A New Approach to Subdivision Simplification*

Mark de Berg Marc van Kreveld
Dept. of Computer Science Dept. of Computer Science
Utrecht University Utrecht University
P.O.Box 80.089 P.O.Box 80.089
3508 TB Utrecht 3508 TB Utrecht
The Netherlands The Netherlands
markdb@cs.ruu.nl marc@cs.ruu.nl

Stefan Schirra
Max-Planck-Institut fiir Informatik
Im Stadtwald
D-66123 Saarbriicken
Germany
stschirr@mpi-sb.mpg.de

Abstract

The line simplification problem is an old and well-studied problem in cartography.
Although there are several algorithms to compute a simplification, there seem to be no
algorithms that perform line simplification in the context of other geographical objects.
This paper presents a nearly quadratic time algorithm for the following line simplification
problem: Given a polygonal line, a set of extra points, and a real ¢ > 0, compute a
simplification that guarantees (i) a maximum error ¢, (ii) that the extra points remain on
the same side of the simplified chain as of the original chain, and (iii) that the simplified
chain has no self-intersections. The algorithm is applied as the main subroutine for
subdivision simplification.

1 Introduction

The line simplification problem is a well-studied problem in various disciplines including
geographic information systems [Buttenfield '85, Cromley '88, Douglas & Peucker 73,
Hershberger & Snoeyink '92, Li & Openshaw 92, McMaster '87], digital image analysis
[Asano & Katoh '93, Hobby ’93, Kurozumi & Davis 82], and computational ge-
ometry [Chan & Chin '92, Eu & Toussaint '94, Guibas et al. 93, Imai & Iri 88,
Melkman & O’Rourke ’88]. Often the input is a polygonal chain and a maximum al-
lowed error €, and methods are described to obtain another polygonal chain with fewer
vertices that lies at distance at most e from the original polygonal chain. Some methods
vield chains of which all vertices are also vertices of the input chain, other methods yield
chains where other points can be vertices as well. Another source of variation on the basic
problem is the error measure that is used. Well known criteria are the parallel strip error
criterion, Hausdorff distance, Fréchet distance, areal displacement, and vector displacement.

*This research is supported by ESPRIT Basic Research Action 7141 (project ALCOM II: Algorithms and
Complezity), and by a PIONIER project of the Dutch Organization for Scientific Research N.W.O.

Besides geometric error criteria, in geographic information systems one can also use criteria
based on the geographic knowledge, or on perception [Mark "89].

The motivation for studying line simplification problems is twofold. Firstly, polygonal
lines at a high level of detail consume a lot of storage space. In many situations a high
level of detail is unnecessary or even unwanted. Secondly, when objects are described at a
high level of detail, operations performed on them tend to be slow. An example where this
problem can be severe is in animation.

Our motivation for studying the line simplification problem stems from reducing the
storage space needed to represent a map in a geographic information system. We assume
the map is modelled as a subdivision of the plane or a rectangular region thereof. In this
application the main consideration is the reduction of the complexity of the subdivision.
The processing time may be a little higher, but within reason. The description size of the
subdivision is a permanent cost in a geographic information system, whereas the processing
time is spent only once in many applications.

England

Canterbury Germany Canterbury
L] o

France

Figure 1: Part of a map of Western Europe, and an inconsistent simplification of the subdi-
vision.

One of the most important requirements of subdivisions for maps is that they be
simple. No two edges of the subdivision may intersect, except at the endpoints. This
poses two extra conditions on the line simplification method. Firstly, when a polygo-
nal chain is reduced in complexity, the output polygonal chain must be a simple polyg-
onal chain. Several of the line simplification methods described before don’t satisfy
this constraint [Chan & Chin '92, Cromley 88, Douglas & Peucker 73, Eu & Toussaint '94,
Hershberger & Snoeyink 92, Imai & Iri ’88, Li & Openshaw 92, Melkman & O’Rourke ’88].
The second condition that need be satisfied is that the output chain does not intersect any
other polygonal chain in the subdivision. In other words, the simplification method must
respect the fact that the polygonal chain to be simplified has a context. Usually the context
is more than just the other chains in the subdivision. On a map with borders of countries
and cities, represented by polygonal chains and points, a simplification method that does
not respect the points can result in a simplified map in which cities close to the border lie
in the wrong country. In Figure 1, Maastricht has moved from the Netherlands to Belgium,
Canterbury has moved into the sea, and near the top of the border between The Netherlands
and Germany, two coast lines intersect. Such topological errors in the simplification lead to

inconsistencies in geographic information systems.

In this paper we will show that both conditions can be enforced after reformulating
the problem into an abstract geometric setting. This is quite different from the approach
reported in [Zhan & Mark "93], who have done a cognitive study on conflict resolution due
to simplification. They accept that the simplification process may lead to conflicts (such as
topological errors) and try to patch up the problems afterwards. We avoid conflicts from the
start by using geometric algorithms. These algorithms are fairly easy to implement, and we
give the necessary pseudo code.

The remainder of this paper is organized as follows. Section 2 discusses our approach to
the subdivision simplification, and identifies the main subtask: a new version of line simpli-
fication. Section 3 describes the approach of Imai and Iri for the standard line simplification
problem. In Section 4 we adapt the algorithm for the new version of line simplification. Sec-
tion 5 summarizes the subdivision simplification algorithm, and Section 6 gives a number of
practical approaches to improve—both in speed and in output quality—the basic algorithm
given before. In Section 7 the conclusions are given.

2 Subdivision simplification

Let 5 be a subdivision that
models a chloropleth map. A sub-
division is a geometric structure
that represents an embedded pla-
nar graph. We adopt the ter-
minology standard in (computa-
tional) geometry and say that the
subdivision 5 consists of vertices,
edges and faces. The degree of a
vertex is the number of edges inci-
dent to it. A vertex of degree one

convex
hull is a leaf, a vertex of degree two

is an interior vertex, and a vertex
of degree at least three is a junc-
o » tion. See Figure 2. Generally the
number of leafs and junctions is
small compared to the number of
interior vertices. Any sequence of
vertices and edges starting and ending at a leaf or junction, and with only interior vertices
in between, is called a polygonal chain, or simply a chain. For convenience we also consider
a cycle of interior vertices (which occur for islands) as a chain, where we choose one of the
vertices as the junction. It is the start and the end vertex of the chain.

Figure 2: A subdivision with its junctions indicated.

