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Abstract

Let P be a polyhedral subdivision in R® with a total of n faces. We show that there is an
embedding o of the vertices, edges, and facets of P into a subdivision @), where every vertex
coordinate of @ is an integral multiple of 2-[1°827+21  For each face f of P, the Hausdorff
distance in the Lo, metric between f and o(f) is at most 3/2. The embedding o preserves or
collapses vertical order on faces of P. The subdivision ) has O(n?) vertices in the worst case,
and can be computed in the same time.

1 Introduction

Geometric algorithms are usually described in the “real-number RAM” model of computation,
where arithmetic operations on real numbers have unit cost. A programmer implementing a geo-
metric algorithm must find some substitution for real arithmetic. The substitution of exact arith-
metic on a subset of the reals, say the integers or the rationals, avoids the difficulties that can arise
from naive substitution of floating-point arithmetic [4, 12, 14, 15]. The substitution is not trivial,
since the required arithmetic bit-length usually exceeds the native arithmetic bit-length of most
computer hardware, and some form of software arithmetic is required.

Recent research has made the use of software exact arithmetic for geometric algorithms much
more attractive. A predicate on geometric data is determined by the sign of an arithmetic expression
in the coordinates of the data. A promising strategy for sign-evaluation is adaptive-precision
arithmetic [6, 13, 20], where the expression is evaluated to higher and higher precision until its sign
is known, i.e. until the magnitude of the expression exceeds an error bound. Low precision, even
floating-point, suffices most of the time, since most instances of geometric predicates are easy. In
addition, for some basic predicates like the sign of a determinant, there are alternative evaluation
strategies that require arithmetic with relatively low precision [1, 2, 3].

Exact arithmetic would be more useful if high-level geometric rounding algorithms were avail-
able. Virtually any geometric construction that produces new geometric data increases the bit-
length of geometric coordinates. For example, suppose points are represented with homogeneous
integer coordinates. The plane through three such points has coefficients whose bit-lengths are
about three times the point coordinate bit-lengths; the point of intersection of three such planes



has coordinate bit-length about nine times that of the original points. Thus a solid modeler, which
implements boolean operations and rigid motions on polyhedra, might produce a polyhedron with
high coordinate bit-length even if the original polyhedra had short coordinate bit-length. Typically
an application requires only a low-precision approximation, not the exact answer. Hence there is a
need for high-level rounding, which replaces a geometric structure with high bit-length coordinates
with an approximating structure with short bit-length coordinates. It does not suffice to round
each coordinate independently, since such rounding is a geometric perturbation, and may introduce
inconsistencies between geometric and combinatorial information. Furthermore, some change in
combinatorial structure is inevitable; indeed, in certain cases it is NP-hard to determine if it is
possible to round to low-precision without changing combinatorial structure [19].

Satisfactory high-level rounding algorithms are known for polygonal subdivisions in two di-
mensions. One such algorithm is snap-rounding [10]. Fix a polygonal subdivision, with arbitrary-
precision coordinates. A pizel is a unit square in the plane centered at a point with integer coordi-
nates; a pixel is hot if it contains a vertex of the subdivision. Snap-rounding replaces each vertex
by the center of the pixel containing the vertex, and each edge by the polygonal chain through the
centers of the hot pixels met by the edge, in the same order as met by the edge. The snap-rounded
subdivision approximates the original subdivision in the sense that each vertex and edge of the
original subdivision has an image in the snap-rounded arrangement whose Hausdorff distance is at
most 1/2 in the Lo, metric. Snap-rounding may change the combinatorial structure of the sub-
division, for example, vertices and edges may collapse together, but some combinatorial ordering
information is preserved [10].

This paper presents a generalization of snap-rounding to polyhedral subdivisions in three di-
mensions. Fix a polyhedral subdivision P with a total of n vertices, edges, and facets. We show
that there is a polyhedral subdivision () so that each vertex coordinate is an integer multiple of
1/2Mog2n1+2 " Fach face f of P has an image o(f) in Q so that the Hausdorff distance between
f and o(f) is at most 3/2. As with snap-rounding in two dimensions, f and o(f) may have dif-
ferent combinatorial structure: an edge may be replaced with a polygonal chain, and a facet with
a triangulation. Two vertices may collapse together; the polygonal chains for two edges or the
triangulations for two facets may collapse together or overlap partially, perhaps in several places.
However, vertical order is preserved (or collapsed): if face f is vertically above face f’ (i.e. there is a
line parallel to the z-axis meeting both faces, and the intersection with f has higher z-coordinate),
then o(f) is above (or overlaps) o(f). In the worst case Q has O(n*) vertices and can be computed
in time O(n*).

As is the case with snap-rounding in two dimensions, the Hausdorff distance between a facet f
and its image o(f) can be reduced by scaling coordinates. For example, for & > 0, the Hausdorff
distance can be reduced to at most % -27%_ by multiplying every coordinate of P by 2*, rounding
as above, and then dividing every coordinate of the result by 2¥. Of course, coordinates are
now integral multiples of 1/2F+[10871+2 " Alternatively, the same procedure with k = —([logn] +
2) guarantees an approximating subdivision with integer coordinates, although with Hausdorff
distance bounded by 67.

Though the algorithm in this paper demonstrates the theoretical possibility of three-dimensional
snap-rounding, it is not immediately practical. One concern is the discouragingly large bound on the
number of new vertices. The algorithm as described always adds all vertices that might potentially



be needed; a variant algorithm might add vertices only as necessary. It is plausible that for typical
subdivision instances—not chosen by an adversary—the number of new vertices will be acceptable.
Another concern is the complexity of the algorithm. Snap-rounding in two dimensions is essentially
a local algorithm, with the rounding of each vertex and edge determined simply from the set of hot
pixels. Unfortunately, as is seen below, the three-dimensional algorithm requires more complicated
global information. Devising a simple, practical, and efficient three-dimensional rounding algorithm
is a significant open problem.

Other work. Greene and Yao were the first to suggest a rounding scheme for polygonal subdivi-
sions in two dimensions [8]. Hobby [11] and Greene [9] give algorithms to compute the snap-rounding
of the arrangement formed by a set of intersecting edges. Guibas and Marimount [10] show how to
maintain the snap-rounded arrangement of edges under insertion and deletion of edges; they also
give elementary proofs of basic topological properties of snap rounding. Goodrich et al [7] give
improved algorithms to snap-round a set of intersecting edges, in the case when there are many
intersections within a pixel. Milenkovic [18] suggests a “shortest-path” geometric rounding scheme
that sometimes introduces fewer bends than snap rounding.

Goodrich et al [7] propose a scheme for snap-rounding a set of edges in three dimensions after
first adding as vertices the points of “closest encounter” between nearby edges. Milenkovic [16]
sketches a scheme for rounding a polyhedral subdivision in three dimensions (in fact, any dimen-
sion). Unfortunately, both schemes have the property that rounded edges can cross (see below),
which violates any notion of topological consistency.

Fortune [5] suggests a high-level rounding algorithm for polyhedra in three dimensions. His
algorithm assumes that a polyhedron is presented by the equations of its face planes (and the
combinatorial incidence structure of faces), not the coordinates of vertices as assumed by snap-
rounding. His algorithm does not appear to extend from polyhedra to polyhedral subdivisions.

The challenges of 3d snap-rounding. The obvious way to snap-round a vertex in three di-
mensions is to replace it with the center of the voxel containing it. (A wvozel is a unit cube centered
at an integer point.) It is less clear how to snap-round edges and facets.

