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ABSTRACT
In order to help data curators, data scientists, and other users in
the domain of Linked Data to identify potentially new data sources,
it is important to understand the corresponding data schema. The
schema can help to determine the domain of the data (e.g. bibli-
ographic data, geospatial data, etc.), its structure and more. We
analyzed several strategies and systems which extract schemaa in
an online approach. Established systems using SPARQL endpoints
for online schema extraction are limited when knowledge bases
are very large or complex. Due to the growth of Linked Data, the
knowledge bases has become larger and their structure more com-
plex. Therefore, this paper will discuss some limitations of current
strategies.
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1 INTRODUCTION
If a user tries to familiarize himself with an unknown database
and understand its structure, it is practical to have access to the
schema, as in the case of relational databases. In case of Linked
Data a developer is not bound to provide a schema in form of an
RDFS [4] or OWL [1] ontology. Linked Data is stored in RDF [3]
format, which is a standard model to transfer data on the Web. In
order to discover the schema of a database, a user would have to
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formulate multiple queries. The query language to request data
from a knowledge base is called SPARQL [2].

In order to extract the schema of a Linked Data knowledge
base some complex SPARQL queries are needed; depending on the
complexity and size of the explored knowledge base, this can be
a time-consuming task. Especially the time required to determine
the domain of a knowledge base and which kind of data is stored
at the endpoint is quite a hindrance. Furthermore, the user needs
to be able to formulate SPARQL queries.

In order to extract the schema of an endpoint in an acceptable
time and effort, we examined a number of current systems [5, 13–
22, 25]. Most approaches are so-called offline approaches, where
the user needs to download a data dump and extract the schema
offline. Such approaches have the disadvantage that data dumps
are not up-to-date or not provided.

Only few systems extract the schema using the SPARQL endpoint
of the knowledge base. This approach has the benefits that we do
not need to process data dumps and that the information is as up-
to-date as possible. Typical disadvantages are the high response
time of endpoints or that sometimes no response is delivered.

We only analyzed systems that extract the schema in an online
approach (LODeX [5, 15–17], ViziQuer [22] and LD-VOWL [21]).
Thereby we have set our focuse on LODeX. It automatically extracts
a set of indices containing representative information regarding
the structure (schema) of a chosen SPARQL endpoint. LODeX only
needs the URL of an endpoint to extract and create the schema of
an endpoint. A schema shows which data types and classes are
connected to each other and which properties are used for this
purpose. It also presents information about the used properties
for each class and indicates whether the properties points to a
literal. Besides, it is desirable to have information about how often
a class-property pair is used, in order to determine the domain (e.g.
bibliographic data, spatial data, etc.) of the endpoint.

Our objectives in this paper are to determine limitations of cur-
rent systems and to highlight which problems are still unsolved.
We believe that this information is important in order to show the
lack of sufficient solutions. We use LODeX as an example system
to highlight some limitations and later on show, which limitations
can be found in other systems. We chose LODeX for a more de-
tailed analysis because it is one of the most promising systems.
With many other systems, the limitations could be observed quite
quickly, e.g. LD-VOWL or ViziQuer.

The remainder is structured as follows. In Section 2 we discuss
several current systems. Afterwards, in Section 3, we focus on the
LODeX system and explain how it works. In Section 4 we examine
limitations of current systems and also in general. Lastly, we present
a detailed evaluation of the discussed systems.

https://doi.org/10.1145/3323878.3325808
https://doi.org/10.1145/3323878.3325808
https://doi.org/10.1145/3323878.3325808


