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ABSTRACTWe study the problem of simplifying a polygonal subdivi-sion, subje
t to a given error bound, �, and subje
t to main-taining the topology of the input, while not introdu
ing new(Steiner) verti
es. In parti
ular, we require that the simpli-�ed 
hains may not 
ross themselves or 
ross other 
hains.In GIS appli
ations, for example, we are interested in simpli-fying the banks of a river without the left and right banksgetting \tangled" and without \islands" be
oming part ofthe land mass. Maintaining topology during subdivisionsimpli�
ation is an important 
onstraint in many real GISappli
ations.We give both theoreti
al and experimental results.(a). We prove that the general problem we are trying tosolve is in fa
t diÆ
ult to solve, even approximately: weshow that it is MIN PB-
omplete and that, in parti
ular,assuming P 6= NP, in the general 
ase we 
annot obtain inpolynomial time an approximation within a fa
tor n1=5�Æ ofan optimal solution.(b). We propose some heuristi
 methods for solving theproblem, whi
h we have implemented. Our experimental re-sults show that, in pra
ti
e, we get quite good simpli�
ationsin a reasonable amount of time.
Keywordspolygonal subdivisions, simpli�
ation, map generalization,geographi
 information systems, approximation algorithms
1. INTRODUCTIONIn many appli
ations, su
h as geographi
 information sys-tems (GIS), very large polygonal subdivisions (maps) mustbe handled and displayed. It is often ne
essary to 
ompress�This work was 
ondu
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the original data, simplifying the subdivision in order to re-du
e the total number of verti
es that de�ne it. The mapsimpli�
ation problem (or the map generalization problem)is to 
ompute a simpli�
ation of a given subdivision, subje
tto various 
onstraints that a�e
t the retention of importantfeatures and the aestheti
s of the simpli�ed map.A polygonal subdivision S is a straight-edge embeddingof a planar graph without 
rossing edges. The non-
rossingproperty is often referred to as the \simpli
ity" of the inputdata. The main fo
us of this paper is on the problem ofmap simpli�
ation with topologi
al 
onstraints, in
ludingprimarily the 
onstraints of simpli
ity and of maintainingsidedness of other point features (we do not want a featurepoint to 
hange whi
h fa
e 
ontains it after simpli�
ation).In Figure 1 we show an example of what 
an happen when apolygonal map is simpli�ed: the approximations of the twobanks of the river interse
t ea
h other, and the smallest fa
eof the map gets simpli�ed to a point, whi
h now lies on theother side of a simpli�ed boundary.
Figure 1: Example of topologi
al errors arising insimpli�
ation of maps.In GIS pra
ti
e, most often the polygonal 
hains are 
on-sidered in isolation, ea
h being simpli�ed using a favorite\line simpli�
ation" algorithm, su
h as that of Douglas andPeu
ker [8, 12, 14℄; see also [4, 5, 16, 17, 19℄. Not onlydoes this lo
al approa
h lead to possible 
rossings betweenpairs of simpli�ed 
hains, it 
an also lead to self-interse
tion(nonsimpli
ity) of a single 
hain. In this paper, we inves-tigate the problem of map simpli�
ation with topologi
al
onstraints.The input to our problem is a set S of polygonal 
hains(polylines) and feature points, and an error toleran
e � > 0.It is assumed that, while two or more 
hains 
an share anendpoint, no two 
hains of S 
ross. We let n denote the totalnumber of verti
es in S. The output is a set, S�, of non
ross-ing 
hains and feature points. Any isolated feature point of