Snap-rounding a set of edges in three dimensions requires the addition of new vertices, unlike
the situation in two dimensions. Consider two transverse nearby edges. Rounding the endpoints
to voxel centers perturbs the edges, and hence the edges may change orientation or cross. We
can attempt to prevent this by adding a vertex in the interior of each edge near the other edge;
then either the two new vertices are in the same voxel and snap-round together, or they are in
different voxels and the snap-rounded edges will not cross. Clearly, it might be necessary to add
quadratically many vertices, if the edges form a “cross-hatch” pattern.

Snap-rounding with facets as well is more problematic. If a vertex v and a facet f are nearby, we
can add a new vertex v’ to f to ensure that v and f are properly separated or collapsed. However,
this requires that f be triangulated, which introduces new edges. Potentially these edges are close
to old edges, which could require new vertices, and it is not immediate that the process is finite. We
can attempt to ensure termination by projecting nearby edges onto a facet, and then triangulating
the facet compatibly with the projection. The actual rounding algorithm is a formalization of this
idea.



\bl
a

al

Figure 1: Vertices a and a’ project to the same pixel in the zy-plane, as do b and v/. Hence in three
dimensions, the snap-rounding of ab crosses the snap-rounding of a'b’.

Overview of the rounding algorithm. The rounding algorithm is based on the following
general outline. Orthogonally project all edges of the subdivision P onto the zy-plane, form the
arrangement, snap-round, and compute a triangulation T'. Each facet f of P has an image Ty that
forms a subtriangulation T of T'. The rounding of facet f is obtained by lifting 7'y to a polygonal
surface o(f) that approximates f. By considering each cylinder over a vertex, edge, or triangle of
T separately, we can ensure that the lifting preserves (or collapses) the vertical order on faces of P.

The first step of the actual algorithm is to determine the rounding o(e) of each edge e of P;
recall that o(e) in general can be a polygonal chain. This step is nontrivial, since we must prevent
crossings among the resulting edges (see Figure 1). To prevent crossings, we subdivide the edges of
P by all zy—, xz—, and yz-intersection points. (If the orthogonal projections of e and ¢’ into the
xz-plane cross at a point p, and [ is the line parallel to the y-axis through p, then eNl and €' N1 are
xz-intersection points.) While this subdivision prevents most crossings, it is not quite sufficient to
prevent all crossings. In figure 2, the zy-, 2-, and yz-projections of d* and e* are all disjoint, but
their snap-roundings cross. Fortunately, the configuration of figure 2 is almost the only way this
can happen, and we can show that there is a slight modification of snap-rounding that does avoid
crossings. For example, in figure 2, the modified snap-rounding of d* is a two-edge polygonal chain,
connecting a snap-rounded endpoint of d* to the snap-rounded endpoint of e* on the same vertical
line, and then to the other snap-rounded endpoint of d*. We show that the distance between an edge
and its modified snap-rounding increases slightly, to at most 3/2. (The configuration in figure 2 can
be modified to show that the “close encounter” subdivision of Goodrich et al [7] does not prevent
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Figure 2: The endpoints of e* and d* lie on column boundaries (or extend slightly inside). The
roundings p(d*) and p(e*) cross, although the zy-, zz-, and yz-projections of d* and e* do not.



Figure 3: Side view. Edge e is above facet f and €’ is below. Hence the rounding of facet f must
contain the vertical interval from the rounding of e to the rounding of ¢’.

edge crossings.) Section 4 below describes the subdivision and modification of snap-rounding.

The second step of the actual algorithm is to lift T’ to its image o(f). The lifting must respect
constraints on vertical order among facets and edges; for example, if facet f is vertically above edge
e, then o(f) must be above or contain o(e). These constraints can be somewhat complex. In the
schematic view in figure 3; facet f is below edge e of facet g and above edge €' of facet ¢'. If o(e)
and o(e’) have the same zy-projection with o(e’) above o(e), then o(f) must contain the entire
vertical interval between o(e) and o(e’) (as do o(g) and o(¢'), in this case).

The lifting o(f) is determined by merging the lifted images of each vertex, edge, and triangle of
Ty. For a vertex v of T, its lifting [;(v) may just be a vertex; however it could be a vertical chain
of edges if there are vertices v’ and v" of P so that v’ is above f, v" is below f, o(v') is below o (v"),
and both o(v') and o(v") project and snap-round to v. Similarly, the lifting I;(e) of an edge e of Tf
may just be an edge or it may contain the vertical interval between two edges whose zy-projection
snap-rounds to e.

The lifting [;(A) of a triangle A of Ty is more complicated. It is defined in terms of the lifting
lra(e) for each edge e of A. The lifting Iya(e) is just an edge with zy-projection e; it will form
part of the boundary of I;a(e). It must satisfy three properties: it must be close to f, it must not
cross any other lifted edge, and it must respect vertical order with other lifted edges, (i.e. if f is
vertically below f’, then Iy (e) must be below I/ (e)). The last property is crucial to establishing
that the lifted triangles I;(A) respect vertical order. Satisfying all three properties requires some
care (see section 5).

There are two naively-plausible properties of the definition of [y that do not hold. First, if A
and A’ are both incident to e and in T, then there is no guarantee that Iya(e) = lsas(e) (though
they don’t cross). However, this causes no difficulty (since /f(e) contains both Ira(e) and Iras(e)).

The second untrue property causes more difficulty. Suppose A has vertices a, b, c. There is no
guarantee that, say, [y (ab) is incident to Ira(ac) (though both meet the vertical line through a).
Hence [;(A) must be a triangulation of the polygon formed by I (ab), [a(bc), and s (ac), and



Figure 4: The liftings of triangle Aabc for facets f and f’ have boundary aiaobscs and ajagbsrcyr,
respectively.

perhaps edges along the vertical lines through a, b, and c. See figure 4. It is easy to triangulate
the polygon using a central vertex whose xy-projection is within triangle A. However, a vertical
boundary edge may be shared among several different liftings. To ensure that there are no crossings
among edges, each central vertex must have distinct coordinates. Since there may be (n) central
vertices, coordinates that are integer multiples of roughly 1/n are necessary. This leads to the
additional [logn|+2 bits needed for vertex coordinates. More details of the lifting appear in
section 6.

Naively the rounded subdivision ) has at most O(n?®) faces: the triangulation T has O(n?)
triangles, so for each facet f the rounding o(f) consists of O(n?) lifted triangles {I;(A)}. However,
in the worst case each lifted triangle [(A) may consist of O(n) faces, since there could be linearly
many vertices on the vertical edges of its boundary. Hence Q has O(n*) faces.

2 The main theorem

For points a,b € R and sets A,B C R?, d(a,b) is the L., distance between a and b (the L,
distance is used exclusively in this paper); d(a, B) is infycp d(a,b); and d(A, B) is sup,ec 4 d(a, B).
Note that d is symmetric for points, but not in general for sets. Hausdorff distance dg(A, B) is
max(d(A, B),d(B, A)).

The direction parallel to the z-axis is the vertical direction. Two sets A, B C R? are vertically
ordered A < B (read “A is below B”) if there is a vertical line meeting both A and B, and for
every vertical line [ meeting A and B, AN/ is below B NI, i.e. the z-coordinate of every point of
AN is less than the z-coordinate of every point in B N[. Sets A and B satisfy A < B if there is
a vertical line meeting both, and for every vertical line meeting both, A N/ is below or intersects
BnNl. As is well-known, < is not transitive in general; it is transitive among a family of sets that
have the same xy-projection. If furthermore every family in the set is a surface, i.e. every vertical
line misses the set or meets it at one point, then < is transitive.

