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Abstract. This paper tackles the automated extraction of components of argumen-
tative information and their relations from natural language text. Moreover, we ad-
dress a current lack of systems to provide a complete argumentative structure from
arbitrary natural language text for general usage. We present an argument mining
pipeline as a universally applicable approach for transforming German and English
language texts to graph-based argument representations. We also introduce new
methods for evaluating the performance based on existing benchmark argument
structures. Our results show that the generated argument graphs can be beneficial
to detect new connections between different statements of an argumentative text.
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1. Introduction

Argumentation plays an integral role in many aspects of daily human interaction. People
use arguments to form opinions, discuss ideas or change the views of others. Many re-
sources dealing with argumentation are available, but the content is mostly unstructured.
Due to the current capabilities of modern hardware, Computational Argumentation (CA)
is a field of increasing interest. While previous work [142] has focused rather on individ-
ual tasks such as claim detection [3], this paper targets the automated extraction of argu-
mentative components and their relations from natural language text. We address a gap
in the argument mining field where end-to-end pipelines that generate complex argument
structures for CA are not prevalent. We present such a pipeline that provides a universally
applicable approach for transforming German and English language texts to graph-based
representations [4] in the popular AIF format [5]. We also introduce new methods for
evaluating results based on benchmark data and present a new argument graph corpus.

2. Foundations and Related Work

Argumentation, in a formal way, is described as a set of arguments in texts. An argument
is constructed by at least two Argumentative Discourse Units (ADUs) which represent
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different components of argumentation, e.g. claims and premises. Additionally, we can
represent the stance between two ADUs as a supporting or attacking directed relation.
A major claim is defined as the claim that describes the key concept in an argumenta-
tive text [2l]. An argument graph describes a structured representation of argumentative
text [6]. We use a variant of the well-known Argument Interchange Format (AIF) [S],
extended to support the explicit annotation of a major claim M [7]. Claims, premises, and
the major claim are represented as information nodes (I-nodes) I while relations between
them are represented by scheme nodes (S-nodes) S. We define an argument graph G as
triple G = (V,E, M) with a set of nodes V =7US and a set of edges E CV x V.

We aim at addressing the research gap of a general-use end-to-end pipeline for the
German and English languages by following and extending the approaches of related
work in the field. Cabrio and Villata [8]] define the central stages of an argument min-
ing framework to be argument extraction and relation prediction. Stab and Gurevych [2]
present an approach for extracting arguments by identifying ADUs with further classifi-
cation into major claim, claims, and premises by considering structural, lexical, syntacti-
cal, and contextual features [3]. The segmentation of natural language text into ADUs is
simplified by considering textual boundaries on the sentence level [9]]. Many researchers
formulate relation prediction as a binary classification problem to distinguish between
support and attack [10]. The argumentative information is then used to construct an ar-
gument graph from the extracted ADUs [8]. To the best of our knowledge, only Stab
and Gurevych [2] addressed a method to link ADUs within the same paragraph in an
argumentative text. Nguyen and Litman [11]] developed a specialized end-to-end argu-
ment mining system that includes the identification of relevant ADUs, the classification
of components as well as the prediction of their relations.

To assist argument mining techniques, a diverse selection of corpora exists. Stab et
al. [12] and Eger et al. [13] provide a corpus with 402 annotated persuasive essays—in
the following called PE. It consists of 11,078 nodes and 10,676 edges. Another cor-
pus has been developed by the ReCAP project [14], composed of 100 argument graphs
dealing with educational issues in Germany. It consists of 4,814 nodes and 4, 838 edges.

3. Argument Mining Pipeline

The pipeline introduced by Nguyen and Litman [[11] is used as the basis of our proposed
architecture and extended by a novel graph construction process. Our pipeline is designed
in a modular way where each step describes an individual and interchangeable module.

Argument Extraction As a first step, the input text is segmented into sentences [2114].
Then, multiple types of features are extracted, derived from Stab and Gurevych [12] as
well as Lippi et al. [[15]], depicted in our GitHub proj ect The basis of the entire approach
is the correct identification of ADUs. Based on these features, the sentences are classified
into argumentative and non-argumentative units. The ADUs are then further categorized
into claims and premises using a separate classifier.

