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Besides geometric error criteria, in geographic information systems one can also use criteriabased on the geographic knowledge, or on perception [Mark '89].The motivation for studying line simpli�cation problems is twofold. Firstly, polygonallines at a high level of detail consume a lot of storage space. In many situations a highlevel of detail is unnecessary or even unwanted. Secondly, when objects are described at ahigh level of detail, operations performed on them tend to be slow. An example where thisproblem can be severe is in animation.Our motivation for studying the line simpli�cation problem stems from reducing thestorage space needed to represent a map in a geographic information system. We assumethe map is modelled as a subdivision of the plane or a rectangular region thereof. In thisapplication the main consideration is the reduction of the complexity of the subdivision.The processing time may be a little higher, but within reason. The description size of thesubdivision is a permanent cost in a geographic information system, whereas the processingtime is spent only once in many applications.
MaastrichtCanterburyMaastrichtCanterbury The Nether-landsBelgiumFranceEngland GermanyFigure 1: Part of a map of Western Europe, and an inconsistent simpli�cation of the subdi-vision.One of the most important requirements of subdivisions for maps is that they besimple. No two edges of the subdivision may intersect, except at the endpoints. Thisposes two extra conditions on the line simpli�cation method. Firstly, when a polygo-nal chain is reduced in complexity, the output polygonal chain must be a simple polyg-onal chain. Several of the line simpli�cation methods described before don't satisfythis constraint [Chan & Chin '92, Cromley '88, Douglas & Peucker '73, Eu & Toussaint '94,Hershberger & Snoeyink '92, Imai & Iri '88, Li & Openshaw '92, Melkman & O'Rourke '88].The second condition that need be satis�ed is that the output chain does not intersect anyother polygonal chain in the subdivision. In other words, the simpli�cation method mustrespect the fact that the polygonal chain to be simpli�ed has a context. Usually the contextis more than just the other chains in the subdivision. On a map with borders of countriesand cities, represented by polygonal chains and points, a simpli�cation method that doesnot respect the points can result in a simpli�ed map in which cities close to the border liein the wrong country. In Figure 1, Maastricht has moved from the Netherlands to Belgium,Canterbury has moved into the sea, and near the top of the border between The Netherlandsand Germany, two coast lines intersect. Such topological errors in the simpli�cation lead to2



inconsistencies in geographic information systems.In this paper we will show that both conditions can be enforced after reformulatingthe problem into an abstract geometric setting. This is quite di�erent from the approachreported in [Zhan & Mark '93], who have done a cognitive study on conict resolution dueto simpli�cation. They accept that the simpli�cation process may lead to conicts (such astopological errors) and try to patch up the problems afterwards. We avoid conicts from thestart by using geometric algorithms. These algorithms are fairly easy to implement, and wegive the necessary pseudo code.The remainder of this paper is organized as follows. Section 2 discusses our approach tothe subdivision simpli�cation, and identi�es the main subtask: a new version of line simpli-�cation. Section 3 describes the approach of Imai and Iri for the standard line simpli�cationproblem. In Section 4 we adapt the algorithm for the new version of line simpli�cation. Sec-tion 5 summarizes the subdivision simpli�cation algorithm, and Section 6 gives a number ofpractical approaches to improve|both in speed and in output quality|the basic algorithmgiven before. In Section 7 the conclusions are given.2 Subdivision simpli�cation
convexhulljunctions Venlo KleveEmmenEnschedeArnhem Gronau

Figure 2: A subdivision with its junctions indicated.
Let S be a subdivision thatmodels a chloropleth map. A sub-division is a geometric structurethat represents an embedded pla-nar graph. We adopt the ter-minology standard in (computa-tional) geometry and say that thesubdivision S consists of vertices,edges and faces. The degree of avertex is the number of edges inci-dent to it. A vertex of degree oneis a leaf, a vertex of degree twois an interior vertex, and a vertexof degree at least three is a junc-tion. See Figure 2. Generally thenumber of leafs and junctions issmall compared to the number ofinterior vertices. Any sequence ofvertices and edges starting and ending at a leaf or junction, and with only interior verticesin between, is called a polygonal chain, or simply a chain. For convenience we also considera cycle of interior vertices (which occur for islands) as a chain, where we choose one of thevertices as the junction. It is the start and the end vertex of the chain.Let P be a set of points that model special positions inside the regions of the map.Subdivision simpli�cation can now be performed as follows. Keep the positions of all leafsand junctions �xed, and also the positions of the points in P . Replace every chain betweena start and end vertex by a new chain with the same start and end vertex but with fewerinterior vertices. For a polygonal chain C, we require of its simpli�cation C 0:1. No point on the chain C has distance more than a prespeci�ed error tolerance to itssimpli�cation C0. 3



