implies that we need a datatype for
sequences and that we must be able to construct new sequences during a computation.
This can be achieved using functional extensions to an imperative language, e.g. like
FC++ used by (Bri06).
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Fig. 1. An ‘algebraic’ DAG and a DAG with a limit node

Another possibility is to use computation diagrams to describe the computations,
see e.g. (Lam07). These essentially are directed acyclic graphs, DAGs, labeled with
operator symbols. Suppose e.g. we compute xi+1 = 3.75 ·xi · (1−xi) iteratively start-
ing with x0 = 0.5. Then three steps S=0.5; X=3.75*S*(1-S); Y=3.75*X*(1-X);

Z=3.75*Y*(1-Y) of this iteration would lead to the first DAG in figure 2, shared be-
tween X, Y and Z.

The construction of such a DAG is a simple programming example in object-oriented
languages, but it is already quite memory intensive: Each node in such a DAG will eas-
ily occupy about 50 byte. So for current computers, the total number of DAG nodes
existing concurrently during a computation must be smaller than about 100 million.
This amount of nodes might already be reached if we just want to invert a matrix of di-
mension 500×500 using Gaussian elimination. The construction of DAGs can roughly
be compared to the ‘lazy evaluation’ used in functional languages; essentially it is just
a question of the programming language.

At a first look, DAGs seem to be quite restricted: They can only be constructed
from the small number of node types implemented by the programmer, i.e. they have
a rather algebraic structure. But special nodes in such a DAG may be used for limits
of sequences: Given an algorithm for a sequence F of functions (F : N × R → R for
simplicity), that converges with known speed to a limit f (e.g. |f(x)−F (n, x)| ≤ 2−n),
an assignment like Y=limit(F,X) would simply construct the second DAG in figure
2 for Y = limn→∞ F (n,X), i.e. for Y = f(X):

A very important property of DAGs is that they can be ‘evaluated’, i.e. there are
conversion operators to other datatypes (like decimal numbers with finite length). If
such a conversion leads to a countable set and is not a trivial constant function, then it
has to be either a partial function or, more important, a multivalued function. Usually
the conversions will have an additional parameter for the intended accuracy (like the
length of the resulting string). It is quite easy to see that with a combination of variably
long conversions of reals to decimal strings, (exact) conversions from decimal strings
to reals, and the limit operator, we are already able to compute all computable real
functions (in the sense of TTE (Wei00)). So the main issue is not the computational
power of the implementation, but efficiency and usability.



The efficient evaluation of a DAG is not a trivial task (see e.g. (Lam07)): Suppose
we want to get, with a certain accuracy, an approximation d to a number x represented
by a given DAG. One approach (A) for this is to try to compute the necessary precisions
for the operations top-down on the way to the leaves and then compute values from the
bottom up with the computed precisions. Unfortunately, this will very often lead to
gross overestimations of the necessary precisions and hence to bad efficiency.

The other possibility (B) is to try an iterative evaluation of the DAG from the leaves
to the root: Using interval arithmetic, we start with an initial guess for a suitable pre-
cision and eventually get a first approximating interval I containing x. If I is too large
for the wanted accuracy, we iteratively repeat the evaluation with higher precisions. The
efficiency of this approach is much better than one might expect: If the involved pre-
cisions grow exponentially from iteration to iteration, the computational complexity is
usually dominated by the last iteration.

Special care has to be devoted to multivalued functions that naturally arise dur-
ing computations with real numbers: Suppose that in the mid of a computation with
real numbers a multivalued function is called. Then there are two possibilities: (I) The
returned value might be from a countable set (like e.g. rounding to an integer or com-
puting a decimal approximation). In this uncomplicated case, the value simply might
influence the shape of DAGs in the further computation or become a leaf in a later
DAG again. In this way, the value is encoded into the DAG. The other possibility (II) is
that the returned value is from an uncountable set again (like taking the square root of
a complex number or like computing a lower real approximation to a left-computable
number): In this case, the multivalued function itself would have to be a node in the
DAG. As a consequence, in the iterative evaluation of the DAG, each iteration might
compute a different result. This could lead to a failure of the iterative evaluation. As
far as we know, this problem has not yet been considered at all for the DAG approach,
implementations like Reallib (Lam07) only consider single valued functions in the
nodes.

