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ABSTRACTWe study the problem of simplifying a polygonal subdivi-sion, subjet to a given error bound, �, and subjet to main-taining the topology of the input, while not introduing new(Steiner) verties. In partiular, we require that the simpli-�ed hains may not ross themselves or ross other hains.In GIS appliations, for example, we are interested in simpli-fying the banks of a river without the left and right banksgetting \tangled" and without \islands" beoming part ofthe land mass. Maintaining topology during subdivisionsimpli�ation is an important onstraint in many real GISappliations.We give both theoretial and experimental results.(a). We prove that the general problem we are trying tosolve is in fat diÆult to solve, even approximately: weshow that it is MIN PB-omplete and that, in partiular,assuming P 6= NP, in the general ase we annot obtain inpolynomial time an approximation within a fator n1=5�Æ ofan optimal solution.(b). We propose some heuristi methods for solving theproblem, whih we have implemented. Our experimental re-sults show that, in pratie, we get quite good simpli�ationsin a reasonable amount of time.
Keywordspolygonal subdivisions, simpli�ation, map generalization,geographi information systems, approximation algorithms
1. INTRODUCTIONIn many appliations, suh as geographi information sys-tems (GIS), very large polygonal subdivisions (maps) mustbe handled and displayed. It is often neessary to ompress�This work was onduted while R. Estkowski was a PhDstudent at the University at Stony Brook.
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the original data, simplifying the subdivision in order to re-due the total number of verties that de�ne it. The mapsimpli�ation problem (or the map generalization problem)is to ompute a simpli�ation of a given subdivision, subjetto various onstraints that a�et the retention of importantfeatures and the aesthetis of the simpli�ed map.A polygonal subdivision S is a straight-edge embeddingof a planar graph without rossing edges. The non-rossingproperty is often referred to as the \simpliity" of the inputdata. The main fous of this paper is on the problem ofmap simpli�ation with topologial onstraints, inludingprimarily the onstraints of simpliity and of maintainingsidedness of other point features (we do not want a featurepoint to hange whih fae ontains it after simpli�ation).In Figure 1 we show an example of what an happen when apolygonal map is simpli�ed: the approximations of the twobanks of the river interset eah other, and the smallest faeof the map gets simpli�ed to a point, whih now lies on theother side of a simpli�ed boundary.
Figure 1: Example of topologial errors arising insimpli�ation of maps.In GIS pratie, most often the polygonal hains are on-sidered in isolation, eah being simpli�ed using a favorite\line simpli�ation" algorithm, suh as that of Douglas andPeuker [8, 12, 14℄; see also [4, 5, 16, 17, 19℄. Not onlydoes this loal approah lead to possible rossings betweenpairs of simpli�ed hains, it an also lead to self-intersetion(nonsimpliity) of a single hain. In this paper, we inves-tigate the problem of map simpli�ation with topologialonstraints.The input to our problem is a set S of polygonal hains(polylines) and feature points, and an error tolerane � > 0.It is assumed that, while two or more hains an share anendpoint, no two hains of S ross. We let n denote the totalnumber of verties in S. The output is a set, S�, of nonross-ing hains and feature points. Any isolated feature point of