2. The simpli�cation C 0 is a chain with no self-intersections.3. The simpli�cation C 0 may not intersect other chains of the subdivision.4. Each point of P lies to the same side of C 0 as of C.Let's take a closer look at the last requirement. The chain C is part of a subdivision that,generally, separates two faces of the subdivision. In those two faces there may be points of P .The simpli�ed chain between the start vertex and the end vertex will also separate two facesof the subdivision, but these faces have a slightly di�erent shape. The fourth requirementstates that the simpli�ed chain C0 must have the same subsets of points in those two faces.For chains that have the same face to both sides we cannot make such an observation. Anysimpli�cation will leave the points of P in the same face of the subdivision.The �rst requirement will be enforced by using and extending a known algorithm thatguarantees a maximum error �. The other three requirements are enforced by the way weextend the known algorithm. Intuitively, the simpli�ed chain consists of a sequence of edgesthat bypass zero or more vertices of the input chain. We will develop e�cient tests todetermine whether edges in the simpli�ed chain leave points of P to the wrong side or not.We'll see that enforcing the third requirement doesn't add much to the di�culty of thealgorithm. When applying the simpli�cation algorithm to some chain of the subdivision, wetemporarily add to the set P of points all vertices of other chains of the subdivision. One canshow that|since C 0 has the vertices of other chains to the same side as C|the simpli�edchain C0 won't intersect any other chain of the subdivision. We will apply a similar ideato avoid self-intersections. A simpli�ed chain that has the points of P to the correct side,has no self-intersections, and doesn't intersect other chains in the subdivision is a consistentsimpli�cation.A disadvantage of adding the vertices to the point set P is that P can become quite large,which will slow down the algorithm. There are two observations that can help reduce thenumber of points that need be added to P . Firstly, we only have to take the vertices of thechains that bound one of the two faces separated by the chain we are simplifying. Secondly,it is easy to show that only points inside the convex hull of the chain that is being simpli�edcould possibly end up to the wrong side. So we only have to use points of P and verticesof other chains that lie inside this convex hull. In Figure 2, the chain that represents theborder between the Netherlands and Germany is shown with its convex hull (dashed) andsome cities close to the border (squares). No other chains intersect the convex hull, and onlythe cities Emmen, Enschede, Kleve and Venlo must be considered when simply�ng the chain(the pseudo code for this idea follows later in this paper).It remains to solve a new version of the line simpli�cation problem. Namely, one wherethere are extra points which must be to the same side of the original chain and the simpli�edchain. For this problem we will develop an e�cient algorithm in the following sections. Ittakes O(n(n +m) logn) time in the worst case for a polygonal chain with n vertices and mextra points. This will lead to:Theorem 1 Given a planar subdivision S with N vertices and M extra points, and a max-imum allowed error � > 0, a simpli�cation of S that satis�es the four requirements statedabove can be computed in O(N(N +M) logN) time in the worst case.The close to quadratic time behavior of the algorithm may seem too ine�cient for subdi-visions with millions of vertices. However, one can expect that the quadratic time behaviorin the worst case won't show up in practice. It will depend on the description sizes of the4



chains in the subdivision, the number of extra points and their positions, and the shapes ofthe chains themselves. An implementation and test runs are required to examine the runningtime on real data.Theoretically, it would be satisfactory to compute e�ciently a minimum size simpli�cationof the subdivision S that satis�es the given constraints. (Throughout this paper, the size of achain refers to the number of edges, not to the length.) Unfortunately, this seems to be verydi�cult. It should be noted that some other version of the subdivision simpli�cation problem,where the objective is to obtain a minimum complexity simple subdivision, is an NP-hardproblem [Guibas et al. '93]. We do, however, guarantee a minimum size simpli�cation for thesimpli�cation of every polygonal line that satis�es a condition weaker than monotonicity.3 Preliminaries on line simpli�cationWe describe the line simpli�cation algorithm in [Imai & Iri '88], upon which our method isbased. Let v1; : : : ; vn be the input polygonal chain C. A line segment vivj is a shortcut forthe subchain vi; : : : ; vj. The error of a shortcut vivj is the maximum distance from vivj toa point vk , where i � k � j. A shortcut is allowed if and only if the error it induces is atmost some prespeci�ed positive real value �. We wish to replace C by a chain consisting ofallowed shortcuts. This chain should have as few shortcuts as possible. In this paper wedon't consider simpli�cations that use vertices other than those of the input chain.Let G be a directed acyclic graph with node set V = fv1; : : : ; vng. The arc set A contains(vi; vj) if and only if i < j and the shortcut vivj is allowed. The error of an arc (vi; vj) isde�ned as the error of the shortcut vivj . So A = f(vi; vj) j i < j and the error of vivj � � g.The graph G can be constructed with a trivial algorithm in O(n3) time and G has size O(n2).A shortest path from v1 to vn in G corresponds to a minimum size simpli�cation of thepolygonal chain. Using topological sorting, the shortest path can be computed in time linearin the number of nodes and arcs of G [Cormen et al. '90]. Therefore, after the constructionof G, the problem can be solved in O(n2) time. We remark that the approach can alwaysterminate with a valid output, because the original polygonal line is always a valid output(though hardly a simpli�cation). The bottleneck in the e�ciency is the construction of thegraph G. In [Melkman & O'Rourke '88] it was shown that G can be computed in O(n2 logn)time, reducing the overall time bound toO(n2 logn) time. In [Chan & Chin '92] an algorithmwas given to construct G in O(n2) time. This is optimal in the worst case because G canhave �(n2) arcs. We explain their algorithm briey.One simple but useful observation is that the error of a shortcut vivj is the maximum ofthe errors of the half-line starting at vi and containing vj , and the half-line starting at vjand containing vi. Denote these half-lines by lij and lji, respectively. We construct a graphG1 that contains an arc (vi; vj) if and only if the error of lij is at most �, and a graph G2that contains an arc (vi; vj) if and only if the error of lji is at most �. To obtain the graph G,we let (vi; vj) be an arc of G if and only if (vi; vj) is an arc in both G1 and G2. The problemthat remains is the construction of G1 and G2 which boils down to determining whether theerrors of the half-lines is at most � or not. We only describe the case of half-lines lij for all1 � i < j � n; the other case is completely analogous.The algorithm starts by letting the vertices v1; : : : ; vn in turn be vi. Given vi, the errorsof all half-lines lij with j > i are determined in the order li(i+1); li(i+2); : : : ; lin as follows. Ifwe associate with vk a closed disk Dk centered at vk and with radius �, then the error of lij isat most � if and only if lij intersects all disks Dk with i � k � j. Let l0i be the half-line rooted5