After these preparations, the structure of the iRRAM can now be explained very
easily: The iRRAM package takes the approach (B) to the extreme; its base is iterations
on intervals, but the DAGs are not constructed at all! Instead of the DAGs, just enough
data is saved to ensure that the whole computation can be redone with a higher preci-
sion, if necessary. This immediately cuts memory consumption to a very small amount:
It is almost as small as for a program using double precision numbers, just that multiple
precision numbers have to be used instead. This efficient way of operation had been
present in the iRRAM from the very beginning in 1996. The Realib in contrast, being
solely based on DAGs in the beginning, had to be enhanced with a mode copying the
iRRAM behavior in order to be applicable to larger sized problems at all.

It is also quite easy to see that the data to be saved from one iterative evaluation
to the next simply consists of all the outcomes of the used multivalued functions: So
dealing with multivalued functions in case (I) is now a bit more complicated: Different
answers on different iterations could now lead to inconsistent results. So when a com-
putation is repeated, the saved outcomes of the multivalued functions from the previous
iteration have to be ‘replayed’ (in their original order). This can be done using simple
linear lists that need only marginally more space than the values stored in them. So usu-



ally even a very frequent use of multivalued functions is handled with substantially less
memory in the iRRAM than in the DAG approach. For case (II), there exists a special
limit operator that has been introduced already in (Mül98).

In the following we briefly address important additions to the iRRAM since 2000.
Iterations: The basic concept of the iRRAM is the computation in iterations. When-

ever the current approximation is unable to continue because of the lack of precision, the
computation is repeated. In the version from 2000, this was still done using longjmp,
but has shortly after been replaced by exception handling. So in the iRRAM, exceptions
are the rule.

Additionally, the exception handling is able to promote information about the amount
of accuracy missing when an iteration is initiated. Using the fact that in applications al-
most all computed functions are locally Lipschitz-continuous, a heuristic is used to
estimate what precision will be appropriate in the next iteration. This can often reduce
the number of iterations to just two: The first, initial one that implicitly computes a
Lipschitz constant, and then the second one that gets the sufficiently precise result.

Input and Output: While in the older versions input and output used C-style (e.g.
printf), this has been changed to own versions of cin, cout, cerr and even of
file-I/O, that work correctly despite the iterative nature of the iRRAM.

Underlying Intervals: The iterative evaluation in the iRRAM is based on interval
arithmetic. Already in the first iRRAM version from 1996 (Mül96), simplified centered
intervals I were used: They are stored as a multiple precision floation point number d
as center, together with a fixed precision floating point number r as radius, i.e. I = {x :
d−r ≤ x ≤ d+r}. This is of advantage if the radius does not need to be as large and
precise as the center d, which is often the case if we attempt to compute functions on
single real numbers. But if d and r need a similar amount of memory, the traditional
representation using the endpoints l, u and with I = {x : l ≤ x ≤ u} is competitive.
This is true especially, if it is sufficient to use double precision numbers for l and u. So
in parallel to an extension in the Reallib package (Lam06), in 2004 intervals using
double precision numbers have been added also to the iRRAM. Operations on these
(quite restricted) intervals can be executed very fast, as the corresponding arithmetic is
built into the hardware. Their main use is in the initial iteration of iRRAM computations.
So if a computation is possible without necessity of more precise intervals, then it will
be amazingly fast, almost as fast as unverified arithmetic.

At lot of effort has been put into the optimization of this initial iteration:

– All operations have been implemented as inline functions, avoiding expensive
function calls.

– An object of type REAL is basically just a double precision interval plus a pointer to
a possible simplified centered interval. This structure is so small that constructing
an object of this type during the evaluation of expressions does not need to call
functions, especially malloc will not be called.

– Interval arithmetic needs a proper outward rounding of the borders: l must be
rounded to −∞, while u must be rounded to∞. As switching the rounding mode
for double precision numbers in current CPUs is a quite expensive operation, the
right border is inverted: The interval [l, u] is stored as the pair (l,−u), such that the
rounding mode does not have to be changed during a computation.



