
FiLiPo: A Sample Driven Approach for Finding
Linkage Points between RDF Data and APIs

Tobias Zeimetz and Ralf Schenkel

Trier University, 54286 Trier, Germany
{zeimetz, schenkel}@uni-trier.de

Abstract. Data integration is an important task in order to create com-
prehensive RDF Knowledge Bases. Many data sources are used to extend
a given dataset or to correct errors. Since several data providers make
their data publicly available only via Web APIs, such APIs must be in-
cluded in the data integration process. However, Web APIs often come
with limitations in terms of access frequencies and speed due to laten-
cies and other constraints. On the other hand, Web APIs always provide
access to the latest data. So far, integrating APIs has been mainly a
manual task due to the heterogeneity of API responses. To tackle this
problem we present in this paper the FiLiPo (Finding Linkage Points)
system which automatically finds connections (i.e., linkage points) be-
tween data provided by APIs and local knowledge bases. FiLiPo is a
sample-driven schema matching system that models API services as pa-
rameterized queries. Furthermore, our approach is able to find valid input
values for Web API services automatically (e.g. IDs) and can determine
not only one-to-one matches but also one-to-many matches. Our results
on ten combinations of KBs and APIs show that FiLiPo performs well
in terms of precision and recall.

Keywords: Data Integration · Schema Mapping · Relation Alignment

1 Introduction

RDF knowledge bases (KBs) are used in many domains such as bibliographic,
medical and biological data. RDF KBs consist of triples, where a triple is a
statement of the form (subject, predicate, object). A problem that all databases
(regardless of their format) face is that they are potentially incomplete, incor-
rect or outdated. Considering how much new data is generated daily it is highly
desirable to integrate missing data provided by external sources. Thus, data
integration approaches [7,6,11,2,10] are used to expand KBs and correct erro-
neous data. The usual process of data integration is to download data dumps
and subsequently align the schemas of the local KB and of the data dump.
“Aligning” describes the process by which relations and entities from the local
KB are mapped to relations and entities from external sources, thus creating a
mapping between local and the external data schemas. Using this alignment, the
integration process can be done and the data of the KB is expanded or updated.

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191

2 Tobias Zeimetz and Ralf Schenkel

However, data dumps are often updated only infrequently. Using live data
through APIs instead of dumps [7,6] allows access to more recent data. In ad-
dition, the number of potential data sources becomes much larger when using
APIs since most data providers share their data not via dumps, but via APIs.
According to Koutraki et al. [7], APIs seem to be a sweet-spot between mak-
ing data openly accessible and protecting it. The problems of data integration,
i.e. how two different schemas can be mapped, remain. In the worst case, the
schema of an external source has a completely different structure than the local
KB. Hence, data integration remained a manual task for most parts [7].

Motivation. Connecting KBs with data behind APIs can significantly im-
prove existing intelligent applications. As a motivating example, we consider
dblp1, a bibliographic database of computer science publications. It accommo-
dates different meta data about publications, e.g., titles, publisher names, and
author names and is available as an RDF KB. Data from dblp is often used for
reviewer, venue or paper recommendation. By extending dblp with information
from APIs like CrossRef2, or SciGraph3, for example titles or abstracts, these ap-
plications can be improved. Missing information about authors like ORCIDs (an
ORCID is a code to uniquely identify scientific authors) can be supplemented by
these APIs and help to disambiguate author profiles. Furthermore, such informa-
tion is also useful for a user querying dblp for authors or publications. The aim
in this case is to complete the missing information using external data sources.
Therefore it is important that multiple APIs can be used and missing data can be
integrated from many different sources. Additionally, the determined alignments
can be used to identify erroneous data and correct it if necessary.

Contributions. We present FiLiPo (Finding Linkage Points)4, a system
to automatically discover alignments between a local KB and APIs, focusing
on detecting relational alignments. We omit aligning classes because classes and
types do not exist in a typical API response. FiLiPo is designed to work with
single response APIs, i.e. APIs that return only a single response and not a list
of most similar search results, and works for datasets of arbitrary domains. In
contrast to other systems [11], users of FiLiPo only require knowledge about a
local KB (e.g. class names) but no prior knowledge about the APIs data. FiLiPo
is the first system that automatically detects what information from a KB has
to be used as input of an API to retrieve responses. This will not require end
users to determine the best input and significantly reduces manual effort. In
contrast to other state-of-the-art systems [7], FiLiPo uses fifteen different string
similarity metrics to find an alignment between the schema of a KB and that
of an API. A single string similarity method is not suited to compare different
kinds of data, for example both ORCIDs (requiring exact matches), ISBNs (with
some variation) and abbreviated names. Furthermore, FiLiPo is able to find not
only 1:1 matches, like other systems, but also 1:n matches, i.e. aligning a single

1 https://dblp.uni-trier.de/
2 https://github.com/CrossRef/rest-api-doc
3 https://dev.springernature.com/restfuloperations
4 https://github.com/dbis-trier-university/FiLiPo

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191
https://dblp.uni-trier.de/
https://github.com/CrossRef/rest-api-doc
https://dev.springernature.com/restfuloperations
https://github.com/dbis-trier-university/FiLiPo

A Sample Driven Approach for Finding Linkage Points 3

relation (e.g. full name) with multiple other relations (e.g. first and last name).
A user only needs to specify the number of samples sent to the API, rendering
the approach usable even for non-technical users such as librarians.