Algorithm Compute-Allowed-Shortcuts(C; �)Input: A polygonal chain C with n vertices v1; : : : ; vn and a real � > 0.Output: The set of all allowed shortcuts of C.(� Half-line lij and disk Dj are de�ned as above. �)1. for i 1 to n� 12. do I (��; �]3. j i+ 14. while a � b and j � n5. do if angle of lij between a and b6. then accept shortcut vivj7. if vi 62 Dj8. then I I\ angles of half-lines that intersect Dj9. j j + 1
vi vivi+1 vi+3(vi; vi+1) isaccepted, thewedge is showngrey.Vertex vi+2doesn't lie inthe wedge so(vi; vi+2) is notaccepted.The reducedwedge is showngrey.Vertex vi+3 liesin the wedge so(vi; vi+3) is ac-cepted.

vi+2 The wedge neednot be reduced.Vertex vi+4lies outsidethe wedge so(vi; vi+4) is notaccepted.The wedgebecomes emptyso no other arc(vi; vj) will beaccepted.vi+4
vi vi+4vi vi+2vi+3(i)(ii) (iii)(iv)Figure 3: Deciding which arcs (vi; vj) with j > i are accepted to G1. Only (vi; vi+1) and(vi; vi+3) will be accepted.at vi and extending in positive x-direction. The algorithm maintains the set of angles with l0iof half-lines starting at vi that intersect the disks Di+1; Di+2; : : : incrementally. Initially, theset contains all angles (��; �]. The set of angles will always be one interval, that is, the set ofhalf-lines with error at most � up to some vertex form a wedge with vi as the apex. Updatingthe wedge takes only constant time when we take the next vj , and the algorithm may stop theinner iteration once the wedge becomes empty. Pseudo code is given as Algorithm Compute-Allowed-Shortcuts, and the algorithm is illustrated in Figure 3. With the given approach, thegraph construction requires O(n2) time in the worst case [Chan & Chin '92].4 Consistent simpli�cation of a chainIn this section we generalize the line simpli�cation algorithm just described to respect extrapoints as well. We also consider the issue of computing a simpli�cation that has no self-intersections. A polygonal chain or polygon that has no self-intersections is called simple.6



CC0v1 vnBFigure 4: Two chains C and C0 which are consistent with respect to the points shown asdisks, but not with respect to the point shown as a cross.Let C and C 0 be two simple polygonal chains between v1 and vn, and let P be a set ofpoints. C is part of the boundary of a face of a subdivision, and the requirement is that thesubset of points of P that lie in that face with C as the boundary be the same as the subset ofpoints of P in the face when C is replaced by C0. Therefore, we de�ne two polygonal chainsC and C0 oriented from v1 to vn to be consistent with respect to P if there exists a simplechain B oriented from vn to v1 that closes both C and C 0 to simple polygons which have thesame subset of points of P in the interior. Also, these simple polygons must have all edgesoriented clockwise or counterclockwise. Figure 4 gives an example of two chains C and C 0that are closed to simple polygons with clockwise orientation. One can show that any chainB that completes C and C 0 to simple polygons with the same orientation will give the sameresult as to consistency of C and C 0.The general approach we take is to compute a graph G3 with the vertices of the chain asthe node set, and an arc between two nodes if the shortcut of the corresponding vertices isconsistent. So we don't consider the error of the shortcuts in G3. Recall that the algorithmin the previous section already used two graphs G1 and G2, and the intersections of their arcsets represented the shortcuts with su�ciently small error. If we also intersect the arc setof G3, we have the additional property that the resulting arcs are consistent as well. In theremainder of this section we only concentrate on computing consistent shortcuts of C.A polygonal chain is x-monotone if any vertical line intersects it in at most one point.In other words, an x-monotone polygonal chain is a piecewise linear function de�ned over aninterval. It is easy to see that any simpli�cation of an x-monotone polygonal chain is also anx-monotone polygonal chain.In Subsection 4.1 we discuss the simpli�cation of x-monotone chains. We show how tocompute all consistent shortcuts from a vertex vi, and by applying this algorithm to allvertices of the chain we get all consistent shortcuts. In Subsection 4.2 the possible extensionsto arbitrary chains are considered. For arbitrary chains the property that any simpli�cation ofit is simple doesn't hold any more. So extra measures must be taken to avoid self-intersections.4.1 Monotone chainsLet C be an x-monotone polygonal chain with vertices v1; : : : ; vn. We denote the subchainof C between vertices vi and vj by Cij . Let P be a set of m points p1; : : : ; pm.Lemma 1 C0 is a consistent simpli�cation of C with respect to P if and only if no point ofP lies in a bounded face formed by C and C0.7



Proof: For each point p in P we count the number of intersections of a half-line extendingvertically downward from p with the chains C and C0. Since C and C0 are both x-monotone,these counts can only be zero or one.Suppose that C 0 is a consistent simpli�cation of C. Then there exists a chain B thatcompletes both C and C 0 to simple polygons|denoted BC and BC0|and P\BC = P\BC0.By the point-in-polygon criterion (a point p lies in a polygon if and only if a verticallydownward half-line from that point intersects the boundary of the polygon an odd number oftimes) it follows that the counts mentioned above must be the same for C and C0. Therefore,no point of P lies in a bounded face formed by C and C0.On the other hand, assume that no point of P lies in a bounded face formed by C and C 0.Since C and C0 are x-monotone chains it is easy to see that a chain B exists that completesboth C and C 0 to simple polygons with clockwise orientations. Denote these polygons byBC and BC0. Again by the point-in-polygon test, P \ BC = P \ BC 0 since no point ofP lies above C and below C0 or vice versa. Therefore, C0 is a consistent simpli�cation of C. 2Let Qij be the not necessarily simple polygon bounded by Cij and the edge vivj , so Qijcontains j� i edges of C and one more edge vivj . This last edge may intersect other edges ofQij . Our algorithm will decide e�ciently for all vertices vj whether the polygon Qij containspoints of P in the bounded faces.vivi+1 vi+2 vi+3vi+4vi+5 vi+6 vi+7 vi+9vi+8wi+9wi+6wi+5 wi+7minimalmaximal
Figure 5: A part of a chain with fourtangent splitters.