– In contrast to Reallib, where switching between double precision intervals and
simplified centered intervals is done essentially at compile time via templates
in C++, the iRRAM uses a (slightly slower but dynamic) approach with a check
whether a pointer is NULL. This easily allows a mixture of both types of intervals
during one (usually the first) iteration.

– To utilize the CPUs further, the computation with double precision intervals is done
with the SSE2 extensions of (Intel or AMD) CPUs with a 64bit architecture. This
allows to compute the left and right border in parallel. Unfortunately, the gcc com-
piler is still erroneous using the SSE2 extensions: On 32-bit-machines, the data is
not always properly assigned to a 16-byte-boundary on the stack, leading to seg-
mentation faults. This is announced to be changed from GCC version 4.4 onwards,
so soon also on 32-bit-machines the iRRAM will benefit from SSE2.

As a benchmark, a naive computation of the harmonic sequence is usefull: If we com-
pute

∑n
i=1

1
i using a loop, i.e. x=0; for (i=1;i<=n;i++) x=x+REAL(1)/i

(ignoring better ways to compute this value), we get the following results for n = 109:

– Using the DAG-version of the Reallib, already n = 107 needs about 1.7GB of
main memory just to construct the final DAG. So clearly the value for n = 109

would be impossible to be computed at all.
– Using the iRRAM, so avoiding DAGs at all, 5 leading decimals of the sum for
n = 109 can be computed within 15s (using SSE2) or 18s (without SSE2) on
a processor of type Athlon 64 X2 4600+. Here the first iteration with its double
precision intervals is already sufficient.

– Using the iterative mode of the Reallib (that copies many features of the older
iRRAM, but has the template approach to double precision intervals), those 5
decimals of the sum for n = 109 can be computed within 12.5s (without using
SSE2). So the template approach is faster in this special case. Unfortunately, we
were unable to compile the Reallib to use SSE2.
We want to emphasize here that we knew that the dynamic interval approach of
the iRRAM (where each operation has to test for the type of intervals used) must
sometimes be slower than the template approach of the Reallib, where the
type of intervals is essentially fixed at compile time. It has been a design decision
to use the dynamic approach, as it easily allows to mix low precision computations
with parts that need higher precision.

– Computing 20 decimals of the sum for n = 109 takes between 300s (iRRAM) and
550s (Reallib). Obviously, double precision doesn’t suffice here. iRRAM uses a
second iteration with simplified centered intervals and a precision of 2−136.

– As a comparison: Using simple double precision numbers (i.e. no intervals and no
error control at all), n = 109 takes about 7.5s, delivering 10 correct decimals. So
for low precision results, the iRRAM is slower only by a factor of 2.

Lazy Booleans: As all computable real functions have to be continuous, compar-
sion operators like < or <= have to be undefined if their two arguments are equal and
if their values are just allowed to be {T, F}. This sometimes makes it quite hard to
translate ordinary programs to the iRRAM. The datatype LAZY_BOOLEAN, introduced
in 2003 and based on a similar datatype in (EH02), is an extension of the usual boolean



data type, consisting of the three values {T, F,⊥}. One possible view is that these val-
ues form a DCPO, where the logical operators have non-strict extensions:

a||b T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

,

a&&b T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥

,

!a

T F
F T
⊥ ⊥

The comparison operators can be easily extended continuously to this DCPO. In
the iRRAM, where we work with interval approximations to the real numbers, we are
able to compute the values of such a comparison as soon as the intervals are disjoint.
If they are not disjoint, the computation may continue with the ‘approximation’ ⊥ until
we need a ‘higher precision’, for example in a conversion to the ordinary type bool.

(x<y) =

T, x < y
F, x > y
⊥, x = y

b bool(b)
T T
F F
⊥ undefined

Conversion to boolwill mainly happen implicitly: E.g., ‘if ( a<b && c>d ) {...}’
will use LAZY_BOOLEANs for the three operations <, > and &&, but a final conversion
to bool for the if.

Trying to convert ⊥ to a boolean value will force a new iteration of the iRRAM,
leading to smaller intervals that might allow to actually determine the right truth value.