S, as well as any vertex of degree one or degree greater thantwo is preserved in S�. Eah hain of degree-two verties inS� is required to onsist of �-feasible edges, whih are linesegments vivj that approximate to within � the orrespond-ing subhain of the input S: eah vk lies within distane �of the line segment vivj , for i < k < j. We do not per-mit Steiner points to be introdued; thus, the vertex set ofS� is a subset of the vertex set of S, omitting (hopefully) alarge number of verties of degree two. We let NSP-SBSIMP(\No Steiner Point Subdivision Simpli�ation") denote theoptimization problem of omputing an S� with a minimumnumber of verties.Summary of Results.(a) We prove that the problem (NSP-SBSIMP) of minimiz-ing the omplexity of S� is MIN PB-omplete and thatit is NP-hard to obtain an approximation whose sizeis within a fator n1=5�Æ of optimal. Previously, Es-tkowski [9℄ had shown the problem to be NP-omplete;ours is the �rst hardness of approximability result forthe problem.(b) We propose a heuristi method, termed the \SimpleDetours" (SD) heuristi, for obtaining simpli�ed sub-divisions that are simple. The method is based on�rst applying a standard hain simpli�ation methodand then \untangling" it to remove intersetions thatwere generated in the simpli�ation proess. We alsopresent an extension of this method that allows us tosimplify a planar subdivision while preserving homo-topy type.() We perform an experimental investigation of the perfor-mane of implemented versions of both of our heuristialgorithms, omparing them to the ommon tehniquethat avoids intersetions expliitly during simpli�a-tion. We use both real and simulated data in ouromparisons. The real data inludes USGS data (hyp-sography, hydrography, transportation, and boundarydata) and ensus map data. While our theoretialresults are \negative", our experimental results showthat, in pratie, we obtain quite good redution in areasonable amount of time.Related Work. The problem of simplifying geometri ob-jets while preserving simpliity has had some prior studyin both the GIS literature and the omputational geometryommunity. Zhan and Mark [21℄ have done a ognitive (non-algorithmi) study of how \onits" from topologial errorsin GIS map simpli�ation an be orreted after they o-ur. Guibas et al [11℄ prove that omputing a minimum-linksimple polygon of a given homotopy type is NP-omplete,as is omputing a minimum-link simple polygonal subdivi-sion that is homeomorphi to an input subdivision, within apolygonal domain. de Berg et al [6, 7℄ have shown how themethods of [4, 16, 19℄ an be applied, in onjuntion withonstraints to guarantee topologial onsisteny, to obtain inO(n(n+m) log n) time a minimum-size simpli�ation of anx-monotone hain (having n verties) that is within an ap-proximation error � and homotopially onsistent with theinput, with respet to a set of m points. They generalizetheir results to handle simple polygonal subdivisions, butthey have no guarantee of being lose to optimal. No imple-mentation or experimental results are reported in [6℄. Many

other methods for polygonal simpli�ation do not addressthe issue of undesirable topologial hanges that may ourin the simpli�ation proess, suh as the loss of simpliityor a hange in homotopy type. Currently, in most pratialappliations, these topologial hanges are not handled, orare done so in an ad ho manner; there has been a need formethods whih preserve simpliity and homotopy type whileproduing a usable solution in a reasonable amount of time.In the time sine our work was done, there has been somereent work of [18, 20℄, whih also addresses pratial on-siderations in topologially orret map simpli�ation. Inpartiular, [18℄ use a natural method of preventing topolog-ial hanges from ourring by de�ning \safe sets" (using aVoronoi diagram) to guarantee that standard simpli�ationalgorithms within safe sets do not ause hanges in topology.While this approah has the advantage of better worst-asetime bounds (linear), it is potentially less aggressive in itsability to simplify ompared to our own. The related ap-proah of [20℄ also uses Voronoi diagrams (omputed rapidlyand approximately using graphis z-bu�er support) to on-strain standard polygonal hain approximation methods sothat only \ompliant" shortut segments are used. Theseapproahes may be more limited in their ability to ompresssome data; see Figure 2.
εFigure 2: For a set of nested urved hains, on-straining the approximation to stay within Voronoiregions may prevent simpli�ation. Here, the opti-mal simpli�ation replaes eah hain with a singlesegment.

2. HARDNESS OF APPROXIMATIONOur main theorem plaes our optimization problem in thelass of problems that are among the hardest to approxi-mate:Theorem 1. NSP-SBSIMP is MIN PB-omplete and isnot polynomial-time approximable within a fator n1=5�Æ ofoptimal, for any Æ > 0, unless P=NP.Proof. (Sketh: for the full proof, see [10℄.) We re-all the de�nition of an S-redution (see Hohbaum [15℄).MIN PB denotes the set of minimization problems that arepolynomially bounded and are in NP. Suppose that X 2MIN PB, S is a solution for the instane I of X, and Optis an optimal solution for I; then we de�ne the perfor-mane ratio of S with respet to Opt to be RX(I; S) =jSj=(jOptj + 1). We let IX denote the set of problem in-stanes of X 2MIN PB; we let S(I) denote the set of all so-lutions for instane I. Suppose that X1; X2 2MIN PB. AnS-redution from X1 to X2 with ampli�ation fator a(n)onsists of the following:(i) A polynomial time omputable funtion r1 : IX1 ! IX2 .(ii) A monotonially inreasing positive funtion a(n) suhthat for any I 2 I(X1), jr1(I)j � ja(jIj)j.