The �rst step of the algorithm is to locate all tan-gent segments from vi. We de�ne a shortcut vivj tobe tangent if vj�1 and vj+1 lie in the same closedhalf-plane bounded by the line through vi and vj , andi+1 < j < n. The shortcut vivn is always consideredto be tangent. The tangent shortcuts in Figure 5 arevivi+5, vivi+6, vi; vi+7, and vivi+9. A tangent short-cut vivj is minimal (in slope) if vj�1 lies above theline through vi and vj . If vj�1 lies below that line,then it is maximal (in slope), and if vj�1 lies on theline it is degenerate. The tangent splitter is the linesegment wjvj de�ned as the maximal closed subseg-ment of vivj that does not intersect C in a pointinterior to wjvj . So the point wj is an intersection point of the chain C and the shortcutvivj , and the one closest to vj among these, see Figure 5. If vj�1 lies on the shortcut vivjthen wjvj degenerates to the point vj . A tangent splitter is minimal, maximal, or degeneratewhen the tangent shortcut is.Let viv(1); : : : ; viv(r) be the nondegenerate tangents. The corresponding set of tangentsplitters and C together de�ne a subdivision Si of the plane of linear size, see Figure 6. Thesubdivision has r bounded faces, each of which is bounded by pieces of C and one or moreminimal or maximal tangent splitters.For every face of Si, consider the vertex with highest index bounding that face. Thisvertex must de�ne a tangent splitter, so it is one of v(1); : : : ; v(r). Assume it is v(b). Thenwe associate with that face the number b. The subdivision and its numbering have someuseful properties.Lemma 2 Every bounded face of the subdivision Si is �-monotone with respect to vi, that is,any half-line rooted at vi intersects any bounded face of Si in zero or one connected component.8



vi vi+5 vi+6 vi+7vi+9s1 s3 s4s2Figure 6: The corresponding subdivision Si with faces (1) = i+5; (2) = i+6; (3) = i+7;and (4) = i+ 9.Proof: Assume that there is a face sl that is not �-monotone. Then there must bea vertex vj in the boundary of that face such that the half-line rooted at vi intersectsthe interior of sl both to the left and to the right of vj . But then vivj is tangent, andhence, the tangent splitter vjwj is an edge of the subdivision Si. This contradicts the state-ment that there is a half-line rooted at vi that intersects the interior of sl left and right of vj . 2Lemma 3 Every bounded face of the subdivision Si has one connected subchain of C wherehalf-lines rooted at vi leave that face.Proof: The subdivision Si only consists of parts of C and tangent splitters, which alwaysextend from a vertex vj toward vi. Let sl be a face of which the part of the boundary wherehalf-lines rooted at vi leave it consists of more than one subchain of C. Then there must bea vertex vj between those subchains such that vivj is tangent. But then a tangent splitterwas chosen extending from vj to vi, which makes that the two subchains that were supposedto be in sl cannot be in the same face, a contradiction. 2Lemma 4 Any directed half-line from vi intersects faces in order of increasing number.Proof: By the previous lemma, there is a connected subchain of C where the directedhalf-lines from vi leave a face. The tangent splitter that gives the number to a face has thevertex with highest index on that chain as one endpoint.Suppose that there exists a directed half-line from vi that intersects a face sl before itintersects sk, and l > k. Consider the unique points tl and tk where the half-line leaves sland sk , respectively. Consider the subchains of C of faces sl and sk as referred to in theprevious paragraph. Since both subchains are connected and disjoint, it follows that tl liesleft of tk . Since by assumption l > k it follows that C is not x-monotone, a contradiction. 2The tangent splitters can be found in linear time as follows. Traverse C from vi towardsvn. At every vertex vj for which vivj is tangent (and non-degenerate), walk back along Cuntil we reach vi or �nd an intersection of vivj with C. In the latter case, the fact that Cis x-monotone guarantees that the point we found is the rightmost intersection, and thus itmust be wj . Then we continue the traversal forward at vj towards vn. This approach wouldtake quadratic time, but we use the following idea to bring it down to linear. Next time wewalk back to compute the next tangent splitter, we use previous tangent splitters to walkback quickly. For a new maximal tangent splitter we only use previously found maximal9



Algorithm Compute-Tangent-Splitters(C; i)Input: A chain C with n vertices v1; : : : ; vn and an integer i, where 1 � i < n.Output: The tangent splitters of C with respect to vi.1. for j i + 1 to n2. do if vivj is maximal tangent3. then k j � 14. while lij \ vk�1vk = ;5. do k k � 16. if vivk is maximal tangent7. then k h where vh�1vh contains wk of maximal tangent splitterwkvk8. else k k � 19. wj lij \ vk�1vk10. Store with vj a pointer to vk�1vk11. else if vivj is minimal tangent12. then \take analogous steps"13. else j j + 1tangent splitters, and for a new minimal tangent splitter we only use minimal ones. One canshow that the skipped part of C never contains the other endpoint of the tangent splitter weare looking for. Algorithm Compute-Tangent-Splitters contains the pseudo code.The total number of steps during all backward walks is O(n), which can be seen asfollows. During the walks back we visit each vertex which is not incident to a splitter at mosttwice, once when locating wj for a maximal tangent splitter wjvj , and once for a minimaltangent splitter. For all following backward walks we bypass vertices that were already visited.Similarly, each tangent splitter is used as quick walk backwards only once; the next time itwill be bypassed by another tangent splitter. So we can charge the cost of the backwardswalks to the O(n) vertices of C and the O(n) tangent splitters.vi vi+5 vi+6 vi+7vi+9Figure 7: In each face, only thepoint indicated by a square ismaintained.
The second step of the algorithm is to distribute thepoints of P among the faces of the subdivision Si. Eitherby a plane sweep algorithm where a line rotates aboutvi, or by preprocessing Si for point location, this steprequires O((n+m) logn) time [Preparata & Shamos '85].All points of P that don't lie in a bounded face of Si can bediscarded; they cannot be in a bounded face of the polygonQij for any shortcut vivj . But we can discard many morepoints. For every face of Si, consider the tangent splitterwith the vertex of highest index. If that tangent splitteris minimal, we discard all points in it except for the pointp that maximizes the slope of the directed segment vip,see Figure 7. Similarly, if the tangent splitter with highest index is maximal, we discard allpoints in the face except for the point p that minimizes the slope of the directed segment vip.Now every face of Si contains at most one point of P . Algorithm Distribute-Points gives thepseudo code.Lemma 5 Any shortcut vivj is consistent with the subchain Cij with respect to P if and onlyif it is consistent with respect to the remaining subset of points of P .10



