
International Journal of Computational Geometry & Applicationsc World Scienti�c Publishing CompanyAPPROXIMATING POLYGONS AND SUBDIVISIONSWITH MINIMUM-LINK PATHSLEONIDAS J. GUIBASDept. of Computer Science, Stanford, CA USA 94305DEC SRC, 130 Lytton Ave, Palo Alto, CA USA 94301JOHN E. HERSHBERGERDEC SRC, 130 Lytton Ave, Palo Alto, CA USA 94301JOSEPH S. B. MITCHELL�Dept. of Applied Math, SUNY, Stony Brook, NY USA 11794{3600JACK SCOTT SNOEYINKyDept. of Computer Science, UBC, Vancouver, B.C. Canada V6T 1Z2Received (received date)Revised (revised date)Communicated by Editor's nameABSTRACTWe study several variations on one basic approach to the task of simplifying a planepolygon or subdivision: Fatten the given object and construct an approximation insidethe fattened region. We investigate fattening by convolving the segments or vertices withdisks and attempt to approximate objects with the minimum number of line segments,or with near the minimum, by using e�cient greedy algorithms. We give some variantsthat have linear or O(n logn) algorithms approximating polygonal chains of n segments.We also show that approximating subdivisions and approximating with chains with noself-intersections are NP-hard.Keywords: Polygonal approximation, link metric, cartographic line simpli�cation, curvesegmentation, Fr�echet metric1. IntroductionIn the practical application of computers to graphics, image processing, andgeographic information systems, great gains can be made by replacing complex ge-ometric objects with simpler objects that capture the relevant features of the orig-inal. The need for simpli�cation is most clearly seen in cartography. McMaster29�Partially supported by a grant from Hughes Research Laboratories, Malibu, CA, and by NSFGrant ECSE-8857642.yPortions of this research were performedwhile visiting Utrecht University and being supportedby the ESPRIT Basic Research Action No. 3075 (project ALCOM).1

lists ways that current methods and technology bene�t from data simpli�cation andreduction, including reduced storage space and faster vector operations, vector toraster conversion, and plotting. Improving computation and plotting capabilitiesdoes not always help; currently, the speed of data communication is often the bot-tleneck. Even manual cartography depends on simpli�cation: boundaries must besimpli�ed when drawing a map at a smaller scale or the map becomes unreadablebecause of the inconsequential information it presents. A good example is the mapin Lewis Carroll's Sylvia and Bruno with a scale of 1: 1.The theme of our approach to the task of simplifying a plane path, polygon, orsubdivision is: Fatten the given object and construct an approximation inside thefattened region. This theme has many variations. In this section, we consider somevariants that apply to the cartographers' line simpli�cation problem. In section 2we briey survey the literature on this and related approximation problems.A list of n points p1; p2; : : : ; pn de�nes a polygonal chain with line segments orlinks pipi+1. Given a polygonal chain C, the line simpli�cation problem asks for apolygonal chain eC with fewer than n links that represents C well. If the criterionof representing C well is that every point of the approximation eC be within " ofa point of C, then the following fattening method could be used. Paint C witha circular brush of radius " to obtain a fattened region. Then use a minimum-link path algorithm to approximate C within the fattened region, as illustrated in�gure 1a.
a. b.

c. d.Figure 1: Some approaches to fattening and approximating a polygonal chainMathematically, this fattening entails computing the convolution of a path, poly-gon, or subdivision S with a disk (or some other shape) to obtain a region R inthe plane. The convolutions that we are interested in can be computed by severalknown methods:16;18 Given the Voronoi diagram26;42 of the line segments of S, onecan compute the convolution R on a per-cell basis. Alternatively, divide and con-quer algorithms can be used.8;25 Both of these methods run in in O(n logn) timefor convolution by disks or constant size polygons.2

In the convolution R, the given polygon or subdivision S de�nes a homotopyclass of curves that can be deformed to S without leaving the region R. We can at-tempt to �nd a minimumlink representative of the homotopy class. Section 3 makesthe de�nitions for such a \homotopy method" more precise. Its four subsectionscontain the following results:Sec. 3.1 We briey recall the minimum-link path algorithms developed in a previ-ous paper21 and apply them to approximate paths and polygons. These aregreedy algorithms that, after the region R has been triangulated, �nd a pathin time proportional to the number of triangles that the path passes through.Sec. 3.2 In contrast, we show that the problem of computing a minimum linksubdivision is NP-hard. The di�culties comes in optimal placement of verticesof degree three or more; if these are �xed, then we can �nd the optimum foreach chain independently using a minimum link path algorithm.Sec. 3.3 Returning to polygons, we show that the problem of �nding a minimumlink simple polygon, that is, one with no self-intersections, is also NP-hard.Sec. 3.4 Given a region R with h holes, we show that we can �nd a simple polygonenclosing the holes with at most O(h) links more than the minimum linkpolygon.Returning to the line simpli�cation problem, we can see some \features" ofthis fattening method that are undesirable in some applications. For example,convolution may create quite large regions where the original chain C was dense inthe plane; vertices pi in these regions can be quite far from the approximation eC,even though every point of eC is close to C. A simple example is a sharp cornerof angle 2�. If we fatten the segments by ", the minimum link path can be asfar away as "= sin �|a 10� corner can be 11:4" from the approximation. Also, theconvolution itself is di�cult to compute robustly.To address these problems, we consider fattening just the vertices pi of thechain C by replacing each vertex with a disk of radius ". We then require thatour approximation \visit" each of these disks in order. This method, illustratedin �gure 1b, would ensure that vertices of the chain C would be within " of itsminimum link approximation eC. If we further restrict the path to turn only insidethe vertex disks as shown in �gure 1c, then eC would also remain within " of theoriginal chain C. An alternative shown in �gure 1d, which is more in the spirit ofthe convolution approach and for which minimum link paths are easier to compute,is to convolve each link of C separately with a disk of radius ", glue the resultingtubes at the vertex disks that they share, then compute a minimum link path in thisregion. Notice that turns are allowed in the tubes and not just the vertex disks,but also that the region formed is not planar|it overlaps itself at every angle.Section 4 generalizes this approach slightly to a problem we call ordered stabbing:given an ordered list of disjoint convex objects, �nd a polygonal chain that visitsthe objects in order. We have taken the name from Egyed and Wenger10, whodeveloped a linear-time greedy algorithm for computing a line stabbing disjoint3