Let P be a set of points that model special positions inside the regions of the map.
Subdivision simplification can now be performed as follows. Keep the positions of all leafs
and junctions fixed, and also the positions of the points in P. Replace every chain between
a start and end vertex by a new chain with the same start and end vertex but with fewer
interior vertices. For a polygonal chain C', we require of its simplification C":

1. No point on the chain €' has distance more than a prespecified error tolerance to its
simplification C”.

2. The simplification C’ is a chain with no self-intersections.
3. The simplification C’ may not intersect other chains of the subdivision.
4. Each point of P lies to the same side of €’ as of C.

Let’s take a closer look at the last requirement. The chain (' is part of a subdivision that,
generally, separates two faces of the subdivision. In those two faces there may be points of P.
The simplified chain between the start vertex and the end vertex will also separate two faces
of the subdivision, but these faces have a slightly different shape. The fourth requirement
states that the simplified chain €’ must have the same subsets of points in those two faces.
For chains that have the same face to both sides we cannot make such an observation. Any
simplification will leave the points of P in the same face of the subdivision.

The first requirement will be enforced by using and extending a known algorithm that
guarantees a maximum error €. The other three requirements are enforced by the way we
extend the known algorithm. Intuitively, the simplified chain consists of a sequence of edges
that bypass zero or more vertices of the input chain. We will develop efficient tests to
determine whether edges in the simplified chain leave points of P to the wrong side or not.

We’ll see that enforcing the third requirement doesn’t add much to the difficulty of the
algorithm. When applying the simplification algorithm to some chain of the subdivision, we
temporarily add to the set P of points all vertices of other chains of the subdivision. One can
show that—since (' has the vertices of other chains to the same side as C'—the simplified
chain C’ won’t intersect any other chain of the subdivision. We will apply a similar idea
to avoid self-intersections. A simplified chain that has the points of P to the correct side,
has no self-intersections, and doesn’t intersect other chains in the subdivision is a consistent
stmplification.

A disadvantage of adding the vertices to the point set P is that P can become quite large,
which will slow down the algorithm. There are two observations that can help reduce the
number of points that need be added to P. Firstly, we only have to take the vertices of the
chains that bound one of the two faces separated by the chain we are simplifying. Secondly,
it is easy to show that only points inside the convex hull of the chain that is being simplified
could possibly end up to the wrong side. So we only have to use points of P and vertices
of other chains that lie inside this convex hull. In Figure 2, the chain that represents the
border between the Netherlands and Germany is shown with its convex hull (dashed) and
some cities close to the border (squares). No other chains intersect the convex hull, and only
the cities Emmen, Fnschede, Kleve and Venlo must be considered when simplyfing the chain
(the pseudo code for this idea follows later in this paper).

It remains to solve a new version of the line simplification problem. Namely, one where
there are extra points which must be to the same side of the original chain and the simplified
chain. For this problem we will develop an efficient algorithm in the following sections. It
takes O(n(n 4+ m)logn) time in the worst case for a polygonal chain with n vertices and m
extra points. This will lead to:

Theorem 1 Given a planar subdivision S with N vertices and M extra points, and a mazx-
mmum allowed error € > 0, a simplification of S that satisfies the four requirements stated
above can be computed in O(N(N + M)log N) time in the worst case.

The close to quadratic time behavior of the algorithm may seem too inefficient for subdi-
visions with millions of vertices. However, one can expect that the quadratic time behavior
in the worst case won’t show up in practice. It will depend on the description sizes of the

chains in the subdivision, the number of extra points and their positions, and the shapes of
the chains themselves. An implementation and test runs are required to examine the running
time on real data.

Theoretically, it would be satisfactory to compute efficiently a minimum size simplification
of the subdivision S that satisfies the given constraints. (Throughout this paper, the size of a
chain refers to the number of edges, not to the length.) Unfortunately, this seems to be very
difficult. It should be noted that some other version of the subdivision simplification problem,
where the objective is to obtain a minimum complexity simple subdivision, is an NP-hard
problem [Guibas et al. 93]. We do, however, guarantee a minimum size simplification for the
simplification of every polygonal line that satisfies a condition weaker than monotonicity.

3 Preliminaries on line simplification

We describe the line simplification algorithm in [Imai & Iri ’88], upon which our method is
based. Let vq,...,v, be the input polygonal chain C'. A line segment 7;v; is a shortcut for
the subchain v;,...,v;. The error of a shortcut 7;7; is the maximum distance from 7;7; to
a point vg, where 1 < k < 5. A shortcut is allowed if and only if the error it induces is at
most some prespecified positive real value e. We wish to replace C' by a chain consisting of
allowed shortcuts. This chain should have as few shortcuts as possible. In this paper we
don’t consider simplifications that use vertices other than those of the input chain.

Let G be a directed acyclic graph with node set V' = {vy,...,v,}. The arc set A contains
(v;,v;) if and only if ¢ < j and the shortcut 7;7; is allowed. The error of an arc (v;,v;) is
defined as the error of the shortcut 7;7;. So A = {(v;,v;) |t < j and the error of 7;7; < €}.
The graph ¢ can be constructed with a trivial algorithm in O(n?) time and G has size O(n?).

A shortest path from v to v, in G corresponds to a minimum size simplification of the
polygonal chain. Using topological sorting, the shortest path can be computed in time linear
in the number of nodes and arcs of ¢ [Cormen et al. '90]. Therefore, after the construction
of G, the problem can be solved in O(n?) time. We remark that the approach can always
terminate with a valid output, because the original polygonal line is always a valid output
(though hardly a simplification). The bottleneck in the efficiency is the construction of the
graph G. In [Melkman & O’Rourke '88] it was shown that G can be computed in O(n*logn)
time, reducing the overall time bound to O(n? log n) time. In [Chan & Chin ’92] an algorithm
was given to construct ¢ in O(n?) time. This is optimal in the worst case because GG can
have ©(n?) arcs. We explain their algorithm briefly.

One simple but useful observation is that the error of a shortcut 7;7; is the maximum of
the errors of the half-line starting at v; and containing v;, and the half-line starting at v;
and containing v;. Denote these half-lines by /;; and /;;, respectively. We construct a graph
(1 that contains an arc (v;,v;) if and only if the error of [;; is at most ¢, and a graph Gy
that contains an arc (v;, v;) if and only if the error of [;; is at most e. To obtain the graph G,
we let (v;,v;) be an arc of G if and only if (v;,v;) is an arc in both Gy and (3. The problem
that remains is the construction of 1 and G5 which boils down to determining whether the
errors of the half-lines is at most € or not. We only describe the case of half-lines /;; for all
1 <4 < 7 < n; the other case is completely analogous.

