Simplifying a Polygonal Subdivision
While Keeping it Simple

- .*
Regina Estkowski
HRL Laboratories
Malibu, CA 90265, USA

regina@hrl.com

ABSTRACT

We study the problem of simplifying a polygonal subdivi-
sion, subject to a given error bound, €, and subject to main-
taining the topology of the input, while not introducing new
(Steiner) vertices. In particular, we require that the simpli-
fied chains may not cross themselves or cross other chains.
In GIS applications, for example, we are interested in simpli-
fying the banks of a river without the left and right banks
getting “tangled” and without “islands” becoming part of
the land mass. Maintaining topology during subdivision
simplification is an important constraint in many real GIS
applications.

We give both theoretical and experimental results.

(a). We prove that the general problem we are trying to
solve is in fact difficult to solve, even approximately: we
show that it is MIN PB-complete and that, in particular,
assuming P # NP, in the general case we cannot obtain in
polynomial time an approximation within a factor n'/579 of
an optimal solution.

(b). We propose some heuristic methods for solving the
problem, which we have implemented. Our experimental re-
sults show that, in practice, we get quite good simplifications
in a reasonable amount of time.

Keywords

polygonal subdivisions, simplification, map generalization,
geographic information systems, approximation algorithms

1. INTRODUCTION

In many applications, such as geographic information sys-
tems (GIS), very large polygonal subdivisions (maps) must
be handled and displayed. It is often necessary to compress

*This work was conducted while R. Estkowski was a PhD
student at the University at Stony Brook.

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SCG'01, June 3-5, 2001, Medford, Massachusetts, USA.

Copyright 2001 ACM 1-58113-357-X/01/0006$5.00.

Joseph S. B. Mitchell
Applied Math & Statistics
State University of New York
Stony Brook, NY 11794, USA

jsbm@ams.sunysb.edu

the original data, simplifying the subdivision in order to re-
duce the total number of vertices that define it. The map
simplification problem (or the map generalization problem)
is to compute a simplification of a given subdivision, subject
to various constraints that affect the retention of important
features and the aesthetics of the simplified map.

A polygonal subdivision S is a straight-edge embedding
of a planar graph without crossing edges. The non-crossing
property is often referred to as the “simplicity” of the input
data. The main focus of this paper is on the problem of
map simplification with topological constraints, including
primarily the constraints of simplicity and of maintaining
sidedness of other point features (we do not want a feature
point to change which face contains it after simplification).
In Figure 1 we show an example of what can happen when a
polygonal map is simplified: the approximations of the two
banks of the river intersect each other, and the smallest face
of the map gets simplified to a point, which now lies on the
other side of a simplified boundary.

Figure 1: Example of topological errors arising in
simplification of maps.

In GIS practice, most often the polygonal chains are con-
sidered in isolation, each being simplified using a favorite
“line simplification” algorithm, such as that of Douglas and
Peucker [8, 12, 14]; see also [4, 5, 16, 17, 19]. Not only
does this local approach lead to possible crossings between
pairs of simplified chains, it can also lead to self-intersection
(nonsimplicity) of a single chain. In this paper, we inves-
tigate the problem of map simplification with topological
constraints.

The input to our problem is a set S of polygonal chains
(polylines) and feature points, and an error tolerance € > 0.
It is assumed that, while two or more chains can share an
endpoint, no two chains of § cross. We let n denote the total
number of vertices in §. The output is a set, S*, of noncross-
ing chains and feature points. Any isolated feature point of

S, as well as any vertex of degree one or degree greater than
two is preserved in §*. Each chain of degree-two vertices in
8™ is required to consist of e-feasible edges, which are line
segments v;v; that approximate to within e the correspond-
ing subchain of the input S: each vy lies within distance €
of the line segment v;v;, for ¢ < k < j. We do not per-
mit Steiner points to be introduced; thus, the vertex set of
S* is a subset of the vertex set of S, omitting (hopefully) a
large number of vertices of degree two. We let NSP-SBSIMP
(“No Steiner Point Subdivision Simplification”) denote the
optimization problem of computing an §* with a minimum
number of vertices.

Summary of Results.

(a) We prove that the problem (NSP-SBSIMP) of minimiz-
ing the complexity of §* is MIN PB-complete and that
it is NP-hard to obtain an approximation whose size
is within a factor n'/®~° of optimal. Previously, Es-
tkowski [9] had shown the problem to be NP-complete;
ours is the first hardness of approximability result for
the problem.

(b) We propose a heuristic method, termed the “Simple
Detours” (SD) heuristic, for obtaining simplified sub-
divisions that are simple. The method is based on
first applying a standard chain simplification method
and then “untangling” it to remove intersections that
were generated in the simplification process. We also
present an extension of this method that allows us to
simplify a planar subdivision while preserving homo-

topy type.

(c) We perform an experimental investigation of the perfor-
mance of implemented versions of both of our heuristic
algorithms, comparing them to the common technique
that avoids intersections explicitly during simplifica-
tion. We use both real and simulated data in our
comparisons. The real data includes USGS data (hyp-
sography, hydrography, transportation, and boundary
data) and census map data. While our theoretical
results are “negative”, our experimental results show
that, in practice, we obtain quite good reduction in a
reasonable amount of time.