objects in order, if such a line exists. We extend their algorithm to stabbing witha polygonal chain under three possible restrictions on vertices of the stabber (norestriction, in objects, or in tubes). We also study various de�nitions of \visitingorder" for stabbing disks that may intersect.Sec. 4.1 We examine Egyed and Wenger's algorithm10, which uses Graham scanto compute a ordered stabbing line for an ordered set of objects in whichconsecutive objects are disjoint.Sec. 4.2 We modify the algorithm to stab intersecting translates of a convex object(e.g. unit disks) with a line, under four de�nitions of visiting or stabbingorder. (The conference version of this paper17 was incorrect in not restrictingthe type of intersecting objects.)Sec. 4.3 We extend the de�nition of ordered stabbing to polygonal chains. Stab-bing line algorithms then give a simple procedure for computing a path that isat most a multiplicative factor of two from the minimum-link ordered stabbingpath.Sec. 4.4 We give a dynamic programming approach to compute the minimum-linkordered stabbing path of intersecting translates of a convex object, when pathvertices are not restricted to lie in the translates.Sec. 4.5 We give a linear-time greedy algorithm to compute the minimum-linkordered stabbing path for a set of objects in which consecutive objects aredisjoint.2. Previous results on approximationCartographers have a large catalog of algorithms for the line simpli�cation prob-lem and many measures by which to classify them.7;29;30 Their algorithms eitherseek a rough but quick reduction of the data or else an accurate but slow reduction.In comparative tests, the Douglas-Peucker algorithm9 (also proposed by Ramer37)produces the most satisfactory output, but its speed has been criticized.28;41 Therunning time of the Douglas-Peucker algorithmhas a quadratic worst-case in currentimplementations, although this can be improved to O(n logn) worst-case.20A common feature of simpli�cation algorithms is that they use original datapoints as vertices of the approximation, even these points come from a digitizerwith some error. This could be reasonable, except the volumes of data and slownessof accurate reduction algorithms lead to using two or more phases of approxima-tion. In the process of reducing a stream of digitized data to vectors to be plottedon a map, a cartographer may �rst cast out points until the remaining points areseparated by at least ", and then apply a more complex line simpli�cation algo-rithm to reduce the data further for storage or display. Though the properties ofthe individual algorithms are characterized and classi�ed, the properties of theseheuristic combinations are not. Criteria much like our " fattening6;35;38 are thenused a posteriori to test the quality of the resulting approximations.4

Imai and Iri22;23;24 and other researchers2;5;10;19;31;34;40 have chosen mathemati-cal criteria for the approximations and then sought e�cient algorithms to �nd bestapproximations. The algorithms they have developed, however, have quadratic orgreater running times|especially for those that use original data points as verticesof the approximation.We remove the restriction that vertices of the approximation must be origi-nal data points in an attempt to �nd faster algorithms that ful�ll mathematicalspeci�cations. Our goal is linear or O(n logn) algorithms that �nd the best ap-proximation. Failing that, we may look for a slower algorithm or �nd a suboptimalapproximation|we usually opt for the latter, especially if we can determine howclose the approximation is to the optimal.3. Homotopy classes and minimum link representativesWe begin by studying approximations to polygonal chains and subdivisions thatare computed by fattening the original and �nding minimum-link paths and subdi-visions inside the fattened region.For this section, we abstract away the method and mechanics of fattening andjust suppose that we have a path, polygon, or subdivision S in the plane and aregion R containing S. If we bend and move the components of S, without leavingR, we obtain other paths, polygons, or subdivisions that could be said to be equiv-alent to S by deformation within R. The topological concept of homotopy formallycaptures this notion of deformation. Let � and � be continuous functions from atopological space S to a topological space R. Functions � and � are homotopicif there is a continuous function �:S � [0; 1] ! R such that �(s; 0) = �(s) and�(s; 1) = �(s). One can see that homotopy is an equivalence relation.4;32We specialize this de�nition for paths, polygons, and subdivisions:� Informally, two paths are path homotopic if one can be deformed to the otherin R while keeping the endpoints �xed. Formally, we set S = [0; 1] and �nd afunction � where �(0; t) and �(1; t) are the two paths and �(s; 0) and �(s; 1)are the endpoints of the paths.� A polygon is the image of a circle S1 under a continuous map into R. Twopolygons with maps � and � are homotopic if there is a continuous map�:S1 � [0; 1]!R such that �(x; 0) = �(x) and �(x; 1) = �(x).� Two subdivisions � and � in R are homotopic in R if � can be deformed to� within R.If the fattened region R is actually obtained by convolving the path, polygon, orsubdivision S with a disk of radius " (that is, by drawing it with a fat brush) thenthe minimum-link object homotopic to S not only remains within " of the original,but can also be deformed to the original while remaining within ".The homotopy class can be represented to a computer by giving a representativepath, such as the Euclidean shortest path that is homotopic to S. A more usefulrepresentation for computation comes from triangulating the the region R so that5