A subdivision P in R? is a set of compact convex polyhedral cells so that every face of every cell
is in the subdivision and so that the intersection of two cells is a face of both. Cells of dimension 0,



1, and 2 are vertices, edges, and facets, respectively. |P| is the union of the cells of P. An embedding
of a subdivision P into a subdivision () is a mapping o that maps each cell of P into a subdivision
contained in @ so that if f is a face of f’, then o(f) C o(f’).

To simplify notation somewhat, we extend d and < to subdivisions. Thus for subdivisions P
and @, P < @ means |P| < |Q| and d(P, Q) means d(|P|, Q).

Throughout this paper we assume that subdivisions in R* do not include cells of dimension 3.
Furthermore, we assume that every subdivision is in general position, specifically, that no edge or
facet is parallel to a coordinate axis and that no vertex has a coordinate that is an integer multiple
of 1/2. The general position assumption simplifies presentation; it is not hard to remove (either
explicitly or for example by an infinitesimal symbolic rigid motion).

Theorem 2.1 Let P be a subdivision in R with a total of n cells; set K = 3/2. There is a
subdivision Q@ and an embedding o of P into @@ so that:

1. For each cell f of P, dy(f,o(f)) < k.

2. FEach vertex coordinate of Q is an integral multiple of I/ZDJrlog2 nl,

3. If cells f, " of P satisfy f < f', then o(f) 2 o(f").

4. Q can be computed in time O(n?) and has O(n*) cells.

This theorem follows from the discussion below, in particular results 6.2, 6.5, 6.6, and 7.4 below.
At a high level, the algorithm required for step (4) has three steps.

1. Subdivide the vertices and edges of P, forming a set of vertices and edges P* (Section 4).

2. Orthogonally project P* onto the zy-plane, snap-round, and triangulate the convex hull of
the resulting subdivision. Let 7" be the resulting triangulation.

3. For each cell f in P, lift Ty (the image of f in T') to a subdivision @ C R* (Section 6).

3 Definitions

There are many symbols defined in this paper. For reference, most are summarized in appendix B.

A pizel is an open unit square in the zy-plane centered at an integer point; pixel(q) is the pixel
containing point q. A wvozel is an open unit cube in R® centered at an integer point; voxel(q) is the
voxel containing point q. A column (of voxels) is all voxels whose centers have the same z- and
y-coordinates; column(q) is the column containing q.

Let A be a subdivision in the zy-plane. A pixel is hot (with respect to A) if it contains a vertex.
The snap-rounding (with respect to A) of an edge e of A is the polygonal chain connecting the
centers of the hot pixels met by e in the same order as met by e; similarly the snap-rounding of
a vertex of A is the center of the hot pixel containing it. A basic fact[10] is that two polygonal



chains that result from snap-rounding intersect only at vertices and edges of both chains. The
snap-rounding of A is obtained by replacing each edge and vertex of A with its snap-rounding with
respect to A; it is a polygonal subdivision whose vertices are hot pixel centers, i.e. integer points,
and whose edges connect integer points.

Let m,, be orthogonal projection onto the zy-plane, and similarly for m,, and m,,. A set
A C R is over a set P in the zy-plane if my,(A) = P. If A is a surface with p € 7y, (A), then
A, is the point of A over p (i.e. myy(A,) = p). If A and B are surfaces over the same set, then
max(A, B) is the pointwise maximum (viewed as functions of the zy-plane), and min(A, B) is the
pointwise minimum. If A, B, C are surfaces over the same set with A > B, then snap(C, [4, B]) is
min(A4, max(B, (C)). Clearly, A = snap(C, [A, B]) = B.

Suppose a set P in the zy-plane is fixed. We define symbolic sets T (top) and L (bottom)
satisfying 1 < A < T for any other set A over P. We have for example min(4,T) = A =
max (A, 1); we define min and max of an empty collection to be T and L, respectively.

Two edges cross if they intersect at a point interior to at least one of the edges.

Proposition 3.1 Suppose T C R? is convex, {s1,...,s,} C R? is a finite set of points with convex
hull S, and k > 0. If d(s;,T) < k fori=1,...,k, then d(S,T) < k.

Proof: ~ Any point in S can be expressed as > a;s; with 0 < o; < 1 and ) «; = 1. For each
si, there is a point t; € T so that d(s;,t;) < k. Clearly > «;t; € T and d(> a;s4, Y a;t;) is the
maximum absolute value of any coordinate of Y «;(s; —t;), which is bounded by  since > a; = 1,
«; > 0, and the absolute value of each coordinate of s; — ¢; is bounded by «. O

4 Snap-rounding edges

Define p(q) to be the center of the voxel containing ¢, and extend to p to edges: p(qq’) is the edge
p(q)p(q'). The mapping p is the obvious extension of snap-rounding to three dimensions (ignoring
snapping to hot voxels, which is unimportant here). Unfortunately, p may cause two edges to cross.
We now define a refinement P* of the vertices and edges of PP and a modification 7 of p so that no
two edges in 7(P*) cross.

4.1 The subdivision P*

Let e and €' be two edges of P whose zy-projections cross at a point p. An xy-intersection point
(of P) is either point on e or €' that meets the line through p parallel to the z-axis. The definition
of an zz— or yz-intersection point is similar.

The subdivision P* results from subdividing the edges of P. At any point in the process, é
denotes the subdivision of edge e of P; any voxel containing a vertex is a hot voxel; and any column
of voxels containing a hot voxel is a hot column. There are two steps in the subdivision:

1. Subdivide the edges of P at all xy-, zz-, and yz-intersection points of P.



2. For each edge e of P, split € by each hot column C' it meets: € must meet C' in a consecutive
set of voxels; € is split by C by further subdividing é at any point in the first voxel (if é does
not yet have a vertex in the first voxel) and similarly by subdividing é in the last voxel.

Splitting by hot columns has an easy consequence: for any edge e of P, the snap-rounding
of m.y(€) with respect to m,(P*) is identical to the snap rounding of m,,(¢é) with respect to é.
Henceforth we use a superscript ‘*’ for edges and vertices of P*. For e* an edge of P*, we write
s(e*) for the snap-rounding of m.y(e*). It is immediate that if d*,e* are edges of P*, then p(d*)
crosses p(e*) only if s(d*) = s(e*).

Lemma 4.1 P* has O(n®) vertices; there are O(n?) hot columns and O(n3) hot vozels.

Proof: Clearly there are at most O(n?) xy-, rz-, and yz-intersection points, and only O(n) vertices
of P. Splitting edges by hot columns adds no new hot columns, hence there are O(n?) hot columns.
For each edge e of P and for each hot column, there are at most two vertices added when é is split
by the column. Hence there are O(n?) vertices altogether. O

As mentioned earlier, T' is a triangulation of the convex hull of s(P*). Consider the edges E* in
P* bounding a facet f of P. The projection m,,(£*) forms a simple cycle, but the snap-rounding
s(E*) need not. However, it is not hard to see that s(E*) consists of some number of simple cycles
connected by polygonal chains. Let T} be the subtriangulation of T' consisting of the vertices and
edges of s(E*) plus any vertices, edges and triangles of T interior to the simple cycles in s(E*).