Algorithm Distribute-Points(Si; i; P )Input: The subdivision Si in a topological network structure, an integer 1 � i < n, and a set Pof points.Output: The assignment of the points of P to the faces of Si.(� The plane sweep based method. �)1. P 0 the subset of P of points that have a larger x-coordinate than vi.2. Sort the points of P 0 [ fvi+1; : : : ; vng by angle around vi and put them in a priority queueQ.3. Initialize an empty binary search tree T .4. (� A half-line rooted at vi will sweep from vertically upward clockwise to vertically down-ward. �)5. (� T will store the edges of C beyond vi intersecting the sweep-line in order of intersection. �)6. while Not-Empty(Q)7. do p Extract-Max(Q)8. if p is a vertex vj9. then update T with the edges incident to vj10. else search in T to �nd the leftmost edge vkvk+1 to the right of p and on thesweep-line11. if this edge exists then store p with vkvk+112. Traverse vivi+1; : : : ; vn�1vn, collect the points stored with the edges, and store one of them(clockwise minimal or maximal) with the appropriate face.Proof: By de�nition vivj is consistent if and only if no point of P is contained in theclosed faces of polygon Qij . Since every face is �-monotone, it follows that if a shortcut isinconsistent with respect to some point of P , then it is also inconsistent with respect to theretained point of P in that face. Conversely, if a shortcut is consistent with respect to theretained point in a face, then the shortcut must also be consistent with respect to all otherpoints of P in the face (again because faces are �-monotone). Since these statements holdfor all faces of the subdivision Si, the lemma follows. 2vi vi+9vi+1 vi+2 vi+3vi+4 vi+5vi+6 vi+7vi+8Figure 8: Only the shortcutsvivi+1, vi; vi+2, and vivi+3 are ac-cepted.
In the third step of the algorithm we decide whichshortcuts vivj are consistent and should be present inthe graph G3 in the form of an arc (vi; vj). To makethe third step e�cient we start by sorting the shortcutsvivi+1; : : : ; vivn by slope. Here we consider the shortcutsto be directed away from vi. Since C is x-monotone, allshortcuts are directed towards the right. The shortcutsare stored in a deque Q (a double-ended queue). We treatthe faces of Si in the order of increasing associated num-ber. When treating a face, we will discard any shortcutvivj that has not yet been accepted and is inconsistentwith respect to the one remaining point of P in that face(if any). Then we accept those shortcut vivj that have vj on the boundary of the face andhave not yet been discarded. For discarding shortcuts, we use the order of shortcuts by slopeas stored in the deque Q. For accepting shortcuts, we use the order along the chain C.In Figure 8, the shortcuts that are subsequently discarded when face s1 is treated arevivi+5, vivi+4, vivi+7, vivi+6, and vivi+8. Then the shortcuts vivi+1, vivi+2, and vivi+3 areaccepted because they end in s1. Then the next face s2 is treated, and vivi+9 is discarded.11



Algorithm Discard-and-Accept(Si; i)Input: The subdivision Si in a topological network structure, an integer 1 � i < n, and for eachface of Si possibly a point of P .Output: The shortcuts starting at vi that are consistent.1. Sort the shortcuts vivj with j > i by slope and store in a deque Q. Maintain a cross-pointerbetween the deque element vivj and the vertex vj in Si.2. j 1 (� vj is the current position along C for accepting �)3. Assign a numbering to the faces of Si, being s1; : : : ; sr.4. for h 1 to r5. do if a point p 2 P is stored with sh6. then if sh is bounded by a maximal tangent splitter7. then discard shortcuts from the front of the deque as long as the slopesof the shortcuts are greater than the slope of vip8. else discard shortcuts from the back of the deque as long as the slopesof the shortcuts are smaller than the slope of vip9. while vj 6= the tangent splitter vertex of sh10. do if vivj was not discarded11. then accept it and remove it from Q12. j j + 1The pseudo code is given in Algorithm Discard-and-Accept.Lemma 6 Every discarded shortcut vivj is inconsistent with the subchain Cij with respect tothe points of P .Proof: By construction. 2Lemma 7 Any accepted shortcut vivj is consistent with the subchain Cij with respect to thepoints of P .Proof: If a shortcut is accepted, all faces it intersects have been treated by Lemma 4 andbecause faces are treated in order of increasing number. Since the shortcut has not beendiscarded when treating any of the intersected faces, the shortcut doesn't contain a point ofP in a bounded face. Therefore, it is consistent with Cij . 2The third step requires O(n) time, which can be seen as follows. For each face, we spendO(d + 1) time for discarding if d segments in Q are discarded. This is obvious becausediscarding is simply removing from one end of the deque Q. To accept e�ciently, we main-tain cross-pointers between the deque Q and the chain C so that shortcuts|once they areaccepted|can be removed from Q in constant time. So we spend O(a+1) time if a shortcutsare accepted. Since any shortcut is discarded or accepted once, and there are a linear numberof faces in Si, it follows that the third step takes linear time.We have completed the description of the three steps that lead to the computation of allconsistent shortcuts starting at some vertex vi of the chain. As a result, we have obtainedthe following:Lemma 8 Given an x-monotone polygonal chain C with n vertices, and a set P of m points,it is possible to compute all consistent shortcuts from any vertex of C in O((n + m) logn)time. 12



