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ABSTRACT
In order to create the most comprehensive RDF Knowledge Base
possible, data integration is essential. Many different data sources
are used to extend a given dataset or to correct errors in the data.
Nowadays, Web APIs (instead of data dumps) are common external
data sources, since many data providers make their data publicly
available. However, the classic problems of data integration, i.e.,
which parts of the datasets can be mapped, remain. In addition,
Web APIs are often more restrictive than data dumps and of course
slower to access due to latencies and other constraints. In this
paper we demonstrate the FiLiPo (Finding Linkage Points) system
to automatically find connections (i.e., linkage points) between
Web APIs and local Knowledge Bases in a reasonable amount of
time. To this end, we developed a sample-driven schema matching
system, which models Web API services as parameterized queries.
These Web API services return a view definition of their data which
subsequently need to be connected to the local database scheme.
Furthermore, our approach is able to find valid input values for Web
API services automatically (e.g. IDs) and can determine combined
linkage points (e.g. first and last name) despite different structures.
Our results on six real world API services with two local databases
show that our linkage point detection algorithm performs well in
terms of precision (0.89 up to 1.0) and recall (0.69 up to 1.0).

CCS CONCEPTS
• Information systems→Extraction, transformation and load-
ing; Mediators and data integration.
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1 INTRODUCTION
In recent years, RDF Knowledge Bases (KBs) have established them-
selves as an important database format and are used in many do-
mains. According to Koutraki et al. [4] many of these KBs were
generated automatically and are therefore incomplete in their data.
Databases generally come with the problem that they are poten-
tially incomplete (considering how much new data is generated
daily). For this reason, data integration approaches [3–7] are used
to expand KBs and correct erroneous information. As a common
data integration process, first external data (usually in form of a
data dump) is first downloaded and then aligned with the data
contained in a given local KB. "Aligning" describes the process by
which relations from the local KB are mapped to relations from
external sources, thus creating a mapping between the local and
the external data scheme. Using this alignment (also called "map-
ping"), the actual data integration process can be done and the data
of the KB is expanded through missing or new information. For
example, in a bibliographic KB like dblp1 (containing metadata of
publications in the domain of computer science), such missing data
could be a DOI (Digital Object Identifier) or an author affiliation.

Using APIs for data integration [4, 5] (in contrast to data dumps)
has the advantage that the data is usually more up-to-date and
due to the possibility of using Web APIs, the number of potential
data sources becomes much larger. In addition, most data providers
tend to share their data via (RESTful) Web APIs, since this solution
seems to be a sweet-spot between making data openly accessible
and protecting it [5]. However, the fundamental problems remain
the same. The aligning of external data is a difficult task because of
the heterogeneity of data structures. In the worst case, the data of
the external source is structured completely differently than that of
the local KB. For example, in the case of dblp, the author name is
modelled as a single property, whilst some external data sources use
two properties to model the name, e.g. first and last name. Further
problems with matching could also be different spellings, different
formatting and so forth. For this reason the data integration process
remains a manual task for most parts [5].

Contribution. In this paper we demonstrate FiLiPo (Finding
Linkage Points)2, a system to discover alignments between a local
KB and an API. In addition, it automatically detects which kind
of information has to be sent to an API in order to get a valid
response. To this end, we pursue a sample driven approach such as
Qian et al. [7] coupled with approaches of DORIS [4, 5]. In the first
stage, the system goes through a probing phase, in which various
information (e.g. DOIs, titles, etc.) is sent to the API to determine
which information the API responds to. Then, the information
returned by the API is used to guess its scheme and provide an

1https://dblp.uni-trier.de/
2https://github.com/dbis-trier-university/FiLiPo
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alignment between the local and the external data. In contrast to
DORIS we do not use just one string similarity method to determine
an alignment rather several different ones. The reason for using
more than one similarity method is that a single method is not
suited to compare different data types (e.g. names, IDs, etc.). FiLiPo
automatically selects the method that performs well for a given data
type and determines an alignment. In order to keep the approach
simple and usable, even for non-technical users, a user need only
specify how many samples should be sent to the Web API.

The novelty of the FiLiPo system is that it automatically detects
which kind of information has to be sent to the Web API in order
to get a valid response. DORIS only uses information associated
with the label relation of the local KB and therefore may not use
other valid input values, e.g. external IDs that are stored in the KB.
The FiLiPo system is, in contrast to DORIS, able to not only find
one-to-one matches but also one-to-many matches, i.e. aligning a
relation (e.g. full name) with multiple other relations (e.g. first and
last name). In contrast to the other systems, instead of using just
one similarity method, a group of fifteen similarity methods with
multiple variants is used. The best matching similarity method for
each relation will be determined automatically and used for the
aligning process.