all of the vertices of the triangulation are on the boundary. The homotopy class ofS can be represented by the sequences of triangles and triangulation edges that thecurves of S intersect.3.1. Computing minimum link paths and polygons of a given homotopy typeHershberger and Snoeyink21 have investigated computing minimum link pathsand closed curves of a given homotopy class in triangulated polygons. (They alsoconsider minimum length and restricted orientations.) They prove:Theorem 1 One can compute a minimum link path �0 that is homotopic to a chain� in time proportional to the number of links of � and the number of trianglesintersecting � and �0. In the same time, one can compute a closed polygon �0homotopic to a polygon � and having the minimum number of links if �0 is non-convex or at most one more than the minimum number if �0 is convex.These paths and polygons are computed by a greedy procedure, following Suri39and Ghosh.13 In brief, the idea is to illuminate as much of the region R as possiblefrom the starting endpoint of a path; this is as far as one link can reach. Repeat theillumination from the appropriate boundary of the lit area until the goal point isfound. The \appropriate boundary" is determined by the homotopy class of �|ormore speci�cally, by the triangulation edges crossed by the Euclidean shortest pathof the homotopy class of �. Thus, we have an algorithm whose running time is asmall polynomial in the complexity of the fattened region and the input and outputpaths.3.2. The min-link subdivision problem is NP-hardGiven a subdivision S in a polygonal region, P , the min-link subdivision prob-lem (MinLinkSub) asks for the polygonal subdivision S0 homeomorphic to S in Pthat is composed of the minimum number of line segments. This problem is re-lated to simplifying an entire map. We look at the decision problem to show thatMinLinkSub is NP-hard: Given S and P and an integer k, is there a polygonalsubdivision S0 with at most k segments that is homeomorphic to S in P?First, we note that the planar case of a problem that Garey, Johnson andStockmeyer12 have called maximum 2-sat (Max2Sat) is NP-complete. The gen-eral case of Max2Sat is: Given a set of variables V , an integer k, and disjunctiveclauses C1; C2; : : : ; Cp, each containing one or two variables, determine if some truthassignment to the variables satis�es at least k clauses. The variable graph of aninstance of Max2Sat is de�ned to be the graph G = (V;E), with an edge (u; v) 2 Eif and only if the variables u and v appear together in some clause Ci. An instanceof Max2Sat is planar if its variable graph is planar.Theorem 2 Planar maximum 2-sat (Max2Sat) is NP-complete.Proof : One can guess a truth assignment and, in linear time, verify that atleast k clauses are satis�ed. Thus, planar Max2Sat is in NP.Garey, Johnson, and Stockmeyer12 prove that Max2Sat is NP-hard by re-ducing 3-sat to Max2Sat. Their reduction preserves planarity, so we use it to6

reduce planar 3-sat to planar Max2Sat and show that the latter is also NP-hard.Consider an instance of planar 3-
abc

a

b c

d

a

b cFigure 2: From planar 3-sat to planarMax2Satsat with m clauses. Since we can du-plicate variables, we can assume thateach clause has three variables. Con-struct an instance of Max2Sat by re-placing every clause (ai _ bi _ ci) withten clauses (ai), (bi), (ci), (di), (ai_bi),(bi _ ci), (ai _ ci), (ai _ di), (bi _ di),and (ci _ di). At most six of theseclauses can be satis�ed if the originalwas not|seven can be satis�ed if the original was. Thus, a total of 7m 2-satclauses can be satis�ed if and only if all m 3-sat clauses can be satis�ed.Given a planar embedding of the clauses and variables of the 3-sat instance,we form a planar embedding of the Max2Sat variable graph by replacing theclause (ai _ bi _ ci) with the variable di as shown in �gure 2. Since planar 3-satis NP-hard 11;27, planar Max2Sat is, too. 2We prove that the minimum link subdivision problem, MinLinkSub, is NP-hard by taking an instance of planar Max2Satand constructing an instance of Min-LinkSub that has a solution if and only if the instance of Max2Sat has a solution.Let us take an informal look at the gadgets for truth assignments and for unary andbinary clauses that are used in the construction. We embed the variable graph ofthe 2-sat instance in the plane with straight-line edges such that no edge is vertical.Then we fatten each vertex to a disk and each edge to a rectangular strip buildour MinLinkSub instance within the resulting region. Within each disk we placetrue and false points, directly above and below the disk center, and force the vertexof the minimum-link subdivision to lie at one of these points by using appropriategadgets. Figure 3: An enforcer and its coneFor a unary clause, we add an enforcer pointing to the true point for a positiveclause and the false point for a negative clause. Figure 3 illustrates an enforcer|dashed lines are subdivision edges and solid lines are region boundaries. The en-forcer can be realized by four line segments if and only if the subdivision vertex liesin the shaded cone.For the binary clauses on two variables, we divide the rectangular strip of thefattened edge joining the two variables into four strips. In each we form negatersfor variables that need them and a gate to simulate an or gate. Figure 4 illustrates7

a negater and gate combination for the clause (a_ b)|the dashed line is the subdi-vision edge, solid lines are region boundaries, and grey lines are possible satisfyingassignments.
negater