The purpose of the LAZY_BOOLEANs is to avoid discontinuities: Expressions like
‘x<1 || x>0’ will now be total (although this example is trivial), whereas ordinary
boolean evaluation would lead to at least one undefined value (at x = 1 or x = 0). Non-
trivial examples can be constructed with the special n-ary (and multivalued) function
choose(b_1,...b_n) that returns the index of one of the parameters with a true
boolean value.

3 Function objects

Functional approaches in C++ have already been used for exact real arithmetic for about
ten years, e.g. by Briggs (Bri06) using the functional extension FC++. Strangely, the
functional approach stops at the level where real numbers are defined, it does not con-
sider real functions as objects. Even without the use of FC++, we may use a combina-
tion of templates, computation diagrams, and overloading of the () operator to get a
reasonable interface for real functions in C++.

For the implementation of functions, we could also have used representations like
those defined in (Wei00): We could e.g. use a metric on functions spaces, define some
dense subset, and then implement a function as the limit of a sequence of approxima-
tions from this dense subset. (This is the core of the implementation of the real numbers
in the iRRAM.) Unfortunately, these approximations would require too much memory.

Instead, we took an approach similar to the DAGs used for real numbers. The use of
DAGs avoids the necessity to construct approximations to functions explicitly, we only



have to copy pointers and manage simple reference counters. In contrast to numbers,
the main evaluation procedure for these function-DAGs will not aim at ‘full’ approxi-
mations to the functions, but usually only give functional values at points, so we avoid
to store the expensive approximations to the functions. Of course, the limitations from
the previous section still apply here: The size of the DAGs is limited to a few million
nodes that exist concurrently.

We use a two step construction to the function-DAGs: The basic class uses the
concept of templates in C++ to define a generic function type:

template<class PARAM,class RESULT> class FUNCTION;

The objects of this class are functions from a PARAM data type to a RESULT data
type. Using overloading of the () operator, a FUNCTION<PARAM,RESULT> f can
almost be used like an ordinary function of type RESULT g(const PARAM& x),
i.e. we may use expressions like y=f(x) for the evaluation of a FUNCTION. The
implementation essentially uses a single pointer to the following class:

template<class PARAM,class RESULT> class FUNCTIONAL_object

The objects of FUNCTIONAL_object<PARAM,RESULT> now are nodes in DAGs.
But in contrast to the previous sections, these DAGs represent functions and not num-
bers. As tools for these function-DAGs we implemented an initial subset of the oper-
ators given in (Bra98). The selection of the currently implemented operators is neither
minimal nor meant to be complete, further operators can be easily added at need.

General constructors: The most general constructor just transforms an imple-
mented algorithm into a function with the corresponding types. Additionally, there is a
constructor for constant functions with a given value:

FUNCTION<PARAM,RESULT> from_algorithm (RESULT (evalp)(const PARAM &z))
FUNCTION<PARAM,RESULT> from_value (const RESULT &value)

As an example, we might use an implementation of the trigonometric function sin
to define a corresponding FUNCTION:

REAL sin (const REAL& x) { ... }
FUNCTION<REAL,REAL> _sin_ = from_algorithm(sin);
...
REAL x = ...
REAL fx = _sin_(x);

An unexpected restriction with the naming of such functions that arises in linux
systems should be mentioned here, as it slightly influences the use of the iRRAM li-
brary: Internally, the iRRAM uses routines from cmath for a few very fast operations
on double precision numbers. Unfortunately, using cmath leads to a pollution of the
global namespace: Many usefull names as sqrt, abs, or sin, can no longer be used
for function objects. In consequence, users of the library will be unable to compile
applications if they try to use such a common name for their own functions.

Structural operators: The following operators build the basis for the construction
of larger function-DAGs:



– Given two functions f : ⊆M1 → M2, g : ⊆M2 → M3, then h = compose(g, f)
is the function h : ⊆M1 →M3 with h(x) = g(f(x)).

– Given two functions f1 : ⊆M1 → M ′1, f2 : ⊆M2 → M ′2, then the product h
of f1 and f2 is the function h : ⊆M1 × M2 → M ′1 × M ′2 with h(x1, x2) =
(f1(x1), f2(x2)).