Related Work. The problem of simplifying geometric ob-
jects while preserving simplicity has had some prior study
in both the GIS literature and the computational geometry
community. Zhan and Mark [21] have done a cognitive (non-
algorithmic) study of how “conflicts” from topological errors
in GIS map simplification can be corrected after they oc-
cur. Guibas et al [11] prove that computing a minimum-link
simple polygon of a given homotopy type is NP-complete,
as is computing a minimum-link simple polygonal subdivi-
sion that is homeomorphic to an input subdivision, within a
polygonal domain. de Berg et al [6, 7] have shown how the
methods of [4, 16, 19] can be applied, in conjunction with
constraints to guarantee topological consistency, to obtain in
O(n(n + m)logn) time a minimum-size simplification of an
z-monotone chain (having n vertices) that is within an ap-
proximation error € and homotopically consistent with the
input, with respect to a set of m points. They generalize
their results to handle simple polygonal subdivisions, but
they have no guarantee of being close to optimal. No imple-
mentation or experimental results are reported in [6]. Many

other methods for polygonal simplification do not address
the issue of undesirable topological changes that may occur
in the simplification process, such as the loss of simplicity
or a change in homotopy type. Currently, in most practical
applications, these topological changes are not handled, or
are done so in an ad hoc manner; there has been a need for
methods which preserve simplicity and homotopy type while
producing a usable solution in a reasonable amount of time.

In the time since our work was done, there has been some
recent work of [18, 20], which also addresses practical con-
siderations in topologically correct map simplification. In
particular, [18] use a natural method of preventing topolog-
ical changes from occurring by defining “safe sets” (using a
Voronoi diagram) to guarantee that standard simplification
algorithms within safe sets do not cause changes in topology.
While this approach has the advantage of better worst-case
time bounds (linear), it is potentially less aggressive in its
ability to simplify compared to our own. The related ap-
proach of [20] also uses Voronoi diagrams (computed rapidly
and approximately using graphics z-buffer support) to con-
strain standard polygonal chain approximation methods so
that only “compliant” shortcut segments are used. These
approaches may be more limited in their ability to compress

some data; see Figure 2.

€

N

Figure 2: For a set of nested curved chains, con-
straining the approximation to stay within Voronoi
regions may prevent simplification. Here, the opti-
mal simplification replaces each chain with a single
segment.

2. HARDNESS OF APPROXIMATION

Our main theorem places our optimization problem in the
class of problems that are among the hardest to approxi-
mate:

THEOREM 1. NSP-SBSIMP is MIN PB-complete and is
not polynomial-time approzimable within a factor n*/5~% of
optimal, for any 6 > 0, unless P=NP.

PROOF. (Sketch: for the full proof, see [10].) We re-
call the definition of an S-reduction (see Hochbaum [15]).
MIN PB denotes the set of minimization problems that are
polynomially bounded and are in NP. Suppose that X €
MIN PB, S is a solution for the instance I of X, and Opt
is an optimal solution for I; then we define the perfor-
mance ratio of S with respect to Opt to be Rx(I,S) =
|S|/(|Opt| +1). We let Zx denote the set of problem in-
stances of X eMIN PB; we let S(I) denote the set of all so-
lutions for instance I. Suppose that Xi, X» € MIN PB. An
S-reduction from X1 to X» with amplification factor a(n)
consists of the following:

(i) A polynomial time computable function r1 : Zx, — Zx,.

(ii) A monotonically increasing positive function a(n) such
that for any I € Z(X1), |ri ()] < |a(|I])]-

(iii) A polynomial-time computable function r2 such that
for any I € Z(X1), r2 sends (r1(I), S) to a solution of
I, where S is a solution of r1(I).

(iv) A constant ¢ such that for any I € Zx, and any solu-
tion S of r1(I), Rx, (I,r2(r1(I),S)) < eRx,(ri(I),S).

If there is an S-reduction from X; to X» with amplifi-
cation factor a(n) = n* and n° is a lower bound on an
approximation factor for X1, then n¥ is a lower bound on
an approximation factor for Xo.

We prove our theorem by giving an S-reduction, with
amplification factor a(n) = O(n®) from Minimum Indepen-
dent Dominating Set (MIDS), which is known not to have a
polynomial-time algorithm with approximation factor nl_‘;,
for any 6 > 0. MIDS takes as input a graph G = (V, E) and
a constant N > 0 and asks if there is a “dominating set”
V' C V of size at most N (i.e., if there is a set of at most
N vertices, no two of which are adjacent, such that every
vertex v € V is adjacent to some member of V).

For an instance I of MIDS, with associated graph G,
we construct a corresponding instance I' = ri(I) of NSP-
SBSIMP. We define a new graph, G’, as follows. There is
a vertex node of G' corresponding to each node of G; there
is an edge node of G’ corresponding to each edge e of G,
and we connect it with an edge (of G') to each of the two
vertex nodes at the endpoints of e. Finally, G’ has a special
control node, D, which is joined by an edge to each vertex
node and each edge node. We now embed G’ in the plane
so that no three edges intersect at one point and place a
crossing node at each edge crossing (splitting in two each of
the edges that cross there). The resulting planar graph, G",
is embedded in the plane so that the nodes are “far enough”
apart. We place a rectangular frame (annulus) at each node
and construct a narrow tube to surround each edge.