S, as well as any vertex of degree one or degree greater thantwo is preserved in S�. Ea
h 
hain of degree-two verti
es inS� is required to 
onsist of �-feasible edges, whi
h are linesegments vivj that approximate to within � the 
orrespond-ing sub
hain of the input S: ea
h vk lies within distan
e �of the line segment vivj , for i < k < j. We do not per-mit Steiner points to be introdu
ed; thus, the vertex set ofS� is a subset of the vertex set of S, omitting (hopefully) alarge number of verti
es of degree two. We let NSP-SBSIMP(\No Steiner Point Subdivision Simpli�
ation") denote theoptimization problem of 
omputing an S� with a minimumnumber of verti
es.Summary of Results.(a) We prove that the problem (NSP-SBSIMP) of minimiz-ing the 
omplexity of S� is MIN PB-
omplete and thatit is NP-hard to obtain an approximation whose sizeis within a fa
tor n1=5�Æ of optimal. Previously, Es-tkowski [9℄ had shown the problem to be NP-
omplete;ours is the �rst hardness of approximability result forthe problem.(b) We propose a heuristi
 method, termed the \SimpleDetours" (SD) heuristi
, for obtaining simpli�ed sub-divisions that are simple. The method is based on�rst applying a standard 
hain simpli�
ation methodand then \untangling" it to remove interse
tions thatwere generated in the simpli�
ation pro
ess. We alsopresent an extension of this method that allows us tosimplify a planar subdivision while preserving homo-topy type.(
) We perform an experimental investigation of the perfor-man
e of implemented versions of both of our heuristi
algorithms, 
omparing them to the 
ommon te
hniquethat avoids interse
tions expli
itly during simpli�
a-tion. We use both real and simulated data in our
omparisons. The real data in
ludes USGS data (hyp-sography, hydrography, transportation, and boundarydata) and 
ensus map data. While our theoreti
alresults are \negative", our experimental results showthat, in pra
ti
e, we obtain quite good redu
tion in areasonable amount of time.Related Work. The problem of simplifying geometri
 ob-je
ts while preserving simpli
ity has had some prior studyin both the GIS literature and the 
omputational geometry
ommunity. Zhan and Mark [21℄ have done a 
ognitive (non-algorithmi
) study of how \
on
i
ts" from topologi
al errorsin GIS map simpli�
ation 
an be 
orre
ted after they o
-
ur. Guibas et al [11℄ prove that 
omputing a minimum-linksimple polygon of a given homotopy type is NP-
omplete,as is 
omputing a minimum-link simple polygonal subdivi-sion that is homeomorphi
 to an input subdivision, within apolygonal domain. de Berg et al [6, 7℄ have shown how themethods of [4, 16, 19℄ 
an be applied, in 
onjun
tion with
onstraints to guarantee topologi
al 
onsisten
y, to obtain inO(n(n+m) log n) time a minimum-size simpli�
ation of anx-monotone 
hain (having n verti
es) that is within an ap-proximation error � and homotopi
ally 
onsistent with theinput, with respe
t to a set of m points. They generalizetheir results to handle simple polygonal subdivisions, butthey have no guarantee of being 
lose to optimal. No imple-mentation or experimental results are reported in [6℄. Many

other methods for polygonal simpli�
ation do not addressthe issue of undesirable topologi
al 
hanges that may o

urin the simpli�
ation pro
ess, su
h as the loss of simpli
ityor a 
hange in homotopy type. Currently, in most pra
ti
alappli
ations, these topologi
al 
hanges are not handled, orare done so in an ad ho
 manner; there has been a need formethods whi
h preserve simpli
ity and homotopy type whileprodu
ing a usable solution in a reasonable amount of time.In the time sin
e our work was done, there has been somere
ent work of [18, 20℄, whi
h also addresses pra
ti
al 
on-siderations in topologi
ally 
orre
t map simpli�
ation. Inparti
ular, [18℄ use a natural method of preventing topolog-i
al 
hanges from o

urring by de�ning \safe sets" (using aVoronoi diagram) to guarantee that standard simpli�
ationalgorithms within safe sets do not 
ause 
hanges in topology.While this approa
h has the advantage of better worst-
asetime bounds (linear), it is potentially less aggressive in itsability to simplify 
ompared to our own. The related ap-proa
h of [20℄ also uses Voronoi diagrams (
omputed rapidlyand approximately using graphi
s z-bu�er support) to 
on-strain standard polygonal 
hain approximation methods sothat only \
ompliant" short
ut segments are used. Theseapproa
hes may be more limited in their ability to 
ompresssome data; see Figure 2.
εFigure 2: For a set of nested 
urved 
hains, 
on-straining the approximation to stay within Voronoiregions may prevent simpli�
ation. Here, the opti-mal simpli�
ation repla
es ea
h 
hain with a singlesegment.

2. HARDNESS OF APPROXIMATIONOur main theorem pla
es our optimization problem in the
lass of problems that are among the hardest to approxi-mate:Theorem 1. NSP-SBSIMP is MIN PB-
omplete and isnot polynomial-time approximable within a fa
tor n1=5�Æ ofoptimal, for any Æ > 0, unless P=NP.Proof. (Sket
h: for the full proof, see [10℄.) We re-
all the de�nition of an S-redu
tion (see Ho
hbaum [15℄).MIN PB denotes the set of minimization problems that arepolynomially bounded and are in NP. Suppose that X 2MIN PB, S is a solution for the instan
e I of X, and Optis an optimal solution for I; then we de�ne the perfor-man
e ratio of S with respe
t to Opt to be RX(I; S) =jSj=(jOptj + 1). We let IX denote the set of problem in-stan
es of X 2MIN PB; we let S(I) denote the set of all so-lutions for instan
e I. Suppose that X1; X2 2MIN PB. AnS-redu
tion from X1 to X2 with ampli�
ation fa
tor a(n)
onsists of the following:(i) A polynomial time 
omputable fun
tion r1 : IX1 ! IX2 .(ii) A monotoni
ally in
reasing positive fun
tion a(n) su
hthat for any I 2 I(X1), jr1(I)j � ja(jIj)j.