(iii) A polynomial-time omputable funtion r2 suh thatfor any I 2 I(X1), r2 sends (r1(I); S) to a solution ofI, where S is a solution of r1(I).(iv) A onstant  suh that for any I 2 IX1 and any solu-tion S of r1(I), RX1(I; r2(r1(I); S)) � RX2(r1(I); S).If there is an S-redution from X1 to X2 with ampli�-ation fator a(n) = nk and n is a lower bound on anapproximation fator for X1, then n k is a lower bound onan approximation fator for X2.We prove our theorem by giving an S-redution, withampli�ation fator a(n) = O(n5) from Minimum Indepen-dent Dominating Set (MIDS), whih is known not to have apolynomial-time algorithm with approximation fator n1�Æ ,for any Æ > 0. MIDS takes as input a graph G = (V;E) anda onstant N > 0 and asks if there is a \dominating set"V 0 � V of size at most N (i.e., if there is a set of at mostN verties, no two of whih are adjaent, suh that everyvertex v 2 V is adjaent to some member of V 0).For an instane I of MIDS, with assoiated graph G,we onstrut a orresponding instane I 0 = r1(I) of NSP-SBSIMP. We de�ne a new graph, G0, as follows. There isa vertex node of G0 orresponding to eah node of G; thereis an edge node of G0 orresponding to eah edge e of G,and we onnet it with an edge (of G0) to eah of the twovertex nodes at the endpoints of e. Finally, G0 has a speialontrol node, D, whih is joined by an edge to eah vertexnode and eah edge node. We now embed G0 in the planeso that no three edges interset at one point and plae arossing node at eah edge rossing (splitting in two eah ofthe edges that ross there). The resulting planar graph, G00,is embedded in the plane so that the nodes are \far enough"apart. We plae a retangular frame (annulus) at eah nodeand onstrut a narrow tube to surround eah edge.We then onstrut vertex gadgets, edge gadgets, rossinggadgets, and a ontrol gadget within eah frame entered atthe orresponding node. These gadgets onsist of a numberof polygonal hains, whih partially onstitute the planarsubdivision I 0. Traveling through eah tube is a hinge-linksequene as de�ned in [10℄, whih also onsists of a num-ber of polygonal hains and onnets the gadgets plaedat the tube endpoints. Any hinge-link sequene has onlyone possible simpli�ation so that in any simpli�ation ofI 0 eah hinge-link sequene is either simpli�ed or not sim-pli�ed. Crossing gadgets are onstruted so that the hinge-link sequenes in the tubes orresponding to a rossing edgemaintain the same parity.Eah vertex gadget ontains an enforing vertex hain ofsize O(n4), where n is the number of nodes in the instaneI. An enforing vertex hain simpli�es to one segment andhas no other possible simpli�ation. Vertex gadgets havingan enforing vertex hain that is not simpli�ed orrespondto nodes that are in the independent dominating set.Eah vertex gadget, v, and eah edge gadget, e, has adistinguished simpli�ation, SD(v) or SD(e). A vertex gad-get is simpli�ed by SD if and only if at least one enforingvertex hain in the neighborhood of orresponding nodes,inluding itself, is simpli�ed. Thus, simpli�ation of a ver-tex gadget, v, by SD(v) orresponds to domination. Also anedge gadget, e, is simpli�ed by SD(e) if and only if at mostone of the enforing vertex hains at the nodes inident onthe orresponding edge are simpli�ed. Thus, simpli�ationby SD(e) orresponds to independene.