SBD’19, July 5, 2019, Amsterdam, Netherlands Tobias Zeimetz and Ralf Schenkel

2 RELATEDWORK
As already mentioned in Section 1, schema extraction can be di-
vided into two groups. The first group of algorithms works on data
dumps and can therefore ignore server problems (offline approach).
The second group extracts the schema using the endpoint (online
approach) of a knowledge base. As already stated by Weise et al.
in [21] there are only few works in the domain of online schema
extraction of knowledge bases since most approaches are offline
approaches. Some papers like ViziQuer [22] deal with the topic of
visual query languages at schema level. They do not describe how
they derive the schema because the focus is on the query language.
Exploring the data of an endpoint can also help to get an under-
standing of the schema. Such approaches are pursued by linked
data explorers such as LodLive [14]. They have the disadvantages
that a user actually needs to get an understanding of the knowledge
base, by exploring trough the graph. Besides, the exploration of
large endpoints can also take a lot of time and efforts. For the sake
of completeness, we will briefly discuss several systems that extract
the schema in an offline approach.

SchemEx [19] is a system for real-time indexing and schema
extraction of knowledge bases. Konrath et al. follow a stream-based
approach to crawl the data from the web. A limitation of this system
is that it does not consider class instances and therefore cannot
retrieve class properties.

LODatio [25] is a semantic search system that uses the schema-
level index of SchemEx to find relevant Linked Data sources. It
provides a ranked result list of (possibly) relevant data sources. In
addition, it provides meta information that allows a quick judge-
ment on the importance of data sources.

Pham et al. [20] describe techniques that allow to extract the
structure from a knowledge base, denoted as emergent relational
schema. The described techniques use characteristic sets [26] for
extracting a schema. Neumann et al. describe in [26] that in RDF
multiple triple are used describe the same object. They concluded,
that it is possible to characterize an entity by its properties. To
extract the characteristic set, Pham et al. use a bulk loader and fur-
thermore, count the frequency for each characterization. Although
such a set may be well suited to describe the structure of a knowl-
edge base, it is not the actual structure. Information such as class
hierarchies are hidden to the user.

The first online approaches are made by systems that help a user
to understand the structure of a knowledge base via an exploration
tool (e.g. LodLive [14] or RelFinder [23]) or by providing the user
with statistics (e.g. RDFStats [13]).

LodLive [14] can be used to browse RDF resources, link resources
stored in different endpoints and to discover new connections.
RelFinder [23] presents an approach that extracts graph covering re-
lationships between two data objects. A major disadvantage of both
systems is that the user must already have a rough understanding
of the structure. Both systems only provide a deeper understanding
of the structure instead of a schema.

Zviedris et al. present in ViziQuer [22] a tool that extracts the
schema from a SPARQL endpoint and allow users to graphically
inspect the extracted schema. ViziQuer only needs the address of an
endpoint to start with the extraction process. A limitation is that it
only supports typed data and it is needed that an SPARQL endpoint

Figure 1: Schema of a Knowledge Base
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Table 1: Sc and Oc Index

Sc P No.
A p 6
B p 2
C p’ 1
D p 5

Oc P No.
E p 3
C p 10
F p’ 1

does not have any limit to answer size. In addition, Zviedris et
al. disadvise to test their approach on large knowledge bases like
DBpedia since such large schemas are not easy to explore. Because
their work is based on the exploration and querying part of knowl-
edge bases, they do not provide much information on how they
extracted the schema.

Kellou-Menouer et al. present in SchemaDecrypt [18] an ap-
proach for discovering a versioned schema for SPARQL endpoints.
SchemaDecrypt enables the discovery of different structures of
existing classes in a knowledge base. It shows which versions of
classes and types exist whereby a version of a class is characterized
by the combination of its properties.

LD-VOWL [21] is a system to extract and visualize the top k
classes of a knowledge base. Not all classes of an endpoint are
needed in order to determine the domain of the knowledge base,
only the top k classes are extracted. LD-VOWL is based on a class-
centric perspective, i.e. the classes are extracted first and afterwards
connected by properties and enriched by data types. A big advan-
tage of this approach is that only the most used schema information
is extracted. This way the user is not flooded with information. The
major disadvantage of this approach is that operators like ORDER
BY must be used. Especially weak servers or servers with large
amounts of data are quickly brought to their limits.