Zhttps://github.com/ReCAP-UTR/Argument-Graph-Mining, licensed under Apache 2.0.
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Relationship Type Classification To construct an argument graph from a natural lan-
guage text, it is necessary to consider the task of textual entailment. Here, we assign the
relation type between the identified ADUs [16]. We consider only the inference from
premises to claims. Due to the complexity of considering a multi-class stance problem
and the lack of training data of more sophisticated argument schemes (e.g., Walton et
al. [17]), we train a model to only classify attacking and supporting relations. GloVe
embeddings are used as the only feature for this task to focus on semantic information.
Based on the model’s metadata, we detect indifferent results (i.e., having a classification
probability below a configurable threshold). In this case, the type support is used.

Major Claim Detection A very crucial step in the graph generation is the location of
the major claim. Neither pretrained models nor sufficient training data are available, as
each text usually has only one major claim, regardless of its length, making machine
learning-based approaches infeasible. The classifier by Stab et al. [2] cannot be applied
as it condenses all classification steps into a single model, which does not fit our proposed
pipeline. Thus, we examine the following heuristics:

FIRST: The first claim based on the text position is chosen as the major claim. This is
done because the main argument is often referred to in the introduction or headline (e.g.,
Dumani et al. [14]]). CENTROID: When treating the major claim as the core proposition of
the text, we can assume that it should be very similar to all ADUs. Thus, we can compute
the centroid of all embeddings to estimate the core message. The major claim is then
the ADU with the highest cosine similarity to the centroid. PAIRWISE: Pairwise cosine
similarity of all embeddings of the ADUs is computed. The major claim is defined as
having the highest average similarity to all other ADUs. The rational for this technique is
similar to CENTROID. PROBABILITY: Again, a cross product of all ADUs is computed.
Based on the relationship classification (see above), the major claim is defined as having
the highest average classification probability except for neutral results, (i.e., we select
the ADU where the model shows the highest certainty in all of its predicted relations).

Graph Construction Utilizing the acquired information, we can now construct the
graph. To the best of our knowledge, there is no automatic procedure that links ADUs
to complex graphs. We propose three algorithms to address this task. In all cases, ADUs
are used as I-nodes and the S-nodes between them are derived from the relationship type
classification. As a simplification, the major claim is set as the root.

FLAT TREE: Our baseline approach connects all ADUs as I-nodes to the major claim
using the predicted S-nodes, resulting in a two-layer graph. While not suitable for com-
plex texts, it may still provide sufficient results for smaller ones. ADU POSITION: This
technique makes use of typical argument compositions. We assume that premises belong-
ing to a claim are contained in the same paragraph and thus positioned in close proximity
of the claim in the original text [2]]. In the first step, all claim I-nodes are connected to the
major claim using the respective S-nodes. Then, each premise I-node is connected to the
nearest claim via an S-node. If no claim is detected, all premise [-nodes are connected
directly to the major claim via S-nodes. The resulting graph consists of at least two and
at most three layers. PATRWISE COMPARISON: This method leverages the class proba-
bilities of the relationship type classification. Its idea is to draw an edge between ADUs
whose relation probability is above a certain threshold. First of all, tuples of ADUs (a, b)
are computed such that b has the highest relation probability among all possible connec-
tions of a. If multiple ADUs reach the same maximal value, the first one is chosen. Then,
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a configurable lower bound (in our case 0.98) below this maximal probability is defined.
Each ADU related to the major claim with a score above the lower bound is connected
as an I-node via a corresponding S-node. If the major claim has no connections after this
step, the ADU that first occurs in the text is used as an I-node and connected to the major
claim. Then, the remaining ADUs are connected iteratively (via S-nodes) to the I-node
where their score is above the lower bound. If there remain ADUs not used after a certain
amount of repetitions, they are connected to the major claim using a support S-node.