2 SYSTEM OVERVIEW
In this section we describe several use cases for the FiLiPo system
and give a brief insight on our user assumptions. Furthermore, we
will present a system overview of the FiLiPo system. For the sake of
simplicity, the dblp KB will be the standard KB in this paper, but the
use cases also apply to KBs of other domains, e.g. cultural heritage,
movies and others.

Use Cases. The FiLiPo system tackles the task of finding align-
ments between a local KB and an API. These alignments can be
used for several different use cases. The standard use case is a data
integration use case, in which the information of a local KB is ex-
tended or missing data is integrated. A classical real world scenario
for data integration is dblp. As described in our prior work [9],
it is an important task to extend and improve the quality of the
information stored in dblp. Therefore, it is necessary to collect and
aggregate data from different data repositories such as Springer
SciGraph3 and others. Afterwards, the data can be used in order to
improve programs and systems (e.g. recommender systems) that
work on the dblp meta data.

Another use case is checking data for correctness. The align-
ments could be used to compare the data of a local KB with that
of multiple APIs. In case a user searches for information about a
publication or a conference in dblp, the data of a local KB can be
compared with the data of one (or more) APIs. If the data differs
too much, the user can be notified that the data may contain errors.

User Assumptions. We assume that the user of the FiLiPo sys-
tem is a non-technical user without programming knowledge or
technical skills. Furthermore, the user has no in-depth knowledge
of external data sources, but is familiar with the structure of the
local KB. We assume that the user has domain knowledge and there-
fore can understand common data structures from the genre of the
local database (e.g. bibliographic meta data). In addition, an expert

3https://scigraph.springernature.com/explorer/api/
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Figure 1: FiLiPo System Architecture

with knowledge of the Web APIs (technical user) can make further
settings (changing the string similarity thresholds etc.) to fine-tune
the system.

System Architecture. The FiLiPo architecture shown in Fig-
ure 1 is divided into two main components, the Alignment Core
and the Identifier Extractor. The Alignment Core consists of three
components, namely the Alignment Processor, the Similarity Proces-
sor, the RegExer, and the Classification component. The Alignment
Processor interacts with the other components to determine a cor-
rect alignment. The Similarity Processor is used by the Alignment
Processor to compare values of a local database and values of an
API. It can use 15 different similarity methods with several variants
(thus up to 48 methods are available). We used the string similarity
library developed by Baltes et al. [2] and used the following three
types of similarity methods: (1) equal, (2) edit and (3) set based.
String similarity methods of the equal category check for the equal-
ity of two strings and edit-based methods define the similarity of
two strings based on the number of edit operations (e.g. Leven-
shtein) needed to transform one string into the other [2]. Set-based
methods determine the overlap of two strings in terms of tokens
(e.g. n-grams). We excluded the overlap method in the set based
category since this method is too fuzzy and would lead to an erro-
neous aligning (e.g. aligning a title and an abstract since they have
in most cases a lot of words/tokens in common).

The Identifier Extractor is used to derive the identifier relations
(e.g. ISBNs, ISSNs, etc.) contained in a given local KB. Therefore,
the system computes the functionality of each relation. A relation
is called functional, if there are no two distinct facts that share the
same relation and value [5]. Since real world KBs may be noisy and
contain errors, a perfect functional relation is unlikely. Therefore,
we used the function presented by Koutraki et al. [8] to compute the
functionality score of a relation. In case a relation has a functionality
greater or equal to 0.99 (in case the KB contains erroneous data),
the system assumes that the relation describes an identifier in the
KB. It is important to determine the identifiers of the KB because
the FiLiPo system uses several similarity methods that may be too
fuzzy to compare identifier values.

The classification component is used by the Alignment Proces-
sor in case an identifier value is compared with another potential
identifier value. For example, in order to match an ISBN with a
value returned by an API the values need to be equal. However,

https://scigraph.springernature.com/explorer/api/
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some characters in an ISBN are optional, e.g. hyphens. For this
reason using a method of type equals is too strict but using the
other similarity methods (e.g Levenshtein) is too fuzzy. To work
around these problems, the classification component provides two
classifier variants. The first one is a simple regex based variant
using predefined rules to compare two values. The second classi-
fier variant is utilising a gradient boosting classifier working on
Flair [1] embeddings of identifiers to determine whether two values
are equal. We use Flair embeddings instead of other embeddings
since this framework is character based and therefore suits better
for the comparison of two identifier strings. Both variants can be
extended by a technical user by adding rules for the RegExer or by
training the gradient boosting classifier for new identifiers. The user
can specify in a configuration file whether to use the embedding or
regular expression approach.