For v a vertex of T', e an edge of T', and A a triangle of T, define

P = {e"eP:s(ef)=¢}
Py = {v*eP:s(v")=uv}
F, = {feP:ecTy}

Fn = {fEP*:AETf}

where v* and e* are vertices and edges of P*, respectively, and f is a facet of P.

4.2 The mapping 7

Lemma 4.2 Let e be an edge of T. If d*,e* € P and p(d*),p(e*) cross, then either there is an
endpoint w of p(d*) with d(w,e*) < K or an endpoint w' of p(e*) with d(vw',d*) < k.

The proof of this lemma is rather intricate, so it is deferred to the appendix.

Lemma 4.3 Let e be an edge of T'. There is a mapping T defined on PY so that

e

1. For all edges e* € P, 1(e*) is an edge over e with endpoints among the endpoints of p(Pr).
2. For all edges e*, d(7(e*),e*) < k.

o .
3. 7(P}) is noncrossing.
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Figure 5: Definition of 7 on new edge e*.

4. T can be computed in time quadratic in the size of P;.

Proof: We define 7 inductively, adding edges of P} one by one in arbitrary order. The addition
of an edge may change the definition of 7 on other edges as well; however, properties (1) through
(3) of the lemma statement are maintained. For the following, recall that A, is the point of A that

has xy-projection p.

So suppose 7 has been defined on a subset S of P} and e* is the next edge. If no edge of
7(S) crosses p(e*), then simply define 7(e*) = p(e*). Otherwise, since 7(S) is noncrossing, we can

assume up to a symmetric argument that every edge 7(d*) crossing p(e*) has 7(d*), = p(e*), and
T(d*)y < p(€¥)y.

Let ¢ be the highest (in <) endpoint over u of an edge in 7(S) U {p(e*)} so that d(q,e*) < k;
similarly let 7 be the lowest endpoint over v of an edge in 7(S) U {p(e*)} so that d(g,e*) <
Clearly p(e*), = g and r < p(e*),. If it is is possible to choose ¢’ over v in the interval p(e*), ..
and 7’ over v in the interval r ... p(e*), so that ¢'r’ does not cross an edge of 7(S), define 7(e*)
¢'r'. Note that it is always possible to choose ¢’ and r’ among the endpoints of 7(5) U {p(e*)} and
that the distance from ¢’ and ' to e* is less than k.

K
-q
to

Otherwise some subset S” of the edges in S crosses gr. Clearly for any d* € S, 7(d*), > q and
7(d*), < 7. See figure 5.

We claim that for any edge 7(d*) € S, either d(q,d*) < k or d(r,d*) < k. If p(d*), = ¢, then
since ¢ = 7(d*)y, certainly d(q,d*) < d(7(d*)y,d*) < k. Similarly if p(d*), = r, then d(r,d*) < k.
Otherwise p(d*), = ¢ = p(e*), and p(d*), <1 = p(€e*),, so p(d*) crosses p(e*). See figure 5. The
hypothesis of Lemma 4.2 holds with d* and e*. By the definitions of g and r, d(p(d*),,e*) > k and
d(p(d*)y,e*) > k. Hence lemma 4.2 implies either d(p(e*),,d*) < & or d(p(e*),,d*) < K, so either
d(q,d*) < Kk or d(r,d*) < k.

Let @ be the set of edges d* € S’ so that d(q,d*) < k, and R = 5"\ Q). Define 7(e*) = gr; for
d* € Q, redefine 7(d*), = ¢q; and for d* € R, redefine 7(d*), = r. It is easy to check that 7 satisfies
conditions (1) through (3). The running time is immediate. [J

Henceforth we let 7 be defined on all edges of P*, by choosing a definition on P separately for
each edge e of T, using lemma 4.3. Since there can be O(n?) edges e in T', and O(n) edges in P,
computation of 7 takes time O(n?).
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Figure 6: R, is the shaded region plus the portion of the edges inside pixel(u) and pixel(v).

We remark that there is no guarantee that 7(e*) and p(e*) have the same endpoints or indeed
that d(e*,7(e*)) < k. In section 6, we guarantee both properties by in effect augmenting 7(e*) to
a polygonal chain using vertical edges connecting its endpoints to the endpoints of p(e*).

5 Lifting triangle edges

The rounding o(f) of a facet f is defined from a lifting I; of the vertices, edges, and triangles of
Ty. The definitions of o and [; will appear in section 6 below. This section defines an auxiliary
lifting function [ ;A (e) required to define [;(A). For e an edge of A € T, Ifa(e) is an edge over e;
it will form part of the boundary of [7(A).

The lifted edges {l;a(e) : f € Fa} must satisfy three properties: each edge [ (e) must be close
to f; the edges must respect vertical order (i.e. f < f’ must imply Ifa(e) = lpra(e)), and no pair
of lifted edges may cross. These properties are the main result of this section (lemma 5.3). The
definition of [y (e) and the proof of the properties are rather technical; on first reading it may be
appropriate to skip to section 6.

Section 5.1 below gives important technical tools for the rest of the section: “covering order”
on the facets in Fa and the “snapping lemma.” Covering order is used to order the choices of
{lya(e) : f € Fa}. Suppose facet f follows facet f’ in covering order and lya(e) has been chosen
to be close to f'. If, say, f < f’, then the snapping lemma guarantees that it is possible to choose
lra(e) so that both [ya(e) < Ipa(e) and Ifa(e) is close to f. In order to make the snapping lemma
appropriately transitive, it is necessary to have a careful definition of what it means for an edge to
be close to a facet (“the edge approximates the facet”).

5.1 The order < and the snapping lemma

Let edge e of T" have endpoints u and v. Define R, to be the convex hull of 7., (F;), less the interior
of pixel(u) and pixel(v), unioned with 7,y (P;). See figure 6. Notice that there are no intersections
among the boundaries of {m,,(f) : f € Fa} within R, except possibly at the endpoints of edges of
Tay(Py). Facet f € F, covers e if no edge in P} bounds f; it is easy to check that R, C mgy(f).
A facet f covers facet f' at e if 7w, (f') N Re C 7y (f) N Re. For any two facets f, f’ € Fe, either f
covers f’ at e, or f' covers f at e.

Suppose that e is an edge of triangle A of T'. The covering order < on the facets in Fa is any
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Figure 7: Proof of lemma 5.1, side view. T is solid square, T dashed.

total order so that f < f’ implies f’ covers f at e. (The order depends on both e and A, but to
keep the notation simple we do not make this dependence explicit.) The order < can be described
as follows. Assume that A lies to the left of the e, directed from endpoint u to endpoint v; direct
all edges in P} from pixel(u) to pixel(v). If facets fo, fi € Fa have bounding edges ef, e} € Py,
then fy < fi if €] is to the left of e]; all facets covering e appear at the end of the order <, and are
ordered arbitrarily among themselves.

We remark that there may be facets in F, that are not in Fa for either of the two possible
triangles A incident to e; these facets do not appear in the covering order. Such facets necessarily
have two edges in P, both of which project and snap-round to e. Such edges (and edges in P
not incident to any facet) are important for the definition of o(f) and are discussed in section 6.3
below.

For a set S C R3, let V(S) be all points on all vertical lines through S. Let f4 be a facet of
P, e an edge of T with endpoints v and v, and A an edge over e. Edge A approximates fa at e
if d(Ay, faNV(Re)) < k and d(Ay, fANV(R.)) < k. Clearly, if A approximates f4 at e, then by
proposition 3.1, d(4, fa) < k. Also, if e* € P} is a boundary edge of face f, then d(7(e*),e*) < k
by Lemma 4.3, and 7(e*) approximates f at e.