The algorithm starts by letting the vertices vy,...,v, in turn be »;. Given v;, the errors
of all half-lines [;; with j > i are determined in the order l;; 1), lii42), - - -, lin as follows. If
we associate with vy a closed disk D), centered at v; and with radius ¢, then the error of /;; is
at most € if and only if /;; intersects all disks Dy with ¢ <k < j. Let I/ be the half-line rooted

Algorithm Compute-Allowed-Shorteuts(C|e)

Input: A polygonal chain C' with n vertices vy, ..., v, and a real € > 0.
Output: The set of all allowed shortcuts of C'.

(* Half-line {;; and disk D; are defined as above. *)

1. fori—1lton—1

2 do I+ (—m,]

3 jei+1

4. while ¢ < b and j <n

9. do if angle of {;; between @ and b

6 then accept shorteut v;v;

7 if (2 ¢ D]'

8 then <IN angles of half-lines that intersect D;
9 j—i+1

The wedge need
not be reduced.

(v5, Vit1) is
accepted, the
wedge is shown
grey.

Vertex Vit
doesn’t lie 1n
the wedge so

Vertex Vit4
lies outside
the wedge so
(v5, v;44) 18 nOL

> accepted.
(v5, v;42) is not
accepted.
The reduced The wedge

. becomes empty
S0 no other arc
(vi,v;) will be

accepted.

wedge is shown
grey.

Vertex v;y3 lies
in the wedge so
(v5,v;43) is ac-
cepted.

Figure 3: Deciding which arcs (v;,v;) with j > ¢ are accepted to Gy. Ounly (v;,v41) and
(vi, viy3) will be accepted.

at v; and extending in positive a-direction. The algorithm maintains the set of angles with [
of half-lines starting at v; that intersect the disks D;y1, Diyo,...incrementally. Initially, the
set contains all angles (—m,7]. The set of angles will always be one interval, that is, the set of
half-lines with error at most € up to some vertex form a wedge with v; as the apex. Updating
the wedge takes only constant time when we take the next v;, and the algorithm may stop the
inner iteration once the wedge becomes empty. Pseudo code is given as Algorithm Compute-
Allowed-Shortcuts, and the algorithm is illustrated in Figure 3. With the given approach, the
graph construction requires O(n?) time in the worst case [Chan & Chin ’92].

4 Consistent simplification of a chain

In this section we generalize the line simplification algorithm just described to respect extra
points as well. We also consider the issue of computing a simplification that has no self-
intersections. A polygonal chain or polygon that has no self-intersections is called simple.

Figure 4: Two chains C' and C’ which are consistent with respect to the points shown as
disks, but not with respect to the point shown as a cross.

Let €' and C’ be two simple polygonal chains between v, and v,, and let P be a set of
points. C' is part of the boundary of a face of a subdivision, and the requirement is that the
subset of points of P that lie in that face with €' as the boundary be the same as the subset of
points of P in the face when C' is replaced by C’. Therefore, we define two polygonal chains
C' and (' oriented from vy to v, to be consistent with respect to P if there exists a simple
chain B oriented from v, to vy that closes both C' and C’ to simple polygons which have the
same subset of points of P in the interior. Also, these simple polygons must have all edges
oriented clockwise or counterclockwise. Figure 4 gives an example of two chains C' and C’
that are closed to simple polygons with clockwise orientation. One can show that any chain
B that completes €' and €' to simple polygons with the same orientation will give the same
result as to consistency of C' and C”.

The general approach we take is to compute a graph G'5 with the vertices of the chain as
the node set, and an arc between two nodes if the shortcut of the corresponding vertices is
consistent. So we don’t consider the error of the shortcuts in (3. Recall that the algorithm
in the previous section already used two graphs G; and G5, and the intersections of their arc
sets represented the shortcuts with sufficiently small error. If we also intersect the arc set
of GGs, we have the additional property that the resulting arcs are consistent as well. In the
remainder of this section we only concentrate on computing consistent shortcuts of C'.

A polygonal chain is z-monotone if any vertical line intersects it in at most one point.
In other words, an z-monotone polygonal chain is a piecewise linear function defined over an
interval. It is easy to see that any simplification of an z-monotone polygonal chain is also an
xz-monotone polygonal chain.

In Subsection 4.1 we discuss the simplification of z-monotone chains. We show how to
compute all consistent shortcuts from a vertex wv;, and by applying this algorithm to all
vertices of the chain we get all consistent shortcuts. In Subsection 4.2 the possible extensions
to arbitrary chains are considered. For arbitrary chains the property that any simplification of
it is simple doesn’t hold any more. So extra measures must be taken to avoid self-intersections.

4.1 Monotone chains

Let ' be an z-monotone polygonal chain with vertices vy,...,v,. We denote the subchain
of €' between vertices v; and v; by ;. Let P be a set of m points pi,...,pn.

Lemma 1 (' is a consistent simplification of C' with respect to P if and only if no point of

P lies in a bounded face formed by C' and C’.

Proof: For each point p in P we count the number of intersections of a half-line extending
vertically downward from p with the chains ' and C’. Since €' and C’ are both x-monotone,
these counts can only be zero or one.

Suppose that C’ is a consistent simplification of €. Then there exists a chain B that
completes both C' and C’ to simple polygons—denoted BC and BC'—and PNBC = PNBC".
By the point-in-polygon criterion (a point p lies in a polygon if and only if a vertically
downward half-line from that point intersects the boundary of the polygon an odd number of
times) it follows that the counts mentioned above must be the same for C' and C"’. Therefore,
no point of P lies in a bounded face formed by C' and C".

On the other hand, assume that no point of P lies in a bounded face formed by C and C”’.
Since €' and C' are z-monotone chains it is easy to see that a chain B exists that completes
both €' and C’ to simple polygons with clockwise orientations. Denote these polygons by
BC and BC’'. Again by the point-in-polygon test, P N BC = P N BC’ since no point of
P lies above C' and below C’ or vice versa. Therefore, €’ is a consistent simplification of C'. O

Let @;; be the not necessarily simple polygon bounded by (;; and the edge 7;7;, so @);;
contains j — ¢ edges of C' and one more edge v;v;. This last edge may intersect other edges of
()i;. Our algorithm will decide efficiently for all vertices v; whether the polygon ¢);; contains
points of P in the bounded faces.

maximal The first step of the algorithm is to locate all tan-
vito gent segments from v;. We define a shortcut ;75 to

be tangent if v;_; and v;4; lie in the same closed
Vits half-plane bounded by the line through v; and v;, and
14+ 1 < 7 < n. The shortcut 7;7, is always considered
to be tangent. The tangent shortcuts in Figure 5 are

cut 7;o; is minimal (in slope) if v;_y lies above the

TiVi+5, Dilites Ui, Uit7, and Tyv;yg. A tangent short-
5 line through »; and v;. If v;_; lies below that line,

minimal

then it is mazimal (in slope), and if v;_y lies on the
Figure 5: A part of a chain with four line it is degenerate. The tangent splitter is the line
tangent splitters. segment w;v; defined as the maximal closed subseg-

ment of v;v; that does not intersect ¢ in a point
interior to w;v;. So the point w; is an intersection point of the chain ' and the shortcut
v;v;, and the one closest to v; among these, see Figure 5. If v;_; lies on the shortcut v;v;
then w;7; degenerates to the point v;. A tangent splitter is minimal, maximal, or degenerate
when the tangent shortcut is.