The ontrol gadget has one possible simpli�ation andis simpli�ed if and only if all vertex and edge gadgets aresimpli�ed by SD. In this way we obtain that if any enforingvertex hain is simpli�ed then all non-simpli�ed enforingvertex hains orrespond to an independent dominating setand that if no vertex hain is simpli�ed then either thereis no independent dominating set or G is a trivial graphonsisting of one node. The formidable details of all of thesegadgets and the proofs are ontained in [10℄.
3. THE SIMPLE DETOURS HEURISTICWe now desribe our Simple Detours (SD) heuristi. Themain idea is to use intersetions that our in an unon-strained simpli�ation to \suggest" problem areas where fur-ther work will be done to prevent rossings. At eah inter-setion, we de�ne a graph (the \detour graph") of �-feasiblesegments that an be used in a path that replaes one of thesegments that is involved in the intersetion. A searh in thisgraph (hopefully) yields a simplest detour { a minimum-linkdetour around the intersetion. (If it fails, then we have anadditional heuristi to modify the hains loally, desribedbelow.) Of ourse, by taking detours to untangle one in-tersetion, we may end up reating some new intersetions;thus, the algorithm must ontinue heking for intersetionsafter eah iteration of omputing detours, until �nally nointersetions are present. Thus, our algorithm yields a se-quene of subdivision simpli�ations, S 0 = S1;S2; : : : ;Sk, ink main iterations, with Si+1 being obtained from Si by theith iteration of the simple detours step, designed to do loalelimination of intersetions in Si. The �nal subdivision Skis guaranteed to onsist of �-feasible segments and have nointersetions.In more detail, the main steps of the method are as follows:(1) We ompute an �-feasible approximation to the inputsubdivision, S, using any standard line simpli�ationtehnique that does not introdue new verties andthat uses our notion of �-feasibility. (Our experimentsuse the standard implementation of the Douglas-Peukeralgorithm.)(2) We ompute all pairs of interseting segments in thesimpli�ation, plaing them in a list I. In our imple-mentation, we use a regular grid heuristi to speed upintersetion omputations. (We found this to be supe-rior to a prior implementation based on a plane sweepalgorithm; see [1, 2℄.)(3) For eah intersetion in I, we onsider the two segmentss and s0 that give rise to the intersetion.(a). One of them (all it s) is delared to be the detoursegment; it is the one that we attempt to replaewith a minimum-link detour that avoids the othersegment. Spei�ally, we selet s to be the seg-ment that has an odd number of rossings withthe spanning (original) hain C(s0) for whih s0is an �-feasible shortut. (Thus, s is not an orig-inal segment of S, sine s \ C(s0) 6= ;.) One anprove that exatly one of fs; s0g has an odd num-ber number of rossings with the other's spanninghain. We have found that our seletion of detoursegment s works best in pratie.



(b). We onstrut the detour graph, G(s), orrespond-ing to s. The verties of G(s) are the vertiesof the spanning hain C(s), and two verties arejoined by an edge in G(s) if and only if the orre-sponding line segment is �-feasible and does notinterset s0. This is done in time O(jC(s)j2), us-ing the algorithm of Chan and Chin as desribedin [6℄ (\Compute-Allowed-Shortuts(C; �)"). SeeFigure 3.

s

s’

ε
s

s’

Figure 3: Left: Shortut segments s and s0 interset;the original hains C(s) and C(s0) are shown as well(thin solid). Right: The detour graph G(s) is shownwith thik dashed edges and fat blak dots as nodes.(). We searh the detour graph G(s) for a shortest(minimum-link) path onneting the endpoints ofs. If we sueed in �nding suh a detour path, weadd the orresponding edges to the subdivision.It is possible that there is no detour path (in fat,Figure 4 shows a ase in whih neither G(s) norG(s0) has a detour path). If we fail to �nd adetour path, then we perform the following split-ting proess to searh for a pair of nonrossing�-feasible paths to replae the pair (C(s); C(s0)):We selet a random vertex v on C(s) and v0 onC(s0). We replae s = u1u2 (resp., s0 = u01u02)with the two segments u1v and vu2 (resp., u01v0and v0u02), if they are both �-feasible. If either orboth segments are not �-feasible, we ontinue thesplitting proess reursively on the orrespond-ing subhains. (The tehnique is similar to theDouglas-Peuker algorithm exept in our hoieof splitting point.) In this way, we are guaranteedto �nd �-feasible replaement paths for s and s0,although we do not expliitly require that they bedisjoint. (If there are intersetions, they will bedisovered and resolved in the next iteration.)(d). Go to (2) to begin the next major iteration of thealgorithm.Sine at least one vertex is added to the subdivision duringeah iteration, and no vertex is ever removed, it is lear that
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Figure 4: Neither G(s) nor G(s0) ontains a (�-feasible) detour path.the algorithm onverges. Our algorithm an be implementedto run in time proportional tokXi=1 24jIij+ n log n+ X(s;s0)2Ii jC(s)j235 ;where Ii is the set of intersetions found at iteration i. Thetotal number of iterations, k, an be 
(n) in the worst ase(see Figure 5); however, in pratie, we �nd that k tendsto be a small onstant (it never exeeded 40 in our experi-ments). The term jIij+n log n assumes the use of an optimalsegment intersetion algorithm; in pratie, we use our sim-ple grid-based buketing approah, whih an be expetedto perform lose to optimally. Also, in order to perform theintersetion omputation more eÆiently from iteration toiteration, we keep trak of those subhains that are modi�edin the previous iteration and, in the urrent iteration, hekfor intersetion only with those subhains that are markedas modi�ed. While the worst-ase running time of the algo-rithm is O(n3), our experimental results show that it runsreasonably fast in pratie.
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Figure 5: A family of m \nested" hains,, forminga \fan blade", for whih the number of iterationsis linear in the input size n. The initial simpli�-ations are all straight segments. The intersetionwith the simpli�ed short hain auses a detour of C1to be omputed that intersets the next hain (C2,going lokwise), whose detour intersets the nextone, et, until the �rst one is interseted again bythe mth one, and a new detour is required for C1.Finally, the SD method would end up spending 
(n)iterations to add bak all verties on the originalnested hains, while an optimal solution would beto take an O(1)-size detour only for the short seg-ment.