We then construct vertex gadgets, edge gadgets, crossing
gadgets, and a control gadget within each frame centered at
the corresponding node. These gadgets consist of a number
of polygonal chains, which partially constitute the planar
subdivision I'. Traveling through each tube is a hinge-link
sequence as defined in [10], which also consists of a num-
ber of polygonal chains and connects the gadgets placed
at the tube endpoints. Any hinge-link sequence has only
one possible simplification so that in any simplification of
I' cach hinge-link sequence is either simplified or not sim-
plified. Crossing gadgets are constructed so that the hinge-
link sequences in the tubes corresponding to a crossing edge
maintain the same parity.

Each vertex gadget contains an enforcing vertex chain of
size O(n?), where n is the number of nodes in the instance
I. An enforcing vertex chain simplifies to one segment and
has no other possible simplification. Vertex gadgets having
an enforcing vertex chain that is not simplified correspond
to nodes that are in the independent dominating set.

Each vertex gadget, v, and each edge gadget, e, has a
distinguished simplification, Sp(v) or Sp(e). A vertex gad-
get is simplified by Sp if and only if at least one enforcing
vertex chain in the neighborhood of corresponding nodes,
including itself, is simplified. Thus, simplification of a ver-
tex gadget, v, by Sp(v) corresponds to domination. Also an
edge gadget, e, is simplified by Sp(e) if and only if at most
one of the enforcing vertex chains at the nodes incident on
the corresponding edge are simplified. Thus, simplification
by Sp(e) corresponds to independence.

The control gadget has one possible simplification and
is simplified if and only if all vertex and edge gadgets are
simplified by Sp. In this way we obtain that if any enforcing
vertex chain is simplified then all non-simplified enforcing
vertex chains correspond to an independent dominating set
and that if no vertex chain is simplified then either there
is no independent dominating set or G is a trivial graph
consisting of one node. The formidable details of all of these
gadgets and the proofs are contained in [10]. O

3. THE SIMPLE DETOURSHEURISTIC

We now describe our Simple Detours (SD) heuristic. The
main idea is to use intersections that occur in an uncon-
strained simplification to “suggest” problem areas where fur-
ther work will be done to prevent crossings. At each inter-
section, we define a graph (the “detour graph”) of e-feasible
segments that can be used in a path that replaces one of the
segments that is involved in the intersection. A search in this
graph (hopefully) yields a simplest detour — a minimum-link
detour around the intersection. (If it fails, then we have an
additional heuristic to modify the chains locally, described
below.) Of course, by taking detours to untangle one in-
tersection, we may end up creating some new intersections;
thus, the algorithm must continue checking for intersections
after each iteration of computing detours, until finally no
intersections are present. Thus, our algorithm yields a se-
quence of subdivision simplifications, 8’ = 81, 8>, ..., Sk, in
k main iterations, with S;4+1 being obtained from S; by the
ith iteration of the simple detours step, designed to do local
elimination of intersections in S;. The final subdivision S
is guaranteed to counsist of e-feasible segments and have no
intersections.

In more detail, the main steps of the method are as follows:

(1) We compute an e-feasible approximation to the input
subdivision, §, using any standard line simplification
technique that does not introduce new vertices and
that uses our notion of e-feasibility. (Our experiments
use the standard implementation of the Douglas-Peucker
algorithm.)

(2) We compute all pairs of intersecting segments in the
simplification, placing them in a list Z. In our imple-
mentation, we use a regular grid heuristic to speed up
intersection computations. (We found this to be supe-
rior to a prior implementation based on a plane sweep
algorithm; see [1, 2].)

3) For each intersection in Z, we consider the two segments
g
s and s’ that give rise to the intersection.

(a). One of them (call it s) is declared to be the detour
segment; it is the one that we attempt to replace
with a minimum-link detour that avoids the other
segment. Specifically, we select s to be the seg-
ment that has an odd number of crossings with
the spanning (original) chain C(s’) for which s
is an e-feasible shortcut. (Thus, s is not an orig-
inal segment of §, since s N C(s') # 0.) One can
prove that exactly one of {s, s’} has an odd num-
ber number of crossings with the other’s spanning
chain. We have found that our selection of detour
segment s works best in practice.

(b). We construct the detour graph, G(s), correspond-
ing to s. The vertices of G(s) are the vertices
of the spanning chain C(s), and two vertices are
joined by an edge in G(s) if and only if the corre-
sponding line segment is e-feasible and does not
intersect s’. This is done in time O(|C(s)[?), us-
ing the algorithm of Chan and Chin as described
in [6] (“Compute-Allowed-Shortcuts(C,€)”). See
Figure 3.

Figure 3: Left: Shortcut segments s and s’ intersect;
the original chains C(s) and C(s') are shown as well
(thin solid). Right: The detour graph G(s) is shown
with thick dashed edges and fat black dots as nodes.