– Given two functions f1 : ⊆M →M1, f2 : ⊆M →M2, then the juxtaposition h of
f1 and f2 is the function h : ⊆M →M ′1 ×M ′2 with h(x) = (f1(x), f2(x)).

In C++, the prototypes look as follows:

FUNCTION<PARAM,RESULT> compose
(const FUNCTION<INTERMED,RESULT>&g, const FUNCTION<PARAM,INTERMED> &f)
FUNCTION<std::pair<PARAM1,PARAM2>,std::pair<RESULT1,RESULT2> > product
(const FUNCTION<PARAM1,RESULT1> &f_1, const FUNCTION<PARAM2,RESULT2> &f_2)
FUNCTION<PARAM,std::pair<RESULT1,RESULT2> > juxtaposition
(const FUNCTION<PARAM,RESULT1> &f_1, const FUNCTION<PARAM,RESULT2> &f_2)

Here, the compostion operator can even be written as simply as g(f), i.e. as an
application of the outer function g on the inner function f.

Projections: Although our interface provides only unary functions, the use of func-
tions with several variables can easily be achieved using pairs or vectors offered by
the standard C++ libraries. The numerical operations that we intend to use are mainly
binary, so we implemented two projections on pairs and a general projection on the
ith component of a vector:

FUNCTION<PARAM,RESULT1 > first
(const FUNCTION<PARAM,std::pair<RESULT1,RESULT2> > &f)
FUNCTION<PARAM,RESULT2 > second
(const FUNCTION<PARAM,std::pair<RESULT1,RESULT2> > &f)
FUNCTION<PARAM,RESULT> projection
(const FUNCTION<PARAM,std::vector<RESULT> > &f, const int i)

Partial Application: The following operators allow to bind parameters to values:

FUNCTION<PARAM2,RESULT> bind_first
(const FUNCTION<std::pair<PARAM1,PARAM2>,RESULT > &f, const PARAM1& z)

FUNCTION<PARAM1,RESULT> bind_second
(const FUNCTION<std::pair<PARAM1,PARAM2>,RESULT > &f, const PARAM2& z)

Special arithmetic operators: If arithmetic operators can be applied to the RESULT
datatype, then we may use operators like the following to define new functions:

FUNCTION<PARAM,RESULT> operator +
(const FUNCTION<PARAM,RESULT> &f, const FUNCTION<PARAM,RESULT> &g)

For example, given two functions f : ⊆M1 →M2, g : ⊆M1 →M2, then h = f+g
is the function h : ⊆M1 → M2 with h(x) = f(x) + g(x). In the implementation, this
is essentially mainly the juxtaposition of f and g, where after an evaluation we add the
components of the result.



Similar operators exist for the other basic arithmetic operations ‘-’, ‘*’, ‘/’ as well.
Special arithmetic constructors: Using the arithmetic operations together with

constant functions, we are obviously already able to construct (multivariate) polynomi-
als. Nevertheless, it is more efficient to have a direct access e.g. to polynomials.

FUNCTION<PARAM,PARAM> polynomial
( const std::vector<PARAM> &coeff )

In a similar way, we might easily use sequences of coefficients in order to define
Taylor series.

Comparison operators: For the case that the RESULT type has comparison opera-
tors, we also implemented a template for componentwise comparison of a function with
another function or with a constant value.

For example, given two functions f : ⊆M1 →M2, g : ⊆M1 →M2, then h = f <
g is the function h : ⊆M → {T, F,⊥} with h(x) = ‘f(x) < g(x)’, so for M2 = R we
get

h(x) =

T, f(x) < g(x)
F, f(x) > g(x)
⊥, f(x) = g(x)

FUNCTION<PARAM,LAZY_BOOLEAN> operator <
(const FUNCTION<PARAM,RESULT> &f, const FUNCTION<PARAM,RESULT> &g)

FUNCTION<PARAM,LAZY_BOOLEAN> operator <
(const FUNCTION<PARAM,RESULT> &f, const RESULT &b)

FUNCTION<PARAM,LAZY_BOOLEAN> operator <
(const RESULT &a, const FUNCTION<PARAM,RESULT> &g)