gate

a

b

Figure 4: A negater and gate combination for (a _ b)In a minimum link subdivision, each clause that is not satis�ed requires oneextra line segment. Thus, there is a number, k0, such that k clauses of the instanceof Max2Sat can be satis�ed if and only if the instance of MinLinkSub uses at mostk0 line segments. Theorem 3 shows that this construction can be carried out.Theorem 3 MinLinkSub is NP-hard.Proof : We prove that MinLinkSub is NP-hard by a reduction from Max2Sat.Embed the variable graph, G, of a Max2Sat instance in the plane withstraight edges such that no edge is vertical. Let �min be the minimum anglebetween edges, �vert be the minimum angle of an edge from vertical, de be thelength of the shortest edge, and dve be the shortest distance from a vertex toa non-incident edge. Table 1 lists these and other important dimensions of theconstruction, �gure 5 illustrates them, and table 2 gives the relations betweenthem.We fatten the vertices of G to vertex disks of radius rv and edges to strips ofwidth w. This fattening preserves the face structure of G if there is a one-to-onecorrespondence between the faces of G and the connected components of thecomplement of its fattening such that a face bounded by a sequence of edgesand vertices maps to a component bounded by portions of the disks from thesame edges and vertices in the same sequence. Conditions 2{4 in table 2 ensure8

Variable Descriptionde Length of shortest edgedve Shortest distance from a vertex to a non-incident edge�min Minimum angle between two edges�vert Minimum angle of an edge from verticalrv Radius of vertex disks (fattened vertices)w Width of fattened edgerb Radius of boolean disks (e.g. the ball around a true point)h Height of true point above a vertex�enf Minimum angle between two enforcersc Enforcer cone width at rvTable 1: Variables for the construction, illustrated in �gure 5# Constraint Reason1. de, dve, �min, �vert Given by the embedding2. 0 < rv < de=8 Vertex disks don't engulf edges3. 0 < w < rv tan(�min=2)=2 Vertex disks appear on face between adj. edges4. rv +w < dve No edge & vertex become incident by fattening5. tan(�enf=2) > c=rb No point outside a bool. disk is in three cones6. 2(h+ rb) < w=8 Boolean disks are visible along fattened edges7. sin(�vert=2) > rb=h Slopes that intersect both bool. disks < �vert=2Table 2: Constraints on the variables. (See table 1 and �gure 5.)that the fattening of G by rv and w preserves the face structure.Within each vertex disk we place true and false points, h above and h belowthe vertex. Around each point, we draw a boolean disk of radius rb. We canforce the vertex of a minimum link subdivision to lie in one of these two booleandisks by using enforcers, each consisting of a path from the vertex to a smalltriangle such that the path can be a single line segment if the vertex lies insidethe enforcer cone as illustrated in �gure 3. The enforcers are placed around thevertex disks; the cones can be made to have radius at most c at distance rv bymoving the walls of the enforcer together.For a variable used in k binary clauses, we add k + 3 enforcers pointingto each boolean disk. If condition 5 holds, then cones from enforcers pointingto the same boolean disk do not intersect outside the disk; this implies thatany point outside the boolean disks lies in at most two enforcer cones. In aminimum link subdivision, each subdivision vertex is placed in a boolean diskbecause placement at any other point causes at least 2k+4 enforcers to have anextra line segment, while placement at a true or false point adds k+3 segmentsto enforcers and at most k to clauses. Thus, the placement of a vertex in aminimum link subdivision can be interpreted as a truth assignment.Next we form clauses. For a unary clause, we simply add another enforcerpointing to the true point for a positive clause or the false point for a negative9

rb

vr

h
minθ

θvertFigure 5: Variables in the construction, described in table 1.clause.For the binary clauses on a given pair of variables, we divide the fattenededge into four strips and form boolean balls at both ends of each strip. Then,for a clause (an or gate) with both variables positive, we add a block withina strip so that the edge can be a single line segment if and only if one of theincident vertices is placed in a true disk. When both variables are negative, weadd the block so that one of the vertices must be placed in a false disk. Whenthe variables di�er in sign, we pair an or gate with a negater for the negativeliteral as shown in �gure 4. Condition 6 ensures that satis�able edges can berepresented by one segment and condition 7 ensures that unsatis�able edgesrequire two segments.Each clause that is not satis�ed adds one extra line segment to the minimumlink subdivision. Thus, there is some k0 such that k clauses of the instance ofMax2Sat can be satis�ed if and only if the instance of MinLinkSub uses at mostk0 line segments. 2Placement of vertices of degree at least three is the di�cult part of MinLinkSub.If one could guess the locations of the vertices of degree three or greater, thenone could use a minimum-link path algorithm39;13;21 to �nd paths joining adjacentvertices: Connect each guessed vertex to its original by a path using at most nlinks. Then, for every pair of adjacent vertices, a and b, compute the minimum link10