(iii) A polynomial-time 
omputable fun
tion r2 su
h thatfor any I 2 I(X1), r2 sends (r1(I); S) to a solution ofI, where S is a solution of r1(I).(iv) A 
onstant 
 su
h that for any I 2 IX1 and any solu-tion S of r1(I), RX1(I; r2(r1(I); S)) � 
RX2(r1(I); S).If there is an S-redu
tion from X1 to X2 with ampli�-
ation fa
tor a(n) = nk and n
 is a lower bound on anapproximation fa
tor for X1, then n 
k is a lower bound onan approximation fa
tor for X2.We prove our theorem by giving an S-redu
tion, withampli�
ation fa
tor a(n) = O(n5) from Minimum Indepen-dent Dominating Set (MIDS), whi
h is known not to have apolynomial-time algorithm with approximation fa
tor n1�Æ ,for any Æ > 0. MIDS takes as input a graph G = (V;E) anda 
onstant N > 0 and asks if there is a \dominating set"V 0 � V of size at most N (i.e., if there is a set of at mostN verti
es, no two of whi
h are adja
ent, su
h that everyvertex v 2 V is adja
ent to some member of V 0).For an instan
e I of MIDS, with asso
iated graph G,we 
onstru
t a 
orresponding instan
e I 0 = r1(I) of NSP-SBSIMP. We de�ne a new graph, G0, as follows. There isa vertex node of G0 
orresponding to ea
h node of G; thereis an edge node of G0 
orresponding to ea
h edge e of G,and we 
onne
t it with an edge (of G0) to ea
h of the twovertex nodes at the endpoints of e. Finally, G0 has a spe
ial
ontrol node, D, whi
h is joined by an edge to ea
h vertexnode and ea
h edge node. We now embed G0 in the planeso that no three edges interse
t at one point and pla
e a
rossing node at ea
h edge 
rossing (splitting in two ea
h ofthe edges that 
ross there). The resulting planar graph, G00,is embedded in the plane so that the nodes are \far enough"apart. We pla
e a re
tangular frame (annulus) at ea
h nodeand 
onstru
t a narrow tube to surround ea
h edge.We then 
onstru
t vertex gadgets, edge gadgets, 
rossinggadgets, and a 
ontrol gadget within ea
h frame 
entered atthe 
orresponding node. These gadgets 
onsist of a numberof polygonal 
hains, whi
h partially 
onstitute the planarsubdivision I 0. Traveling through ea
h tube is a hinge-linksequen
e as de�ned in [10℄, whi
h also 
onsists of a num-ber of polygonal 
hains and 
onne
ts the gadgets pla
edat the tube endpoints. Any hinge-link sequen
e has onlyone possible simpli�
ation so that in any simpli�
ation ofI 0 ea
h hinge-link sequen
e is either simpli�ed or not sim-pli�ed. Crossing gadgets are 
onstru
ted so that the hinge-link sequen
es in the tubes 
orresponding to a 
rossing edgemaintain the same parity.Ea
h vertex gadget 
ontains an enfor
ing vertex 
hain ofsize O(n4), where n is the number of nodes in the instan
eI. An enfor
ing vertex 
hain simpli�es to one segment andhas no other possible simpli�
ation. Vertex gadgets havingan enfor
ing vertex 
hain that is not simpli�ed 
orrespondto nodes that are in the independent dominating set.Ea
h vertex gadget, v, and ea
h edge gadget, e, has adistinguished simpli�
ation, SD(v) or SD(e). A vertex gad-get is simpli�ed by SD if and only if at least one enfor
ingvertex 
hain in the neighborhood of 
orresponding nodes,in
luding itself, is simpli�ed. Thus, simpli�
ation of a ver-tex gadget, v, by SD(v) 
orresponds to domination. Also anedge gadget, e, is simpli�ed by SD(e) if and only if at mostone of the enfor
ing vertex 
hains at the nodes in
ident onthe 
orresponding edge are simpli�ed. Thus, simpli�
ationby SD(e) 
orresponds to independen
e.

The 
ontrol gadget has one possible simpli�
ation andis simpli�ed if and only if all vertex and edge gadgets aresimpli�ed by SD. In this way we obtain that if any enfor
ingvertex 
hain is simpli�ed then all non-simpli�ed enfor
ingvertex 
hains 
orrespond to an independent dominating setand that if no vertex 
hain is simpli�ed then either thereis no independent dominating set or G is a trivial graph
onsisting of one node. The formidable details of all of thesegadgets and the proofs are 
ontained in [10℄.
3. THE SIMPLE DETOURS HEURISTICWe now des
ribe our Simple Detours (SD) heuristi
. Themain idea is to use interse
tions that o