Benedetti et al. [5, 15–17] proposed LODeX, an approach that cre-
ates a set of indices that enables schema extraction of a knowledge
base. They state that these indices collect statistical information
regarding the size and complexity of the knowledge base (e.g. num-
ber of instances, etc.), but also present all the instantiated classes
and the properties among them. The indices, extracted from an
endpoint will later be used to generate the schema. The schema is
generated offline by only using the previous extracted indices. How-
ever, LODeX has (nowadays) two major problems: (1) depending on
the complexity of the knowledge base, it will extract an erroneous
schema (with missing or additinal connections between classes)
and (2) it does not work on large endpoints (e.g. Wikidata [6] ord
DBpedia [9]).
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As stated by Normey et al. in [24] there is no comprehensive
literature survey/review that summarizes current systems, their lim-
itations and soundness. They have reviewed 31 systems, 7 of which
can be classified in the domain of Linked Data. Since the paper is
not oriented in one specific domain, they cannot describe current
problems and limitations (which is a mayor shortcoming) but rather
features that are promised by the reviewed systems. In addition,
they checked if the systems are scalable, support parallelization,
support schema evolution and more. This literature review also
shows weaknesses, because it does not sufficiently describe the
problems and limitations of current systems.

Query 1: Query Sc Index
s e l e c t ? s c ?p ( count ( ? p ) as ?no )
where { ? s a ? s c . ? s ?p ?o .
f i l t e r ( ! i s L i t e r a l ( ? o ) ) }
group by ? s c ?p

Query 2: Query Oc Index
s e l e c t ? oc ?p ( count ( ? p ) as ?n )
where { ? s ?p ?o . ?o a ? oc . }
group by ? oc ?p

3 LODEX
LODeX only needs the URL of an SPARQL endpoint as input and
extracts afterwards several indices to later on create a schema for
the corresponding endpoint. First, we will focus on the extraction
and afterwards on the schema generation algorithm.

3.1 General Approach
As described in [16], the entire set of RDF triples (of an endpoint)
can be split into two categories, denoted as intensional knowledge
(IK) and extensional knowledge (EK). Triples contained in the IK set
define the terminology. Benedetti et al. state that triples belonging
to the EK set usually cover most of the structures of a data set and
contain the real world entities of a knowledge base.

The extensional knowledge index (EI) contains information about
class connections, what kind of properties are used and how often
they are instantiated. The EI can be split into three subsets: subject
class index (Sc), subject to literal index (Scl) and object class index
(Oc). The Sc index contains pairs of (source) classes and properties
that are connected to other classes. The Scl index contains pairs of
(source) classes and properties that are connected with literals. The
last index (Oc) contains pairs of object classes and the properties
that connect a source class with the corresponding object class. In
addition, all three indices also contain the number of instances for
each class-property-pair contained in the data set. The core aspect
of these indices is to determine how often entities from two classes
are connected by a specific property.

To extract the mentioned indices Benedetti et al. use a so called
pattern strategy [16]. The first step is to query the knowledge base
with Query 1. If an endpoint does not respond to this query, they
use several low-complexity queries and iterate class-wise over the
knowledge base. The query presented in Query 1 only extracts the
Sc index. To extract the Scl and Oc index, LODeX uses the same

strategy just with different filters and slightly different queries. To
extract the Scl index, we only have to remove the negation in the
filter part and to extract the Oc index, Query 2 is used.

Benedetti et al. evaluated that for most endpoints an index ex-
traction is possible. Only knowledge bases such as WikiData [6] or
DBpedia [9] are way too large and results in a timeout.

3.2 Schema Generation
LODeX uses only the Sc and Oc indices to create the schema of an
endpoint. The system checks for elements s = (sc,p,n) ∈ Sc and
o = (oc,p,n) ∈ Oc that have the same property p and infers that
the classes s .sc (source class of s) and o.oc (object class of o) are
connected via p.