(c). We search the detour graph G(s) for a shortest
(minimum-link) path connecting the endpoints of
s. If we succeed in finding such a detour path, we
add the corresponding edges to the subdivision.
It is possible that there is no detour path (in fact,
Figure 4 shows a case in which neither G(s) nor
G(s') has a detour path). If we fail to find a
detour path, then we perform the following split-
ting process to search for a pair of noncrossing
e-feasible paths to replace the pair (C(s), C(s')):
We select a random vertex v on C(s) and v’ on
C(s'). We replace s = ujuz (resp., s’ = ujup)
with the two segments u1v and vus (resp., ujv’
and v'ub), if they are both e-feasible. If either or
both segments are not e-feasible, we continue the
splitting process recursively on the correspond-
ing subchains. (The technique is similar to the
Douglas-Peucker algorithm except in our choice
of splitting point.) In this way, we are guaranteed
to find e-feasible replacement paths for s and s,
although we do not explicitly require that they be
disjoint. (If there are intersections, they will be
discovered and resolved in the next iteration.)

(d). Go to (2) to begin the next major iteration of the
algorithm.

Since at least one vertex is added to the subdivision during
each iteration, and no vertex is ever removed, it is clear that

Figure 4: Neither G(s) nor G(s') contains a (e-
feasible) detour path.

the algorithm converges. Our algorithm can be implemented
to run in time proportional to

g{mwnlegm > |C(s)|2},

(s,8")€ZL;

where Z; is the set of intersections found at iteration ¢. The
total number of iterations, k, can be Q(n) in the worst case
(see Figure 5); however, in practice, we find that k tends
to be a small constant (it never exceeded 40 in our experi-
ments). The term |Z;|+n log n assumes the use of an optimal
segment intersection algorithm; in practice, we use our sim-
ple grid-based bucketing approach, which can be expected
to perform close to optimally. Also, in order to perform the
intersection computation more efficiently from iteration to
iteration, we keep track of those subchains that are modified
in the previous iteration and, in the current iteration, check
for intersection only with those subchains that are marked
as modified. While the worst-case running time of the algo-
rithm is O(n?), our experimental results show that it runs
reasonably fast in practice.

ey

Figure 5: A family of m “nested” chains,, forming
a “fan blade”, for which the number of iterations
is linear in the input size n. The initial simplifi-
cations are all straight segments. The intersection
with the simplified short chain causes a detour of C;
to be computed that intersects the next chain (C»,
going clockwise), whose detour intersects the next
one, etc, until the first one is intersected again by
the mth one, and a new detour is required for C.
Finally, the SD method would end up spending Q(n)
iterations to add back all vertices on the original
nested chains, while an optimal solution would be
to take an O(1)-size detour only for the short seg-
ment.

4. EXTENDED SD HEURISTIC

The Simple Detours heuristic is a method for obtaining
a simplified subdivision that is simple — it has no crossing
segments. However, this method does not preserve the ho-
motopy type of the input subdivision and does not attempt
to handle point features. For example, in Figure 1, the SD
heuristic would permit the simplification shown, in which
the smallest face is contained in a different face after sim-
plification. In order to address the more general problem of
preserving homotopy type, we have developed an extension
to the basic SD heuristic, which we call the Extended Simple
Detours heuristic (ESD heuristic).

We now assume that we are given a set of input points, P,
along with the input subdivision §. The initial simplification
is done so that the simplification obtained is homotopic to
the original subdivision with respect to the set of points P
and the endpoints of chains of S. Thus, if C' represents
the simplified version of an input chain C, then C can be
continuously deformed into C’ without passing through any
points of P and without passing through any endpoints of
chains (other than C). We let Q denote the union of P and
the endpoints of chains of S.

The ESD method is essentially the same as the SD method
except that we impose an additional constraint on the edges
that make up the detour graph that we construct when we
want to resolve an intersection s s’. In particular, we con-
sider an e-feasible shortcut edge e to be an edge of G(s) only
if e does not intersect s (as before) and e is homotopically
equivalent, with respect to Q, to the chain C(e) that it re-
places. In order to test if C'(e) is homotopically equivalent
to e, we could apply the techniques of [13] to compute a
shortest path homotopically equivalent to C(e) within a tri-
angulation of the points Q; if the shortest path is a straight
segment (e), then they are homotopically equivalent, and
otherwise they are not. In order to avoid computing and
storing a triangulation, and for simplicity of implementa-
tion, we have opted to code a simpler algorithm that makes
a stronger restriction on e when we test homotopy feasibil-
ity. Our condition is “stronger” in the sense that it is a
sufficient (but not necessary) condition for homotopy feasi-
bility. In particular, we utilize a regular grid partition (as
we do for computing intersections among segments) and we
demand that e be homotopically equivalent to C'(e) “with
respect to the grid”, in the following sense: for each (rect-
angular) grid element B, (a). e and C(e) must intersect the
sides of B in the same order; (b). e N B must be homotopi-
cally equivalent to each connected component of C(e) N B.
Condition (b) is checked in a straightforward manner, as we
store explicitly with each portion of a chain within a grid
box B the set of points that lie within distance e on one side
of it; these points can be checked directly against e.