path homotopic to the path that goes from guessed a to original a to original b toguessed b. The path algorithm performs this computation in polynomial time inthe size of its input.3.3. Minimum-link simple polygonsA desirable and natural restriction to add to the line simpli�cation problemis that boundaries that do not self-intersect should not be made to self-intersect.That is, simple polygonal chains should be replaced by simple polygonal chains. Inconstrast to the polynomial time algorithms of theorem 1, we show that the problemof �nding a minimum-link simple polygon of a given homotopy type (MinLinkSP)is NP-hard by a reduction from planar Max2Sat.The reduction is much like the one used in section 3.2: We embed an Euler tourof the variable graph as a simple closed curve in the plane and place obstacles sothat graph vertices are pinned in place. Then we form toggle switches at each graphvertex and use enforcers to ensure that an approximate path can be interpreted asa truth assignment. Finally, we arrange negaters and gates so that an edge of thegraph can be embedded using fewer links if the clause is satis�ed.Theorem 4 MinLinkSP is NP-hard.Proof : Suppose we are given an of Max2Sat. We puncture the plane by apolynomial number of holes and construct a simple (non-self-intersecting), rep-resentative curve of a homotopy class of curves in the resulting region. We provethat there is a simple, polygonal curve in this homotopy class having fewer thank0 line segments if and only if the instance of Max2Sat has a truth assignmentsatisfying at least k clauses.
Figure 6: A graph and its edge polygonEmbed the variable graph of the Max2Sat instance in the plane so that noedge is vertical. Add short vertical edges just above and below each vertex. Bysplitting vertices, we can form a planar tree that contains all the edges of thevariable graph; an edge tree. A walk around the edge tree gives us the edgepolygon, a simple polygon in which each clause edge appears twice. See �gure 6.In subsection 3.2, we constructed a region in which the number of edges ofa minimum link embedding of a variable graph was a function of the number of11

Figure 7: Vertex gadgetssatis�able clauses. Here we embed the edge polygon in a manner that mimicsthe variable graph embedding. For a vertex of degree d, we add a vertex gadgetof � 2d holes that the edge polygon must wind through as shown in �gure 7.We also add pentagonal holes above
Figure 8: The homotopy class of atoggle

and below each vertex and turn theshort vertical paths that we added tothe edge polygon into two toggles,whichtogether form a switch. The homotopyclass of the lower toggle is illustrated in�gure 8. Qualitatively, the path fromthe vertex zig-zags among some holeson on the left that we call enforcers,then goes back and forth across thepentagon, with more holes to hold it inplace, and then among more enforcerson the right. The upper toggle lacksenforcers, but otherwise is symmetricthrough the vertex.Each path across a pentagon canconsist of as few as three line segments.In a minimum link embedding with no self intersections the paths across bothpentagons must be nearly parallel, as shown in �gure 9, to be realized with threesegments. We then say that the toggles have parallel slants. The enforcers onthe lower toggle encourage both toggles to slant to the extreme right or left. Aswitch with toggles slanting down to the right is considered set true; slantingleft is considered false.The switch for a vertex corresponding to a variable that appears in k unaryand binary clauses has 2k + 1 enforcers on each side of the lower toggle so thatany slant other than extreme right or extreme left adds extra segments to 4k+2enforcers, whereas an extreme slant adds segments to 2k + 1 enforcers and atmost 2k to edges. Each toggle path goes back and forth at least 6k+3 times so12

that adding segments to enforcers and edges is preferable to adding segments toa toggle. Thus, in a minimum link path with no self-intersections, each switch isunambiguously true or false. Because two holes are su�cient for each toggle pathand four for each enforcer, the number of holes required is less than 40(k + 1).
Figure 9: A switch with enforcersTo simulate a unary clause, we add two extra enforcers to the true (or false)side of the lower toggle so that each enforcer each require an additional segmentif the clause is not satis�ed. Binary clause or gates are simulated by blockingthe appropriate segment, just as in subsection 3.2; negaters use two blocks. Fig-ure 10 illustrates a single binary clause|the grey lines are possible embeddingsof satisfying assignments and the dashed is the embedding of an unsatisfying as-signment. Since each edge of the variable graph is doubled in forming the edgepolygon, any binary clause that is not satis�ed by a truth assignment requirestwo extra line segments in the minimum link simple polygon.Thus, there is a number, k0, such that k clauses of the instance of Max2Satcan be satis�ed if and only if the instance of MinLinkSP, the minimum linksimple polygon problem, uses at most k0 line segments. 2One can break the polygon inside one of the vertex gadgets and anchor itsendpoints to obtain a path. Thus, the minimum link simple path problem is alsoNP-complete. 13

Figure 10: A negater and gate combination3.4. Minimum link simple curves enclosing all holesThe reduction in the previous section requires holes both inside and outside thecurve; whether one can e�ciently �nd a minimum link simple curve in a polygonwith h holes that encloses all the holes is an open question. We can �nd a sim-ple curve that has only O(h) more segments than the (non-simple) minimum linkcurve; this is independent of the number of segments of the minimum link curve.We identify O(h) junction triangles of the triangulation and group the rest of thetriangles into corridors. In each corridor we �nd the minimum link path.Theorem 5 In a polygon P with n vertices and h holes, one can, in O(n) time,�nd a simple closed curve enclosing all the holes that has O(h) segments more thanthe minimum link curve of the same homotopy class.Proof : Let �0 be the Euclidean shortest curve homotopic to �|the relativeconvex hull of the holes. The curve �0 intersects any triangulation edge at mosttwice.Because all the holes are inside of �0, the curve �0 does not cross any trian-gulation edge between two holes. We cut along any edges between two holes,forming bigger holes. Because the original holes do not intersect, the numberof cuts around the boundaries of the new holes is bounded by the length of acircular Davenport-Schinzel sequence with at most three alternations.1 Thus,there are at most 2h� 2 cuts.Call any triangle in which �0 crosses all three sides a junction triangle. Thereare two types: three-way junctions, in which all vertices lie on the outer bound-ary and two-way junctions, in which two vertices lie on the outer boundary andone lies on a hole.Removal of a three-way junction triangle leaves three connected components,each of which must have a hole. One can form a three-way tree whose leaves14