As described in [5], an element s ∈ Sc is selected first, followed
by a matching element o ∈ Oc , such that s .p = o.p. The indices are
iterated step by step to find a matching p. Here, sc is the source
class that uses the property p. The use of sc with p occurs exactly
n times. If there is a matching p, the two classes s .sc and o.oc are
inferred to be connected via p. The last step also determines how
often the two classes are connected via p. For this the minimum n
of s and o is determined and assumed as connection frequency.

In Figure 1 shows an example of a schema with only two prop-
erties, p and p′. Table 1 presents the extracted indices. The first
step is to choose the first s ∈ Sc and the first matching o ∈ Oc , so
that s .p = o.p. In this example the classes A and E are connected
by the property p. It is evident that the minimum of n is three and
therefore the classesA and E are connected three times via property
p. Thereafter the number n for the class E can be set to zero because
all connections for E got determined. In a last step LODeX reduces
the number n of class A by the number of connections between A
and E. This results in a new number of instantiated occurrences for
class A and p.

Because now the number n of class E is set to zero, this object
class will be ignored in the remainder of the connection process.
Afterwards, LODeX will check for another matching element in
Oc for A. Since A and C have the same property the algorithm will
match both classes in the same manner as before. Because A has
the lower number (n = 3), LODeX will assume, that the connection
frequency between A and C via p is three. Afterwards, the number
n ofC will be decremented by three and the whole process goes on
until all connections are calculated.

4 LIMITATIONS
We will now focus on the limitations we have found in LODeX and
other systems. Even if LODeX is able to extract the indices for most
endpoints in a short time, the system suffers from some undetected
errors that lead to an erroneous schema being extracted. Besides,
we will show some general limitations of online approaches that
will possibly lead to an erroneous schemas.

4.1 Limitations of LODeX
We can group the limitations of LODeX in two groups: (1) non-typed
entitiy errors and (2) conflicting property errors.

All queries used for extracting the Sc index (in the pattern strat-
egy) use the filter function filter(!isLiteral()). It is used to remove all
properties that point to a literal such that we only get connections
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Figure 2: Non-Typed Entity Example

Web DocumentEntites with
no class

2, homepage 3, homepage 7, homepage
...

between entities as result. Afterwards LODeX extracts the source
class with the triple pattern ?s a ?sclass . If a data set is not well
maintained, there may be untyped entities (entities that do not have
a rdf:type relation). If a data set stores private homepages or links
and does not mark them as literals the query cannot filter them
and considers them as entities. Even if the retrieved properties are
entities, they are not typed and have no class they belong to. That
means, while some properties point to a typed entity and connect
a given source class with an object class, several other properties
will not connect a source class to another class. To understand the
resulting problems in LODeX in more detail, take a look at Figure 2.

The Sc index for this example would contain one triple: the class
Web and property homepage is instantiated five times. Furthermore,
imagine that also other classes link via the homepage property
to Document. The corresponding Oc index would result that the
class Document is referenced ten times via homepage. According
to the LODeX schema generation algorithm, both classes, Web and
Document, would be connected via homepage five times. This result
would be wrong because the two classes would only be connected
three times. The reason for this lies in the filter function, which
only filters literals but not untyped entities.

To fix this problem, we need to replace the filter function by an
optional triple pattern: optional{?o a ?oclass}. This is the only way
to filter untyped entities and get a correct connection frequency.
However, even if we iterate over all source classes and use the
pattern strategy, this kind of requests will stress most SPARQL
endpoints to throw a timeout.

This limitation is not only a theoretical problem it also occurs in
real world data sets. BNF [8] contains a homepage property1 which
also points to non-typed entities. For example, the class Interac-
tiveResource2 is connected to the class Document3 via homepage 13
times. However, the LODeX schema generation algorithm deter-
mines that these two classes are connected 33 times via homepage.
The reason therefore is that not every object entity of homepage is
connected to a class/type. Besides, a homepage URL is not a literal
and therefore cannot be filtered using filter(!isLiteral(?o)).