If we apply this lemma to all vertices of C, construct the graph G3 representing allconsistent shortcuts, then combine the obtained graph G3 with the graphs G1 and G2 (asde�ned in the previous section) to create the graph G, we can conclude with the followingresult.Theorem 2 Given an x-monotone polygonal chain C with n vertices, a set P of m points,and an error tolerance � > 0, it is possible to compute the minimum size simpli�cation of Cthat is consistent with respect to P and that approximates C within the error tolerance � inO(n(n+m) logn) time.The simpli�cation is also simple, but this is automatic because every simpli�cation of anx-monotone chain is again an x-monotone chain, and every x-monotone polygonal chain issimple.4.2 Arbitrary chainsThe algorithm obtained for the simpli�cation of x-monotone chains can be generalized toarbitrary chains in several di�erent ways. We'll describe a fairly simple way to extend the al-gorithm described before that most likely will give good data reduction. From the theoreticalside, however, we cannot guarantee that the simpli�cation is the minimum link simpli�cationas in the x-monotone case.The main idea is the following. When deciding for a vertex vi which shortcuts starting atvi are consistent, we will only look for shortcuts up to a certain vertex vn(i) with n(i) � n.The vertex vn(i) is chosen such that we can run the algorithm described previously on thesubchain between vi and vn(i) with hardly any changes at all. A �rst idea may be to letvn(i) be such that the resulting subchain is the longest x-monotone chain from vi. This givespoor performance if the chain extends to the left very often. Clearly, we should change thecoordinate system to get a long subchain vi; : : : ; vn(i) to which the algorithm can be applied.A second problem we face is that it seems more di�cult to guarantee simplicity of the outputchain.v1 vn(1)v4 vn(4) v25vn(25)Figure 9: The vertices vn(1), vn(4), and vn(25)shown for the chain. Let's consider how to determine the longestsubchain from a vertex vi to which the algo-rithm can be applied. One can observe thatthe algorithm of the previous section works formore general chains than x-monotone chains.The two features we need for the correctnessare �-monotonicity of the faces of the subdivi-sion Si (Lemma 2) and the intersection order offaces by half-lines (Lemma 4). These featuresare present if the polygonal chain doesn't cy-cle and doesn't have backward tangents. Intuitively, no backward tangents means that thereshouldn't be an edge vjvj+1 that is closer to vi than the preceding edge vj�1vj . More formally,a segment vivj is a backward tangent if for the angles 6 vivjvj�1 and 6 vivjvj+1 (measuredcounterclockwise) we either have 6 vivjvj+1 < 6 vivjvj�1 < � or � < 6 vivjvj�1 < 6 vivjvj+1,where i + 1 < j < n. Whether a segment is a backward tangent can easily be determinedin constant time. The second condition|that the polygonal chain doesn't cycle|would giveproblems in the second step of the algorithm, the half-line rotating about vi to distributethe points of P . The subchain vi; : : : ; vn(i) on which we run the algorithm of the previoussection is such that vn(i) is the �rst vertex after vi for which vivn(i) is a backward tangent, and13



Algorithm Determine-Subchain(C; i)Input: A simple polygonal chain C with vertices v1; : : : ; vn, and an integer 1 � i < n.Output: The vertex vn(i) such that vi; : : : ; vn(i)�1 doesn't have backward tangents andvi; : : : ; vn(i) doesn't cycle.1. j i + 12. Ii (��; �] � the angle of vivj3. (� the interval Ii represents the angles around vi such that a half-line starting at vi doesn'tintersect the subchain vi; : : : ; vj �)4. while (j < n) and (Ii 6= ;) and5. (( 6 vivjvj+1 < 6 vivjvj�1 < �) or (� < 6 vivjvj�1 < 6 vivjvj+1))6. do j j + 17. Ii Ii � the angles of half-lines that intersect vj�1vj8. if Ii = ;9. then return vj�110. else return vjCin(i) doesn't cycle around vi. In Figure 9, vn(1) and vn(4) are chosen because of the anglecondition, and vn(25) is chosen because of the cycling condition. After running AlgorithmDetermine-Subchain (C; i), the coordinate system can be chosen so that the negative x-axisis any half-line with angle in Ii. The rotating half-line of the second step will make a fullrotation of 2� starting and ending at the negative x-axis (instead of making a half turn fromthe positive to the negative y-axis in Algorithm Distribute-Points).The second problem we must take care of is the parts of the chain C before vi and aftervn(i). These subchains can intersect shortcuts vivj with i+1 < j � n(i), which can cause self-intersections in the simpli�cation of C. So we must prevent shortcuts from being consistentif they intersect any edge of C before vi or after vn(i). There is a simple remedy here: add allvertices of v1; : : : ; vi�1 and of vn(i)+1; : : : ; vn as extra points to the set P . Now we can showthat any shortcut vivj that is consistent with Cij with respect to the extra points cannotdestroy the condition that the output chain be simple. We conclude:Theorem 3 Given a simple polygonal line C with n vertices, a set P of m points, and amaximum allowed error � � 0, a simpli�cation of C that lies within distance � of C, thatis consistent with C with respect to the points in P , and that is simple, can be computed inO(n(n+m) logn) time.5 Subdivision simpli�cation in summaryAll ingredients for subdivision simpli�cation have been given. We next combine them|asa summary|for the general subdivision simpli�cation algorithm. In Algorithm Simplify-Subdivision calls are made to previously given algorithms. However, these were assumed towork on x-monotone chains, and we've generalized the method to arbitrary chains. Therefore,the algorithms of Subsection 4.1 have to be changed slightly. They need an extra parameter tospecify the vertex vn(i). Instead of computing the consistent shortcuts vivj for i+ 1 � j � n,we restrict to the values i + 1 � j � n(i). It is trivial to adapt the algorithms this way.Furthermore, the Algorithm Distribute-Points should be changed to using a full sweep ofthe half-line, as explained in Subsection 4.2. After computing the consistent and allowedshortcuts, we construct a graph G whose arcs represent all consistent and allowed shortcuts.In this graph a minimum link path is computed. Such a path is usually called a shortest path14