ur in an un
on-strained simpli�
ation to \suggest" problem areas where fur-ther work will be done to prevent 
rossings. At ea
h inter-se
tion, we de�ne a graph (the \detour graph") of �-feasiblesegments that 
an be used in a path that repla
es one of thesegments that is involved in the interse
tion. A sear
h in thisgraph (hopefully) yields a simplest detour { a minimum-linkdetour around the interse
tion. (If it fails, then we have anadditional heuristi
 to modify the 
hains lo
ally, des
ribedbelow.) Of 
ourse, by taking detours to untangle one in-terse
tion, we may end up 
reating some new interse
tions;thus, the algorithm must 
ontinue 
he
king for interse
tionsafter ea
h iteration of 
omputing detours, until �nally nointerse
tions are present. Thus, our algorithm yields a se-quen
e of subdivision simpli�
ations, S 0 = S1;S2; : : : ;Sk, ink main iterations, with Si+1 being obtained from Si by theith iteration of the simple detours step, designed to do lo
alelimination of interse
tions in Si. The �nal subdivision Skis guaranteed to 
onsist of �-feasible segments and have nointerse
tions.In more detail, the main steps of the method are as follows:(1) We 
ompute an �-feasible approximation to the inputsubdivision, S, using any standard line simpli�
ationte
hnique that does not introdu
e new verti
es andthat uses our notion of �-feasibility. (Our experimentsuse the standard implementation of the Douglas-Peu
keralgorithm.)(2) We 
ompute all pairs of interse
ting segments in thesimpli�
ation, pla
ing them in a list I. In our imple-mentation, we use a regular grid heuristi
 to speed upinterse
tion 
omputations. (We found this to be supe-rior to a prior implementation based on a plane sweepalgorithm; see [1, 2℄.)(3) For ea
h interse
tion in I, we 
onsider the two segmentss and s0 that give rise to the interse
tion.(a). One of them (
all it s) is de
lared to be the detoursegment; it is the one that we attempt to repla
ewith a minimum-link detour that avoids the othersegment. Spe
i�
ally, we sele
t s to be the seg-ment that has an odd number of 
rossings withthe spanning (original) 
hain C(s0) for whi
h s0is an �-feasible short
ut. (Thus, s is not an orig-inal segment of S, sin
e s \ C(s0) 6= ;.) One 
anprove that exa
tly one of fs; s0g has an odd num-ber number of 
rossings with the other's spanning
hain. We have found that our sele
tion of detoursegment s works best in pra
ti
e.



(b). We 
onstru
t the detour graph, G(s), 
orrespond-ing to s. The verti
es of G(s) are the verti
esof the spanning 
hain C(s), and two verti
es arejoined by an edge in G(s) if and only if the 
orre-sponding line segment is �-feasible and does notinterse
t s0. This is done in time O(jC(s)j2), us-ing the algorithm of Chan and Chin as des
ribedin [6℄ (\Compute-Allowed-Short
uts(C; �)"). SeeFigure 3.

s

s’

ε
s

s’

Figure 3: Left: Short
ut segments s and s0 interse
t;the original 
hains C(s) and C(s0) are shown as well(thin solid). Right: The detour graph G(s) is shownwith thi
k dashed edges and fat bla
k dots as nodes.(
). We sear
h the detour graph G(s) for a shortest(minimum-link) path 
onne
ting the endpoints ofs. If we su

eed in �nding su
h a detour path, weadd the 
orresponding edges to the subdivision.It is possible that there is no detour path (in fa
t,Figure 4 shows a 
ase in whi
h neither G(s) norG(s0) has a detour path). If we fail to �nd adetour path, then we perform the following split-ting pro
ess to sear
h for a pair of non
rossing�-feasible paths to repla
e the pair (C(s); C(s0)):We sele
t a random vertex v on C(s) and v0 onC(s0). We repla
e s = u1u2 (resp., s0 = u01u02)with the two segments u1v and vu2 (resp., u01v0and v0u02), if they are both �-feasible. If either orboth segments are not �-feasible, we 
ontinue thesplitting pro
ess re
ursively on the 
orrespond-ing sub
hains. (The te
hnique is similar to theDouglas-Peu
ker algorithm ex
ept in our 
hoi
eof splitting point.) In this way, we are guaranteedto �nd �-feasible repla
ement paths for s and s0,although we do not expli
itly require that they bedisjoint. (If there are interse
tions, they will bedis
overed and resolved in the next iteration.)(d). Go to (2) to begin the next major iteration of thealgorithm.Sin
e at least one vertex is added to the subdivision duringea
h iteration, and no vertex is ever removed, it is 
lear that

ε

s

s’