4. Experimental Evaluation

In this section we evaluate our end-to-end approach by assessing the resulting argument
graph structures. Moreover, we compare the correspondence of our automatically gener-
ated graph to a given benchmark graph.

Hypotheses The following hypotheses, covering all aspects of the pipeline, will be
tested in our evaluation: (H1) Using sentences as an argumentative unit yields a robust
approximation of the manual segmentation. (H2) Selecting the major claim using FIRST
will give the best results as it reflects common argumentation patterns. (H3) Using a
threshold for the relationship type classification (i.e., a value above 0.5) will perform best
as supporting arguments occur more often than attacking ones. (H4) Using ADU PosI-
TION to construct graphs will result in the best approximation of the benchmark data due
to the claim-premise information. (H5) Providing the pipeline with predefined ADUs
will result in graphs that better reflect the human annotation than end-to-end graphs.

Experimental Setup and Datasets The implementation has been done in Python and is
available on GitHub. Three datasets are used for the evaluation: ReCAP, PE (see Sec-
tion [2)) and a new one created for our tasks. The ReCAP corpus contains fragments such
as headlines and metadata that were removed manually from the input files. We are using
two versions of the PE dataset. PE7 is based on Stab et al. [[12]]. The length of the ADUs
differs greatly and is not in line with our sentence-based segmentation. PE;g is based
on Eger et al. [13]] and was transformed by us from word- to sentence-based labels to
conform to our segmentation approach. A major difference is that PE7 has information
about relations between ADUs (i.e., available as argument graphs), while PEg only pro-
vides the ADUs. We also explored the open discourse platform kialo.com due to the
availability of much larger argument graphs. We extracted the 589 debates in the pop-
ular collection (as of Jan. 2020), consisting of 190,269 I-nodes, 189,680 S-nodes and
379,360 edges. The data is available in English and German (translated via deepl . com)
on request from the authors.

Classification Models For ADU and claim - premise classification we chose an ensem-
ble stacking method build from a layer of a logistic regression, random forest and adap-
tive boosted decision tree [[18] as they were shown to perform well for those specific
tasks [[19]. The classifiers’ first layer adds their predictions as feature to the input features
and passes them on to the final estimator which provides the output prediction. For the
output layer we chose extreme gradient boosted random forest [20]. The ADU model
was trained using the PE;g and ReCAP datasets in their respective native languages (i.e.,
German for ReCAP and English for PE;g) to mitigate any translation errors. The claim-
premise classifier was trained using PEg for both languages as it is the only one that


kialo.com
deepl.com

July 2020

Table 1. Results of the ADU and claim-premise classification. A := Accuracy, P := Precision, R := Recall

(a) ADU model. (b) Claim-premise model.
Language A P R F Language A P R F
English (PE;g) 0.80  0.80 1.0 089 English (PE;g) 052 052 0.68 0.59

German (ReCAP) 0.54 052 0.66 0.58 German (PE;g) 0.76 073 0.13 0.22

differentiates between claims and premises while also using sentences as units. To elimi-
nate biases, a 90/10 train/test split has been performed before training. The models were
trained through a 5-fold stratified cross-validation on the training set and tuned through
a random search. The reported values are results from a single evaluation on the test set.

We observed that the ADU classification reached highly varying results between the
two datasets. Probably the limited quantity of training data in the ReCAP dataset is the
main reason for the variation. On the more than four times larger essay data we obtained
an accuracy score of 0.80 which yields a strong indication of the model’s generalization
ability. The claim-premise classification unfortunately did not meet expectations on nei-
ther the persuasive essays nor on the ReCAP data. We explain the difference in predic-
tive power on both datasets due to the fact that the structure of the ReCAP dataset is too
dissimilar to the PE;g dataset on which the models are trained on. In Table [1| we report
accuracy A, precision P, recall R and F; values for the used classification models.