2 Related Work

API Alignment. DORIS [7,8] is the only system that has dealt with the align-
ment of KBs and APIs so far and builds upon the schema and structure of an
existing KB. During the alignment process, the system sends first probing re-
quests to a chosen API. To use DORIS, users only have to specify the input
class for the used API and a request limit. The input class specifies which form
of entities the API responds to (e.g. Publications). Then the label information
of instances of the corresponding class is used as predefined input relation for
APIs. However, this is not always the appropriate input for an API; for example,
some APIs expect DOIs or ISBNs as input values. Unlike DORIS, FiLiPo is able
to detect automatically appropriate input values.

One key assumption of the DORIS system is that it is more likely to find
information on well-known, popular or famous entities (e.g. famous actors, ac-
claimed books, or big cities) via APIs calls than it would be for other entities.
Additionally, Koutraki et al. [7] assume that a KB contains more facts (triples)
for well-known entities than for lesser-known entities and therefore rank the en-
tities of the input class by descending number of available facts. However, this
approach has major drawbacks. For a publication, for example, the number of
facts stored by a bibliographic KB is often determined by the meta data of that
publication, not by its popularity (unless citations etc. are stored). Furthermore,
DORIS uses equality (ignoring punctuation and case) to compare data values
in the alignment process. As stated previously, a single method is not suited to
compare all various data types. The limitations of DORIS become clear when ex-
amining, for example, author names or titles. Names are often abbreviated and
the matching approach of DORIS will fail because DORIS performs an exact
match on the normalised names (i.e., removed punctuation). Similar problems
will arise when examining titles. In contrast to this approach FiLiPo uses a set
of fifteen similarity methods and picks randomly chosen entities of a KB.

The problem of aligning the schema of KBs and APIs shares similarities with
various fields [12,2,7] like schema matching, data warehouses, e-commerce, query
discovery and Web service discovery. Hence, insights and procedures of systems
from other fields were also taken into consideration when developing the FiLiPo
system. Aligning data of local KBs with that of APIs has similar problems as
schema mapping or ontology alignment. The major difference to schema and on-
tology alignment is that API responses do not always have clear semantics or any
semantics at all. In addition, API responses usually do not provide information
about classes and relations that can be used during the alignment process. When
using APIs, only instance information is available and therefore classical schema
and ontology approaches are not suitable for this task. In addition, Madhavan et
al. [9] state that KBs often contain multiple schemas and data models to mate-

4 Tobias Zeimetz and Ralf Schenkel

rialise similar concepts and hence build variations in entities and their relations.
This makes purely schema-based matching inaccurate, which must therefore be
supported by evidence in form of instances from the KB.

Instance-Based Alignment. Instance-based alignment systems use the in-
formation bound to instances in KBs in order to find shared relations and in-
stances between two KBs. These approaches can be divided into instance-based
class alignment approaches and instance-based relation alignment approaches.
The main difference between class and relation alignment lies in the fact that
relations have a domain and range. Even if relations share the same value, they
can have different semantics (e.g. editor and author).

A lot of works [11,3,9,5] focus on instance-based relation alignment between
two KBs. However, most of them focus on finding 1:1 matches, e.g. matching
publicationYear to year. The iMAP system [3] semi-automatically determines
one-to-one matches, but also considers the complex case of 1:n matches. The
iMAP systems consists of a set of search modules, called searchers. Each of the
searchers handles specific types of attribute combinations (e.g. a text searcher).
FiLiPo follows a similar approach. Instead of searchers, FiLiPo only distinguishes
between the type of information (numeric, string, or is it a key). Then, in case of
strings, a number of different similarity methods are used, and the best method
is automatically determined and used.

Similar to iMAP, MWeaver [11] also needs user assistance. MWeaver re-
alises a sample-driven schema mapping approach which automatically constructs
schema mappings from sample target instances given by the user. The idea of
this system is to allow the user to implicitly specify mappings by providing sam-
ple data. However, this approach needs significant manual effort. The user must
be familiar with the target schema in order to provide samples. In contrast to
this approach, FiLiPo draws the sample data randomly from the knowledge base
and thus tries to cover a wide range of information from the knowledge base.

SOFYA [5] is an instance-based on-the-fly approach for relation alignment
between two KBs. The approach works with data samples from both KBs in
order to identify matching relations. The core aspect of SOFYA is that the
standard relation “sameAs” is used to find identical entities in two different
KBs. However, this mechanism cannot be used for the alignment of KBs and
APIs, because RDF KBs do not contain sameAs links to APIs.

The Cupid system [10] is used to discover an alignment between KBs based
on the names of the schema elements, data types, constraints and structure. It
combines a broad set of techniques of various categories (e.g. instance-based,
schema alignment, etc.). The system uses a linguistic and structural approach in
order to find a valid alignment. Furthermore, Cupid leverages a corpus of schemas
and mappings to improve the robustness of the schema matching algorithms.
Unfortunately, this approach cannot be used when aligning KBs and APIs, since
often there is no formally defined schema for an API.

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191

A Sample Driven Approach for Finding Linkage Points 5

3 Preliminaries

This section introduces RDF knowledge bases and corresponding terms and then
provides foundations of APIs.

3.1 Knowledge Base

RDF Knowledge Bases. The RDF format has established itself as the stan-
dard for representing and storing KBs. An RDF KB can be represented as a
graph with labelled nodes and edges. The edges in RDF KBs correspond to
triples of the form t = (s, p, o). Such an RDF triple represents a fact in the
KB. The subject s describes the entity the fact is about, e.g. a paper entity.
The predicate p describes the relation between the subject and the object, e.g.
title. The object o describes an entity, e.g. an author of the publication, or is
a literal, e.g. the title of a publication.

au
th

or
s

label

"Some example Title"facets

"2020"

va
lu
e

...