5. EXPERIMENTS

We have conducted implemented the heuristics (SD and
ESD) we have proposed and have conducted an extensive
set of experiments to test their efficiency and effectiveness.
Our tests were done on a Silicon Graphics SGI with one 150
Mhz IP22 processor and 64MB of memory.

Data Sets. Our data sets included USGS digital line graph
(DLG) data sets, containing from 12,317 to 147,609 ver-
tices, a census data setWe thank Dr. Robert Freimer of
Caliper Corporation for providing the census data., contain-

ing 279,989 vertices, and randomly generated simple poly-
gons (using the RPG system of Auer and Held [3]), contain-
ing from 2001 to 100,001 vertices. The USGS data consists
of hypsography, hydrography, transportation, and boundary
data. We have run both the SD and ESD methods on all
types and have found that the hypsography data is by far
the most difficult to handle. In general the hypsography
data sets are the largest data sets of the four types and con-
tain relatively few chains. Also, many more intersections
are created in the initial simplification on hypsography data
than on the other three data set types. Point features used
in the ESD method were randomly generated using a uni-
form distribution. Between 100 and 100,000 point features
were used in individual runs. Data sets were all scaled to
an 800 x 800 area. We considered values of € ranging from
€=2to e > 800V2.

Details of the Experimental Setup. For the rectangu-
lar grid to accelerate intersection computation, we divided
the bounding box (of dimensions Az-by-Ay) of the data
into I, equal-sized intervals, where I, = (1.25)8.v/n + 3/,
n is the original number of vertices, n' is the number of ver-
tices after Douglas-Peucker simplification, and 8, = Ax/Ay
(rounded to 0.1 or to 10 if this ratio falls outside the interval
(0.1,10)). The number, I, of y-intervals is defined similarly.
Before settling on this choice of grid parameters, we exper-
imented with various choices of grid size.

We have found that it is often useful to conduct simplifi-
cations in stages: In the ith stage, we compute an approx-
imation with error bound e;, starting with input given by
the simplified subdivision computed in the (i — 1)st stage.
Since the errors can compound from stage to stage, the total
error at the end of the ith stage is given by €1 + -+ + €;.
After some initial experimentation, we determined that it is
rarely beneficial to use more than two stages, but it is often
advantageous (in terms of running time) to use two stages.
In many of the results reported here, two stages were used
(in which case we give not only € (= €1 + €2), but also €1).
Running times in our tables are total times for all stages.

Method for Comparison: Constrained Decimation.
We have also implemented a simple constrained decimation
algorithm in order to have a basis for comparison with our
SD heuristics. As opposed to the SD heuristic, the decima-
tion method avoids intersections during the initial simplifi-
cation. In this method, we start with an input subdivision in
which it is assumed that chains are ordered and the vertices
in each chain are ordered. We iteratively attempt to remove
vertices from the chains while obeying the constraint that
the shortcut segment resulting from the removal of a vertex
is e-feasible and that it does not create any intersection with
other segments of the subdivision.

Experimental Results. Pictorial examples of results ob-
tained with our software are shown in the images of Figure 6
and Figure 7. In our tables of results, we use “DP” to stand
for the Douglas Peucker algorithm and “SD” to stand for
the Simple Detours algorithm. The reduction ratio (“Red.
Ratio”) is the ratio of the number of vertices in the sim-
plification to the number of vertices in the original subdivi-
sion. We show reduction ratios both for the DP algorithm
alone and for the SD heuristic algorithm. We also show the
number of intersections that occur in the DP simplification
(before the SD heuristic is run).

Table 1 shows running times for 2-stage simplification on

(a). Original: 123,871 vertices. (b). Simplification: 1 stage, € = 2. (c). Simplification: 2 stages, ¢ = 5.

Figure 6: Example of a hypsography data set and two simplifications using the SD heuristic. For (b), there
were 2664 intersections after DP, 25,051 vertices in the final simplification, and the total cpu time was 9.71
seconds. For (c), there were 4603 intersections after DP, 14,902 vertices in the final simplification, and the
total cpu time was 16.94 seconds (11.97 seconds of which was for the first stage, most of which was running
DP). The first stage took 4 iterations, and the second stage took 7 iterations of the SD algorithm.

(a). Original: 32,064 vertices. (b). Douglas-Peucker simplification. (c). SD heuristic simplification.

Figure 7: Zoomed in example of a USGS hypsography data set and its simplification using only the Douglas-
Peucker, as well as the SD heuristic. The total cpu time is 7.37 seconds, obtained in two stages with ¢; = 2,
ez = 43. The second stage of the simplification took k = 17 iterations. The final subdivision has 3796 vertices.