Logical operators: Also the logical operators || (disjunction), && (conjunction)
and ! (negation) have been extended to functions:

FUNCTION<PARAM,LAZY_BOOLEAN> operator &&
(const FUNCTION<PARAM,LAZY_BOOLEAN> &a, const FUNCTION<PARAM,LAZY_BOOLEAN> &b)

FUNCTION<PARAM,LAZY_BOOLEAN> operator ||
(const FUNCTION<PARAM,LAZY_BOOLEAN> &a, const FUNCTION<PARAM,LAZY_BOOLEAN> &b)

FUNCTION<PARAM,LAZY_BOOLEAN> operator !
(const FUNCTION<PARAM,LAZY_BOOLEAN> &a)

Miscellaneous further operators: For the ease of formulation function like g :
x 7→ f(x) + 3, we added the possibility to mix functions and constant values (that are
interpreted as functions of the correct arity). For example:

FUNCTION<PARAM,REAL> operator +
(const FUNCTION<PARAM,REAL> &f, const REAL &b)

FUNCTION<PARAM,REAL> operator +
(const REAL &a, const FUNCTION<PARAM,REAL> &g)

Similar operators exist for the other arithmetic operations ‘-’, ‘*’, ‘/’ as well.



4 Application Examples

Simple functions: As an example, the following is the complete source code for the
implementation of the logistic iteration function xi+1 = 3.75 · xi · (1 − xi) using a
function-DAG. It shows that the iterative structure of the iRRAM reals can be mixed
without any problem with the function-DAGs.

#include "iRRAM.h"
using namespace iRRAM;
REAL id_REAL( const REAL& x ){ return x; };
void compute(){
FUNCTION<REAL,REAL> X = from_algorithm(id_REAL);
FUNCTION<REAL,REAL> LF = REAL(3.75) * X * ( REAL(1) - X );
int count; cin >> count; REAL x = 0.5;
for ( int i=1; i<=count; i++ ) x = LF(x);
cout << x << "\n";

}

At the moment, the evaluation of the function-DAGs in the published version of the
iRRAM is not as efficient as those of the (number-)DAGs in Reallib: We still use a
recursive traversal through the DAG, so the DAG is essentially rather treated as a tree. In
consequence, the evaluation of a DAG might take time exponential in the number of its
nodes. Caching strategies that resolve this problem are currently under consideration.

Dedekind cuts: Most often, Cauchy sequences are used as the basis of the real
numbers used in exact real arithmetic. As an alternative, the (equivalent) Dedekind cuts
are of growing popularity, see e.g. (Bau08): There a real number x is represented by
two nonempty and disjoint sets L,U of rational numbers, that additionally are located;
i.e. if q < r, then q ∈ L or r ∈ U . In classical logic, we could then write that (∀q ∈
L)(∀r ∈ U)q < r and define sup{q ∈ L} = inf{r ∈ U} =: x.

In the following, we want to present how this concept could be integrated into the
iRRAM. For L and U we used two functions with result type LAZY_BOOLEAN, where
we chose REAL (instead of RATIONAL) as argument type. Additionally (and essentially
for efficiency), we also added two rational numbers l ∈ L and u ∈ U that help to find
an initial approximation for the represented real number. So like in (Bau08),

√
2 can be

defined by l = 1, u = 2, L = {x | x < 0 ∨ x2 < 2}, U = {x | 0 < x ∧ 2 < x2}
Then in the iRRAM we could easily implement a corresponding constructor for a real
number as follows:

REAL cut( const RATIONAL left_bound, right_bound,
FUNCTION<REAL,LAZY_BOOLEAN> smaller, larger )

As an example, the following program produces the first 100 decimals of
√

2 using
two function-DAGs that are constructed on-the-fly.

REAL id_REAL( const REAL& x ){ return x; };
void compute(){

FUNCTION<REAL,REAL> X=from_algorithm(id_REAL);
REAL x = cut(1,2, X<REAL(0) || X*X<REAL(2), REAL(0)<X && REAL(2)<X*X);
cout << setRwidth(100) << x << "\n";

}



The function-DAG for X<REAL(0) || X*X < REAL(2) is depicted in the fol-
lowing graph:
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There are still many rough ends in the implementation The conversion to the usual
iRRAM reals currently just uses a trisection to find the value. This could be improved
by a heuristic to speed up the search, or perhaps even a Newton method.