3 ALIGNING PROCESS
First, the user has to describe every API (URL to the API and input
type) that is used by the system in a configuration file. The input
type describes the class of entities of the local knowledge base that
will be used as input. After starting the system it will ask the user
to enter a local KB and an API that will subsequently be aligned. As
stated previously, the user additionally needs to specify how many
samples are sent to the Web API (sample size).

Probing Phase. After the user has entered all needed informa-
tion, the system starts the probing phase. It is used to determine
what relation of the given input type can be used as valid input
value for the used API. To illustrate this with an example, dblp
has 29 relations to describe the metadata of a publication (e.g. DOI,
ISBN, title, etc.), but Springer’s API SciGraph only responds to DOIs.
The first step is to send several (initial) requests to the API for each
relation of the input type. The number of initial requests is set to
25 for each relation but can be changed via the configuration file
by an expert user. However, it turned out that this number of initial
requests usually works well, in terms of speed and correctness. The
values for the queries are picked uniformly at random from the
database in order to cover every version of a type. In the best case
scenario, the server of the API responds with the HTTP status code
200 OK or with an HTTP error code. In the worst case scenario,
the server responds all the time with a JSON document containing
an error message. In this case the system cannot easily detect that
some input values did not lead to a (valid) response and therefore
will send further requests to the API in the next step. This would
result in a considerable increase of the runtime. It is therefore nec-
essary to identify invalid answers and thus prevent the system from
sending additional but unnecessary requests to the API.

In order to identify invalid responses, the system iterates over
all answers and compares how similar they are to one another.
Invalid answers are similar to one another, since they only contain
an error message. In contrast, correct answers are different to one
another since they contain information regarding various different
entities. As a result, a (potential) error response is determined by
counting how often a response was similar (using Levenshtein) to
other responses. In this way unnecessary requests to the API are
prevented. Finally the matching phase begins by only using the
relations that have really led to a valid answer.

Aligning Phase. The first step of the aligning process is to col-
lect more responses from the API for each valid input type (e.g. DOI,
ISBN, etc.). In total, as many requests are sent to the API (for each
input type) as the user specifies at the beginning (sample size). After
collecting additional answers, they are processed by the system.
First, path-value pairs are built from the JSON responses to create
a structure similar to a graph database (i.e. relation-value-pairs).
Then each path-value pair from the response is compared with the
relation-value pairs of the corresponding entity from the local data-
base. To determine whether the values of the local and the external
record for a relation are the same, all string similarity methods
are iterated over and the similarity values are calculated. For this
purpose, it is checked whether numbers or URLs are compared.
Since string similarity methods are not suitable for these types,
they are compared with the equal method. Otherwise, all methods
are iterated over and the one with the best result is (temporarily)
chosen, under the condition that the similarity score is higher than
the threshold set by the user (similarity threshold). Afterwards, it
is checked whether the relation is an identifier like a DOI. In this
case, the similarity is additionally determined with the classifier or
the regular expression approach. The threshold is determined prior
to this step, because the comparison with the classifier is expensive
in time. Thus, only values of the local KB and the API, which are
similar enough to be a match, are compared. The second approach
to compare identifier values is the regular expression approach. Us-
ing predefined rules (which can be extended and changed) various
characters are filtered out of the identifier values and compared in
the end. This approach is much faster than the gradient boosting
approach, because no expensive embedding has to be calculated.

If enough matches are found between the local record and the
API record (i.e. data overlap is greater than the overlap thresh-
old specified in the configuration file) then the server response
is considered a valid response and is used to determine the final
alignment. The data must overlap, because some APIs (similar to
retrieval tools) may return an approximately matching response if
the data requested is not found.

After collecting all (valid) answers, it is determined which align-
ments are the most frequent ones. Therefore two different maps
are used: Summed Metrics Map (SMM) and Wild Card Map (WCM).
In a first step, the SMM is used to summarise all alignments and to
determine how often these alignments were previously determined
by the program. However, there are alignments that cannot be de-
scribed with a fix path alone. For example, the title of a paper can
always follow the path record.title, but the names of the authors
vary in their path (e.g. author[0].name or author[1].name).

In order to determine which path needs to be fix and which needs
to be a wild card path theWCM is used. As in the SMM, the first step
is to summarise all alignments in the WCM. The only difference in
these maps is that the relations of theWCM do not contain fix paths
but rather so called branching points (e.g. author[*].name). The wild
card symbol (*) indicates that more than one branch is possible. For
example, to find the missing name of an author, one would have to
iterate over the author array and search for the missing name(s).

Using these data structures, the final alignment is calculated.
First the combined alignments are determined, then valid wild card
alignments, and finally the fix alignments. Combined alignments
have to meet several conditions in order to prevent the system from
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determining erroneous alignments: (1) they have a common prefix
(e.g. record.author[*].given and record.author[*].family), (2) only the
suffix may change and (3) they must have been matched similarly
often (i.e. a predefined threshold is used). The threshold used for
this is predefined in the configuration file and can be changed by
experts. However, in our tests we found that the default value of
0.3 worked for all APIs that we tested and gave no incorrect results.