Let 9,051, - - -, DUy () be the nondegenerate tangents. The corresponding set of tangent
splitters and C' together define a subdivision 5; of the plane of linear size, see Figure 6. The
subdivision has r bounded faces, each of which is bounded by pieces of ' and one or more
minimal or maximal tangent splitters.

For every face of 5;, consider the vertex with highest index bounding that face. This

vertex must define a tangent splitter, so it is one of v, (1),...,v(,). Assume it is v, (). Then
we associate with that face the number . The subdivision and its numbering have some

useful properties.

Lemma 2 Fuvery bounded face of the subdivision S; is 8-monotone with respect to v;, that is,
any half-line rooted at v; intersects any bounded face of S; in zero or one connected component.

Vi45

Figure 6: The corresponding subdivision S; with faces v(1) = ¢45, v(2) = i4+6, v(3) = ¢ +7,
and y(4) =i+ 9.

Proof: Assume that there is a face s; that is not #-monotone. Then there must be
a vertex v; in the boundary of that face such that the half-line rooted at v; intersects
the interior of s; both to the left and to the right of v;. But then 7;v; is tangent, and
hence, the tangent splitter 7;w; is an edge of the subdivision 5;. This contradicts the state-
ment that there is a half-line rooted at v; that intersects the interior of s; left and right of v;. O

Lemma 3 Fuvery bounded face of the subdivision S; has one connected subchain of C' where
half-lines rooted at v; leave that face.

Proof: The subdivision 5; only consists of parts of ' and tangent splitters, which always
extend from a vertex v; toward v;. Let s; be a face of which the part of the boundary where
half-lines rooted at v; leave it consists of more than one subchain of C'. Then there must be
a vertex v; between those subchains such that 7;7; is tangent. But then a tangent splitter
was chosen extending from v; to v;, which makes that the two subchains that were supposed
to be in s; cannot be in the same face, a contradiction. a

Lemma 4 Any directed half-line from v; intersects faces in order of increasing number.

Proof: By the previous lemma, there is a connected subchain of ' where the directed
half-lines from w; leave a face. The tangent splitter that gives the number to a face has the
vertex with highest index on that chain as one endpoint.

Suppose that there exists a directed half-line from v; that intersects a face s; before it
intersects si, and [> k. Consider the unique points #; and t; where the half-line leaves s;
and sy, respectively. Consider the subchains of C of faces s; and s as referred to in the
previous paragraph. Since both subchains are connected and disjoint, it follows that ¢; lies
left of t. Since by assumption [> k it follows that C' is not z-monotone, a contradiction. O

The tangent splitters can be found in linear time as follows. Traverse C' from v; towards
v,. At every vertex v; for which 7;7; is tangent (and non-degenerate), walk back along C'
until we reach v; or find an intersection of 7;7; with C'. In the latter case, the fact that C'
is z-monotone guarantees that the point we found is the rightmost intersection, and thus it
must be w;. Then we continue the traversal forward at v; towards v,,. This approach would
take quadratic time, but we use the following idea to bring it down to linear. Next time we
walk back to compute the next tangent splitter, we use previous tangent splitters to walk
back quickly. For a new maximal tangent splitter we only use previously found maximal

Algorithm Compute- Tangent-Splitters(C, i)

Input: A chain C' with n vertices v1,..., v, and an integer ¢, where 1 <1¢ < n.

Output: The tangent splitters of ' with respect to v;.

1. for j—it+1ton

2. do if ;v; is maximal tangent

3. then kej —1

4. while {;; Nvp_1vr = 0

5. do k«k—1

6. if 7;v; 1s maximal tangent

7. then k< h where v,_7v; contains wy of maximal tangent splitter
W Vg

8. else ke«k—1

9. w]'%li]' NVE_10k

10. Store with v; a pointer to v _1vx

11. else if 7;v; is minimal tangent

12. then “take analogous steps”

13. else j«—j+1

tangent splitters, and for a new minimal tangent splitter we only use minimal ones. One can
show that the skipped part of C' never contains the other endpoint of the tangent splitter we
are looking for. Algorithm Compute-Tangent-Splitters contains the pseudo code.

The total number of steps during all backward walks is O(n), which can be seen as
follows. During the walks back we visit each vertex which is not incident to a splitter at most
twice, once when locating w; for a maximal tangent splitter w;v;, and once for a minimal
tangent splitter. For all following backward walks we bypass vertices that were already visited.
Similarly, each tangent splitter is used as quick walk backwards only once; the next time it
will be bypassed by another tangent splitter. So we can charge the cost of the backwards
walks to the O(n) vertices of C' and the O(n) tangent splitters.

vite The second step of the algorithm is to distribute the
points of P among the faces of the subdivision .5;. Either
by a plane sweep algorithm where a line rotates about
v;, or by preprocessing 5; for point location, this step
requires O((n + m)logn) time [Preparata & Shamos "85].
All points of P that don’t lie in a bounded face of §; can be
discarded; they cannot be in a bounded face of the polygon
();; for any shortcut 7;7;. But we can discard many more
points. For every face of 5;, consider the tangent splitter
with the vertex of highest index. If that tangent splitter
is minimal, we discard all points in it except for the point
p that maximizes the slope of the directed segment 7;p,
see Figure 7. Similarly, if the tangent splitter with highest index is maximal, we discard all
points in the face except for the point p that minimizes the slope of the directed segment 7;p.
Now every face of 5; contains at most one point of P. Algorithm Distribute- Points gives the
pseudo code.

Vi4+5

Figure 7: In each face, only the
point indicated by a square is
maintained.

Lemma 5 Any shortcut v;0; is consistent with the subchain C;; with respect to P if and only
if it is consistent with respect to the remaining subset of points of P.