Figure 4: Neither G(s) nor G(s0) 
ontains a (�-feasible) detour path.the algorithm 
onverges. Our algorithm 
an be implementedto run in time proportional tokXi=1 24jIij+ n log n+ X(s;s0)2Ii jC(s)j235 ;where Ii is the set of interse
tions found at iteration i. Thetotal number of iterations, k, 
an be 
(n) in the worst 
ase(see Figure 5); however, in pra
ti
e, we �nd that k tendsto be a small 
onstant (it never ex
eeded 40 in our experi-ments). The term jIij+n log n assumes the use of an optimalsegment interse
tion algorithm; in pra
ti
e, we use our sim-ple grid-based bu
keting approa
h, whi
h 
an be expe
tedto perform 
lose to optimally. Also, in order to perform theinterse
tion 
omputation more eÆ
iently from iteration toiteration, we keep tra
k of those sub
hains that are modi�edin the previous iteration and, in the 
urrent iteration, 
he
kfor interse
tion only with those sub
hains that are markedas modi�ed. While the worst-
ase running time of the algo-rithm is O(n3), our experimental results show that it runsreasonably fast in pra
ti
e.
Cm

C1

C2

shortcut for Ci

iC

s

ε

Figure 5: A family of m \nested" 
hains,, forminga \fan blade", for whi
h the number of iterationsis linear in the input size n. The initial simpli�-
ations are all straight segments. The interse
tionwith the simpli�ed short 
hain 
auses a detour of C1to be 
omputed that interse
ts the next 
hain (C2,going 
lo
kwise), whose detour interse
ts the nextone, et
, until the �rst one is interse
ted again bythe mth one, and a new detour is required for C1.Finally, the SD method would end up spending 
(n)iterations to add ba
k all verti
es on the originalnested 
hains, while an optimal solution would beto take an O(1)-size detour only for the short seg-ment.



4. EXTENDED SD HEURISTICThe Simple Detours heuristi
 is a method for obtaininga simpli�ed subdivision that is simple { it has no 
rossingsegments. However, this method does not preserve the ho-motopy type of the input subdivision and does not attemptto handle point features. For example, in Figure 1, the SDheuristi
 would permit the simpli�
ation shown, in whi
hthe smallest fa
e is 
ontained in a di�erent fa
e after sim-pli�
ation. In order to address the more general problem ofpreserving homotopy type, we have developed an extensionto the basi
 SD heuristi
, whi
h we 
all the Extended SimpleDetours heuristi
 (ESD heuristi
).We now assume that we are given a set of input points, P,along with the input subdivision S. The initial simpli�
ationis done so that the simpli�
ation obtained is homotopi
 tothe original subdivision with respe
t to the set of points Pand the endpoints of 
hains of S. Thus, if C0 representsthe simpli�ed version of an input 
hain C, then C 
an be
ontinuously deformed into C0 without passing through anypoints of P and without passing through any endpoints of
hains (other than C). We let Q denote the union of P andthe endpoints of 
hains of S.The ESD method is essentially the same as the SDmethodex
ept that we impose an additional 
onstraint on the edgesthat make up the detour graph that we 
onstru
t when wewant to resolve an interse
tion s\ s0. In parti
ular, we 
on-sider an �-feasible short
ut edge e to be an edge of G(s) onlyif e does not interse
t s0 (as before) and e is homotopi
allyequivalent, with respe
t to Q, to the 
hain C(e) that it re-pla
es. In order to test if C(e) is homotopi
ally equivalentto e, we 
ould apply the te
hniques of [13℄ to 
ompute ashortest path homotopi
ally equivalent to C(e) within a tri-angulation of the points Q; if the shortest path is a straightsegment (e), then they are homotopi
ally equivalent, andotherwise they are not. In order to avoid 
omputing andstoring a triangulation, and for simpli
ity of implementa-tion, we have opted to 
ode a simpler algorithm that makesa stronger restri
tion on e when we test homotopy feasibil-ity. Our 
ondition is \stronger" in the sense that it is asuÆ
ient (but not ne
essary) 
ondition for homotopy feasi-bility. In parti
ular, we utilize a regular grid partition (aswe do for 
omputing interse
tions among segments) and wedemand that e be homotopi
ally equivalent to C(e) \withrespe
t to the grid", in the following sense: for ea
h (re
t-angular) grid element B, (a). e and C(e) must interse
t thesides of B in the same order; (b). e \B must be homotopi-
ally equivalent to ea
h 
onne
ted 
omponent of C(e) \ B.Condition (b) is 
he
ked in a straightforward manner, as westore expli
itly with ea
h portion of a 
hain within a gridbox B the set of points that lie within distan
e � on one sideof it; these points 
an be 
he
ked dire
tly against e.
5. EXPERIMENTSWe have 
ondu
ted implemented the heuristi
s (SD andESD) we have proposed and have 
ondu
ted an extensiveset of experiments to test their eÆ
ien
y and e�e
tiveness.Our tests were done on a Sili
on Graphi
s SGI with one 150Mhz IP22 pro
essor and 64MB of memory.Data Sets. Our data sets in
luded USGS digital line graph(DLG) data sets, 
ontaining from 12,317 to 147,609 ver-ti
es, a 
ensus data setWe thank Dr. Robert Freimer ofCaliper Corporation for providing the 
ensus data., 
ontain-