4. EXTENDED SD HEURISTICThe Simple Detours heuristi is a method for obtaininga simpli�ed subdivision that is simple { it has no rossingsegments. However, this method does not preserve the ho-motopy type of the input subdivision and does not attemptto handle point features. For example, in Figure 1, the SDheuristi would permit the simpli�ation shown, in whihthe smallest fae is ontained in a di�erent fae after sim-pli�ation. In order to address the more general problem ofpreserving homotopy type, we have developed an extensionto the basi SD heuristi, whih we all the Extended SimpleDetours heuristi (ESD heuristi).We now assume that we are given a set of input points, P,along with the input subdivision S. The initial simpli�ationis done so that the simpli�ation obtained is homotopi tothe original subdivision with respet to the set of points Pand the endpoints of hains of S. Thus, if C0 representsthe simpli�ed version of an input hain C, then C an beontinuously deformed into C0 without passing through anypoints of P and without passing through any endpoints ofhains (other than C). We let Q denote the union of P andthe endpoints of hains of S.The ESD method is essentially the same as the SDmethodexept that we impose an additional onstraint on the edgesthat make up the detour graph that we onstrut when wewant to resolve an intersetion s\ s0. In partiular, we on-sider an �-feasible shortut edge e to be an edge of G(s) onlyif e does not interset s0 (as before) and e is homotopiallyequivalent, with respet to Q, to the hain C(e) that it re-plaes. In order to test if C(e) is homotopially equivalentto e, we ould apply the tehniques of [13℄ to ompute ashortest path homotopially equivalent to C(e) within a tri-angulation of the points Q; if the shortest path is a straightsegment (e), then they are homotopially equivalent, andotherwise they are not. In order to avoid omputing andstoring a triangulation, and for simpliity of implementa-tion, we have opted to ode a simpler algorithm that makesa stronger restrition on e when we test homotopy feasibil-ity. Our ondition is \stronger" in the sense that it is asuÆient (but not neessary) ondition for homotopy feasi-bility. In partiular, we utilize a regular grid partition (aswe do for omputing intersetions among segments) and wedemand that e be homotopially equivalent to C(e) \withrespet to the grid", in the following sense: for eah (ret-angular) grid element B, (a). e and C(e) must interset thesides of B in the same order; (b). e \B must be homotopi-ally equivalent to eah onneted omponent of C(e) \ B.Condition (b) is heked in a straightforward manner, as westore expliitly with eah portion of a hain within a gridbox B the set of points that lie within distane � on one sideof it; these points an be heked diretly against e.
5. EXPERIMENTSWe have onduted implemented the heuristis (SD andESD) we have proposed and have onduted an extensiveset of experiments to test their eÆieny and e�etiveness.Our tests were done on a Silion Graphis SGI with one 150Mhz IP22 proessor and 64MB of memory.Data Sets. Our data sets inluded USGS digital line graph(DLG) data sets, ontaining from 12,317 to 147,609 ver-ties, a ensus data setWe thank Dr. Robert Freimer ofCaliper Corporation for providing the ensus data., ontain-