Lemma 5.1 (Snapping Lemma) Let edge e bound triangle A of T'. Suppose fa, fB, fc € Fa with
fa = fc = fB, A,B,C are edges over e approrimating fa, fB, fc, respectively, A = B, and fc
covers fa and fp. Then snap(C,[A, B]) also approzimates fc at e.

Proof: We claim max(B, C) approximates fc at e; a similar result holds for min, from which the
lemma follows. Let v be an endpoint of e. We show d(max(B,,Cy), fc NV (R.)) < k. If C, = By,
there is nothing to prove, so suppose Cy < B,,.

Let Tz and T be the cubes of sidelength 2k centered at B, and C),, respectively, and T' = V (Tz)
(clearly also T'= V (T¢)). See figure 7.

Since B approximates fp, there is a point b € fp NV (R.) NTp. Since f¢ = fp and fc covers
fB at e, there is a point ¢ € fo with ¢ = b; clearly ¢ € T'. Since C approximates f¢, there is a point
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d € feNV(R,) NTe. Since fo NV (R.) NT is path-connected, there is a path in fe NV (R,) NT
from c to ¢’. Since ¢ is above the bottom facet of Tz, ¢’ is below the top facet of T, and T = T¢,
some point of the path meets T5. Hence d(By, fc) < k. O

5.2 Default edges.

Let ¢ be an edge of Ty with endpoints u and v and with some triangle incident. We define the
default lifting of edge e for facet f, cf(e), which is to be used in the absence of other constraints.
If e is a boundary edge of Ty, then there is a unique edge e* € P, bounding facet f, and we simply
define cf(e) = 7(e*).

The definition of cf(e) is more complex if e is an interior edge of T. Clearly f covers e and no
edge in P} meets f.

e

Define low(e) to be the edge 40, where 4 is the center of the lowest voxel X in column(u) so
that X N f NV(R,) is not empty, and similarly for 9. A pair of distinct edges (a*,b*) in P} is a
bracketing pair if a* >~ f and f > b*, 7(a*) = 7(b*) and no edge 7(d*), d* € P}, lies between 7(a*)
and 7(b*) (possibly 7(a*) = 7(b*)). The existence of a bracketing pair can be seen by indexing the
edges of P} = {ef,...,e;} so that 7(ef) = 7(e]) = ... = 7(ej). Either f > ef, and the pair (T, ef)
suffices (with the definition 7(T) = T); or e; > f, and the pair (e}, L) suffices; or there is i so
that an e; = f and f > e;11, and the pair (e;11,e;) suffices. It is possible that there are several
bracketing pairs. Define

¢5(e) = snap(low s (¢), [r(a"), 7(b")]),

where (a*,b*) is a bracketing pair chosen so that (7(a*),7(b*)) is minimal in < among bracketing
pairs. Set C, = {cy(e) : f € Fa}.

Lemma 5.2 Let f be a facet of P and e an edge of T.

1. cy(e) approzimates f at e.
2. If f, " cover e and f < f', then cf(e) = cpr(e).

3. 7(P}) U C, is noncrossing.

Proof:

1. If e is a bounding edge of T, then the claim is immediate. Otherwise e is an interior edge of T
and

cf(e) = snap(lowy(e), [7(a”), 7(b")]),

for some bracketing pair (a*,b*). Let a* and b* be incident to faces f, and fj, respectively. It is
easy to check that lowy(e) approximates f. Clearly 7(a*) approximates f,, 7(b*) approximates fj,
and f covers f, and f, (since e is not a bounding edge of Ty). Part (1) is thus immediate from
lemma 5.1.

2. We have R, C 7y (f), Re C may(f'), and f < f', so lows(e) =< low(e). Let a},b} and a}, b}
be bracketing pairs for f and f’, respectively. We claim 7(a}) < 7(a}) and 7(b7) = 7(b},), from
which cf(e) = ¢pr(e) follows easily. Clearly 7(a}) = 7(b}). It cannot be that 7(b%) > 7(a} ), for
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Figure 8: Definition of I (e), side view. A is incident to the left and A’ to the right. Vertical
dotted lines outline area that projects and snap-rounds to e.

ap = f' = fand f would have a bracketing pair below (a},b}), contradicting minimality. No edge
of 7(P7) lies between 7(a}) and 7(b}), so it must be that 7(a},) = 7(a}). Similarly 7(b}/) = 7(b%).

3. By the definition of “snap”, no edge cf(e) crosses an edge of 7(P;). Also clearly, if f and f’ have
distinct bracketing pairs, then cf(e) and ¢y (e) do not cross. If f and f’ have the same bracketing
pair, then cy(e) and ¢y (e) do not cross because low s(e) and low s (e) do not cross. O

5.3 Lifting triangle edges.

Let e be an edge of triangle A of T'. For facets f € Fa in the order <, simultaneously and inductively
define asa(e) (the constraint from above), bya(e) (the constraint from below) and lfa(e) (the lifting
of edge e of A in f), as follows:

arale) = min{lpa(e): /< fand f' > f}
brale) = max{lpa(e): f < fand f' < f}
lfale) = snap(cs(e), [agale), brale)]).

We have asa(e) = bra(e) by lemma 5.3(1) below.

~—

The definition is illustrated schematically in figure 8. For this configuration, we have

FNG) snap(7(eg), [T, L]) = 7(ep)

lnale) = snap(r(e), [T,lfa(e)] = ()
Ipale) = snap(r(es), [ljale), L] = (ep)
lfsale) = snap(cpy(e), [ljoale) lpale)] = 7(ep)-

Far contains only f3, and lp,ar(e) = cy, (e).
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Lemma 5.3 Let e be an edge of triangle A of T with edge e, and let f, f' € Fa.

1. aga(e) = byale).

2. If f X f', then la(e) 2 lpale).
3. lya(e) approzimates f at e.

4. lyale) € T(P)UC,.

Proof: 1. and 2. We prove both simultaneously by induction on <. If aga(e) = T or bya(e) = L,
afa(e) = bya(e) is immediate. Otherwise aya(e) = lj,a(e) and bya(e) = I, a(e) for some facets
fo = f > fi, so by induction hypothesis afa(e) = bsa(e). For (2), suppose f < f'; without loss of
generality assume f’ < f. Then by definition [ya(e) = ara(e) = lra(e).

3. Since Iy (e) is defined in the order <, the claim follows from an easy induction using lemma, 5.1.

4. By lemma 5.2, 7(P}) U C, is noncrossing, so the “snap” in the definition of Iy (e) results in an
element of 7(P;) U C,. O

For e an edge of T', define L, = C. U {lfa(e) : A is incident to e and f € Pa}. L is all of the
edges that have been defined over e.

Corollary 5.4 L. is noncrossing.

Proof: Lemmas 5.3(4) and 5.2(3), using the fact that the construction of C, does not depend upon
the choice of triangle incident to e. U

6 The subdivision @

In this section we define the subdivision () and the embedding o of P into () required by theorem
2.1. This section also contains the definitions of [ for the vertices, edges, and triangles of T'.

6.1 Vertices and edges

Let v* be a vertex of P*. Define o(v*) = p(v*) (recall p(v*) is the center of the voxel containing
v*).