As described in Section 3.2, the whole schema generation process
rests on the extracted indices. The idea to crawl in a first step, with
a minimum of requests, all information and afterwards reuse the
extracted information to generate a schema in order not to stress
the SPARQL endpoint too much is a good approach. Unfortunately,
it makes to a few hidden assumptions which do not always apply.

The first assumption is that the information of the extracted
indices is enough in order to generate a sound schema. The second
assumption is that the schema generation process is independent
of the order of elements in the indices. We could already see in

1http://xmlns.com/foaf/0.1/homepage
2http://purl.org/dc/dcmitype/InteractiveResource
3http://xmlns.com/foaf/0.1/Document

the previous part, that the information stored in the indices can be
misleading and leads to errors in the class connection frequency.

In the following we will discuss the problem of conflicting prop-
erties. A property p is denoted as a conflicting property iff it is used
more than once in both indices (Sc and Oc). Using the indices shown
in Table 1 we can see that p is a conflicting property since it appears
more than once in both indices. If we remove the element contain-
ing class C in this example, the property p would only appear once
in the Oc index and would not yield as conflicting anymore.

To illustrate the problem of conflicting properties, assume we
would just switch the order of the elements in Sc in Table 1, so that
class B is now in the first position and class A is the second entry
in Sc. The order of the remaining elements will not be changed.

The first step of the schema generation algorithm is to take
the first entry s ∈ Sc and search a matching element o ∈ Oc so
that s .p = o.p. After changing the order of Sc, the first element s
contains class B. The first matching o contains class E with property
p. According to the schema generation algorithm, a connection
between B and E would be calculated. The result would be that
class B and E will be connected by two instances in the data set via
property p. However, if we check the original schema in Figure 1,
we can see that this connection never existed.

If we perform the example to the end we can observe that connec-
tions between classes are missing too. We later present in Section 5
how many conflicting properties in real world data sets are existing.
To work around this problem we have to send another query to the
endpoint for all possible combinations of source and object classes
for the corresponding conflicting property. In this query we would
request whether there is a connection between two classes with the
corresponding conflicting property and how often this occurs. This
means that we cannot generate the schema with only the indices.
Also, depending on the number of conflicting properties, a lot of
additional requests would flood the SPARQL endpoint.

Even though the SPARQL query presented can be evaluated
relatively quickly for most endpoints, we will show in Section 5
that the time for generating schemas is extended from a fewminutes
(7-10 mins.) to several hours (80-100 mins.), since many conflicting
properties exist for HAL and BNF. This solution is not applicable for
knowledge bases like Europeana, because they contain too many
classes and too many conflicting properties.

4.2 Limitations in other Systems
As already mentioned, there are only a few papers dealing with
schema extraction of SPARQL endpoints. Only the systems LD-
VOWL, ViziQuer and the solution of Kellou-Menouer et al. are
concerned with online approaches. However, only LD-VOWL and
ViziQuer derive the actual schema of an endpoint. Unfortunately,
the authors of ViziQuer do not provide information about how they
extract the schema. The only statement is that a requirement for the
system is that the server must not have a limit on the answer size.
This is a strong assumption since most endpoints have a limitation
on the size of the answer. Because of the lack of description it is
not possible to evaluate ViziQuer.

Weise et al. provide amuchmore detailed description and present
the used queries. Four different queries are used in order to extract
the schema. The first is used to retrieve the top k classes. The second
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to extract the top k properties that connected the retrieved classes.
The third retrieves the topk data types of every class and afterwards
the last query is used to retrieve the properties which are connected
with the found data types. Especially the third step is a problem,
because it needs the ORDER BY function. This function can stress
the server heavily and may end in an timeout since it is needed to
load all results to order them. In Section 5 we will present a detailed
evaluation.