01 1

"Tobias"

given

"Some"

giv
en

"Name"

fam
ily

fa
m

ily

"Zeimetz"
"Trier University"

inst

(a) API Response Example.

PaperEntity

"10.1145/3340531.3417438"

"Some example Title""2020"

_blank1
creatorList

AuthorEntity

"Tobias Zeimetz" "Trier University"

_blank2

title

doi

ye
ar

Publication List

type

type

first

... fullN
ame affiliation

Person

re
st

type

(b) Fragment of an RDF KB.

Fig. 1: Record of a KB and the corresponding API response.

A class in a KB is an entity that represents a group of entities. Every en-
tity contained in a KB is assigned to at least one class. Entities assigned to a
class are denoted as an instance of the assigned class. In Figure 1b, the entity
PaperEntity is an instance of the class Publication.

Relations. Since this paper focuses on aligning relations, we introduce a for-
mal definition for relations and relation paths in a KB. In the following we assume
that we have given a KB K. If (s, r, o) ∈ K, we say that s and o are in relation r,
or formally r(s, o); in other words, there is a path from s to o with label r. Addi-
tionally, we write r1.r2.....rn(s, o) to denote that there exists a path of relations
r1, r2, ..., rn in K from subject s to object o visiting every intermediate node
only once. For example, in Figure 1b the relation year(PaperEntity,"2020")
describes the path from the entity PaperEntity to the value "2020". In the
following we will refer to r1.r2.....rn(s, o) as relation-value triple.

Identifier Relations. Some KBs contain globally standardised identifiers
such as DOIs, ISBNs or ISSNs. Such identifiers are only bound to a single entity

6 Tobias Zeimetz and Ralf Schenkel

and should therefore be unique. Therefore, relations r that model identifier rela-
tions have the constraint that their inverse relations (r−1) are “quasi-functions”,
i.e., their inverse relations have a high functionality. Many works [7,13,4] have
used the following definition for determining the functionality of relations:
fun(r) := |{x : ∃y : r(x, y)}| ÷ |{(x, y) : r(x, y)}|

Since real world KBs are designed and modeled by humans identifier relations
are often error-prone and noisy. For this reason some identifier values may appear
more than once. Therefore, we consider every relation r contained in K with
fun(r−1) ≥ θid, where θid ∈ [0, 1] is a threshold, as identifier relation.

Knowledge Base Schema. In order to capture the rough structure of a KB
a schema enriched with statistical information and more is needed. Ontologies
only contain information about classes, sub-classes and relations. However, a KB
contains more information hidden in its instances than in a simple ontology, e.g.
the number of instances of a specific class, the number of occurrences of a relation
with a specific class, or what classes are connected to each other. For the rest of
the paper we will refer to a schema S = (C,Rs, Rid) of a KB as a triple of three
sets. The first component C defines the set of classes and how many instances
of each class exist in the KB. For the fragment of a KB presented in Figure 1b
an example of an entry in C would be a tuple of the form (Publication,1). The
second component Rs represents the structure of the KB. It contains information
about how classes and literals are connected to each other, how often a class is
connected to another class and how often a relation is used by a specific class
(e.g., (Publication, creatorList, List, 1) ∈ Rs). The last component is the set
Rid which contains all identifier relations contained in the KB (e.g., doi).

3.2 Web Services

Web API. A Web service can provide one or multiple APIs to access data.
APIs are called via parameterised URLs responding with a document. As shown
in Figure 1a the response of an API is typically an unordered and labelled tree.
Inner nodes in the tree represent an object (similar to an entity in a KB) or
an array, leaf nodes represent values. The path to a node represents a relation
between an instance (similar to an entity in a KB) and another instance or value.
To avoid confusion we will describe the relations in a response only as paths.

Path-Value-Pairs. In order to find valid alignments between KBs and APIs
the information in the API responses has to be compared with the values of the
corresponding entities in a KB. Since comparing objects and arrays from the API
response with entities from the KB to determine alignments is not promising,
only paths to leafs (literals) have to be considered. Given an API response res
we will write p1.p2.....pn(o) to denote that it exists a path p1, p2, ..., pn in res
from the root of the response to the leaf o with these labels. For example, in
Figure 1a the path label("Some example Title") describes the path from the
root of the API response to the leaf "Some example Title" via the path label.

Branching Points. A branching point in an API response indicates that
there are several outgoing edges from one node, labelled by numeric index values
0 to n. These branching points represent arrays in the response. For example the

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191

A Sample Driven Approach for Finding Linkage Points 7

path authors.0.given("Tobias") in Figure 1a contains a branching point. This
indicates that all array entries carry the same information and should therefore
be mapped to the same relation. To indicate a branching point, we will use the
symbol * instead of the numeric index in paths; in the example, we will write
authors.*.given("Tobias"). Using the same logic, a relation in a KB that
points to a set of entities is considered to be a branching point (e.g. creatorList
in Figure 1b). Additionally, we write P∗ to indicate a path P ∗ p that has P as
prefix and p as suffix, with a branching point separating the two parts.

4 Problem Statement

FiLiPo operates in two phases. In the first probing phase FiLiPo sends various
information (e.g. DOIs, titles, etc.) to an API to determine which information the
API responds to. Then, in the second aligning phase, the information returned
is used to guess the schema of the API and to determine an alignment between
the local and external data. We will now discuss some of the major problems
that FiLiPo encounters and solves in more detail.