The training of the relationship type model was done with the Kialo dataset due
to the large number of available relations. The triples were split into 70% training and
30% testing data. Among state-of-the-art classifiers, extreme gradient boosting achieved
the highest accuracy for both languages with 0.678 and 0.668 for the English and Ger-
man language, respectively. Logistic regression performed very similar (0.672 and 0.664)
while being computationally simpler, leading us to choose the latter.

Argument Graph Metrics To assess the quality of the entire pipeline as well as its in-
dividual steps, multiple metrics are needed. We are not aware of existing measures that
enable the verification of our hypotheses and thus introduce a novel approach. For each
element in the benchmark graph (i.e., I-nodes, S-nodes, major claim and edges), the cor-
responding item in the generated graph is determined to compute an agreement.

To compare the ADU segmentation, we need a mapping between the I-nodes of
the benchmark graph G, and the generated graph G,. It is based on the Levenshtein
distance [21]] dist(u,v,) between the benchmark I-node u, and the generated I-node v,
and the derived similarity sim(u,v,) = 1 — (dist(up, v, )/ max{|up|, |v|}). The mapping
m: up — ve assigns each I-node of the benchmark graph an I-node of the generated
graph s.t. their similarity is higher than any other combination of I-nodes. In case that
two generated nodes have the same similarity to the benchmark node, we pick the first
one. If the ADU segmentation between the benchmark and generated graph differs, the
benchmark node is mapped to the generated node having the highest similarity while
ignoring the other nodes. The I-nodes agreement .¥ is defined by the weighted arithmetic
mean of the similarity between the benchmark I-nodes and their respective mappings.
The major claim agreement .# is specified as a binary metric that is 1 iff the major
claims are mapped or there is none defined in the benchmark and O otherwise.

For the evaluation of S-nodes, we need to consider the surrounding I-nodes, because
S-nodes do not contain textual content that could be used for similarity assessments. We
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compute all combinations of connections of the benchmark S-node in(u;) x out(u;) and
determine individual tuples based on their respective mappings as (m(in),m(out)). Using
this information, it is possible to compare the benchmark S-node with the information
provided by the relationship type classification. The S-node agreement . is then defined
as the number of correctly classified relationships divided by the total number of tuples.
Lastly, edges need to be considered as well. As they do not contain textual informa-
tion, we use the triple (x,y,z) where x and z represent I-nodes and y an S-node. Thus,
we consider two edges at a time. The two edges in the benchmark graph are mapped to
their counterparts in the generated graph if they connect the same I-nodes (as determined
by the mapping m). The direction of the edges is not relevant. The S-node y is ignored
deliberately to mitigate potential errors during earlier tasks. The edges agreement & is
determined by dividing the number of mapped edges by the total number of edges.

5. Results and Discussion

We will now evaluate the pipeline using the test splits of the German ReCAP corpus and
the English PE corpora. Exemplary cases can be found in the extended version [22].

German ReCAP Corpus The test set for the ReCAP corpus contains ten texts with
benchmark graphs. We get an I-node agreement .# = 0.461 for all possible combinations
of parameters. In most cases, there were fewer, but larger ADUs in the generated graph
compared to the benchmark. This stands in contrast to the fact that the average ADU
length in the ReCAP corpus is 1.1, indicating mismatches in the definition of a sentence,
for example due to punctuation. It also contradicts H1. Table [2al shows the results of the
three major claim detection approaches. They are very similar, differing only in one case
(as we have exactly one major claim per text). The two best methods CENTROID and
PAIRWISE predicted exactly the same major claims. As FIRST performed worst here, H2
might be rejected. All thresholds for the relationship type classification are depicted in
Table[2b] The best result can be obtained using 1.0 (i.e., the classifier always predicts sup-
port), which means that almost all of the relations in the benchmarks are of the type sup-
port. With such a skewed distribution, this corpus may not be suitable to assess H3, thus
we will postpone it to PE. When comparing end-to-end with preset ADUs, we observe
that the latter one delivers slightly worse performance with all thresholds above 0.6. This
could be caused by the smaller preset ADUs which provide less contextual information
for the classifier. This stands in slight contrast to HS. Lastly, Table [2c| shows the three
graph construction methods. As the scores depend on the major claim method, we used
the best approach (i.e., CENTROID/PAIRWISE) for the end-to-end graph. The algorithm
FLAT TREE delivered the best results across the board, contradicting H4. As expected,
the scores themselves are very low, especially for the end-to-end graph, making manual
examination of individual edges necessary. When comparing the end-to-end graph with
the one using preset ADUs, we notice a major increase in the agreement score. Using the
best method, almost half of the edges were connected correctly, providing support for
HS. This is in large part caused by using the correct major claim as the root node.