USGS hypsography data sets, for various values of € = €1 +€2
(always with e; = 2). This data is also plotted in Fig-
ure 8(a). A similar plot (Figure 8(b)) shows how the running
times vary with e for the random polygons data sets. Fig-
ure 9 shows how the total running time breaks down among
the various phases of the algorithm (computing the original
DP simplification, finding intersections, computing detour
graphs and searching them, and other operations), for the
147,609-vertex hypsography data set. Breakdowns of run-
ning time and the reduction ratios are reported in Tables 3
and 4 for the census data and random polygon data, re-
spectively. We note that more variation occurs in real world
data than in the artificially generated random polygon data.
However, the running times are generally higher on the ran-
dom polygon data. This is due largely to the time spent in
computing intersections, which, recall, is done using a sim-
ple grid-based bucketing technique. The random polygon
data tends to have many long edges that extend across the
data set, making the bucketing technique much less effective
in pruning the intersection search.

---e-- 147609 vertices
— 8- - 142316 vertices
----- 123201 vertices
—e— 114662 vertices
—-e--- 32064 vertices

Timein Seconds

T T
10 100 1000
Epsilon

(a). Running time in seconds for hypsography data.

---e-- 100001 vertices
---e-- 75001 vertices
N — - 50001 vertices
4 N —e— 16001 vertices

Timein Seconds
.
.
L)
»

>
204

T T T
10 100 1000
Epsilon

(b). Running time in seconds for random polygons.

Figure 8: SD Method : 2 stages, €; = 2.0.

A comparison of the SD heuristic and the constrained dec-
imation is shown in Table 2 for random polygon data. It is
seen that the SD heuristic gives dramatically better reduc-
tion ratios in a fraction of the time required by the con-
strained decimation algorithm.

A comparison of 1-stage and 2-stage simplification with
the SD heuristic is shown in Tables 5 and 6. We see that
the 2-stage process gives a reduction ratio that is somewhat
worse, while giving running times that are definitely better.
This particular data set gives one of the worst comparisons
of reduction ratios between 1-stage and 2-stage; in general,
the reduction ratios are comparable between the 1- and 2-
stage processes, while the 2-stage process is substantially
faster.

For the Extended Simple Detours (ESD) heuristic, we

30

20

© Time for other
= Time for SD
= Time for Intsct.
= Time for DP

Timein Seconds

10 100 1000
Epsilon

Figure 9: SD Method : A breakdown of times for
2-stage simplification with ¢; = 2.0 for hypsography
data set with 147,609 original vertices.

show running times, as a function of the number of point
features (on a log scale), in Figures 11(a) and 11(b) for hyp-
sography data and random polygons. We show a breakdown
of the running time in Figure 10 for the 147,609-vertex hyp-
sography data set.

Note that since there is an additional constraint when ap-
plying the ESD heuristic, we do not obtain as aggressive a
reduction in the vertex count as we do with the SD heuristic.
Figure 12 shows the ratio of the number or vertices obtained
via ESD for no point features to the number of vertices ob-
tained via SD for two HPF data sets. We see that there is a
substantial difference in behavior between the two data sets.
When € is small this ratio is near one in both cases. This is
generally true when e is small relative to grid size. However,
as € increases, this factor can grow quite large if individual
chains in the subdivision are highly non-monotonic. In the
case that individual chains can be decomposed into a small
number of monotone chains, the grid constraint imposed by
our method of testing homotopy feasibility has less effect.

Table 7 shows a breakdown of times for a 2-stage ESD
method with €1 = 2 on a hypsography data set containing
32,064 vertices with 100 point features.

60

© Time for other
= Time for SD

= Time for Intsct.
m Time for DP

m Time for Set Up

Timein Seconds
IS
3
1

N
5}
I

1 10 100 1000 10000 100000
Number of Point Features

Figure 10: ESD Method : Breakdown for 1-stage
simplification with ¢ = 2 on a hypsography data set
containing 147609 vertices and 1063 chains.

of €
Verts. 2 15 25 35 45 100 200 00
12317 0.610 0.920 0.920 1.140 0.800 0.880 0.750 1.840
32064 2.420 5.68 6.420 6.850 7.370 8.540 9.180 9.010
41852 1.920 2.36 2.47 2.64 2.84 6.56 5.31 4.05

48125 2.200 3.680 4.880 5.940 4.840 8.430 8.930 3.130
69191 2.950 4.15 4.6 5.940 5.75 7.01 5.78 4.91

76145 3.910 6.18 6.90 7.63 7.69 6.53 6.50 6.48

86803 5.000 7.10 7.48 8.800 9.120 9.830 8.130 9.390
88787 4.060 5.44 5.76 5.56 5.84 5.74 6.59 6.55

113142 | 5.890 9.33 10.54 10.67 11.39 20.93 31.18 27.72
114662 | 6.900 | 12.775 | 12.77 | 16.760 | 12.830 | 15.560 | 42.590 | 35.740
123201 6.10 9.490 | 10.300 | 11.430 | 12.940 | 19.070 | 20.470 | 21.380
123871 | 11.970 | 19.830 | 22.920 | 26.010 | 29.910 | 60.430 | 62.45 61.92
142316 | 8.200 | 16.290 | 18.860 | 21.110 | 22.620 | 31.300 | 38.500 | 46.630
147609 | 10.410 | 16.910 | 16.290 | 19.570 | 21.600 | 22.030 | 29.800 | 24.500

Table 1: SD Method : Running time in seconds for hypsography data sets : 2-stage simplification with ¢; = 2.