ing 279,989 verti
es, and randomly generated simple poly-gons (using the RPG system of Auer and Held [3℄), 
ontain-ing from 2001 to 100,001 verti
es. The USGS data 
onsistsof hypsography, hydrography, transportation, and boundarydata. We have run both the SD and ESD methods on alltypes and have found that the hypsography data is by farthe most diÆ
ult to handle. In general the hypsographydata sets are the largest data sets of the four types and 
on-tain relatively few 
hains. Also, many more interse
tionsare 
reated in the initial simpli�
ation on hypsography datathan on the other three data set types. Point features usedin the ESD method were randomly generated using a uni-form distribution. Between 100 and 100,000 point featureswere used in individual runs. Data sets were all s
aled toan 800 � 800 area. We 
onsidered values of � ranging from� = 2 to � > 800p2.Details of the Experimental Setup. For the re
tangu-lar grid to a

elerate interse
tion 
omputation, we dividedthe bounding box (of dimensions �x-by-�y) of the datainto Ix equal-sized intervals, where Ix = (1:25)�xpn+ 3n0,n is the original number of verti
es, n0 is the number of ver-ti
es after Douglas-Peu
ker simpli�
ation, and �x = �x=�y(rounded to 0.1 or to 10 if this ratio falls outside the interval(0.1,10)). The number, Iy, of y-intervals is de�ned similarly.Before settling on this 
hoi
e of grid parameters, we exper-imented with various 
hoi
es of grid size.We have found that it is often useful to 
ondu
t simpli�-
ations in stages: In the ith stage, we 
ompute an approx-imation with error bound �i, starting with input given bythe simpli�ed subdivision 
omputed in the (i � 1)st stage.Sin
e the errors 
an 
ompound from stage to stage, the totalerror at the end of the ith stage is given by �1 + � � � + �i.After some initial experimentation, we determined that it israrely bene�
ial to use more than two stages, but it is oftenadvantageous (in terms of running time) to use two stages.In many of the results reported here, two stages were used(in whi
h 
ase we give not only � (= �1 + �2), but also �1).Running times in our tables are total times for all stages.Method for Comparison: Constrained De
imation.We have also implemented a simple 
onstrained de
imationalgorithm in order to have a basis for 
omparison with ourSD heuristi
s. As opposed to the SD heuristi
, the de
ima-tion method avoids interse
tions during the initial simpli�-
ation. In this method, we start with an input subdivision inwhi
h it is assumed that 
hains are ordered and the verti
esin ea
h 
hain are ordered. We iteratively attempt to removeverti
es from the 
hains while obeying the 
onstraint thatthe short
ut segment resulting from the removal of a vertexis �-feasible and that it does not 
reate any interse
tion withother segments of the subdivision.Experimental Results. Pi
torial examples of results ob-tained with our software are shown in the images of Figure 6and Figure 7. In our tables of results, we use \DP" to standfor the Douglas Peu
ker algorithm and \SD" to stand forthe Simple Detours algorithm. The redu
tion ratio (\Red.Ratio") is the ratio of the number of verti
es in the sim-pli�
ation to the number of verti
es in the original subdivi-sion. We show redu
tion ratios both for the DP algorithmalone and for the SD heuristi
 algorithm. We also show thenumber of interse
tions that o

ur in the DP simpli�
ation(before the SD heuristi
 is run).Table 1 shows running times for 2-stage simpli�
ation on



(a). Original: 123,871 verti
es. (b). Simpli�
ation: 1 stage, � = 2. (
). Simpli�
ation: 2 stages, � = 5.Figure 6: Example of a hypsography data set and two simpli�
ations using the SD heuristi
. For (b), therewere 2664 interse
tions after DP, 25,051 verti
es in the �nal simpli�
ation, and the total 
pu time was 9.71se
onds. For (
), there were 4603 interse
tions after DP, 14,902 verti
es in the �nal simpli�
ation, and thetotal 
pu time was 16.94 se
onds (11.97 se
onds of whi
h was for the �rst stage, most of whi
h was runningDP). The �rst stage took 4 iterations, and the se
ond stage took 7 iterations of the SD algorithm.

(a). Original: 32,064 verti
es. (b). Douglas-Peu
ker simpli�
ation. (
). SD heuristi
 simpli�
ation.Figure 7: Zoomed in example of a USGS hypsography data set and its simpli�
ation using only the Douglas-Peu
ker, as well as the SD heuristi
. The total 
pu time is 7.37 se
onds, obtained in two stages with �1 = 2,�2 = 43. The se
ond stage of the simpli�
ation took k = 17 iterations. The �nal subdivision has 3796 verti
es.