Probing Phase. The first major challenge occurs in the probing phase. The
goal of the probing phase is to determine which input values (e.g. DOI, ISBN,
etc.) have to be sent to the API to retrieve a valid response. When a resource is
requested that is unknown to the API, it can respond in several ways. The classic
and simple case is that it returns a corresponding HTTP status code (e.g. 404
Not Found). The more complicated case is when the API simply replies with a
JSON response that contains an error message, or even returns information on a
“similar” resource (e.g., with a similar DOI). This cannot be easily distinguished
from a “real” response which contains data about the requested resource.

Alignment Phase. In the alignment phase, valid matches between the data
of an API and a KB are determined by comparing the data of the API response
with the data of the KB. The first challenge in this context is that the same value
may be represented slightly differently in the KB than in the API response (e.g.,
names with and without abbreviated first names), so this comparison needs to
apply string similarity methods. The various existing similarity methods have
different strengths and weaknesses. For example, Levenshtein distance is good for
comparing the titles of a paper or movie, but performs poorly when comparing
names of authors or actors because names are often abbreviated and first and
last names may be in different order. Therefore, the best performing similarity
method needs to be determined automatically for each type of data.

A special case of this challenge is comparing identifiers such as DOIs and
ISBNs. For example, DOIs of a conference book and conference papers are very
similar, in many cases only the last two digits will be different. In contrast,
the ISBN of a book can be written in different forms (e.g. 978-3-89318-084-4 or
9783893180844) but should be considered equal. For this reason a simple check
for equality is not sufficient, otherwise possible alignments are lost.

Finding a match between the records of a KB and an API response can
be particularly problematic if the API responds with a record similar to the

8 Tobias Zeimetz and Ralf Schenkel

requested one if that is not found. For example, a request for a book with title
“Some example Title” may lead to an API response with information of a book
with title “Some Title”. The data of both records may overlap, especially for
data with a low functionality such as years that appear in many entities. Thus,
a system has to check if the API has responded with the requested record.
Koutraki et. al [7] state that if the KB and the API share the same domain, it
is likely that the data of the requested KB entity and the API record overlaps.
This means that if the information in the records overlaps sufficiently, the API
has probably responded with the requested record and not with another record.

One observation we made during the development of FiLiPo is that some val-
ues, such as years, are included in the records several times. This is because they
represent different information. For example, some bibliographic APIs respond
with data containing references and citations of a paper, which often include
the publication year. When the publication year of the KB is matched with the
publication year of a reference (e.g. because the reference was published in the
same year), the matching is no longer correct. Theoretically the semantics of
the paths should be considered but as mentioned earlier, API responses do not
always have a clear or a directly resulting semantics. The problem becomes even
worse when considering the modelling process of the API or KB schema. The
value stored for the publication year of a paper often depends on the opinion of
the data provider. Some data providers assume that the publication year is the
year the conference proceedings are published. Other data providers model the
year of the corresponding conference as publication year of the paper, since the
paper was presented in this year at the conference.

5 Schema Matching and Mapping

In the following we describe the probing and aligning phase in more detail. The
input to the aligning process is the URL of the API and the corresponding input
classes in the local KB, where an input class is a class of entities that will be
used to request the API.

5.1 Probing Phase

The probing phase is used to find the set Rin of relations of the input class
that point to values which can be used to request the API successfully (e.g.,
a DOI relation), since not all input values will lead to responses. To illustrate
this with an example, we assume that the input class of the API whose result
is presented in Figure 1a is Publication. The illustrated fragment of a KB in
Figure 1b has five relations to describe the metadata of a publication but the
API only responds to DOIs. First, all relations that are not connected to literals
(e.g., type) are ignored. Afterwards some initial requests are sent to the API for
each remaining relation of the input class in order to understand which relation
provides successful input values for the API.

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191

A Sample Driven Approach for Finding Linkage Points 9

The input values for each relation (e.g. DOIs) that are used to request the API
are picked uniformly at random from entities of the input class in the KB with
this relation. This is done to prevent the entities from being very similar to each
other and thus increase the probability of an API response. For example, assume
that the API in Figure 1a only responds to records with a specific publisher like
Springer. If the entities are selected in any non-random way, e.g. according to
the amount of facts the KB contains about them, it is possible that no entities
with publisher Springer are included, and the API cannot answer the requests
and no aligning can be done.

After sending a request to the API it can respond in several ways. In the
best case, the API responds with the HTTP status code 200 OK or with an
HTTP error code (e.g. 404 Not Found). In the worst case, the server responds
with a document containing an error message. In this case the system cannot
easily detect that some input values did not lead to a (successful) response and
therefore will continue with the alignment phase with the corresponding relation.
Since this would result in a considerable increase of requests and runtime it is
important to identify error messages.

In order to identify error responses, the system iterates over all answers and
compares how similar they are to one another. This procedure is based on the
observation that error responses are always similar or even the same, i.e. they
usually contain the same error message or consist of an generic error message in
combination with the request value. In contrast, correct answers are different to
one another since they contain information about various different entities. As
a result, an error response is determined by counting how often a response was
similar (by using Levenshtein) to other responses. The one that is most often
similar (i.e. the similarity is higher than 0.80) to other responses is considered an
error message. Then all responses similar to this response will be deleted and all
relations rin which have not received enough answers will no longer be considered
as valid input relations. In this way unnecessary requests are prevented.

Next, the alignment phase begins, considering only the set Rin of relations
that led to valid answers. The aligning phase itself is divided into two parts: (1)
determining candidate alignments and (2) determining the final alignments.