SD SD Dec. Dec.
of Time in | Reduction || Time in | Reduction
Vertices || Seconds Ratio Seconds Ratio
2000 0.150 0.0290 61.480 0.3103
3000 0.140 0.0290 139.710 0.3116
7000 0.630 0.0116 749.460 0.2950
16000 1.970 0.1312 3524.460 0.4546

Table 2: 1-stage Simple Detours vs. In Order Decimation on Random Polygons with ¢ = 100.

€ Time | Time | Time | Time | Red. (DP) [Red. # of
Seconds | DP | Intsct SD Ratio Ratio | Intscts.

2 18.910 | 2.160 | 3.730 | 10.710 0.0758 0.0765 297
12 20.42 2.31 4.87 10.75 0.0677 0.0679 107
22 20.39 2.30 4.85 10.74 0.0673 0.0675 92
32 20.39 2.30 4.84 10.75 0.0673 0.0675 93
42 20.39 2.30 4.84 10.75 0.0673 0.0675 93
102 20.39 2.30 4.85 10.75 0.0673 0.0675 90
00 20.39 2.30 4.85 10.75 0.0673 0.0675 90

Table 3: SD Method : 2-stage simplification (¢; = 2) on a census data set with 279,989 vertices, 9419 chains.

€ Time [Time | Time | Time | Red. (DP) [Red. # of
Seconds | DP Intsct SD Ratio Ratio | Intscts.

2 43.120 [6.110 | 34.990 | 0.960 0.2060 0.2119 951
15 48.100 7.16 | 37.87 | 1.74 0.0217 0.0235 253
25 47.17 7.04 | 36.35 | 2.49 0.0097 0.0104 162
35 46.96 6.96 | 35.92 | 2.74 0.0053 0.0056 7
45 48.01 6.92 | 35.95 | 3.72 0.0036 0.0040 71

100 57.67 6.75 | 35.38 | 14.31 0.0010 0.0011 13
200 45.4 6.52 | 35.22 | 2.47 0.0003 0.0003 4
00 43.33 6.2 | 34.990 | 0.960 0.00002 0.00002 0

Table 4: SD Method : 2-stage simplification (e; =2) on a random polygon containing 100,001 vertices.

€ Time | Time | Time | Time | Red. (DP) | Red. # of
Seconds | DP | Intsct SD Ratio Ratio | Intscts.

2 2.420 0.550 | 1.410 | 0.190 0.2027 0.2075 250
15 12.400 | 0.290 | 4.350 | 7.150 0.0808 0.1207 1364
25 19.250 | 0.260 | 6.140 | 11.910 0.0737 0.1223 1549
35 25.220 | 0.250 | 6.800 | 17.100 0.0695 0.1264 1749
45 28.52 3.230 | 10.32 | 12.52 0.0204 0.0475 2238
110 30.91 3.19 10.6 14.66 0.0165 0.0485 1626
210 34.8 3.17 | 11.24 | 17.76 0.0157 0.0460 901
0 36.54 3.150 | 9.62 21.17 0.0154 0.0403 1067

Table 5: SD Method : 1-stage simplification on a hypsography data set (32,064 vertices, 941 chains).

€ Time | Time | Time | Time | Red. (DP) | Red. # of
Seconds | DP | Intsct SD Ratio Ratio | Intscts.

2 2.420 0.550 | 1.410 | 0.190 0.2027 0.2075 250
15 5.200 6.20 3.69 0.53 0.0972 0.1249 1039
25 6.420 6.10 4.54 0.88 0.0750 0.1148 1456
35 6.850 0.600 | 4.62 1.18 0.0701 0.1160 1758
45 7.370 0.610 | 4.93 1.42 0.0675 0.1183 1899
100 8.540 0.590 | 5.17 2.28 0.0610 0.1229 2067
200 9.180 0.580 | 5.55 2.62 0.0591 0.1213 1670
oo 9.010 0.580 | 5.37 6.23 0.0587 0.1217 1523

Table 6: SD Method :

2-stage simplification (¢; = 2) on a hypsography data set (32,064 vertices, 941 chains).

€ Time Time | Time | Time | Time | Red. (DP) [Red. # of
Seconds | SetUp | DP | Intsct SD Ratio Ratio | Intscts.
2 3.270 0.350 [I.170 | 1.320 | 0.180 0.2640 0.2687 240
10 6.93 0.540 1.72 3.62 0.63 0.1804 0.1777 1081
25 7.72 0.54 1.84 3.94 1.00 0.1848 0.1499 1526
35 7.71 0.53 1.92 3.87 1.61 0.1857 0.1509 1582
00 8.05 1.25 2.01 3.96 1.15 0.1898 0.1491 1864

Table 7: ESD Method :

vertices).

Timein Seconds
IS
T

T
100 1000

T
10000

Number of Points

(a). Running time in seconds for hypsography data.

L

— -8—- 147609 vertices
—e— 114662 vertices

0000

150

Timein Seconds
.
5]
T

a
3
’

*
100 1000

T
10000

Number of Points

(b). Running time in seconds for random polygons.