USGS hypsography data sets, for various values of � = �1+�2(always with �1 = 2). This data is also plotted in Fig-ure 8(a). A similar plot (Figure 8(b)) shows how the runningtimes vary with � for the random polygons data sets. Fig-ure 9 shows how the total running time breaks down amongthe various phases of the algorithm (
omputing the originalDP simpli�
ation, �nding interse
tions, 
omputing detourgraphs and sear
hing them, and other operations), for the147,609-vertex hypsography data set. Breakdowns of run-ning time and the redu
tion ratios are reported in Tables 3and 4 for the 
ensus data and random polygon data, re-spe
tively. We note that more variation o

urs in real worlddata than in the arti�
ially generated random polygon data.However, the running times are generally higher on the ran-dom polygon data. This is due largely to the time spent in
omputing interse
tions, whi
h, re
all, is done using a sim-ple grid-based bu
keting te
hnique. The random polygondata tends to have many long edges that extend a
ross thedata set, making the bu
keting te
hnique mu
h less e�e
tivein pruning the interse
tion sear
h.
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(a). Running time in se
onds for hypsography data.
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(b). Running time in se
onds for random polygons.Figure 8: SD Method : 2 stages, �1 = 2:0.A 
omparison of the SD heuristi
 and the 
onstrained de
-imation is shown in Table 2 for random polygon data. It isseen that the SD heuristi
 gives dramati
ally better redu
-tion ratios in a fra
tion of the time required by the 
on-strained de
imation algorithm.A 
omparison of 1-stage and 2-stage simpli�
ation withthe SD heuristi
 is shown in Tables 5 and 6. We see thatthe 2-stage pro
ess gives a redu
tion ratio that is somewhatworse, while giving running times that are de�nitely better.This parti
ular data set gives one of the worst 
omparisonsof redu
tion ratios between 1-stage and 2-stage; in general,the redu
tion ratios are 
omparable between the 1- and 2-stage pro
esses, while the 2-stage pro
ess is substantiallyfaster.For the Extended Simple Detours (ESD) heuristi
, we
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Figure 9: SD Method : A breakdown of times for2-stage simpli�
ation with �1 = 2:0 for hypsographydata set with 147,609 original verti
es.show running times, as a fun
tion of the number of pointfeatures (on a log s
ale), in Figures 11(a) and 11(b) for hyp-sography data and random polygons. We show a breakdownof the running time in Figure 10 for the 147,609-vertex hyp-sography data set.Note that sin
e there is an additional 
onstraint when ap-plying the ESD heuristi
, we do not obtain as aggressive aredu
tion in the vertex 
ount as we do with the SD heuristi
.Figure 12 shows the ratio of the number or verti
es obtainedvia ESD for no point features to the number of verti
es ob-tained via SD for two HPF data sets. We see that there is asubstantial di�eren
e in behavior between the two data sets.When � is small this ratio is near one in both 
ases. This isgenerally true when � is small relative to grid size. However,as � in
reases, this fa
tor 
an grow quite large if individual
hains in the subdivision are highly non-monotoni
. In the
ase that individual 
hains 
an be de
omposed into a smallnumber of monotone 
hains, the grid 
onstraint imposed byour method of testing homotopy feasibility has less e�e
t.Table 7 shows a breakdown of times for a 2-stage ESDmethod with �1 = 2 on a hypsography data set 
ontaining32,064 verti
es with 100 point features.
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Figure 10: ESD Method : Breakdown for 1-stagesimpli�
ation with � = 2 on a hypsography data set
ontaining 147609 verti
es and 1063 
hains.