cuts
2

3

3

2

Figure 11: Cuts and junction triangles bound corridorscontain holes and whose internal nodes are three-way junctions such that theholes of a component formed by removing a junction are all in the same subtree.This implies that the number of three-way junctions is at most h � 2. Further-more, one can cut the edge of a two-way junction that goes from outer boundaryto outer boundary to separate P into two components, each of which has a holeand in one of which the hole has a vertex of the junction triangle. A particularpartition of holes can happen in only two ways, so there are only 2h two-wayjunction triangles.The triangles with at least one vertex on the outer boundary can now begrouped into maximally connected corridors, bounded by junction triangles andcuts, through which the shortest path �0 passes one or two times. Within eachcorridor, C, we �nd the minimum link path �C that goes from pC , the midpointof one bounding junction triangle, to qC, the midpoint of the other, using aminimum link path algorithm as discussed in section 3.1.The minimum link path �C may require more segments than the minimumlink path from pC to qC of the same homotopy type because the latter path maycross cuts that bound the corridor. A path that crosses a cut, however, doesso an even number of times. By connecting the �rst and last crossing with aportion of the cut, we obtain a path that remains within the corridor and hasonly as many additional segments as there are cuts bounding the corridor. Aswe argued above, the number of cuts bounding all corridors is at most 2h� 2.Finally, we link up the paths through corridors into a closed curve � inthe homotopy class of �. The curve � gains at most two segments more thanthe minimum curve through corridors for each junction triangle that it passesthrough. Thus, � is within O(h) line segments of the minimum link closed curveenclosing the h holes. 2The worst case for our procedure has no cuts, h � 2 three-way junctions and htwo-way junctions. This results in 10h� 12 additional line segments. We have yetto �nd a polygon that requires more than 2h � 2 additional segments to make aminimum link curve simple. 15

4. Ordered StabbingIn this section, we study the ordered stabbing problem: Given an ordered se-quence of n convex objects, O = fO1; O2; : : : ; Ong, �nd a polygonal chain, con-sisting of the minimum number of line segments, that visits the objects in order.Di�erent variants of the ordered stabbing problem arise from restrictions on thestabbed objects or stabbing path as well as from di�erent de�nitions of \visitingorder." We consider several variants in the following subsections, emphasizing thosefor which there are e�cient greedy algorithms.4.1. Ordered stabbing of disjoint objects with a lineEgyed and Wenger10 looked at the problem of stabbing disjoint convex objectsin order with a line. They show that the actual shape of the objects matters lessthan the ability to �nd inner and outer common tangents|if one assumed thatcomputing these tangents took constant time, then one could �nd a line stabbingthe objects in order by a simple Graham scan. We reinvent (and simplify) theiralgorithm for stabbing disjoint objects with a line and extend it in later subsections.It may help to think about a simple instance of ordered stabbing: Is there aline stabbing a set of vertical segments ordered by x-coordinates? To answer thisquestion, one can form the convex hulls of the \above" endpoints of segments andthe hull of the \below" endpoints. If these hulls are separable|if they have innercommon tangents, for example|then and only then does a stabbing line exist. Wede�ne support hulls and limiting lines to allow us to use this method for stabbingmore general objects.If � is a direction, then let �� denote the reverse direction.
αFigure 12:Support line `�We call an object O 2 O a support object for direction � ifthere is a line `� in direction � such that O lies on and tothe left of `� and no object O0 2 O lies strictly to the leftof `�. The support object in �gure 12 is shaded. The line `� iscalled a support line for direction � and the point or points ofO \ `� are called support points. We can observe the followingconnection between support lines and stabbing lines.Observation 1 The lines parallel to direction � that stab aset of objects O are exactly the lines to the left of both supportlines `� and `��, if any exist.By analogy with the convex hull of segment endpoints, we can de�ne the supporthull of a set of n objects as the circular list of support objects, ordered by the anglesof their support lines. Repetitions are possible, as �gure 13 shows, but if any twoobjects O and O0 have at most two outer common tangents, then any subsequenceof the list can have only two alternations between O and O0. Thus, the size of thelist is at most 2n� 2 by Davenport-Schinzel sequence bounds1.A support line `� is a limiting line if its reverse `�� is also a support line, asshown in �gure 13. Limiting lines are analogous to inner common tangents. Alimiting line `� hits two support points; we name them the �rst contact, p, and16

second contact, q, so that the vector q � p has direction �. We name the objectsthat contain these points the �rst and second contact objects for `�, respectively. Wecan distinguish two types of limiting lines: `� is a counterclockwise (ccw) limitingline if the �rst contact p is the support point for `�, as shown in �gure 13, and aclockwise (cw) limiting line if the second contact q is the support point for `�.Limiting lines are stabbers, as in
α

p

q

Figure 13: Support hull with limitinglines
�gure 13, but rotating a ccw limitingline counterclockwise gives a line thatis no longer a stabber. In our orderedstabbing problems, we will �nd at mostone limiting line of each type; they willdelimit the possible slopes for stabbinglines. The above and below portions ofthe support hull between these slopeslimit the extent that a stabbing linecan move up and down. Thus, thehulls and limiting lines give a linearsize description of all possible stabbers.In the rest of this section, we show howto maintain this description under theassumption that basic operations, such as computing the intersection of an objectwith a line and computing common tangents of two objects, take constant time.We prove the following theorem.Theorem 6 Let O = fO1; O2; O3; : : :g be a sequence of convex objects in whichconsecutive objects are disjoint. One can compute a line that stabs the longestpossible pre�x O1; O2; : : : ; Oi in order using O(i) time and space.Proof : We outline the idea; algorithm 1 gives more complete pseudocode.Assume that a vertical line separates