English PE Corpus For the following evaluation, the test split (see Section [) of the
PE corpus is used, consisting of 40 cases. The results of PE;; are very similar to the
findings of the ReCAP corpus. The I-node agreement .# = 0.622 is higher than for the
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Table 2. Aggregated results of the evaluation using the ReCAP corpus.

(a) Major claim methods.  (b) Relationship type thresholds. (c) Graph construction methods
(CENTROID major claim for e2e).

Method M Threshold e  Fpreset

Method & &
CENTROID 200 0.5 460 514 c2e  Opreset
FIRST .100 : : : ADU POSITION .064 .166
PAIRWISE .200 0.9 927 .898 FLAT TREE 095 449
PROBABILITY  .100 1.0 937 902 PAIRWISE ComP.  .054 .296

ReCAP graphs, providing support for H1. CENTROID and PAIRWISE performed best
for identifying the major claim (.# = 0.1), contradicting H2. A threshold of 0.9 for the
relationship type classification yields the highest agreements (e = 0.936 and .%}reser =
0.912). Again, the S-node distribution is skewed, but as two different corpora show the
same results, we can accept H3 for certain corpora. The best edge agreement scores can
be obtained using ADU POSITION for the end-to-end graph (&, = 0.130) and FLAT
TREE for the graph with preset ADUS (Spreset = 0.274). All graph construction methods
show a low agreement, thus H4 needs to be rejected. The use of preset ADUs provides
a benefit in the edge agreement with only a small decrease in the S-node agreement,
leading to the final acceptance of HS. Overall, the findings show the robustness of the
proposed approach for varying input data. The PE ;g dataset provides another perspective
on the pipeline by using sentence-based segmentation. The I-node agreement .# = 0.799
shows a decent approximation of the segmentation, leading to the partial acceptance
of H1 for certain corpora (e.g., essays). The major claim agreement .# is 0.125 for
CENTROID and PAIRWISE, 0.175 for PROBABILITY and 0.250 for FIRST. As FIRST was
only best in this specific corpus and the values are low overall, we have to reject H2.

6. Conclusion and Future Work

In this work, we investigated new methods towards the automated mining of argument
graphs from natural language texts for both English and German. The pipeline success-
fully extends previous approaches [[11] by generating even complex graphs as end prod-
uct. Our results show that there are great differences in the resulting graphs based on
the type of input data. For very homogeneous corpora such as PE, the agreement is very
high, but in heterogeneous datasets such as ReCAP, the methods performed rather poor.
When looking beyond the goal to approximate a human annotation as much as possible,
the generated graphs might be very beneficial to detect new connections between single
statements of an argumentative text. Using multiple methods to construct different rep-
resentations from a single text might also help in educating professional annotators by
discussing the strengths and weaknesses of individual cases.

In future work we plan to provide a more flexible approach for segmenting a text into
potential ADUs. A limitation of the current evaluation procedure lies in the edge agree-
ment, which could be tackled by providing multiple benchmark graphs to account for un-
certainty. As the ReCAP corpus makes use of detailed argumentation schemes [17], the
pipeline should be extended make use of them. Finally, we will investigate the potential
use of argument graphs for the task of measuring argument quality [23] in unstructured
texts through the use of argument mining.



July 2020

Acknowledgments This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG) within the project ReCAP, Grant Number 375342983 (2018-2020), as part
of the Priority Program “Robust Argumentation Machines (RATIO)” (SPP-1999). We
would also like to thank DeepL for providing free access to their translation API.