In addition, to the described limitations and known problems
with SPARQL endpoints (server timeouts in case of too complex
queries), there is another problem regarding Virtuoso endpoints.
Virtuoso [11] is one of the systems that can be used to provide an
SPARQL endpoint. It is widely spread and provides a solution for
data access, virtualization and integration for SQL and RDF data
sets. Since version 6.0 of OpenLink Virtuoso [7] they introduced a
new feature denoted as anytime queries. This feature guarantees
answers to arbitrary queries within a fixed time but possibly only a
subset of the true result will be returned. They argue in [7], that this
enforces a finite duration to all queries while returning meaningful
partial results and is more user-friendly than a regular timeout. In
case of aggregated results, it is possible that only a subset of the true
result set will be counted and therefore an incomplete result set will
be aggregated. This feature is not part of the current standard of
the SPARQL protocol and therefore the standard does not provide
any support for partial results. A Virtuoso endpoint can indicate
that it returns only partial results by adding a S1TAT SQL state in
the HTTP response header of the result set. If the query was not
interrupted and successful the S1TAT SQL state will not be sent.
Since this feature is not part of the standard we cannot use a Linked
Data framework, e.g., Apache Jena (https://jena.apache.org/), to
determine if an endpoint has returned partial results. Once we
have a list or aggregation in the result set, we cannot be sure if
we get a correct result. This is a major problem, since we rely on
correctness. Since Virtuoso is one of the most used systems for
SPARQL endpoints, this a problem that tackles all online schema
inference systems and can lead to erroneous schema extraction.

5 EVALUATION
First we discuss whether and how frequently the described limi-
tations occur in real world data sets. Afterwards we will examine
the general soundness of the schemas derived using LODeX. In the
last part we will evaluate how many timout problems really occur
when using LD-VOWL.

5.1 Conflicting Properties
We will first examine, how many conflicting properties exist in real
world data sets, e.g., BNF, HAL and Europeana [10]. We searched
for properties in the extracted Sc and Oc indices that occur in both
more than once. As presented in Table 2 with the exception of BNF
not that many conflicting properties exists. The ratio of conflicting
properties to normal properties is relatively small. Only BNF has
more than nine percent conflicting properties.

We can see in Table 3 that BNF has an average of 2.63 possible
source classes per conflicting property that can be connected with
2.05 target classes. If we examine HAL and Europeana, we can
see that both use their conflicting properties in a more generic

Table 2: Conflicting Property Occurrences

Endpoint Conflicting All Properties Percentage
Properties

BNF [8] 272 797 34.13
HAL [12] 18 219 8.22
Europeana [10] 25 1038 2.41

Table 3: Average Source Classes (ASC) and Average Object
Classes (AOC) per conflicting property and Number of Addi-
tional Queries (NAQ)

Endpoint ASC AOC NAQ
BNF [8] 2.63 2.05 ∼ 1467
HAL [12] 11.84 9.61 ∼ 2048
Europeana [10] 34.82 24.13 ∼ 21006

Table 4: Correct Edges (CE), Erroneous Counted Edges (EC),
Missing Edges (ME), Additional Edges (AE), Erroneous Edges
(EE), Number of Edges in LODeX (LE), Original Number of
Edges (OE)

Endpoint CE EC ME EE LE OE
BNF 437 346 1360 64 783 2162
HAL 82 221 572 139 303 875
Europeana - - - 397 - -

way because they have more possible source and target classes per
property. Even though HAL and Europeana have less conflicting
properties than BNF, the number of possible source and target
classes per property is significantly larger. To calculate the number
of additional queries we can simply multiply the average number
of source classes (ASC) with the average number of object classes
(AOC) and with the number of conflicting properties in a data set.

As we can see in Table 3, the number of additional queries is
in case of HAL and Europeana higher than the number for BNF,
even though they have less conflicting properties. Because of the
additional requests the run time of the schema generation algorithm
extends from approximately 8-10 minutes (for HAL and BNF) up to
approximately 90 minutes. Note, that the problem of partial results
is still unsolved and we cannot be sure, if we get a correct result.
For this reason we conclude that this fix is not usable and scalable
in a real world scenario.