1
O O

2

t

t’

A

BFigure 14: Initial descriptionthe �rst two objects with O1 left of O2as in �gure 14. We can easily computea description of all ordered stabbers forO1 and O2: Initialize the ccw limitingline t and the cw limiting line t0 to theappropriate inner common tangents di-rected from O1 toward O2. Two por-tions of the support hull have slopes thatfall between the slopes of t and t0; theseportions are delimited by the contactpoints of t and t0. We name them the above hull, A, and the below hull, B, asshown. To represent A and B, we store the list of support objects in a deque|adoubly-ended queue|which we will maintain by a Graham scan procedure.15Initially, both deques contain O1 at the tail and O2 at the head.We would like to add objects successively and maintain the description ofordered stabbers. Given above and below hullsA and B for the �rst i objects and17

Data Structures: Store the above support hull A, in a deque that supports thefollowing in constant time: The operations Push(A; end ; Oi) and Pop(A; end) pushand pop objects from the head or tail ofA, depending on whether end is head or tail .Pointers Tail(A), NTail(A), NHead(A) and Head(A) are maintained to the tail(lowest index) next-to-tail, next-to-head, and head (highest index) objects in A.Store B similarly.Initialization: Place object O1 at the tail and O2 at the head of both A and Band set limiting lines t and t0 to the ccw and cw inner common tangents. Then seti := 2 and execute the following algorithm to add Oi+1.1. While Oi+1 intersects the wedge between t and t0 and right of Oi do2. If Oi+1 does not intersect t then(� Update the head of support hull A �)3. While Head(A) is above the higher outer common tangentfrom NHead(A) to Oi+1 do4. Pop(A; head)5. EndWhile6. Push(A; head ; Oi+1)(� Update ccw limit line t and the tail of support hull B �)7. Set t to the ccw inner tangent from Tail(B) to Oi+18. While NTail(B) is not below t do9. Pop(B; tail)10. Set t to the ccw tangent from Tail(B) to Oi+111. EndWhile12. EndIf13. If Oi+1 does not intersect t0 then(� Update the head of support hull B �)14. While Head(B) is below the lower outer common tangentfrom NHead(B) to Oi+1 do15. Pop(B; head)16. EndWhile17. Push(B; head ; Oi+1)(� Update cw limit line t0 and the tail of support hull A �)18. Set t0 to the cw inner tangent from Tail(A) to Oi+119. While NTail(A) is not above t do20. Pop(A; tail)21. Set t0 to the cw tangent from Tail(A) to Oi+122. EndWhile23. EndIf24. Set i := i + 1.25. EndWhileAlgorithm 1: The basic algorithm for the ordered stabbing of disjoint objects witha line 18

limiting lines t and t0, we want to add object Oi+1. We de�ne the line-stabbingwedge to be the region between t and t0 that is right of object Oi|drawn shadedin �gures 14 and 15. For every point p in the line-stabbing wedge there is a linethrough p that visits the �rst i objects before visiting p. If Oi+1 does notintersect the wedge, then no stabbing line visits the �rst i+ 1 objects in order.If it does, then we update the limiting lines, which are ordered stabbing lines,and the portions of the support hull.If the ccw limiting line t does
A

B

t

t’
O

i+1

O
iFigure 15: Updating the wedge and hulls

not intersect object Oi+1, then wemust move t clockwise until it does.We also update the head of theabove hull list A by Graham scan.Speci�cally, to add object Oi+1to A, some su�x may �rst needto be removed as in lines 3 to 6of algorithm 1. Furthermore, the�rst contact object of t in B maychange during the motion. If itdoes, the old contact is removedfrom the tail of B by line 9. Thecw limiting line t0 is handled sim-ilarly.All operations performed when Oi+1 is added take constant time except fordeque maintainence. Since an object is added to each deque once and removed atmost once, the total computation is linear in the number of objects considered. 2Remark: We described the algorithm as started at the beginning of the sequenceof objects and always adding objects to the end. Because adding objects to the tail(in reverse sequence, of course) is symmetrical, one could begin in the middle andadd to both sides.4.2. Ordered stabbing of intersecting unit disks with a lineIn this section, we extend algorithm 1 to stab an ordered set of possibly in-tersecting unit disks with a line. Our algorithm can be applied to translates of aconstant-sized convex polygon as well|unit squares, for example, which arise when"-disks are computed in the L1 or L1 metrics. We continue to say \disks" forconvenience.We consider four possible de�nitions of visiting order for intersecting objects.All four de�nitions are equivalent to the natural de�nition if the objects are disjoint.Given two points p and q on a directed line `, we say that p � q if the vector from pto q is in the direction of `. Let the intersection `\Oi have extreme points ai � bi.Given a sequence of objects O1; O2; : : : ; On and a line ` such that the intersection` \Oi has extreme points ai � bi, we say that ` visits the objects in order if19