5.2 Aligning Phase: Candidate Alignment

The candidate alignment phase takes as input the set of valid input relations Rin,
the chosen KB K and the corresponding schema S = (C,Rc, Rid). In the follow-
ing we write S.C to indicate that we access the C component of S (analogously
for the other components). For each input relation rin ∈ Rin, the algorithm
sends nr further requests to the API.

These requests are constructed similarly to the probing phase. A random
entity e is chosen from the input class. FiLiPo then retrieves the set rec of
all facts that K contains for e in the form of relation-value triples r(e, l). Like
Koutraki et al. [7] we take all facts into account up to depth three. This depth
was chosen because all other facts usually do not make statements about the
entity e. To exclude the case that entities are connected to other entities in only

10 Tobias Zeimetz and Ralf Schenkel

one direction, inverse relations are also considered. Afterwards FiLiPo calls the
API with values vreq of the input relation rin of e and stores the response in res.

The next step is to find all relation matches R between the fact set rec and
the response res. The set rec contains relation-value triples of the form r(e, l)
and res encodes information from the response as path-value pairs of the form
p(v) where p is the path in the response from the root to the value v. To realise
this, all values l of the local record rec must be compared with all values v of the
API response res. For each such pair (r(e, l), (p(v)), the best similarity method
is determined. If l or v is an IRI, it is important that they are compared with
equals as IRIs are identifiers and therefore only the same if they are identical.
The same holds for numerical values since it is unclear how to check numbers for
similarity. In all other cases FiLiPo uses a set Msim of fifteen different similarity
methods5 with several variants since one string similarity method is not sufficient
to compare all different data types. The method m ∈ Msim that returns the
largest similarity of l and v is considered (temporarily) to be the best method
to compare both values and is stored for the later process.

As discussed before, fuzzy similarity measures are not appropriate for iden-
tifier relations, but comparing them for equality would be too strict; identifier
relations contained in S.Rid are therefore compared with a gradient boosting
classifier working on Flair [1] embeddings. We use Flair embeddings instead of
others since this framework is character-based and therefore suits better for the
comparison of two identifier values. Once the best similarity function has been
determined, and if this function yields a similarity of at least θstr, the triple
(r, p,m) is created and added to the set of record matches R.

If enough relation matches are found, it is assumed that the input entity e
and the API response overlap in their information and that the API has actually
responded with information about the requested entity. If the overlap is greater
than θrec, the overlap is considered sufficient and the matches R will be added
to Arin . This set represents the set of matches found for the input relation rin.
If not enough matches are found, it is assumed that the API has responded with
information of a different entity; in this case, any matches found between the
records must be ignored.

5.3 Aligning Phase: Final Alignment

Afterwards the set Arin is used to determine the final alignment from the tempo-
rary matches. For each relation in Arin the valid path match on the API side is
searched (if existing). It is easy to match relations and paths without branching
points, e.g., label("Some example Title"). Here we can simply match label
with title. However, for matches with a branching point path, we need to de-
cide if all entries of the corresponding array provide the same type of information
or different types. In the first case, e.g., an array specifying the authors of a pa-
per, we need to match all paths that are equal (with exception of index values)
5 All used similarity methods are listed in our manual at https://github.com/

dbis-trier-university/FiLiPo/blob/master/README.md

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191
https://github.com/dbis-trier-university/FiLiPo/blob/master/README.md
https://github.com/dbis-trier-university/FiLiPo/blob/master/README.md

A Sample Driven Approach for Finding Linkage Points 11

of the API response with the same relation. This is the case in the example in
Figure 1a for the path authors.*.inst. In the last case, where every entry of
the array has a different type, each different index value at the branching point
should be mapped to one specific relation, possibly different relations for the dif-
ferent index values. In the example, facets.0.value("2020")) always denotes
the year of the publication, whereas facets.1.value("Computer Science"))
(not shown in the example) could denote the genre of the publication. There-
fore, matching either the year or the genre relation of K to facets.*.value is
incorrect and should be prevented. As an orthogonal problem, some relations in
the KB (like fullName in the example in Figure 1b) have to be matched with
multiple paths from the API response (1:n matches), e.g. given and family in
Figure 1a, because the schematic structure differs.

In order to determine the final alignment and to solve the problems mentioned
above, FiLiPo distinguishes three cases: (1) 1:n matches, (2) fixed path matches
and (3) branching point matches. First, for every relation r for which at least one
tuple (r, p,m) exists in Arin we determine the path P∗ (index values are replaced
by the wild card symbol) that was matched most often in Arin , regardless of
which method m was used. Furthermore it is important that the relation r and
the path P∗ are matched sufficiently frequent. If such a path was found only
a few times, e.g. once in 100 responses of the API, then the match is not very
strong. We therefore calculate a confidence score for the matching by dividing
the number of valid matches for r by the number of responses. This confidence
must be greater than θrec. We reuse θrec here based on the assumption that the
overlapping of records is also reflected in the overlapping of relations.

To identify 1:n matches, e.g. matching the paths authors.*.family and
authors.*.given to creatorList.*.fullName, we assume that the family and
given path could be matched similarly often to creatorList.*.fullName. In
order to identify such matches, we search all entries B ⊆ Arin with the same
relation r and the same prefix in the corresponding branching point path P ′∗
which could be matched similarly often to r as the previously determined path
P∗ (with a tolerance). We assume that information representing a 1:n match
(e.g. given and family) belong together in principle and are therefore located
at a similar position in the result tree of the API. Therefore, an additional
condition is that 1:n matches must have the same prefix (up to the branching
point), e.g. authors.*. If this is the case, all identified paths for r are considered
as 1:n matches. Before adding these matches to the set of final alignments, as
last step the index values for all found paths are examined. Since a path of an
API response can contain more than one array index as nodes, it is necessary
to check where the path really branches off. An example is a path of the form
record.0.author.∗.name. The API in this example always responds with an array
record containing one element, which in turn contains the response. Therefore,
it would be inaccurate to model the first array as branching point. To find out
at which point a path really branches, the longest common prefix is determined.