10

Algorithm Distribute-Points(S;, 1, P)

Input: The subdivision S; in a topological network structure, an integer 1 < i < n, and a set P
of points.

Output: The assignment of the points of P to the faces of S;.

(* The plane sweep based method.)

1. P’ the subset of P of points that have a larger #-coordinate than v;.

2. Sort the points of P’ U {v;y1,...,v,} by angle around v; and put them in a priority queue
Q

Initialize an empty binary search tree 7.

3.

4. (x A half-line rooted at v; will sweep from vertically upward clockwise to vertically down-
ward. *)

5. (* T will store the edges of C' beyond v; intersecting the sweep-line in order of intersection. *)

6. while Not-Empty(Q)

7. do p« Extract-Max(Q)

8. if p is a vertex v;

9. then update 7" with the edges incident to v;

10. else search in T to find the leftmost edge vxvipy1 to the right of p and on the

sweep-line
11. if this edge exists then store p with Tpvp 11
12. Traverse U;U;j11, - . ., Un—10n, collect the points stored with the edges, and store one of them

(clockwise minimal or maximal) with the appropriate face.

Proof: By definition 7;7; is consistent if and only if no point of P is contained in the
closed faces of polygon ();;. Since every face is #-monotone, it follows that if a shortcut is
inconsistent with respect to some point of P, then it is also inconsistent with respect to the
retained point of P in that face. Conversely, if a shortcut is consistent with respect to the
retained point in a face, then the shortcut must also be consistent with respect to all other
points of P in the face (again because faces are f-monotone). Since these statements hold
for all faces of the subdivision 5;, the lemma follows. a

In the third step of the algorithm we decide which
shortcuts v;v; are consistent and should be present in
the graph G5 in the form of an arc (v;,v;). To make
the third step efficient we start by sorting the shortcuts
TiVit1, - - -, 010y Dy slope. Here we consider the shortcuts
to be directed away from v;. Since C' is z-monotone, all
shortcuts are directed towards the right. The shortcuts
are stored in a deque @) (a double-ended queue). We treat
Figure 8: Only the shortcuts the faces of S; in the order of increasing associated num-
Ti0it1, Uiy Uirz, and T;0,43 are ac- ber. When treating a face, we will discard any shortcut
cepted. 7;0; that has not yet been accepted and is inconsistent

with respect to the one remaining point of P in that face

(if any). Then we accept those shortcut 7;7; that have v; on the boundary of the face and

have not yet been discarded. For discarding shortcuts, we use the order of shortcuts by slope
as stored in the deque). For accepting shortcuts, we use the order along the chain C'.

In Figure 8, the shortcuts that are subsequently discarded when face sy is treated are

Vi49

DiVi+5, UiVitd, UiVit7, UiVive, and ;0. 45. Then the shortcuts v;v,11, D;042, and D;v;43 are
accepted because they end in sy. Then the next face sy is treated, and T;7;19 is discarded.

11

Algorithm Discard-and-Accept(S;, i)
Input: The subdivision S; in a topological network structure, an integer 1 < i < n, and for each
face of S; possibly a point of P.
Output: The shortcuts starting at v; that are consistent.
1. Sort the shortcuts v;v; with j > ¢ by slope and store in a deque). Maintain a cross-pointer
between the deque element v;v; and the vertex v; in 5;.
2. je1 (* w; is the current position along C' for accepting *)
3. Assign a numbering to the faces of S;, being s1,...,s,.
4. for h«ltor
5. do if a point p € P is stored with s
6. then if s; is bounded by a maximal tangent splitter
7. then discard shortcuts from the front of the deque as long as the slopes
of the shortcuts are greater than the slope of v;p
8. else discard shortcuts from the back of the deque as long as the slopes
of the shortcuts are smaller than the slope of v;p
9. while v; # the tangent splitter vertex of s
10. do if v;v; was not discarded
11. then accept it and remove it from @
12. j—i+1

The pseudo code is given in Algorithm Discard-and-Accept.

Lemma 6 FEvery discarded shortcut v;v; is inconsistent with the subchain C;; with respect to
the points of P.

Proof: By construction. a

Lemma 7 Any accepted shortcut v;v; is consistent with the subchain C;; with respect to the
points of P.

Proof: If a shortcut is accepted, all faces it intersects have been treated by Lemma 4 and
because faces are treated in order of increasing number. Since the shortcut has not been
discarded when treating any of the intersected faces, the shortcut doesn’t contain a point of
P in a bounded face. Therefore, it is consistent with C;. a

The third step requires O(n) time, which can be seen as follows. For each face, we spend
O(d + 1) time for discarding if d segments in @ are discarded. This is obvious because
discarding is simply removing from one end of the deque (). To accept efficiently, we main-
tain cross-pointers between the deque) and the chain €' so that shortcuts—once they are
accepted—can be removed from @) in constant time. So we spend O(a+1) time if @ shortcuts
are accepted. Since any shortcut is discarded or accepted once, and there are a linear number
of faces in 9}, it follows that the third step takes linear time.

We have completed the description of the three steps that lead to the computation of all
consistent shortcuts starting at some vertex v; of the chain. As a result, we have obtained
the following;:

Lemma 8 Given an z-monotone polygonal chain C with n vertices, and a set P of m points,
it is possible to compute all consistent shortcuts from any vertex of C' in O((n 4+ m)logn)
time.

12

If we apply this lemma to all vertices of ', construct the graph G5 representing all
consistent shortcuts, then combine the obtained graph (/s with the graphs G; and G (as
defined in the previous section) to create the graph G, we can conclude with the following
result.

Theorem 2 Given an xz-monotone polygonal chain C with n vertices, a set P of m points,
and an error tolerance € > 0, it is possible to compute the minimum size simplification of C
that is consistent with respect to P and that approximates C' within the error tolerance € in

O(n(n 4 m)logn) time.

The simplification is also simple, but this is automatic because every simplification of an
z-monotone chain is again an z-monotone chain, and every z-monotone polygonal chain is
simple.

4.2 Arbitrary chains

The algorithm obtained for the simplification of z-monotone chains can be generalized to
arbitrary chains in several different ways. We’ll describe a fairly simple way to extend the al-
gorithm described before that most likely will give good data reduction. From the theoretical
side, however, we cannot guarantee that the simplification is the minimum link simplification
as in the z-monotone case.