ing 279,989 verties, and randomly generated simple poly-gons (using the RPG system of Auer and Held [3℄), ontain-ing from 2001 to 100,001 verties. The USGS data onsistsof hypsography, hydrography, transportation, and boundarydata. We have run both the SD and ESD methods on alltypes and have found that the hypsography data is by farthe most diÆult to handle. In general the hypsographydata sets are the largest data sets of the four types and on-tain relatively few hains. Also, many more intersetionsare reated in the initial simpli�ation on hypsography datathan on the other three data set types. Point features usedin the ESD method were randomly generated using a uni-form distribution. Between 100 and 100,000 point featureswere used in individual runs. Data sets were all saled toan 800 � 800 area. We onsidered values of � ranging from� = 2 to � > 800p2.Details of the Experimental Setup. For the retangu-lar grid to aelerate intersetion omputation, we dividedthe bounding box (of dimensions �x-by-�y) of the datainto Ix equal-sized intervals, where Ix = (1:25)�xpn+ 3n0,n is the original number of verties, n0 is the number of ver-ties after Douglas-Peuker simpli�ation, and �x = �x=�y(rounded to 0.1 or to 10 if this ratio falls outside the interval(0.1,10)). The number, Iy, of y-intervals is de�ned similarly.Before settling on this hoie of grid parameters, we exper-imented with various hoies of grid size.We have found that it is often useful to ondut simpli�-ations in stages: In the ith stage, we ompute an approx-imation with error bound �i, starting with input given bythe simpli�ed subdivision omputed in the (i � 1)st stage.Sine the errors an ompound from stage to stage, the totalerror at the end of the ith stage is given by �1 + � � � + �i.After some initial experimentation, we determined that it israrely bene�ial to use more than two stages, but it is oftenadvantageous (in terms of running time) to use two stages.In many of the results reported here, two stages were used(in whih ase we give not only � (= �1 + �2), but also �1).Running times in our tables are total times for all stages.Method for Comparison: Constrained Deimation.We have also implemented a simple onstrained deimationalgorithm in order to have a basis for omparison with ourSD heuristis. As opposed to the SD heuristi, the deima-tion method avoids intersetions during the initial simpli�-ation. In this method, we start with an input subdivision inwhih it is assumed that hains are ordered and the vertiesin eah hain are ordered. We iteratively attempt to removeverties from the hains while obeying the onstraint thatthe shortut segment resulting from the removal of a vertexis �-feasible and that it does not reate any intersetion withother segments of the subdivision.Experimental Results. Pitorial examples of results ob-tained with our software are shown in the images of Figure 6and Figure 7. In our tables of results, we use \DP" to standfor the Douglas Peuker algorithm and \SD" to stand forthe Simple Detours algorithm. The redution ratio (\Red.Ratio") is the ratio of the number of verties in the sim-pli�ation to the number of verties in the original subdivi-sion. We show redution ratios both for the DP algorithmalone and for the SD heuristi algorithm. We also show thenumber of intersetions that our in the DP simpli�ation(before the SD heuristi is run).Table 1 shows running times for 2-stage simpli�ation on



(a). Original: 123,871 verties. (b). Simpli�ation: 1 stage, � = 2. (). Simpli�ation: 2 stages, � = 5.Figure 6: Example of a hypsography data set and two simpli�ations using the SD heuristi. For (b), therewere 2664 intersetions after DP, 25,051 verties in the �nal simpli�ation, and the total pu time was 9.71seonds. For (), there were 4603 intersetions after DP, 14,902 verties in the �nal simpli�ation, and thetotal pu time was 16.94 seonds (11.97 seonds of whih was for the �rst stage, most of whih was runningDP). The �rst stage took 4 iterations, and the seond stage took 7 iterations of the SD algorithm.

(a). Original: 32,064 verties. (b). Douglas-Peuker simpli�ation. (). SD heuristi simpli�ation.Figure 7: Zoomed in example of a USGS hypsography data set and its simpli�ation using only the Douglas-Peuker, as well as the SD heuristi. The total pu time is 7.37 seonds, obtained in two stages with �1 = 2,�2 = 43. The seond stage of the simpli�ation took k = 17 iterations. The �nal subdivision has 3796 verties.