If B = ∅, then only one match was found for the relation r, so it is no
longer considered a 1:n match. The next step is to check if the pair (r, P∗) is

12 Tobias Zeimetz and Ralf Schenkel

a branching point match or a fixed path match. Therefore, it is checked if the
corresponding path P∗ that was matched to r in Arin only had one index value
at the branching point or if multiple different ones where used. An example is
the path facets.0.value in Figure 1a. To match the relation year there is
always only this fixed path, because the first place of the array facets always
describes the year of publication and never contains any other information. If
only one index value is found, it is not considered a branching point but a fixed
path match. To ensure that it is a valid fixed path match, the confidence for this
match is determined as before. If the confidence is greater or equals than θrec),
it will yield a valid fixed path match and the relation-path match is added to
the final alignment set.

Some relations and paths are dependent on the previous entity. For exam-
ple, to match the affiliation path for an author we have to include the whole
author array of the API response because matching only one specific path (e.g.
authors.0.inst) would not be sufficient. Therefore, if more than one index
value was found for the branching point P∗ it is possible that (r, P∗) is a
branching point match. A match of a relation r and a branching point path
P∗ is considered valid if the following two conditions are satisfied: (1) if the rela-
tion r has led to a match often enough, i.e. the previously computed confidence
value is greater than or equal to θrec, and (2) if the matched path P∗ occurs
frequently enough in all matches with the relation r. If both conditions are met,
the match between r and P∗ is considered a branching point match and added
to the final alignment set. Note that before adding, the longest common prefix
will be determined as in the case of 1:n matches.

For the sake of simplicity, one aspect has not yet been considered in detail.
Some relations can also potentially be matched with multiple paths in the API
response. For example, the relation for the publication year could be incorrectly
matched with the path to the publication years of the article’s references. To
mitigate such errors, a reciprocal discount is used, i.e. the number n of matches
found for a possibly incorrect path p and a relation r is discounted by the length
difference of the paths to n/|(len(r)− len(p))|. Thus paths with the same length
as the KB are preferred. At the end the final alignment set contains all valid
matches found for the input relation rin.

6 Evaluation

Baseline System. Only DORIS [7] has dealt with the alignment of KBs and
APIs so far. Additionally, many of the systems [11,3] presented in Section 2 work
semi-automatically with user assistance and are mostly designed for data sets of
the same format. Some of the systems [10] exploit schema information, use se-
mantics or “sameAs” relations to find alignments. However, schema information
exists very rarely on the API side and using semantics or relations is difficult be-
cause API responses do not always have clear semantics. Furthermore, “sameAs”
predicates are a concept of RDF and are not present in classical API responses.
Thus, we use only the DORIS system as a baseline system.

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191

A Sample Driven Approach for Finding Linkage Points 13

Datasets and Platform. We evaluated FiLiPo6 and DORIS on three local
KBs, seven bibliographic APIs and two movie APIs. The first local KB is an
RDF version of the dblp7. The other local KBs are the Linked Movie DB8 and an
RDF version of IMDB9, both containing movie information. The used APIs are
SciGraph 10, CrossRef 11, Elsevier12, ArXiv13, two APIs provided by Semantic
Scholar14 (one with DOIs and one with ArXiv keys as input parameters) and the
COCI API of Open Citations15. All of these APIs respond with metadata about
scientific articles. To align the movie KBs we used the APIs of the Open Movie
Database (OMDB)16 and The Movie Database17. It responds with metadata
about movies, e.g. movie director and movie genres. All experiments are done
on a workstation (AMD Ryzen 7 2700X, 48GB RAM) and all KBs are processed
and stored as triple databases by using the Apache Jena Framework.

As a gold standard, we manually determined the correct path alignments
for each API. Table 1 shows (column HA) how many valid alignments exist.
Alignments were ignored that could not be determined based on the data, but
for which a human would have been able to draw a connection. For example
sameAs relations cannot be determined automatically since the URLs may differ
completely. However, a human could find such a match.

Evaluating Thresholds. FiLiPo works with two different thresholds: the
string similarity θstr and the record overlap θrec. To determine a combination of
both thresholds that provides good alignment results, we tested all combinations
of values for both thresholds (steps of 0.1) with the CrossRef API and calculated
precision, recall and the F1 score. We observed that the found alignments had
a very high precision for θstr between 1.0 and 0.5; recall was significantly better
at 0.5. This is mainly due to the fact that data which are slightly different (e.g.
names) can still be matched. For large values of θrec, many alignments are lost,
because the data of a local KB and an API overlap only slightly in the worst case.
Here, a value of 0.1 to 0.2 was already sufficient to prevent erroneous matching.
For this reason, we used θstr = 0.5 and θrec0.1 in the experiments.