Algorithm Simplify-Subdivision(S; �; P )Input: A simple polygonal subdivision S, a positive real �, and a set P of points.Output: A simpli�ed simple polygonal subdivision S0 such that S and S0 are consistent withrespect to P , and that the error is at most �.1. Determine all vertices of degree 1 or at least 3 in S. Let them be the endpoints of a collectionC of polygonal chains.2. for every polygonal chain C 2 C3. do Let v1; : : : ; vn be the vertices in order along C.4. Let G3 be the graph with nodes v1; : : : ; vn.5. for i 1 to n � 16. do n(i) Determine-Subchain (C; i)7. Change the coordinate systems appropriately.8. Pi P [ all vertices of S except vi; : : : ; vn(i)9. (� The calls to the algorithms below have an extra parameter n(i) to replacen in the given algorithms for the x-monotone case. �)10. Compute-Tangent-Splitters (C; i; n(i))11. Distribute-Points (Si; i; Pi; n(i))12. Discard-and-Accept (Si; i; n(i)) and add the accepted edges as arcs to G313. Compute the graphs G1 and G2 using Algorithm Compute-Allowed-Shortcuts (C; �).14. Compute graph G from G1; G2; G3 by intersecting their arc sets.15. Determine a minimum link path from v1 to vn in G, and let it be the simpli�cationfor C.in graph literature, and its computation is standard [Cormen et al. '90]. This path representsthe simpli�cation of a chain.6 Practical considerationsIn this section we will discuss some ideas that will lead to more e�cient implementations ormore e�cient variants of subdivision simpli�cation. We also consider two extra conditionsone may want to enforce, and how they can be included in the algorithm.A �rst and important speed-up can be achieved by reducing the size of the set Pi usedin Algorithm Simplify-Subdivision. It was the union of the extra points P and all vertices ofthe whole subdivision, except those on the part of the chain to be simpli�ed. In Section 2it was already noted that one need not take this entire set. Points that lie far enough awaycannot inuence the choices in the simpli�cation anyway. One observation to make is thatany simpli�cation of a chain stays within the convex hull of that chain. So only the pointsinside the convex hull can be relevant. For each chain C, we'll compute its convex hull anddetermine the subset PC of all points of P and all vertices of other chains of S that lie insidethe convex hull of C. There should be far fewer points in PC than in any Pi. Inside the innerfor-loop, we use the set PC and add the vertices v1; : : : ; vi�1; vn(i)+1; : : : ; vn.To compute the convex hull of a simple polygonal chain one can use a simple algorithmthat uses only one deque in its execution [Melkman '87]. After the convex hull has beencomputed we test for every point in P whether it lies inside the convex hull or not. This testcan be done using binary search for each point. Algorithm Reduce-Extra-Points gives thepseudo code. It can be called with the appropriate parameters just before the inner for-loopof Algorithm Simplify-Subdivision.A second idea that can be used to speed up the simpli�cation algorithm is the following.15



Algorithm Reduce-Extra-Points(C;P )Input: A simple polygonal chain C with vertices v1; : : : ; vn, and a set P of points that includesthe vertices of other chains of S.Output: The set P 0 � P of points that lie inside the convex hull of C.(� The algorithm maintains the convex hull incrementally. �)1. Initialize a deque Q with the three vertices v2; v1; v2.2. (� Q stores the vertices of the convex hull in cyclic order starting and ending with the samevertex. �)3. for i 3 to n4. do for each end of Q5. do while abvi is a reex turn, where b and a are the last two points in Q6. do remove vertex b from Q7. if any point was removed then add vi to both ends of Q8. Store the contents of Q (the convex hull of C) in an array to allow for binary search.9. for each point p of P10. do if p lies in the convex hull then add p to the set P 0Suppose that we are simplifying a chain C, and thus computing for the shortcuts whetherthey are allowed (within distance �) and consistent (respect the extra points). Suppose weknow for every vertex of C the most distant vertex to which an allowed shortcut exists. Thenthe computation of consistent shortcuts need not go beyond that most distant vertex. Wecould also argue from the other perspective: if we know for each shortcut the most distantvertex to which shortcuts are consistent, then the computation of allowed shortcuts need notgo beyond that vertex. Which version will be more e�cient is di�cult to predict. It dependson which condition is more restrictive: the (seemingly) more restrictive condition should becomputed �rst. Our guess is that being allowed is more restrictive than being consistent(unless � is large and there are many extra points). The idea sketched here can easily beincorporated in the given algorithms and therefore we omit further details.We next discuss two issues for the extension of the algorithm to account for an extracondition that may be required in practice. The �rst condition is guaranteeing that thepoints of P cannot get too close to the simpli�ed chain. Presently, the algorithm only keepspoints to the correct side when points are considered in�nitesimally small and polygonal linesin�nitesimally narrow. When drawing the subdivision and the points on an output device,this assumption no longer is valid. We may want to specify a minimum clearance betweenthe points of P and the polygonal chains of the subdivision. Such a clearance can only beguaranteed if it holds for the unsimpli�ed subdivision. One idea to handle the situation isthe following. Replace each point of P by a small number (four, six or eight) points on asmall circle around it. Put these points in the set P before running the algorithm. Sincethese new points are respected by the algorithm, the original points of P will have someminimum distance from the simpli�ed subdivision (assuming we have a minimum clearancein the initial situation).A second condition that may be required for the output subdivision is that it doesn'tcontain any small angles between two consecutive line segments. This condition cannotalways be enforced in practice. But there is a method that can help to avoid small angles.First the algorithm as it is described is run up to the point where the minimum link pathin the graph G is computed. Instead, we transform graph G to another graph GL, calledthe line graph of G. This transformation is done as follows. For every arc in G we make16