USGS hypsography data sets, for various values of � = �1+�2(always with �1 = 2). This data is also plotted in Fig-ure 8(a). A similar plot (Figure 8(b)) shows how the runningtimes vary with � for the random polygons data sets. Fig-ure 9 shows how the total running time breaks down amongthe various phases of the algorithm (omputing the originalDP simpli�ation, �nding intersetions, omputing detourgraphs and searhing them, and other operations), for the147,609-vertex hypsography data set. Breakdowns of run-ning time and the redution ratios are reported in Tables 3and 4 for the ensus data and random polygon data, re-spetively. We note that more variation ours in real worlddata than in the arti�ially generated random polygon data.However, the running times are generally higher on the ran-dom polygon data. This is due largely to the time spent inomputing intersetions, whih, reall, is done using a sim-ple grid-based buketing tehnique. The random polygondata tends to have many long edges that extend aross thedata set, making the buketing tehnique muh less e�etivein pruning the intersetion searh.
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(a). Running time in seonds for hypsography data.
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(b). Running time in seonds for random polygons.Figure 8: SD Method : 2 stages, �1 = 2:0.A omparison of the SD heuristi and the onstrained de-imation is shown in Table 2 for random polygon data. It isseen that the SD heuristi gives dramatially better redu-tion ratios in a fration of the time required by the on-strained deimation algorithm.A omparison of 1-stage and 2-stage simpli�ation withthe SD heuristi is shown in Tables 5 and 6. We see thatthe 2-stage proess gives a redution ratio that is somewhatworse, while giving running times that are de�nitely better.This partiular data set gives one of the worst omparisonsof redution ratios between 1-stage and 2-stage; in general,the redution ratios are omparable between the 1- and 2-stage proesses, while the 2-stage proess is substantiallyfaster.For the Extended Simple Detours (ESD) heuristi, we
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Figure 9: SD Method : A breakdown of times for2-stage simpli�ation with �1 = 2:0 for hypsographydata set with 147,609 original verties.show running times, as a funtion of the number of pointfeatures (on a log sale), in Figures 11(a) and 11(b) for hyp-sography data and random polygons. We show a breakdownof the running time in Figure 10 for the 147,609-vertex hyp-sography data set.Note that sine there is an additional onstraint when ap-plying the ESD heuristi, we do not obtain as aggressive aredution in the vertex ount as we do with the SD heuristi.Figure 12 shows the ratio of the number or verties obtainedvia ESD for no point features to the number of verties ob-tained via SD for two HPF data sets. We see that there is asubstantial di�erene in behavior between the two data sets.When � is small this ratio is near one in both ases. This isgenerally true when � is small relative to grid size. However,as � inreases, this fator an grow quite large if individualhains in the subdivision are highly non-monotoni. In thease that individual hains an be deomposed into a smallnumber of monotone hains, the grid onstraint imposed byour method of testing homotopy feasibility has less e�et.Table 7 shows a breakdown of times for a 2-stage ESDmethod with �1 = 2 on a hypsography data set ontaining32,064 verties with 100 point features.
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Figure 10: ESD Method : Breakdown for 1-stagesimpli�ation with � = 2 on a hypsography data setontaining 147609 verties and 1063 hains.