References

(1]
[2]
[3]
[4]
[3]
(6]

(7]

(8]

(9]
[10]
(11
[12]
[13]
[14]
[15]
[16]
(17]
[18]
[19]

[20]
[21]

[22]

[23]

Levy R, Bogin B, Gretz S, Aharonov R, Slonim N. Towards an argumentative content search engine
using weak supervision. In: COLING; 2018. p. 2066-2081.

Stab C, Gurevych I. Identifying Argumentative Discourse Structures in Persuasive Essays. In: EMNLP;
2014. p. 46-56.

Lippi M, Torroni P. Argument Mining from Speech: Detecting Claims in Political Debates. In: AAAI;
2016. p. 2979-2985.

Craven R, Toni F. Argument Graphs and Assumption-Based Argumentation. Artificial Intelligence.
2016;233:1-59.

Chesievar C, McGinnis J, Modgil S, Rahwan I, Reed C, Simari G, et al. Towards an Argument Inter-
change Format. Knowl Eng Rev. 2006;21(4):293-316.

Stede M, Afantenos SD, Peldszus A, Asher N, Perret J. Parallel Discourse Annotations on a Corpus of
Short Texts. In: LREC; 2016. .

Lenz M, Ollinger S, Sahitaj P, Bergmann R. Semantic Textual Similarity Measures for Case-Based
Retrieval of Argument Graphs. In: ICCBR. vol. 11680 of Lecture Notes in Computer Science; 2019. p.
219-234.

Cabrio E, Villata S. Five Years of Argument Mining: a Data-driven Analysis. In: IICAI; 2018. p.
5427-5433.

Stab C, Miller T, Schiller B, Rai P, Gurevych I. Cross-topic Argument Mining from Heterogeneous
Sources. In: EMNLP; 2018. p. 3664-3674.

Stab C, Gurevych I. Parsing Argumentation Structures in Persuasive Essays. Computational Linguistics.
2017;43(3):619-659.

Nguyen HV, Litman DJ. Argument Mining for Improving the Automated Scoring of Persuasive Essays.
In: AAAT; 2018. p. 5892-5899.

Stab C, Gurevych I. Parsing Argumentation Structures in Persuasive Essays. Computational Linguistics.
2017 Sep;43(3):619-659.

Eger S, Daxenberger J, Stab C, Gurevych I. Cross-lingual Argumentation Mining: Machine Translation
(and a bit of Projection) is All You Need! In: COLING; 2018. p. 831-844.

Dumani L, Biertz M, Witry A, Ludwig AK, Lenz M, Ollinger S, et al.. The ReCAP Corpus: A Corpus
of Complex Argument Graphs on German Education Politics; 2020.

Lippi M, Torroni P. Context-Independent Claim Detection for Argument Mining. In: IC-Al IICAI'1S5;
2015. p. 185-191.

Cabrio E, Villata S. Combining Textual Entailment and Argumentation Theory for Supporting Online
Debates Interactions. In: ACL; 2012. p. 208-212.

Walton D, Reed C, Macagno F. Argumentation Schemes; 2008.

Schapire RE. A Brief Introduction to Boosting. In: IJCAJ. IICAI’99; 1999. p. 1401-1406.

Aker A, Sliwa A, Ma Y, Lui R, Borad N, Ziyaei S, et al. What works and what does not: Classifier and
feature analysis for argument mining. In: ArgMining@EMNLP; 2017. p. 91-96.

Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. CoRR. 2016;abs/1603.02754.
Levenshtein VI. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics
Doklady. 1966 Feb;10:707.

Lenz M, Sahitaj P, Kallenberg S, Coors C, Dumani L, Schenkel R, et al. Towards an Argument Mining
Pipeline Transforming Texts to Argument Graphs. arXiv: 2006 04562. 2020;.

‘Wachsmuth H, Naderi N, Hou Y, Bilu Y, Prabhakaran V, Thijm TA, et al. Computational Argumentation
Quality Assessment in Natural Language. In: EACL; 2017. p. 176-187.