Soundness of LODeX
We will discuss now the soundness of the schemas generated by
LODeX. We applied the algorithm to the endpoints BNF, HAL and
Europeana. Here we have to take into account that due to the size
and complexity of Europeana only some details could be evalu-
ated. A more complex and comprehensive analysis of the schema
generation algorithm was therefore performed using BNF and HAL.

Table 4 shows only results evaluated on the extensional knowl-
edge of the corresponding SPARQL endpoints. Therefore, no sub-
ClassOf connections or other intentional knowledge relations be-
tween classes are considered. Furthermore, only relations between

https://jena.apache.org/
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Table 5: Evaluation of step three of LD-VOWL. Top-k classes,
properties and data types are retrieved. The top five classes
lead to the most timeouts, but are also the most interesting
information for a user.

Endpoint Step k=5 k=10 k=20 k=30
BNF 3 5/5 5/10 5/20 5/30
HAL 3 4/5 4/10 4/20 4/30
Europeana 3 4/5 4/10 4/20 4/30

classes were examined, i.e. we did not evaluate connections be-
tween classes and literals. We discovered that LODeX generated in
case of BNF 437 correct relations between classes (see Table 4). A
correct relation means that the connection between two classes via
a property actually occurs in the data set. In addition, the frequency
of the connection must have been determined correctly.

We evaluated that 346 generated relations had erroneous fre-
quency numbers, i.e. the relation between two classes actually
existed but with a different frequency. Furthermore, the schema
generated by LODeX missed 1360 relations, compared to a correct
generated schema. In addition, LODeX created 64 relations between
classes that does not exist in a valid schema.

As presented in Table 4, LODeX created 783 relations between
classes but in reality BNF contains more than 2000 relations. The
number relations generated by LODeX (LE) is the sumof the number
of correct relations (CE) and the number of erroneous counted
relations (EC). Because Europeana was too large and complex, we
only validated how many relations (397) LODeX created that do not
exist in the real data set. This result shows clearly that approaches
as LODeX do not perform very well on real world data sets.

LD-VOWL Timeout Limitations
As already mentioned in Section 4.2, especially step three can stress
an SPARQL endpoint and lead to a timeout. Step three extracts the
top-k data types for each class.

As shown in Table 5 the endpoint of BNF had five timeouts for
five sent queries (k = 5). Also, HAL and Europeana could not answer
to all sent queries and had four timeouts. With a higher value of k
we can see, that we have a less ratio of timeouts (e.g. k = 10, k = 20,
etc.). The table shows clearly that the most commonly used classes
(e.g. top five) can stress the endpoints most regarding step three.
This means that LD-VOWL is not able to retrieve information about
the most important classes of a knowledge base.

6 CONCLUSION
Virtuoso’s anytime query feature, which also allows partial results,
challenges all current systems. Since this feature does not belong
to the SPARQL standard, it is not possible with current Linked
Data frameworks to determine whether the received response is
correct. Furthermore, we could show that LODeX cannot handle
the complexity of current knowledge bases and therefore derives
erroneous schemas. The idea of extracting indices in a first step
and trying to derive a schema from them is a good approach to
prevent SPARQL endpoints from being overwhelmedwith toomany
(complex) queries. Unfortunately we were able to proof in our

evaluation that by using the indices and when extracting them
some sources of error crept in even with the presented fixes.

The authors of ViziQuer do not provide information about how
they extract the schema and a requirement for the system is that
the server must not have a limit on the answer size.

Also, LD-VOWL is not sufficient, because information about the
most used classes of an endpoint cannot be retrieved. Therefore,
we come to the conclusion that all current systems are not able
to derive a correct schema. Even LD-VOWL, which extracts an
approximate schema regarding the most used information, cannot
solve this problem.
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