# of �Verts. 2 15 25 35 45 100 200 112317 0.610 0.920 0.920 1.140 0.800 0.880 0.750 1.84032064 2.420 5.68 6.420 6.850 7.370 8.540 9.180 9.01041852 1.920 2.36 2.47 2.64 2.84 6.56 5.31 4.0548125 2.200 3.680 4.880 5.940 4.840 8.430 8.930 3.13069191 2.950 4.15 4.6 5.940 5.75 7.01 5.78 4.9176145 3.910 6.18 6.90 7.63 7.69 6.53 6.50 6.4886803 5.000 7.10 7.48 8.800 9.120 9.830 8.130 9.39088787 4.060 5.44 5.76 5.56 5.84 5.74 6.59 6.55113142 5.890 9.33 10.54 10.67 11.39 20.93 31.18 27.72114662 6.900 12.775 12.77 16.760 12.830 15.560 42.590 35.740123201 6.10 9.490 10.300 11.430 12.940 19.070 20.470 21.380123871 11.970 19.830 22.920 26.010 29.910 60.430 62.45 61.92142316 8.200 16.290 18.860 21.110 22.620 31.300 38.500 46.630147609 10.410 16.910 16.290 19.570 21.600 22.030 29.800 24.500Table 1: SD Method : Running time in seonds for hypsography data sets : 2-stage simpli�ation with �1 = 2.SD SD De. De.# of Time in Redution Time in RedutionVerties Seonds Ratio Seonds Ratio2000 0.150 0.0290 61.480 0.31033000 0.140 0.0290 139.710 0.31167000 0.630 0.0116 749.460 0.295016000 1.970 0.1312 3524.460 0.4546Table 2: 1-stage Simple Detours vs. In Order Deimation on Random Polygons with � = 100.� Time Time Time Time Red. (DP) Red. # ofSeonds DP Intst SD Ratio Ratio Intsts.2 18.910 2.160 3.730 10.710 0.0758 0.0765 29712 20.42 2.31 4.87 10.75 0.0677 0.0679 10722 20.39 2.30 4.85 10.74 0.0673 0.0675 9232 20.39 2.30 4.84 10.75 0.0673 0.0675 9342 20.39 2.30 4.84 10.75 0.0673 0.0675 93102 20.39 2.30 4.85 10.75 0.0673 0.0675 901 20.39 2.30 4.85 10.75 0.0673 0.0675 90Table 3: SD Method : 2-stage simpli�ation (�1 = 2) on a ensus data set with 279,989 verties, 9419 hains.� Time Time Time Time Red. (DP) Red. # ofSeonds DP Intst SD Ratio Ratio Intsts.2 43.120 6.110 34.990 0.960 0.2060 0.2119 95115 48.100 7.16 37.87 1.74 0.0217 0.0235 25325 47.17 7.04 36.35 2.49 0.0097 0.0104 16235 46.96 6.96 35.92 2.74 0.0053 0.0056 7745 48.01 6.92 35.95 3.72 0.0036 0.0040 71100 57.67 6.75 35.38 14.31 0.0010 0.0011 13200 45.4 6.52 35.22 2.47 0.0003 0.0003 41 43.33 6.2 34.990 0.960 0.00002 0.00002 0Table 4: SD Method : 2-stage simpli�ation (�1 = 2) on a random polygon ontaining 100,001 verties.� Time Time Time Time Red. (DP) Red. # ofSeonds DP Intst SD Ratio Ratio Intsts.2 2.420 0.550 1.410 0.190 0.2027 0.2075 25015 12.400 0.290 4.350 7.150 0.0808 0.1207 136425 19.250 0.260 6.140 11.910 0.0737 0.1223 154935 25.220 0.250 6.800 17.100 0.0695 0.1264 174945 28.52 3.230 10.32 12.52 0.0204 0.0475 2238110 30.91 3.19 10.6 14.66 0.0165 0.0485 1626210 34.8 3.17 11.24 17.76 0.0157 0.0460 9011 36.54 3.150 9.62 21.17 0.0154 0.0403 1067Table 5: SD Method : 1-stage simpli�ation on a hypsography data set (32,064 verties, 941 hains).



� Time Time Time Time Red. (DP) Red. # ofSeonds DP Intst SD Ratio Ratio Intsts.2 2.420 0.550 1.410 0.190 0.2027 0.2075 25015 5.200 6.20 3.69 0.53 0.0972 0.1249 103925 6.420 6.10 4.54 0.88 0.0750 0.1148 145635 6.850 0.600 4.62 1.18 0.0701 0.1160 175845 7.370 0.610 4.93 1.42 0.0675 0.1183 1899100 8.540 0.590 5.17 2.28 0.0610 0.1229 2067200 9.180 0.580 5.55 2.62 0.0591 0.1213 16701 9.010 0.580 5.37 6.23 0.0587 0.1217 1523Table 6: SD Method : 2-stage simpli�ation (�1 = 2) on a hypsography data set (32,064 verties, 941 hains).� Time Time Time Time Time Red. (DP) Red. # ofSeonds SetUp DP Intst SD Ratio Ratio Intsts.2 3.270 0.350 1.170 1.320 0.180 0.2640 0.2687 24010 6.93 0.540 1.72 3.62 0.63 0.1804 0.1777 108125 7.72 0.54 1.84 3.94 1.00 0.1848 0.1499 152635 7.71 0.53 1.92 3.87 1.61 0.1857 0.1509 15821 8.05 1.25 2.01 3.96 1.15 0.1898 0.1491 1864Table 7: ESD Method : 2-stage simpli�ation (�1 = 2) with 100 point features for hypsography data (32,064verties).
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(b). Running time in seonds for random polygons.Figure 11: ESD Method : One stage, � = 2:0.
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Figure 12: ESD Method : Ratio of the number ofverties obtained via the ESD method for no pointfeatures to the number of verties obtained via theSD method, for hypsography data.
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