The main idea is the following. When deciding for a vertex »; which shortcuts starting at
v; are consistent, we will only look for shortcuts up to a certain vertex v, with n(i) < n.
The vertex v,,(;) is chosen such that we can run the algorithm described previously on the
subchain between v; and v,;) with hardly any changes at all. A first idea may be to let
vp(;) be such that the resulting subchain is the longest z-monotone chain from v;. This gives
poor performance if the chain extends to the left very often. Clearly, we should change the
coordinate system to get a long subchain v;, ..., v,(;) to which the algorithm can be applied.
A second problem we face is that it seems more diflicult to guarantee simplicity of the output
chain.

Let’s consider how to determine the longest
subchain from a vertex v; to which the algo-
rithm can be applied. One can observe that
the algorithm of the previous section works for
more general chains than z-monotone chains.
The two features we need for the correctness

vn(25)

are f-monotonicity of the faces of the subdivi-
sion 9; (Lemma 2) and the intersection order of
faces by half-lines (Lemma 4). These features
are present if the polygonal chain doesn’t cy-
cle and doesn’t have backward tangents. Intuitively, no backward tangents means that there
shouldn’t be an edge ;7,17 that is closer to v; than the preceding edge 7;-77;. More formally,
a segment 7;7; is a backward tangent if for the angles /v;v;v;_1 and Zv;v;v;41 (measured
counterclockwise) we either have Zvv;v;41 < Lvjvjv_q < T or @ < Lojv;vj_q < Lvjvjvjqq,
where ¢ + 1 < 7 < n. Whether a segment is a backward tangent can easily be determined
in constant time. The second condition—that the polygonal chain doesn’t cycle—would give
problems in the second step of the algorithm, the half-line rotating about v; to distribute
the points of P. The subchain v;,...,v,;) on which we run the algorithm of the previous
section is such that v, ;) is the first vertex after v; for which 7;7, 3y is a backward tangent, and

Figure 9: The vertices v,,(1), vy (4), and v,(25)
shown for the chain.

13

Algorithm Determine-Subchain(C')

Input: A simple polygonal chain C' with vertices vy, ..., v,, and an integer 1 < i < n.

Output: The vertex v, such that wv;,...,v,4)-1 doesn’t have backward tangents and
Vi, ..., Up(i) doesn’t cycle.

1. jei+1

2. Li+(—mw, 7] — the angle of 7;7;
3. (* the interval I; represents the angles around v; such that a half-line starting at v; doesn’t
intersect the subchain v;,...,v; *)

4. while (j < n) and (I; # 0) and

5. ((Lvvjvjyr < Lugujuj_q <) or (T < Lvjvjvj_1 < L0;0;041))
6. do j«—j+1

7. I;1I; — the angles of half-lines that intersect v; _1v;

8. ifL =0

9. then return v;_;

10. else return v;

Cin(s) doesn’t cycle around v;. In Figure 9, v,(1) and v,4) are chosen because of the angle
condition, and v,,(95) is chosen because of the cycling condition. After running Algorithm
Determine-Subchain (C, 1), the coordinate system can be chosen so that the negative z-axis
is any half-line with angle in I;. The rotating half-line of the second step will make a full
rotation of 27 starting and ending at the negative z-axis (instead of making a half turn from
the positive to the negative y-axis in Algorithm Distribute-Points).

The second problem we must take care of is the parts of the chain € before v; and after
vp(i)- These subchains can intersect shortcuts v;0; with 141 < j < n(i), which can cause self-
intersections in the simplification of C'. So we must prevent shortcuts from being consistent
if they intersect any edge of ' before v; or after v,(;). There is a simple remedy here: add all
vertices of v1,...,v,—1 and of v,(;)41,...,v, as extra points to the set P. Now we can show
that any shortcut v;v; that is consistent with C;; with respect to the extra points cannot
destroy the condition that the output chain be simple. We conclude:

Theorem 3 Given a simple polygonal line C' with n vertices, a set P of m points, and a
mazimum allowed error € > 0, a simplification of C' that lies within distance € of C, that
s consistent with C' with respect to the points in P, and that is simple, can be computed in

O(n(n 4 m)logn) time.

5 Subdivision simplification in summary

All ingredients for subdivision simplification have been given. We next combine them—as
a summary—for the general subdivision simplification algorithm. In Algorithm Simplify-
Subdivision calls are made to previously given algorithms. However, these were assumed to
work on z-monotone chains, and we’ve generalized the method to arbitrary chains. Therefore,
the algorithms of Subsection 4.1 have to be changed slightly. They need an extra parameter to
specify the vertex v, ;). Instead of computing the consistent shortcuts v;v; for i +1 < j < m,
we restrict to the values ¢ + 1 < j < n(¢). It is trivial to adapt the algorithms this way.
Furthermore, the Algorithm Distribute-Points should be changed to using a full sweep of
the half-line, as explained in Subsection 4.2. After computing the consistent and allowed
shortcuts, we construct a graph G whose arcs represent all consistent and allowed shortcuts.
In this graph a minimum link path is computed. Such a path is usually called a shortest path

14

Algorithm Simplify-Subdivision(S, €, P)
Input: A simple polygonal subdivision S, a positive real €, and a set P of points.
Output: A simplified simple polygonal subdivision S’ such that S and S’ are consistent with
respect to P, and that the error is at most e.
1. Determine all vertices of degree 1 or at least 3 in S. Let them be the endpoints of a collection
C of polygonal chains.
2. for every polygonal chain C' € C
3. do Let vy,..., v, be the vertices in order along C'.
4. Let G5 be the graph with nodes vy,... v,.
5. for i1 ton—1
6. do n(é)« Determine-Subchain (C, 1)
7. Change the coordinate systems appropriately.
8. P;«=P U all vertices of S except v;, ..., vn)
9. (* The calls to the algorithms below have an extra parameter n(%) to replace
n in the given algorithms for the z-monotone case. #)
10. Compute-Tangent-Splitters (C, i, n(7))
11. Distribute-Points (S;,1, Py, n())
12. Discard-and-Accept (S;,1,n(i)) and add the accepted edges as arcs to Gg
13. Compute the graphs (i1 and G5 using Algorithm Compute- Allowed-Shortcuts (C, €).
14. Compute graph G from (1, G5, G3 by intersecting their arc sets.
15. Determine a minimum link path from v; to v, in GG, and let it be the simplification
for C'.

in graph literature, and its computation is standard [Cormen et al. ’90]. This path represents
the simplification of a chain.

6 Practical considerations

In this section we will discuss some ideas that will lead to more efficient implementations or
more efficient variants of subdivision simplification. We also consider two extra conditions
one may want to enforce, and how they can be included in the algorithm.