Let v be a vertex of T'. The vertical carrier VC(v) is the vertical chain of edges through p(Py),
i.e. all edges connecting two vertices of p(P;) that are adjacent in vertical order.

Let e* € Pr, where edge e in T has endpoints u and v. Define o(e*) to be the subdivision

consisting of 7(e*), the subchain of V' C(u) connecting 7(e*), to p(e*), and the subchain of V' C(v)
connecting 7(e*), to p(e*),. Extend o to edges e of P:

Clearly o(e) is a subdivision.
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Figure 9: Definition of vy for triangle A of T’y with vertices a, b, c.

Lemma 6.1 If w,w' are vertices or edges of P and w < w', then o(w) < o(w').

Proof:  The claim is immediate for two vertices. Suppose w is a vertex and w' an edge; the
symmetric case is similar. Then o(w') contains a vertical chain of edges from the center of the first
voxel in column(w) met by w' to the center of the last such voxel. Since w < w', p(w) is below or
on the chain, and o(w) < o(w'). The case of two edges is similar. [J

Let e be an edge of T" with endpoints v and v. Split each edge in L(e) at its midpoint. Split
each edge at its midpoint. These edges together with VC(u) and VC(v) form a planar graph (in
the plane through VC(u) and VC(u)). The vertical carrier VC(e) is an arbitrary triangulation of
this graph.

6.2 Triangles

Let A be a triangle of Ty with vertices a, b, c. Consider the edges Ifa(ab), [a(ac), la(bc). There is
no guarantee that these edges are pairwise incident (of course both iy (ab) and I (ac) are incident
to vertices over a, and similarly for the other pairs). We form a (three-dimensional) polygon from
lya(ab), lra(ac), lya(be) by adding the vertical subchain of L(a) connecting [ya(ab), to Ira(ac)q
(if they are not equal) and similarly for the b and ¢ endpoints. The lifting of A for facet f, l;(A),
is a triangulation of this polygon, described as follows.

Split edges Ira(ab), [ra(ac), Iya(bc) at their respective midpoints mgp, Mac, Mipe, and add the
three edges connecting midpoints. This forms a central triangle mgpmqe.mp. and three polygons,
where for example the a-polygon (of f) consists of edge mgymqc, the two subedges of [ (ab) and
lfa(ac) with endpoints over a, and possibly a vertical chain over a. See figure 9.

For points p,q € R® and a € R, let «fp, g] be the point (1 — a)p + ag, i.e. the point a fraction
« of the way from p to gq.

The a-indez of f is the number of distinct pairs (Ip:a(ab),lpa(ac)), where f' = f. Let af =
i/211°8271where i is the a-index of f; clearly 0 < ay < 1. First assume s (ac), = Ia(ab),. Set
vf = ay| %[lfA(ac)a,mab],mac]. See figure 9. Triangulate the a-polygon of f with vy, i.e. connect
vf t0 Mge, Myp, and any vertex on the chain from Iya(ab)y to lfa(ac)e. If lfa(ab)e = lfa(ac)q,
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the construction is similar, with mg, and mq,. interchanged and [y (ab), substituting for [fa(ac),.
The other two polygons are triangulated in a similar fashion.

Lemma 6.2 Let A be a triangle of T and f, f' € Fa.

1. d(l;(A), f) < k.
2. If f 2 f', then l(A) 2 1p(A).
3. Every vertex coordinate of lf(A) is an integral multiple of 1/2Mogan]+2,

4. l(A) has O(n) cells.

Proof:

1. Let A have vertices a, b, c. Every vertex of [;(A) is within the convex hull of {I;a (ab), l;a(ac),
lfa(be)}. The claim follows using lemma 5.3(1) and proposition 3.1.

2. We can assume that [ya(ac)q = lfa(ab),. Using lemma 5.3(2), we must have

lpa(ac)e = lpalac)q and lya(ab)q = lra(ab),.

If lyra(ab)q > lfa(ac)e, then the result is immediate, since the convex hull of {l;a(ab),lsa(ac)}
and the convex hull of {I;'a(ab),la(ac)} have disjoint interiors. Hence we can assume that

lf/A(CLC)a t lfA(aC)a t lf/A(ab)a t lfA(ab)a.

Let iy and ip be the a-indices of f and f' respectively. If iy = iy, then the a-polygons for f
and f’ are identical. Otherwise, i > iy since f < f'. Let s be the edge connecting vy to the
midpoint of [y a(ac); clearly we have mgy(vy) € myy(s) since oy > ap. Furthermore we have
v < s, since [ya(ab) <X Iy a(ab) and lfa(ac) < Iy a(ac) with inequality holding in at least one case.
lr(A) 21y (A) follows easily.

3., 4. Immediate. O

6.3 Vertical ordering

It is tempting to define o(f) = UAeTf l(A). By lemma 6.2(2), this definition would preserve or
collapse vertical order (in the sense of theorem 2.1) among lifted triangles. However, order would
not necessarily be preserved between lifted triangles and rounded edges or vertices. To see why, let
e be an edge of Ty with two triangles A and A’ incident. It is possible that there is an isolated edge
e* € P} with no facet of P incident (or similarly an edge e* of facet f € P, \ (Pa U Par), i.e. f has
two edges projecting and snap-rounding to e). It is furthermore conceivable that e* < f but that
both lfa(e) < 7(e*) and lfar(e) < 7(e*). With the tempting definition above, the vertical order
between ¢* and f would not be preserved by rounding. The solution, given below, is to specially
define l¢(e) as a (triangulated) vertical polygon, and include If(e) in o(f). Similarly, for a vertex
v € T, lf(v) is defined as a vertical chain. We remark that in consequence o(f) may not be a

2-manifold; it may include vertical chains and polygons over vertices and edges of T'.
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For a facet f,let E¢(v) be all endpoints of edges {/;a(e) : €, A € T'} over v (clearly edge e must
be incident to v and A). Define

af(v) = min({a(v*) cv* € Pyand v* = fHU Ef(v)>
bi(v) = max({a(v*) :v* € P* and v* < f}U Ef(v)).

Informally, af(v) is the lowest snap-rounding over v of a vertex on or above f; similarly By(v) is
the highest snap-rounding over v of a vertex on or below f. Easily ay(v) < bs(v). The lifting of
vertex v for facet f, l;(v), is the subchain of V C(v) connecting ay(v) and by(v).

For a facet f and an edge e of T, let Ef(e) = {lfa(e) : A incident to e in Ty}. Clearly, there
are are zero, one, or two edges in Ey(e) as there are zero, one, or two triangles incident to e in T7.
Define

arle) = min({T(e*) ce* e Plande” = fIU Ef(e)>
bie) = max({T(e*) ce* € PFand ¢* < f}U Ef(e)).

Notice that if E¢(e) is empty, then there must be some edge of e* € P} incident to f, so af(e) and

e

bs(e) are distinct from L and T, respectively. The lifting of edge e for facet f, lf(e), is all edges
and vertices w of V C(e) satisfying by(e) = w and w = as(e).

Lemma 6.3 Suppose w is a vertex or edge of T', w* € Py, and f is a facet of P. Then w* < f
implies o(w*) < lf(w) and w* = f implies o(w*) = lf(w).

Proof: By construction. [
Lemma 6.4 Let f be a facet of P and w a vertex or edge of Ty. Then d(l;(w), f) < k.