Algorithm Good(C;P; i; j; �; k)Input: A simple polygonal chain C with vertices v1; : : : ; vn, two indices i; j with 1 � i < j � n,a real � > 0, and a set P of points.Output: True if vi; : : : ; vj can be simpli�ed to vivj , and false otherwise, in which case k is theindex of the farthest vertex vk from vivj for which i < k < j.1. Determine the farthest vertex vk from the segment vivj .2. if dist(vk; vivj) > �3. then return false and k4. else determine the polygons in vivi+1; : : : ; vj�1vj; vivj5. for each point p in P6. do if p lies in any polygon7. then return false and k8. return trueAlgorithm Douglas-Peucker-Extra(C;P; i; j; �)Input: A simple polygonal chain C with vertices v1; : : : ; vn, two indices i; j with 1 � i < j � n,and a set P of points. The initial call has i = 1 and j = n.Output: A simpli�cation of vi; : : : ; vj similar to the Douglas-Peucker algorithm but which re-spects the extra points in P .1. if Good (C;P; i; j; �; k)2. then return vivj3. else (� vk is returned as the farthest vertex from vivj �)4. Douglas-Peucker-Extra (C;P; i; k; �)5. Douglas-Peucker-Extra (C;P; k; j; �)a node in GL. Let a and b be two nodes in GL corresponding to arcs (vi; vj) and (vh; vk)in G, where i < j and h < k. We connect a and b in GL by an arc if and only if j = hand the angle between the line segments vivj and vhvk is su�ciently large. A minimum linkpath in GL corresponds to a simpli�cation where all angles of two consecutive shortcuts aresu�ciently large. Unfortunately, there are a number of drawbacks with this approach. Firstly,a simpli�cation with su�ciently large angles may not exist at all, in which case the algorithmfails to �nd a simpli�cation. Secondly, the running time and the space requirements of thealgorithm go up because the size of GL can be much larger than of G. In the worst case, thealgorithm needs cubic time and space. Thirdly, small angles may still show up between twoconsecutive chains if they are simpli�ed separately. Fourthly, even in one simpli�ed chain itmay appear that small angles are present if there are very short line segments connectingtwo other line segments that make a small angle. A satisfactory solution for avoiding smallangles remains to be found.As a last issue in this section we consider the adaptation of the line simpli�cation algorithmof Douglas and Peucker to respect extra points. In this paper we considered the adaptationof another line simpli�cation algorithm because it yielded better data reduction. On theother hand, the Douglas-Peucker algorithm is more simple and its running time is better inpractice. It depends on the application which of the two algorithms is preferable.Roughly, the Douglas-Peucker simpli�cation algorithm for a chain with vertices v1; : : : ; vninitially chooses v1 and vn for the simpli�ed chain. If the current simpli�cation satis�es the�-condition then we are done. Otherwise, the furthest point from the current simpli�cation ischosen and added to the simpli�cation. This gives two recursively de�ned subproblems. More17



can be found in [Douglas & Peucker '73]. To adapt the algorithm we need only reimplementthe test whether the current simpli�cation is good enough. It should not only depend on the�-condition, but also on the extra points in P . Algorithms Douglas-Peucker-Extra and thesubroutine Good gives the pseudo code for such an adaptation.If we also wish to guarantee that the simpli�ed chain has no self-intersections (whichmay arise when using the Douglas-Peucker's algorithm), further adaptations are necessary.One could test|after running the given algorithm|whether the simpli�cation has any self-intersections. If it does, then the intersecting segments must be handled further by continuingthe recursion.The algorithm can be made more e�cient in practice by reducing the size of the set Pbefore the recursive calls are made. To this end, the convex hull of vi; : : : ; vk is computed andall points of P that lie within this convex hull are selected to be used in the �rst recursivecall. A similar computation is made before the second recursive call.7 ConclusionsThis paper has shown that it is possible to perform line simpli�cation in such a way thattopological relations are maintained. Points that lie above the original chain will also lieabove the simpli�ed chain, and points that lie below will remain below. Furthermore, theline simpli�cation algorithm can guarantee a user speci�ed upper bound on the error, andthe output chain has no self-intersections. The line simpli�cation method leads to an e�cientalgorithm for subdivision simpli�cation without creating any false intersections. To obtainthese results we relied on techniques from computational geometry. With ideas similar to ours,some other line simpli�cation methods can also be adapted to be consistent with respect toa set of extra points. In particular, we showed that the algorithm in [Douglas & Peucker '73]can be extended.The given algorithm takes O(n(n + m) logn) time to perform the simpli�cation for achain with n vertices and m extra points. This leads to an O(N(N +M) logN) time (worstcase) algorithm for simplifying a subdivision with N vertices and M extra points. We havegiven several ideas to speed up the algorithm in practice. Therefore, we expect that the algo-rithm performs much better in practical situations than the worst case analysis suggests. Animplementation is nevertheless required to discover the practical behavior of our algorithms.The given algorithms should be fairly straightforward to implement. We plan to im-plement our algorithm and run it on real world data. This way we can �nd out in whichsituations the e�ciency of the method is satisfactory.References[Asano & Katoh '93] T. Asano and N. Katoh, Number theory helps line detection in digitalimages { an extended abstract. Proc. 4th ISAAC'93, Lect. Notes in Comp. Science 762,1993, pp. 313{322.[Butten�eld '85] B. Butten�eld, Treatment of the cartographic line. Cartographica 22 (1985),pp. 1{26.[Chan & Chin '92] W.S. Chan and F. Chin, Approximation of polygonal curves with mini-mum number of line segments. Proc. 3rd ISAAC'92, Lect. Notes in Comp. Science 650,1992, pp. 378{387.[Cormen et al. '90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algo-rithms, MIT Press, Cambridge, 1990. 18
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