Additionally, the cuts are implemented using the most simple limit operator of the
iRRAM. So even after we found suitable good left and right boundaries, after each
iteration we have to compute them again. A better way would be to remember the
already known values and restart the trisection from there with improved precision.
One possibility to do this would be to extend the existing limit_mv to remember
choices more complicated than 32-bit-ints.

Of course, this will always have higher overhead than the already existing algo-
rithm for the square root, but the cuts form a quite elegant way e.g. to define algebraic
numbers. This of course can also be achieved in many other ways. So at the time,
the Dedekind cuts in the iRRAM are only a proof of concept: Whether it is worth im-
plementing improvements mainly depends on whether there will be applications using
Dedekind cuts that can not elegantly be written using the already implemented concepts.

Predicates on real numbers: We may interpret a predicate on the real numbers as
a function from vectors of reals to the LAZY_BOOLEAN datatype. So our functional
extension can also be used as a first step into implemented logic over the real numbers
in C++. There already exists a vaguely related approach called LC++ extending C++
via FC++ to a PROLOG-like language. As an example, we present a few lines showing
how expressions and predicates with several variables can be implemented on top of the
iRRAM:

typedef std::vector<REAL> UNIVERSE;
typedef FUNCTION<UNIVERSE,REAL> REAL_EXPRESSION;
typedef FUNCTION<UNIVERSE,LAZY_BOOLEAN> REAL_PREDICATE;

UNIVERSE id_vector_REAL( const UNIVERSE & x ){ return x; };
FUNCTION<UNIVERSE,UNIVERSE> variables=from_algorithm(id_vector_REAL);



void compute(){
REAL_EXPRESSION X = projection(variables,0);
REAL_EXPRESSION Y = projection(variables,1);
REAL_EXPRESSION Z = X*Y+X/Y;
REAL_PREDICATE P = Z > X || X < REAL(1) ;
UNIVERSE param(2);
param[0] = 1; param[1] = 2;
cout << setRwidth(20) << Z(param) << " " << P(param) << "\n";

};

This shows that many parts of the approach taken in (Bau08) can already be ex-
pressed in object-oriented languages. So for purposes of constructive analysis, a hy-
pothetical approach mixing object-oriented and genuinely functional languages might
switch between the paradigms on a quite high level.

5 Final remarks

The user interface to function-DAGs currently allows only the computation of the repre-
sented function at a single point. Internally, the interval representation of the iRRAM is
used, which is highly optimized for those evaluations. Of course, a deeper look into the
implementation would also allow to intercept these underlying intervals and e.g. deduce
a modulus of continuity. Additionally we have the special DAG node that allows to use
any implemented real function as a leaf in a DAG. So using function-DAGs, viewed as
a representation in the sense of (Wei00), is equivalent to the standard representations
for functions (on metric spaces). Similar to the number-DAGs, the basic concerns are
again efficiency and usability of this special data structure.

The functions-DAGs also enables us to define alternative evaluation strategies, like
an interval evaluation. However, a good set-valued evaluation should be preferred. Un-
fortunately, the representations of sets that can e.g. be found in (Wei00) have not been
checked from a practical viewpoint before.

The logical extension to the iRRAM is quite basic at the moment, as it does not allow
quantification. As soon as there is a good set-valued extension, introducing quantifiers
as special logical operators will be quite straightforward: As a basis, the approach taken
in (Bau08) can be used.

As far as the author knows, space complexity has hardly been investigated in exact
real arithmetic. The enormous reduction using only iterations instead of DAGs (for
the real number case) vaguely looks like the difference between solving reachability
problems in graphs in logarithmic space or in polynomial time. This could be a starting
point for further theoretical research.

Another important question (both in theory and in practice) is how far computations
can be parallelized. This is again connected to space complexity, as an efficient parallel
evaluation might use temporarily created DAGs to distribute computational tasks.
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