Proof: Similar to the proof of lemma 5.1. O
For each facet f of P, define

o(f)= | tw),

wETf

where w varies over vertices, edges, and triangles. It is easy to check that o(f) is a subdivision.
Lemma 6.5 If f, f’ are cells of P and f < ', then o(f) < o(f’).

Proof: The lemma, follows from lemmas 6.1 and 6.3 if one of f and f' is a vertex or edge. So suppose
both are facets. For each triangle A in both Ty and T, If(A) = [p(A) by lemma 6.2. Suppose e
is an edge in both Ty and T'. If there is a triangle A in both T and T incident to e, lemma 6.2
again implies [f(e) < Iy (e). Otherwise, up to symmetry, there is an edge e* € P bounding f with
e* X f', so by lemma 6.3, o(e*) <l (e). Since e* =< f, o(e*) Cly(e), and lf(e) = Iy (e). A similar
argument shows that if v is a vertex in both Ty and T, then lf(v) < Iy(v). Hence o(f) = o(f’).
U
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Figure 10: C'is the chain cyey, - .., cp_1ck; edge E is epeg.

6.4 The subdivision )

Let
Q = [Jan),
f

where f varies over all facets of P. It is easy to check that () is a subdivision and that o is an
embedding of P into Q.

Lemma 6.6 Q has O(n*) cells and can be computed in time O(n?).

Proof:  For each facet f of P, Ty has O(n?) triangles A. By lemma 6.2, [;(A) has O(n) cells.
Hence o(f) has O(n?) cells, for a total of O(n*) over all facets of f. @) can easily be computed in
the same time. O

7 Hausdorff distance

It is immediate from lemmas 6.2 and 6.4 that d(o(f),f) < k. In this section we show that
d(f,o(f)) < &, implying dg(o(f), f) < k and completing the proof of theorem 2.1. This part of
the proof has a topological flavor.

To illustrate the proof, we first give a one-dimensional analogue. Suppose we have a line segment
E = ¢pe, and a polygonal chain C' = ¢pcy, cic, . .., cp_1c; satisfying

1. d(ci, E) < Kk, and
2. d(ep, o) < k and d(eg, i) < K;

See figure 10. Note that (1) immediately implies d(C, E) < k using proposition 3.1; we wish to
establish d(E,C) < k (which is clearly false without condition (2)).

The proof is sketched as follows, using the same terminology as the two-dimensional case below.
For i = 1,...,k—1, choose ¢; as the point of E closest to ¢;, then d(c¢;,e;) < k for alli =0,... k.
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Let A be a chain of k (abstract) edges, A = apay,...,ax_1ax. We can view C' and FE as embeddings
¢c and ¢p of A, ie. pc(a;) = ¢; and ¢pgp(a;) = e;. Then we have easily (compare lemma 7.3)

(a) ¢r(A) C E and ¢ (A) covers E, i.e. ¢ maps the endpoints of A to the endpoints of E.

(b) Embeddings ¢ and ¢¢ are close, i.e. d(pc(a;), pr(a;)) < k fori=0,...,k.

Item (a) implies that £ = ¢g(A) (compare lemma 7.1) while (b) implies that dy (¢r(A), pc(4)) < K
(compare lemma 7.2); these two assertions together yield the desired conclusion.

We now return to the two-dimensional case. An abstract triangle, Aabc, is a cyclically ordered
set of distinct abstract vertices a,b,c (so Aabc = Abca = Acab # Aach); Aabc has directed edges
ab, be, and ca. An abstract triangulation A is a set of abstract triangles so that for each directed
edge ab, there is a unique triangle with directed edge ba. An abstract triangulation A has boundary
0A = {apay,aias,...,akap} if there is a distinguished vertex i (the point at infinity) so that
Aiaiag, ..., Alagagp_1, Atagar are exactly the triangles that have ¢ as a vertex. An embedding
¢ of an abstract triangulation is a mapping from vertices (except the point at infinity) into R3.
Embedding ¢ extends to edges, triangles, and all of A: ¢(ab) = ¢(a)p(b), p(Aabe) is the convex
hull of {#(a), #(b), #(c)}, and $(A) = Jaec g #(A). Embedding ¢ may map two vertices to the same
point of R3, cause two triangles to intersect, etc.

Let ¢ be an embedding of triangulation A with boundary 0A and let f be a facet of P; ¢ covers
fif ¢p(v) € f for all vertices v € A; $p(0A) = Jf; and for distinct edges e, e’ of DA, ¢(e) and ¢p(e)

have disjoint interiors.
Lemma 7.1 Let ¢ be an embedding of A. If ¢ covers f, then f = ¢(A).

Proof:  Clearly ¢(A) C f. For the converse, let p € f. Choose a directed line [ through p in
the plane of f so that [ avoids all vertices of ¢(A). Choose an arbitrary orientation of the plane
through f. Consider the directed graph whose nodes are the triangles A of A so that ¢(A) NI # D
and whose arcs are directed from a triangle Aabc to a triangle Aacd if a lies to the left of [ and
c to its right. Clearly each triangle has indegree at most one and outdegree at most one. There
is a unique edge in JA that contains the first point of [ N f; hence there is a unique triangle Aq
of indegree 0. Similarly, there is a unique triangle A of outdegree 0. Hence there is a path of
triangles Ag, Ay, ..., Ag. Consider the edges e; = ¢(A;) NI. Consecutive edges share endpoints, so
the union of the edges is [ N f. Hence p € e;, some i, and p € ¢p(4A;) C f. O

An embedding ¢ of A is close to embedding ¢ if for all vertices v of A, d(¢(v), P(v)) < k.
Lemma 7.2 If embeddings ¢, ¢ of A are close, then dg(H(A), p(A)) < k.

Proof: Immediate using proposition 3.1. [

Lemma 7.3 For each facet f of P, there is an abstract triangulation A and close embeddings ¢,g£
so that ¢ covers f and ¢(A) C o(f).

20



Figure 11: Abstract triangulation A. Outer solid cycle is copy of df; middle solid cycle is copy of
o(0(f); inner polygons are copies of If(A) and I7(A’) (internal edges not shown). Dotted edges are
connecting triangulation edges.

Proof: We first assume that T’y has at least one triangle and that every edge of T is incident to
a triangle. A is obtained by pasting together various subtriangulations, using 7y as a guide. For
each triangle A in Ty, A has an abstract copy of [;(A), i.e. a set of abstract triangles with the same
incidence structure as [f(A); ¢ maps each abstract vertex to the corresponding vertex of I;(A).
A contains an abstract copy of o(df), i.e. an abstract cycle formed from a copy of o(e) for each
edge e in Jf; ¢ maps each abstract vertex to the corresponding vertex of o(9f). The boundary of
A is formed by an abstract copy of df; ¢ maps each abstract vertex to the image under o of the
corresponding vertex of df. (Each edge in the boundary of A forms a triangle with the point at
infinity.)

The abstract copies are connected together as follows. For each internal edge e between two
triangles A and A’, the abstract copies of I;a(e) and lfas(e) are connected with intermediate
abstract triangles (see figure 11). Similarly, e is a boundary edge of T’y and is incident to a triangle
A, the abstract copies of o(e) and [ (e) are connected by intermediate abstract triangles. For each
vertex v of T, the vertices of A that are abstract copies of v have been connected to form a cycle;
this cycle is now triangulated. Finally, the cycles formed by abstract copies of df and o(9(f)) are
connected: each copy of a vertex v € df is connected by an edge to the copy of o(v) € o(9(f)),
and each copy of an edge e € 0f is connected by intermediate triangles to is connected to the copy

of o(e) € a(0(f)).