# of �Verts. 2 15 25 35 45 100 200 112317 0.610 0.920 0.920 1.140 0.800 0.880 0.750 1.84032064 2.420 5.68 6.420 6.850 7.370 8.540 9.180 9.01041852 1.920 2.36 2.47 2.64 2.84 6.56 5.31 4.0548125 2.200 3.680 4.880 5.940 4.840 8.430 8.930 3.13069191 2.950 4.15 4.6 5.940 5.75 7.01 5.78 4.9176145 3.910 6.18 6.90 7.63 7.69 6.53 6.50 6.4886803 5.000 7.10 7.48 8.800 9.120 9.830 8.130 9.39088787 4.060 5.44 5.76 5.56 5.84 5.74 6.59 6.55113142 5.890 9.33 10.54 10.67 11.39 20.93 31.18 27.72114662 6.900 12.775 12.77 16.760 12.830 15.560 42.590 35.740123201 6.10 9.490 10.300 11.430 12.940 19.070 20.470 21.380123871 11.970 19.830 22.920 26.010 29.910 60.430 62.45 61.92142316 8.200 16.290 18.860 21.110 22.620 31.300 38.500 46.630147609 10.410 16.910 16.290 19.570 21.600 22.030 29.800 24.500Table 1: SD Method : Running time in se
onds for hypsography data sets : 2-stage simpli�
ation with �1 = 2.SD SD De
. De
.# of Time in Redu
tion Time in Redu
tionVerti
es Se
onds Ratio Se
onds Ratio2000 0.150 0.0290 61.480 0.31033000 0.140 0.0290 139.710 0.31167000 0.630 0.0116 749.460 0.295016000 1.970 0.1312 3524.460 0.4546Table 2: 1-stage Simple Detours vs. In Order De
imation on Random Polygons with � = 100.� Time Time Time Time Red. (DP) Red. # ofSe
onds DP Ints
t SD Ratio Ratio Ints
ts.2 18.910 2.160 3.730 10.710 0.0758 0.0765 29712 20.42 2.31 4.87 10.75 0.0677 0.0679 10722 20.39 2.30 4.85 10.74 0.0673 0.0675 9232 20.39 2.30 4.84 10.75 0.0673 0.0675 9342 20.39 2.30 4.84 10.75 0.0673 0.0675 93102 20.39 2.30 4.85 10.75 0.0673 0.0675 901 20.39 2.30 4.85 10.75 0.0673 0.0675 90Table 3: SD Method : 2-stage simpli�
ation (�1 = 2) on a 
ensus data set with 279,989 verti
es, 9419 
hains.� Time Time Time Time Red. (DP) Red. # ofSe
onds DP Ints
t SD Ratio Ratio Ints
ts.2 43.120 6.110 34.990 0.960 0.2060 0.2119 95115 48.100 7.16 37.87 1.74 0.0217 0.0235 25325 47.17 7.04 36.35 2.49 0.0097 0.0104 16235 46.96 6.96 35.92 2.74 0.0053 0.0056 7745 48.01 6.92 35.95 3.72 0.0036 0.0040 71100 57.67 6.75 35.38 14.31 0.0010 0.0011 13200 45.4 6.52 35.22 2.47 0.0003 0.0003 41 43.33 6.2 34.990 0.960 0.00002 0.00002 0Table 4: SD Method : 2-stage simpli�
ation (�1 = 2) on a random polygon 
ontaining 100,001 verti
es.� Time Time Time Time Red. (DP) Red. # ofSe
onds DP Ints
t SD Ratio Ratio Ints
ts.2 2.420 0.550 1.410 0.190 0.2027 0.2075 25015 12.400 0.290 4.350 7.150 0.0808 0.1207 136425 19.250 0.260 6.140 11.910 0.0737 0.1223 154935 25.220 0.250 6.800 17.100 0.0695 0.1264 174945 28.52 3.230 10.32 12.52 0.0204 0.0475 2238110 30.91 3.19 10.6 14.66 0.0165 0.0485 1626210 34.8 3.17 11.24 17.76 0.0157 0.0460 9011 36.54 3.150 9.62 21.17 0.0154 0.0403 1067Table 5: SD Method : 1-stage simpli�
ation on a hypsography data set (32,064 verti
es, 941 
hains).



� Time Time Time Time Red. (DP) Red. # ofSe
onds DP Ints
t SD Ratio Ratio Ints
ts.2 2.420 0.550 1.410 0.190 0.2027 0.2075 25015 5.200 6.20 3.69 0.53 0.0972 0.1249 103925 6.420 6.10 4.54 0.88 0.0750 0.1148 145635 6.850 0.600 4.62 1.18 0.0701 0.1160 175845 7.370 0.610 4.93 1.42 0.0675 0.1183 1899100 8.540 0.590 5.17 2.28 0.0610 0.1229 2067200 9.180 0.580 5.55 2.62 0.0591 0.1213 16701 9.010 0.580 5.37 6.23 0.0587 0.1217 1523Table 6: SD Method : 2-stage simpli�
ation (�1 = 2) on a hypsography data set (32,064 verti
es, 941 
hains).� Time Time Time Time Time Red. (DP) Red. # ofSe
onds SetUp DP Ints
t SD Ratio Ratio Ints
ts.2 3.270 0.350 1.170 1.320 0.180 0.2640 0.2687 24010 6.93 0.540 1.72 3.62 0.63 0.1804 0.1777 108125 7.72 0.54 1.84 3.94 1.00 0.1848 0.1499 152635 7.71 0.53 1.92 3.87 1.61 0.1857 0.1509 15821 8.05 1.25 2.01 3.96 1.15 0.1898 0.1491 1864Table 7: ESD Method : 2-stage simpli�
ation (�1 = 2) with 100 point features for hypsography data (32,064verti
es).

100 1000 10000 100000

Number of Points

20

40

60

T
im

e 
in

 S
ec

on
ds

147609 vertices
114662 vertices

(a). Running time in se
onds for hypsography data.
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(b). Running time in se
onds for random polygons.Figure 11: ESD Method : One stage, � = 2:0.
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Figure 12: ESD Method : Ratio of the number ofverti
es obtained via the ESD method for no pointfeatures to the number of verti
es obtained via theSD method, for hypsography data.
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