A first and important speed-up can be achieved by reducing the size of the set P; used
in Algorithm Simplify-Subdivision. It was the union of the extra points P and all vertices of
the whole subdivision, except those on the part of the chain to be simplified. In Section 2
it was already noted that one need not take this entire set. Points that lie far enough away
cannot influence the choices in the simplification anyway. One observation to make is that
any simplification of a chain stays within the convex hull of that chain. So only the points
inside the convex hull can be relevant. For each chain C', we’ll compute its convex hull and
determine the subset Po of all points of P and all vertices of other chains of .5 that lie inside
the convex hull of C'. There should be far fewer points in Po than in any F;. Inside the inner
for-loop, we use the set Po and add the vertices vy, ..., vi—1, V(415 - - -5 Une

To compute the convex hull of a simple polygonal chain one can use a simple algorithm
that uses only one deque in its execution [Melkman ’87]. After the convex hull has been
computed we test for every point in P whether it lies inside the convex hull or not. This test
can be done using binary search for each point. Algorithm Reduce-Fxtra-Points gives the
pseudo code. It can be called with the appropriate parameters just before the inner for-loop
of Algorithm Simplify-Subdivision.

A second idea that can be used to speed up the simplification algorithm is the following.

15

Algorithm Reduce-Extra-Points(C, P)

Input: A simple polygonal chain C' with vertices vy, ..., v,, and a set P of points that includes
the vertices of other chains of S.

Output: The set P/ C P of points that lie inside the convex hull of C'.

(* The algorithm maintains the convex hull incrementally. *)

1. Initialize a deque @) with the three vertices v, vy, vs.

2. (* @ stores the vertices of the convex hull in cyclic order starting and ending with the same
vertex.)

3. for <3 ton

4. do for each end of)

5. do while abv; is a reflex turn, where b and a are the last two points in @
6. do remove vertex b from

7. if any point was removed then add v; to both ends of @

8. Store the contents of @ (the convex hull of C') in an array to allow for binary search.
9. for each point p of P

10. do if p lies in the convex hull then add p to the set P’

Suppose that we are simplifying a chain ', and thus computing for the shortcuts whether
they are allowed (within distance €) and consistent (respect the extra points). Suppose we
know for every vertex of (' the most distant vertex to which an allowed shortcut exists. Then
the computation of consistent shortcuts need not go beyond that most distant vertex. We
could also argue from the other perspective: if we know for each shortcut the most distant
vertex to which shortcuts are consistent, then the computation of allowed shortcuts need not
go beyond that vertex. Which version will be more efficient is difficult to predict. It depends
on which condition is more restrictive: the (seemingly) more restrictive condition should be
computed first. Our guess is that being allowed is more restrictive than being consistent
(unless € is large and there are many extra points). The idea sketched here can easily be
incorporated in the given algorithms and therefore we omit further details.

We next discuss two issues for the extension of the algorithm to account for an extra
condition that may be required in practice. The first condition is guaranteeing that the
points of P cannot get too close to the simplified chain. Presently, the algorithm only keeps
points to the correct side when points are considered infinitesimally small and polygonal lines
infinitesimally narrow. When drawing the subdivision and the points on an output device,
this assumption no longer is valid. We may want to specify a minimum clearance between
the points of P and the polygonal chains of the subdivision. Such a clearance can only be
guaranteed if it holds for the unsimplified subdivision. One idea to handle the situation is
the following. Replace each point of P by a small number (four, six or eight) points on a
small circle around it. Put these points in the set P before running the algorithm. Since
these new points are respected by the algorithm, the original points of P will have some
minimum distance from the simplified subdivision (assuming we have a minimum clearance
in the initial situation).

A second condition that may be required for the output subdivision is that it doesn’t
contain any small angles between two consecutive line segments. This condition cannot
always be enforced in practice. But there is a method that can help to avoid small angles.
First the algorithm as it is described is run up to the point where the minimum link path
in the graph G is computed. Instead, we transform graph G to another graph G, called
the line graph of GG. This transformation is done as follows. For every arc in G we make

16

Algorithm Good(C, P,i,j, ¢, k)

Input: A simple polygonal chain C' with vertices vy, ..., v,, two indices 7,7 with 1 <7 < 5 < n,
a real € > 0, and a set P of points.
Output: True if v;,...,v; can be simplified to v;v;, and false otherwise, in which case k is the

index of the farthest vertex v; from v;v; for which ¢ < k < j.
Determine the farthest vertex v;, from the segment v;v;.
if dist(vy, T375) > €

then return false and &

else determine the polygons in v, ..., 0515, V05

for each point p in P
do if p lies in any polygon
then return false and &

0 =1 O O =~ W N —

return true

Algorithm Douglas-Peucker-Extra(C, P, i, j, €)

Input: A simple polygonal chain C' with vertices vy, ..., v,, two indices 7,7 with 1 <7 < 5 < n,
and a set P of points. The initial call has i = 1 and 57 = n.
Output: A simplification of v;,...,v; similar to the Douglas-Peucker algorithm but which re-

spects the extra points in P.
1. if Good (C, P,i,j,¢,k)
2 then return 7;v;
3. else (% vy is returned as the farthest vertex from w;v; *)
4 Douglas-Peucker-Extra (C', P, i, k, €)
5 Douglas-Peucker-Extra (C, P, k, j, €)

a node in G;,. Let a and b be two nodes in G, corresponding to arcs (v;,v;) and (vp, vg)
in GG, where ¢+ < j and h < k. We connect a and b in Gy by an arc if and only if 7 = h
and the angle between the line segments v;v; and v, vy is sufficiently large. A minimum link
path in G corresponds to a simplification where all angles of two consecutive shortcuts are
sufficiently large. Unfortunately, there are a number of drawbacks with this approach. Firstly,
a simplification with sufficiently large angles may not exist at all, in which case the algorithm
fails to find a simplification. Secondly, the running time and the space requirements of the
algorithm go up because the size of (7, can be much larger than of (G. In the worst case, the
algorithm needs cubic time and space. Thirdly, small angles may still show up between two
consecutive chains if they are simplified separately. Fourthly, even in one simplified chain it
may appear that small angles are present if there are very short line segments connecting
two other line segments that make a small angle. A satisfactory solution for avoiding small
angles remains to be found.

As alast issue in this section we consider the adaptation of the line simplification algorithm
of Douglas and Peucker to respect extra points. In this paper we considered the adaptation
of another line simplification algorithm because it yielded better data reduction. On the
other hand, the Douglas-Peucker algorithm is more simple and its running time is better in
practice. It depends on the application which of the two algorithms is preferable.