FiLiPo Evaluation. We assume that users of the FiLiPo system are non-
technical users without programming knowledge or technical skills. Furthermore,
users have no in-depth knowledge of external data sources, but are familiar with
the structure of the local KB. We assume that users have domain knowledge and
therefore can understand common data structures from the genre of the local
6 https://github.com/dbis-trier-university/FiLiPo
7 provided by dblp: https://basilika.uni-trier.de/nextcloud/s/A92AbECHzmHiJRF
8 http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-18-05-2009-dump.nt
9 https://www.imdb.com/

10 https://scigraph.springernature.com/explorer/api/
11 https://www.crossref.org/services/metadata-delivery/rest-api/
12 https://api.elsevier.com
13 https://arxiv.org/help/api
14 https://api.semanticscholar.org
15 https://opencitations.net/index/coci/api/v1
16 http://www.omdbapi.com
17 https://developers.themoviedb.org/3/find/find-by-id

https://github.com/dbis-trier-university/FiLiPo
https://basilika.uni-trier.de/nextcloud/s/A92AbECHzmHiJRF
http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-18-05-2009-dump.nt
https://www.imdb.com/
https://scigraph.springernature.com/explorer/api/
https://www.crossref.org/services/metadata-delivery/rest-api/
https://api.elsevier.com
https://arxiv.org/help/api
https://api.semanticscholar.org
https://opencitations.net/index/coci/api/v1
http://www.omdbapi.com
https://developers.themoviedb.org/3/find/find-by-id

14 Tobias Zeimetz and Ralf Schenkel

Table 1: Total Requests (TR), Average Probing Time (APT), Average Alignment
Time (AAT), Average Number of Alignments (AA), Mean Precision (MP), Mean
Recall (MR), Mean F1 Score (MF1), Alignments (A), Precision (P), Recall (R)

FiLiPo DORIS
Data Sets TR APT AAT AA MP MR MF1 A P R F1
dblp ↔ CrossRef 750 18.0 4.0 18 1.00 0.85 0.92 9 0.89 0.36 0.51
dblp ↔ SciGraph 750 14.5 2.5 18 0.96 0.78 0.86 11 1.00 0.38 0.55
dblp ↔ S2 (DOI) 750 24.5 8.0 15 0.89 0.87 0.88 12 0.83 0.47 0.60
dblp ↔ S2 (ArXiv) 750 24.5 9.0 7 1.00 0.88 0.94 6 0.83 0.33 0.47
dblp ↔ Open Citations 750 23.0 19.0 16 1.00 0.78 0.88 9 1.00 0.33 0.50
dblp ↔ Elsevier 1050 17.5 5.5 13 0.92 0.92 0.92 13 0.85 0.85 0.85
LMDB ↔ TMDB 225 4.5 2.0 6 0.94 1.00 0.97 7 0.57 0.80 0.67
dblp ↔ ArXiv 100 - 3.5 8 0.83 0.86 0.85 5 1.00 0.43 0.60
LMDB ↔ OMDB 100 - 3.5 14 0.93 0.95 0.94 11 0.55 0.56 0.55
IMDB ↔ OMDB 100 - 40.0 9 0.73 0.66 0.69 9 1.00 0.90 0.95

database (e.g. bibliographic meta data). In addition, experts with knowledge
of the APIs (technical-user) can make further settings (e.g., changing string
similarity thresholds) to fine-tune the system. Therefore, we divided the APIs
into two sets: (1) non-technical evaluation set and (2) technical evaluation set.
The non-technical set contains CrossRef, SciGraph and Semantic Scholar (with
the two different APIs). All APIs from the non-technical evaluation set were
executed with the default settings of FiLiPo, i.e. 25 probing requests with 75
additional requests for valid input relations, thus 100 requests are made for
every valid input relation. Since dblp contains only relatively few publications
published by Elsevier, we set the number of additional requests for Elsevier to
375. With only 100 requests, the API returned no or few responses.

The technical-user set consists of ArXiv and OMDB. ArXiv was chosen for
this set because it always responds with a list of the top most similar entities to
the requested one. The only exception is when the API receives an ArXiv key
it will respond with a single record. Since FiLiPo is at this stage not able to
pick the requested record from a list of top-k similar records the probing phase
will not be successful. Because we assumed that technical-users have knowledge
of the used APIs, they are able to provide a valid input relation (i.e. a relation
modelling ArXiv keys) to FiLiPo. In this way the probing phase will be skipped
and the aligning phase starts by using the provided relations. For the same
reason we restricted OMDB to using titles only. Furthermore, to use the IMDB
dataset we had to set the record overlap threshold from 0.1 to 0.3. This is because
IMDB contains a lot of relations with low functionality (e.g. hasLanguage) and
therefore incorrect matches would be tolerated.

Since FiLiPo pulls random records from the local KB and uses them to
request the API, the alignments found may differ slightly between different runs.
The evaluation was therefore performed three times for each combination of KB
and API. The average runtime of FiLiPowas around 25 minutes. If the input
relations are known, as is the case with DORIS, then the system usually needs

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191

A Sample Driven Approach for Finding Linkage Points 15

no longer than a few minutes because the probing phase can be skipped. The
probing phase is expensive in runtime because a significant number of requests
are sent to the API (see Table 1). With 25 probing requests as default in the
case of the dblp containing 27 possible relations for publications, 25× 27 = 675
requests are made during the probing phase.

FiLiPo was able to determine the correct input relations for all APIs con-
tained in the non-technical set. Error messages such as those returned by Sci-
Graph (a JSON response) were successfully identified in all cases. Thus, the
runtime and the number of requests to the API were kept relatively small. For
the evaluation we used the metrics precision, recall and F1 Score. FiLiPo was
able to achieve a precision between 0.73 to 1.00 and a recall between 0.66 to 1.00.
Values close to 1.0 were achieved mainly because there were only a few possible
alignments. The corresponding F1 scores for FiLiPo are between 0.69 and 0.95.