The last step is to determine whether a match between two re-
lations is considered a wild card or a fixed alignment. For each
relation from the local KB that is matched with an external relation,
the confidence is calculated. This is done only for the wild card
alignment that appeared most often. The confidence is calculated
by counting each fixed alignment that is equal to the wild card
alignment (numbers and wild card symbols are ignored), e.g. au-
thors[0].fullname and authors[*].fullname. The result is then divided
by the number of all fixed alignments that exist for the local relation.
If the value is high enough, the wild card alignment is taken as the
final match, otherwise the fixed alignment is used. This process
is done for each relation of the input type of the local KB and in
this way the combined, wild card and fixed alignments form a final
alignment between the local KB and the API.

4 DEMONSTRATION
We demonstrate4 how FiLiPo can assist users in aligning multiple
data sources in the context of bibliographic data.

Demonstration Datasets. As local KB we used a dblp RDF
dataset and five bibliographic APIs (SciGraph, CrossRef5, Elsevier6,
ArXiv7, Semantic Scholar8) which are aligned with dblp by the
FiLiPo system. All used services respond with metadata about sci-
entific articles and their authors. To test the generic nature of the
FiLiPo system we used a KB (Linked Movie DB9) and an API (Open
Movie Database (OMDB)10) from the movie genre.

Demonstration Scenario. We will begin to explain the FiLiPo
system by presenting the used datasets, i.e. dblp and CrossRef. We
briefly show what kind of data is contained in the sources and what
a typical API response looks like. In order to make the problems
of aligning clearer to the audience, we will show how different the
structure of the data can be and which problems arise from this.
Afterwards we will give an overview of the FiLiPoarchitecture as
presented in Section 2. Subsequently we will invite the audience to
explore the aligning process in a prepared scenario. In the prepared
scenario the alignment will only take a short period of time (ap-
proximately 2 minutes). During this phase we will briefly explain
how the system works and how the final alignment is determined.
Furthermore, the regular expression approach is compared with
the classifier and the advantages and disadvantages are highlighted.
In addition we will show how a technical user can fine-tune the
system, e.g. by changing thresholds or the used similarity methods.

Evaluation and Usability.We have evaluated both scenarios
(technical user and non-technical user) with the data sets mentioned

4Video Link: https://basilika.uni-trier.de/nextcloud/s/vN3Za1gpHmOAEuR
5https://www.crossref.org/services/metadata-delivery/rest-api/
6https://api.elsevier.com
7https://arxiv.org/help/api
8https://api.semanticscholar.org
9http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-18-05-2009-dump.nt
10http://www.omdbapi.com

above. All thresholds were set to default and 100 requests were
made. CrossRef, SciGraph, and two services from Semantic Scholar
were used for the non-technical scenario and the APIs of OMDB,
Elsevier and ArXiv were used to for the technical user scenario.
Since Elsevier and the dblp only have a few publications in common,
the requests had to be increased to 400. Since ArXiv always returns
the top results, except when receiving an ArXiv key we restricted
the used relations in the configuration file only to ArXiv keys. For
the same reason we restricted OMDB for titles only. The runtime
of the system was between 15-32 minutes and increased to 15-37
minutes when the classifier was used. Precision and Recall were
determined for evaluation. The precision of the alignments in the
tests was between 0.85 and 1.0. The recall took values in the range
of 0.67 and 1.0. The system therefore has an F1 score of 0.78 to 1.0.

RelatedWork. Bernstein et al.[3] briefly summarises some well
known techniques and defines a taxonomy for these techniques.
One of the mentioned systems, developed by Madhaven et. al., was
CUPID [6]. It is used to discover mappings between schema ele-
ments based on their names, data types, constraints and schematic
structure. Their system consists of two phases: a linguistic matching
phase and a structural matching phase.

The system developed by Qian et al. [7] automatically constructs
a mapping between the local data and external data (in form of data
dumps). The user is not required to have any detailed knowledge
about the structures and schemes of any of the data sources. This
is an iterative process that produces better mappings, the more
sample instances of the local KB the user provides the system with.
According to Qian et al. this process lowers the cognitive burden
and is therefore also usable for less-technical users.

The closest system to our work is DORIS. The user enters the
numbers of requests that will be sent to the API and it will automat-
ically align a local KB with an API. The fundamental idea of DORIS
is to use instances of the local KB in order to send sample requests
to an API. In order to align the scheme of the external data with
the local KB, the values of the relations are compared by using a
single string similarity method. All found matches will afterwards
be used to align the relations of the data sources.
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