Roughly, the Douglas-Peucker simplification algorithm for a chain with vertices vy,..., v,
initially chooses vy and v, for the simplified chain. If the current simplification satisfies the
e-condition then we are done. Otherwise, the furthest point from the current simplification is
chosen and added to the simplification. This gives two recursively defined subproblems. More

17

can be found in [Douglas & Peucker ’73]. To adapt the algorithm we need only reimplement
the test whether the current simplification is good enough. It should not only depend on the
e-condition, but also on the extra points in P. Algorithms Douglas- Peucker-Fxztra and the
subroutine Good gives the pseudo code for such an adaptation.

If we also wish to guarantee that the simplified chain has no self-intersections (which
may arise when using the Douglas-Peucker’s algorithm), further adaptations are necessary.
One could test—after running the given algorithm—whether the simplification has any self-
intersections. If it does, then the intersecting segments must be handled further by continuing
the recursion.

The algorithm can be made more efflicient in practice by reducing the size of the set P
before the recursive calls are made. To this end, the convex hull of v;, ..., v; is computed and
all points of P that lie within this convex hull are selected to be used in the first recursive
call. A similar computation is made before the second recursive call.

7 Conclusions

This paper has shown that it is possible to perform line simplification in such a way that
topological relations are maintained. Points that lie above the original chain will also lie
above the simplified chain, and points that lie below will remain below. Furthermore, the
line simplification algorithm can guarantee a user specified upper bound on the error, and
the output chain has no self-intersections. The line simplification method leads to an efficient
algorithm for subdivision simplification without creating any false intersections. To obtain
these results we relied on techniques from computational geometry. With ideas similar to ours,
some other line simplification methods can also be adapted to be consistent with respect to
a set of extra points. In particular, we showed that the algorithm in [Douglas & Peucker '73]
can be extended.

The given algorithm takes O(n(n + m)logn) time to perform the simplification for a
chain with n vertices and m extra points. This leads to an O(N(N 4 M)log N) time (worst
case) algorithm for simplifying a subdivision with N vertices and M extra points. We have
given several ideas to speed up the algorithm in practice. Therefore, we expect that the algo-
rithm performs much better in practical situations than the worst case analysis suggests. An
implementation is nevertheless required to discover the practical behavior of our algorithms.

The given algorithms should be fairly straightforward to implement. We plan to im-
plement our algorithm and run it on real world data. This way we can find out in which
situations the efficiency of the method is satisfactory.

References

[Asano & Katoh 93] T. Asano and N. Katoh, Number theory helps line detection in digital
images — an extended abstract. Proc. 4th ISAAC"93, Lect. Notes in Comp. Science 762,
1993, pp. 313-322.

[Buttenfield ’85] B. Buttenfield, Treatment of the cartographic line. Cartographica 22 (1985),
pp. 1-26.

[Chan & Chin '92] W.S. Chan and F. Chin, Approximation of polygonal curves with mini-
mum number of line segments. Proc. 3rd ISAAC"92, Lect. Notes in Comp. Science 650,
1992, pp. 378-387.

[Cormen et al. '90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algo-
rithms, MIT Press, Cambridge, 1990.

18

[Cromley "88] R.G. Cromley, A vertex substitution approach to numerical line simplification.
Proc. 3rd Symp. on Spatial Data Handling (1988), pp. 57-64.

[Douglas & Peucker '73] D.H. Douglas and T.K. Peucker, Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. The Canadian
Cartographer 10 (1973), pp. 112-122.

[Edelsbrunner et al. ’86] H. Edelsbrunner, L.J. Guibas, and J. Stolfi, Optimal point location
in a monotone subdivision, SIAM J. Comput. 15 (1986), pp. 317-340.

[Eu & Toussaint '94] D. Fu and G. Toussaint, On approximating polygonal curves in two
and three dimensions. Graphical Models and Image Processing 5 (1994), pp. 231-246.

[Guibas et al. '93] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, and J.S. Snoeyink, Ap-
proximating polygons and subdivisions with minimum-link paths. Int. J. Computational
Geometry and Applications 3 (1993), pp. 383-415.

[Hershberger & Snoeyink '92] J. Hershberger and J. Snoeyink, Speeding up the Douglas-
Peucker line simplification algorithm. Proc. 5th Symp. on Spatial Data Handling (1992),
pp. 134-143.

[Hershberger & Snoeyink '94] J. Hershberger and J. Snoeyink, Computing minimum length
paths of a given homotopy class. Computational Geometry — Theory and Applications 4
(1994), pp. 63-97.

[Hobby ’93] J.D. Hobby, Polygonal approximations that minimize the number of inflections.
Proc. Jth ACM-SIAM Symp. on Discrete Algorithms (1993), pp. 93-102.

[Imai & Iri ’88] H. Imai and M. Iri, Polygonal approximations of a curve — formulations
and algorithms. In: G.T. Toussaint (Ed.), Computational Morphology, Elsevier Science
Publishers, 1988, pp. 71-86.

[Kurozumi & Davis '82] Y. Kurozumi and W.A. Davis, Polygonal approximation by the min-
imax method. Computer Graphics and Image Processing P19 (1982), pp. 248-264.

[Li & Openshaw ’92] Z. Li and S. Openshaw, Algorithms for automated line generalization
based on a natural principle of objective generalization. Int. J. Geographical Information
Systems 6 (1992), pp. 373-389.

[Mark "89] D.M. Mark, Conceptual basis for geographic line generalization. Proc. Auto-Carto
9 (1989), pp. 68-77.

[McMaster ’87] R.B. McMaster, Automated line generalization. Cartographica 24 (1987),
pp. 74-111.

[Melkman '87] A. Melkman, On-line construction of the convex hull of a simple polyline.
Inform. Process. Lett. 25 (1987), pp. 11-12.

[Melkman & O’Rourke '88] A. Melkman and J. O’Rourke, On polygonal chain approxima-
tion. In: G.T. Toussaint (Ed.), Computational Morphology, Elsevier Science Publishers,
1988, pp. 87-95.

[Preparata & Shamos ’85] F.P. Preparata and M.I. Shamos, Computational Geometry — an
introduction. Springer-Verlag, New York, 1985.

[Sarnak & Tarjan ’86] N. Sarnak, and R.E. Tarjan, Planar point location using persistent
search trees, Comm. ACM 29 (1986), pp. 669-679.

[Zhan & Mark 93] F. Zhan and D.M. Mark, Conflict resolution in map generalization: a
cognitive study. Proc. Auto-Carto 13 (1993), pp. 406-413.

19