Evaluation of DORIS. We re-implemented DORIS as a baseline system for
our evaluation. DORIS uses label information of instances as its predefined input
relation for APIs. However, this is not always the appropriate input parameter
for the API. For example, some APIs expect DOIs as input parameters. In order
to extend the set of APIs that can be used with DORIS, we modified DORIS such
that the input relation can be specified by the user, allowing to use more sources
than its original specification would allow. Since DORIS does not randomly select
entities, unlike FiLiPo, there was no need for multiple test runs. DORIS uses two
different confidence metrics to determine an alignment: the overlap confidence
and PCA confidence. We assessed that the PCA confidence in DORIS is delivers
better results for the alignment than the overlap confidence. By using the PCA
method DORIS is able to match journal-related relations. Since most of the
entities in dblp are conference papers, journal specific relations are lost when
using only the overlap confidence. The downside is that a path that was found
only once in the API response only needs to match once in order to achieve a high
confidence. In such cases it is risky to trust the match and therefore a re-probing
is performed. This re-probing increases the runtime considerably, since entities
that share the matched relation are subsequently searched and ranked. DORIS
has been configured in order to send 100 requests to the APIs. Furthermore,
the threshold for the PCA confidence has been set to 0.1 based on a calibration
experiment similarly to FiLiPo testing all threshold values between 0.1 and 1.0
(in steps of 0.1). With threshold 0.1, no erroneous alignments were made; recall
was significantly larger at 0.1 than with larger values.

FiLiPo outperforms DORIS in terms of precision in most cases and clearly in
terms of recall and F1. This is mainly caused by the two disadvantages of DORIS
discussed before: First, aligning with entities with most facts often misses rare
features of entities (e.g. a specific publisher like Elsevier). As a result, it is not
possible for DORIS to determine an alignment between dblp and Elsevier’s API.
Second, using only one similarity method results in a relatively high precision,
but is also too rigid to recognise slightly different data (abbreviations of author
names), thus leading to low recall. However, DORIS was able to achieve better
results using IMDB, mainly because DORIS excludes all relations with a very low

16 Tobias Zeimetz and Ralf Schenkel

functionality from the alignment process. This way DORIS prevents precision
drops but also loses recall as we can see in the other cases.

7 Conclusion
We presented FiLiPo, a system to automatically discover alignments between
KBs and APIs. A user only needs knowledge about the KB but no prior knowl-
edge about the API data schema. Our evaluation showed that FiLiPo outper-
formed DORIS and delivered better results in all but one case. As FiLiPo is
currently only able to work with APIs that return a single record, we plan to
extend FiLiPo to work with APIs that return more than one response in future
work.

References
1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence

labeling. In: COLING. pp. 1638–1649 (2018)
2. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years

later. Proc. VLDB Endow. 4(11), 695–701 (2011)
3. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.M.: imap: Discov-

ering complex mappings between database schemas. In: SIGMOD. pp. 383–394.
ACM (2004). https://doi.org/10.1145/1007568.1007612

4. Hogan, A., Polleres, A., Umbrich, J., Zimmermann, A.: Some entities are more
equal than others: statistical methods to consolidate linked data. In: 4th Workshop
on New Forms of Reasoning for the Semantic Web: Scalable & Dynamic (2010)

5. Koutraki, M., Preda, N., Vodislav, D.: SOFYA: semantic on-the-fly re-
lation alignment. In: EDBT. pp. 690–691. OpenProceedings.org (2016).
https://doi.org/10.5441/002/edbt.2016.89

6. Koutraki, M., Preda, N., Vodislav, D.: Online relation alignment for linked
datasets. In: ESWC. Lecture Notes in Computer Science, vol. 10249, pp. 152–168
(2017). https://doi.org/10.1007/978-3-319-58068-5_10

7. Koutraki, M., Vodislav, D., Preda, N.: Deriving intensional de-
scriptions for web services. In: CIKM. pp. 971–980. ACM (2015).
https://doi.org/10.1145/2806416.2806447

8. Koutraki, M., Vodislav, D., Preda, N.: DORIS: discovering ontological relations
in services. In: ISWC. CEUR Workshop Proceedings, vol. 1486. CEUR-WS.org
(2015)

9. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema
matching. In: ICDE 2005, 5-8 April 2005, Tokyo, Japan. pp. 57–68. IEEE Com-
puter Society (2005). https://doi.org/10.1109/ICDE.2005.39

10. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB. pp. 49–58. Morgan Kaufmann (2001)

11. Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema mapping. In: SIG-
MOD. pp. 73–84. ACM (2012). https://doi.org/10.1145/2213836.2213846

12. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001). https://doi.org/10.1007/s007780100057

13. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic align-
ment of relations, instances, and schema. vol. 5, pp. 157–168 (2011).
https://doi.org/10.14778/2078331.2078332

https://orcid.org/0000-0002-5436-637X
https://orcid.org/0000-0001-5379-5191
https://doi.org/10.1145/1007568.1007612
https://doi.org/10.5441/002/edbt.2016.89
https://doi.org/10.1007/978-3-319-58068-5_10
https://doi.org/10.1145/2806416.2806447
https://doi.org/10.1109/ICDE.2005.39
https://doi.org/10.1145/2213836.2213846
https://doi.org/10.1007/s007780100057
https://doi.org/10.14778/2078331.2078332

	FiLiPo: A Sample Driven Approach for Finding Linkage Points between RDF Data and APIs