Clearly we have ¢(A) C o(f). Define ¢ on A by mapping the copy of a vertex v € df to v;
define ¢ elsewhere by mapping abstract vertex u € A to the closest point on f to ¢(u). Clearly ¢
covers f and is close to ¢.

If Ty has an edge e without incident triangles, the approach is similar, using an abstract copy
of [f(e). The case that Ty consists of a single vertex can be handled trivially. [J

Corollary 7.4 If f is a facet of P, then di(f,o(f)) < k.
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Proof: Immediate from lemmas 7.1, 7.2, and 7.3. O

8 Discussion

It may be possible to improve the worst-case bounds given in theorem 2.1. For example, the O(n?)
bound on the size of @ could be an artifact of vertical projection; perhaps an O(n?) bound could
be obtained by using different projection directions in different places, each tuned to the local
configuration. Obtaining a worst-case bound below O(n?) seems very challenging. It would be
desirable to remove the extra [log, n]+2 bits needed for vertex coordinates; again, this may be an
artifact of vertical projection. Finally, it would be desirable to guarantee that the rounded image
of a facet at least was locally a 2-manifold.

A programmer would probably prefer a simple rounding algorithm, even at the expense of
degraded worst-case bounds, as long as the typical-case bounds are reasonable. One reason that
the rounding algorithm is complicated is the need to avoid edge crossings. Milenkovic [17] suggests
rounding existing vertices to integer coordinates. If two rounded edges cross, then a vertex of
intersection is added, with coordinates computed exactly. This would require a constant-factor
increase in the bit-length of some vertex coordinates, and hence of some predicate evaluations.
However, the maximum required bit-length is still bounded, and perhaps the increased-length
calculations are relatively infrequent. Perhaps this approach can lead to a practical rounding
algorithm.
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A Proof of lemma 4.2

Proof: Let e have endpoints v and u', e* have endpoints E and E’, and d* have endpoints D and
D', where D, E € column(u) and D', E' € column(u'). By the definition of P*, d* and e* each
intersect only a single voxel of column(u) and a single voxel of column(u'). By clipping d* and e*
slightly, we can assume that D and E lie on a bounding facet of column(u) and D’ and E' lie on a
bounding facet of column(u').

We write e.g. D, for the z-coordinate of D. Without loss of generality we can assume D, <
D;, Dy < Dy, D, < D, and since p(d*) and p(e*) cross, we can assume that £, > D, and
E, < D). It cannot be that uy, = uj, for then D, D', E, E' would lie on facets of column(u) and
column(u') parallel to the zz-plane, and m,,(d*) and m,,(e*) would cross, which is impossible by
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Tpz(D)

my=(E')

my=(D)

Figure 12: Case (1) of the proof of lemma 4.2.

the construction of P*. Similarly u, # uj, and we can assume that u, < uj and u, < uy. Thus

D and E must either lie on the zz-facet of column(u), that is, the facet of column(u) parallel to
the zz-plane on the +y side of column(u), or the yz-facet on the +x side. Similarly D' and E' lie
either on the zz-facet on the —y side of column(u') or the yz-facet on the —z side.

The proof now splits into two rather different cases, depending on whether E, < E. or E, > E..

Case 1 (E, < E!): We have D, < E, < E, < D.. By the construction of P*, m,(d*) and
Tyz(€*) do not cross. We assume 7, (e*) = m,,(d*); the other case is symmetric, as will be evident
momentarily. See figure 12. Since m,,(e*) = 74,(d*) and D), > E', we must have D!, > E!. Hence
D’ lies on the zz-facet of column(u'). The plane through the zz-facet intersects e* at some point
with z-coordinate below D! (since this is true for all points of e*), hence m,,(d*) > m,,(e*). By
a similar argument, D lies on the yz-facet of column(u). E and E’ could be on either facet of
column(u) and column(u’), respectively. See also figure 2. (The case m,,(e*) < m,,(d*) would be
symmetric, with m,,(d*) < 7y.(e*).)

Assume that the angle a between the y-axis and the line through 7y, (d*) is at most m/4; we
show d(p(E),d*) < k. (The case a € [r/4,7/2] implies d(p(E'),d*) < k.) Let V be the point
of d* with the same y-coordinate as F; certainly V, > E,. We have d(myy(FE), 75y (D)) < 1 and
d(Tey(E), Tey(V)) < 1since |[Ey — Dy| < 1 and o < /4. We also have D, < E, < V; let W be the
point on edge DV with the same z-coordinate as E. By proposition 3.1, d(mgy(E), 75y (W)) < 1,
thus d(E, W) < 1, d(E,d*) < 1, and d(p(E),d*) < 3/2 = k.

Case 2 (E) < E;): We cannot have E; = D!, else m,(d*) and m,y(e*) would cross. Sup-
pose E/. > D!. Then we have E' on the xz-facet of column(u'). Furthermore E, > E! and
Tzz(€*) = me (d¥), since my,(d*) and 7, (e*) do not cross. We cannot also have D’ on the zz-
facet of column(u’), else my,(d*) and my,(e*) would cross. Hence D) > Ej. See figure 13. (The
case E; < D; would be symmetric, leading to Dy < E; and D' and E' interchanging facets of

column(u').)

Let E be the point on e* with the z-coordinate D!, and D be the point on d* with z-coordinate
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Figure 13: Case (2) of the proof of lemma 4.2. Solid outlines column(u’).

» DI +y

!

D tu L
!
dr E +x

Figure 14: Case (2) of the proof of lemma 4.2. Projection onto the zy-plane. The solid square is
pixel(u).

E}. Then E, > D}, > D, and Dy, > E, > E,.
The remainder of the argument occurs in the zy-plane (figure 14). We have

min(D, — E,, E, — D;) < 1

since d(myy (D), myy(e*)) < 1 and myy(e*) has positive slope in the zy-plane. Hence we have either
d(D, column(u’)) < 1 or d(E, column(u')) < 1. It correspondingly follows that either d(p(E'),d*) <

3/2=rkord(p(D"),e*) <3/2=k. 0O
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B Symbol crossreference

Symbol | Section | Comment
d(-,-) 2 Lo distance (asymmetric for sets)
dr(-,-) 2 Hausdorff distance (symmetric for sets)
<, = 2 vertical order
Ty 2 projection on the zy plane
Ap 2 the point of A with zy-projection p
P 2 original subdivision
Q 2 rounded subdivision
K 2 the distance bound (3/2)
o 2,6 embedding of P into )
T, L 3 symbolic sets at top and bottom of vertical order
p 4 (naive) 3d snap rounding
P 4.1 refinement of edges and vertices of P
e* 4.1 (refined) edge of P*
Ty 4.1 triangulation of snap-rounding of projection of f
P 4.1 edges of P* that project and snap-round to e
Py 4.1 vertices of P* that project and snap-round to v
F, 4.1 facets f of P that have e € T
Fa 4.1 facets f of P that have A € T
T 4.1 modified snap rounding on edges
crle) 5.2 default choice for edges Iy (e)
L, 5.3 all defined edges over e
Ve 6.1 vertical carrier
lra(e) 6.2 lifting of edge e of A for facet f
l(A) 6.2 lifting of triangle A for facet f
ly(e) 6.3 lifting of edge e for facet f
lf(v) 6.3 lifting of vertex v for facet f
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