Figure 11: ESD Method : One stage, ¢ = 2.0.

0000

— -e— 75000 vertices
—e— 50000 vertices
—e— 16000 vertices

2-stage simplification (e; = 2) with 100 point features for hypsography data (32,064

254 ’

(— - 147609 vertices
2.0+ —e— 32064 vertices

ESD Vertices/ SD Vertices
«

154 J

T T
10 100 1000
Epsilon

Figure 12: ESD Method : Ratio of the number of
vertices obtained via the ESD method for no point
features to the number of vertices obtained via the
SD method, for hypsography data.

6.

ACKNOWLEDGMENTS

This work was conducted while R. Estkowski was a PhD
student at the University at Stony Brook, supported by
grants from the HRL Laboratories, ISX Corporation, and
the National Science Foundation (CCR-9732221). J. Mitchell
is supported in part by HRL Laboratories, the National
Science Foundation (CCR-9732221), NASA Ames Research
Center, Northrop-Grumman Corporation, Sandia National
Labs, Seagull Technology, and Sun Microsystems.

7.
[1]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

REFERENCES

D. S. Andrews and J. Snoeyink. Geometry in GIS is
not combinatorial: Segment intersection for polygon
overlay. In Proc. 11th Annu. ACM Sympos. Comput.
Geom., pages C24-C25, 1995.

D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan,

G. Denham, J. Harrison, and C. Zhu. Further
comparison of algorithms for geometric intersection
problems. In 6th International Symposium on Spatial
Data Handling, pages 709-724, 1994.

T. Auer and M. Held. Heuristics for the generation of
random polygons. In Proc. 8th Canad. Conf. Comput.
Geom., pages 38—43, 1996.

W. S. Chan and F. Chin. Approximation of polygonal
curves with minimum number of line segments or
minimum error. Internat. J. Comput. Geom. Appl.,
6:59-77, 1996.

R. G. Cromley. A vertex substitution approach to
numerical line simplification. In Proc. 3rd Internat.
Sympos. Spatial Data Handling, pages 57—64, 1988.
M. de Berg, M. van Kreveld, and S. Schirra. A new
approach to subdivision simplification. In Proc. of
Auto-Carto 12, pages 79-88, 1995.

M. de Berg, M. van Kreveld, and S. Schirra.
Topologically correct subdivision simplification using
the bandwidth criterion. Cartography and GIS,
25:243-257, 1998.

D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature. Canadian
Cartographer, 10(2):112-122, Dec. 1973.

R. Estkowski. No steiner point subdivision
simplification is NP-complete. In Proc. 10th Canad.
Conf. Comput. Geom., 1998.

R. Estkowski. Algorithms and Complexity Results for
Three Problems in Applied Computational Geometry:
Subdivision Simplification, Stripification of
Triangulations, and Unions of Jordan Regions. PhD
thesis, Dept. Applied Mathematics and Statistics,
University at Stony Brook, 2000.

L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and
J. S. Snoeyink. Approximating polygons and
subdivisions with minimum link paths. Internat. J.
Comput. Geom. Appl., 3(4):383-415, Dec. 1993.

J. Hershberger and J. Snoeyink. Speeding up the
Douglas-Peucker line simplification algorithm. In Proc.
5th Internat. Sympos. Spatial Data Handling, pages
134-143, 1992.

J. Hershberger and J. Snoeyink. Computing minimum
length paths of a given homotopy class. Comput.
Geom. Theory Appl., 4:63-98, 1994.

[14]

[15]

[16]

[17]

18]

[19]

[20]

J. Hershberger and J. Snoeyink. An O(nlogn)
implementation of the Douglas-Peucker algorithm for
line simplification. In Proc. 10th Annu. ACM Sympos.
Comput. Geom., pages 383-384, 1994.

D. Hochbaum, editor. Approzimation Problems for
NP-Complete Problems. PWS Publishing Company,
Boston, MA, 1997.

H. Imai and M. Iri. Polygonal approximations of a
curve-formulations and algorithms. In G. T.
Toussaint, editor, Computational Morphology, pages
71-86. North-Holland, Amsterdam, Netherlands, 1988.
C. Jones, G. Bundy, and J. Ware. Map generalization
with a triangulated data structure. Cartography and
Geographic Information Systems, 22:317-331, 1995.
A. Mantler and J. Snoeyink. Safe sets for line
simplification. In Abstracts of the Tenth Annual Fall
Workshop on Computational Geometry, October 2000.
A. Melkman and J. O’'Rourke. On polygonal chain
approximation. In G. T. Toussaint, editor,
Computational Morphology, pages 87-95.
North-Holland, Amsterdam, Netherlands, 1988.

N. Mustafa, E. Koutsofias, S. Krishnan, and

S. Venkatasubramanian. Hardware assisted
view-dependent map simplification. In Proc. 17th
Annu. ACM Sympos. Comput. Geom., page xxx, June
2001.

F. Zhan and D. M. Mark. Conflict resolution in map
generalization: a cognitive study. In Proc. Auto-Carto,
volume 13, pages 406-413, 1993.