Def. 1: Line ` exits the objects in the correct order: For i < j, we havebi � bj.Def. 2: Line ` enters the objects in the correct order: For i < j, we haveai � aj.Def. 3: Line ` both enters and exits the objects in the correct order: Fori < j, we have ai � aj and bi � bj.Def. 4: Line ` hits points p1; p2; : : : ; pn, with pi 2 ` \ Oi, in the correctorder: For i < j, the point pi � pj .De�nitions 1 and 2 could be considered equivalent: given an algorithm thatcomputes stabbing lines for one de�nition we can compute stabbing lines for theother by reversing the sequence of objects. We will, however, combine the algorithmsfor 1 and 2 to handle de�nition 3. Since the algorithms that compute stabberswithout reversing the sequence are slightly di�erent, we treat de�nitions 1 and 2separately. De�nition 4 is perhaps the most natural and, as we will see in section 4.3,is related to the Fr�echet metric.As in the previous section, our task is to maintain support hulls and line-stabbing wedges as we consider disks O1; O2; : : : ; On in sequence. The wedgefor O1; O2; : : : ; Oi, which is the locus of all points p such that some line visitsO1; O2; : : : ; Oi in order and then visits p, depends on the de�nition of visiting or-der.Theorem 7 Let O = fO1; O2; O3; : : :g be a sequence of unit disks or translates of aconstant-size convex polygon. One can compute a line that stabs the longest possiblepre�x O1; O2; : : : ; Oi using O(i) space and O(i) time for visiting order de�nitions1{3 or O(i log i) time for de�nition 4.Proof for Def. 1: Let us begin with de�nition 1: exiting the disks in the correctorder. A way to view the result that we are trying to obtain is to imagine that thedisks are painted on the plane in reverse order|starting with disk On. An orderedstabbing line must exit a visible portion of the boundary of each disk. We will notcompute this \painting;" it will, however, guide us in modifying algorithm 1 to adddisk Oi+1 and update the description of the stabbers of the �rst i disks. First weoutline how to maintain this description, then how to initialize it.
Oi

Oi+1

tFigure 16: Updating the wedge under de�nition 1To add Oi+1, we must determine the ordered stabbers of O1; : : : ; Oi that exitOi+1 after Oi. As before, the line-stabbing wedge is the region between the limiting20

lines t and t0 and right of Oi. Because Oi is exited last, no disk Oj with j < iintersects the wedge. Also as before, if Oi+1 does not intersect the wedge then nostabbing line exists.In our imaginary painting, Oi+1 may be obscured by Oi; thus, we discard por-tions of Oi+1 that lie outside the line-stabbing wedge. By restricting our objectsto translates of a given object, we can be assured that what remains of Oi+1 isconnected. If what remains does not intersect the ccw limiting line t, then we mustupdate the support hulls and the line t.First update the head of the above hull A, as in lines 3 to 6 of algorithm 1.If Oi and Oi+1 intersect, then their upper intersection point may become a pointon the support hull, as will occur in �gure 16. To this end, the tangent from thisintersection point to NHead(A) must be considered in line 3 and the deque datastructure must be extended to store support points as well as support disks.Once the support hull A is updated, t moves clockwise until it comes to rest onthe disk or point that is last in A. This may cause disks to be removed from thetail of B as in line 9. The cw limiting line is adjusted in a similar fashion.What remains is to initialize the description of or-
t’

t

1
O O

2Figure 17: Initial wedge,de�nition 1dered stabbers. We can reuse the description of �gure 14if O1 and O2 do not intersect. If they do intersect, thedescription is rather strange. The above hull A con-sists of O1 follwed by the upper intersection point ofO1 \O2; the below hull B of O1 and the lower intersec-tion point. The limiting lines, then, are tangents from anintersection point to O1 that cannot be rotated furtheras shown in �gure 17. The wedge they form is greaterthan 180� so angle comparisons must be performed care-fully. This adds to the programming complexity, but notthe asymptotic time complexity. 2Proof for Def. 2: Stabbing lines satisfying de�nition 2, entering the disks in thecorrect order, must hit the boundaries of disks in a \painting" that starts with O1.They can be found by a similar algorithm.
t

Oi+1

OiFigure 18: Updating the wedge under de�nition 2De�ne the line-stabbing wedge to be the convex region bounded by the twolimiting lines and not left of Oi. In �gures 18 and 19, the line-stabbing wedges are21

shaded. Any stabber that crosses into the wedge has already entered every disk upthrough Oi. Thus, we need to determine and discard the stabbers that enter Oi+1and Oi in the wrong order.Following the painting model, discard portions of Oi that lie inside Oi+1. If theremaining portion of Oi no longer intersects the ccw (or cw) limiting line, or if Oi+1does not intersect the line, then we must update the support hull and limiting lineas before. We again use a Graham scan to maintain support points and supportdisks in A and B with the key property that the support points or disks for thelimiting lines are the �rst and last entries in A and B.The initial hulls and limiting lines of �gure 14 can
t’

t

1
O O

2Figure 19: Initial wedge,de�nition 2be reused if O1 and O2 do not intersect. If they dointersect, the initial support hulls A and B consist ofthe upper and lower intersection points, respectively,followed by O2. The limiting lines are tangents to O2from the intersection points, as shown in �gure 19.Again, the wedge is greater than 180�. 2Proof for Def. 3: We can combine the two previ-ous algorithms to �nd stabbing lines satisfying de�ni-tion 3. Given the support hulls A and B and limitinglines after the �rst i disks we need to determine the ordered stabbing lines that en-ter and exit Oi+1 after Oi. Unless Oi+1 intersects the line-stabbing wedges of bothde�nitions 1 and 2, there are no stabbing lines of the �rst i + 1 disks.First, discard portions of Oi that lie in Oi+1 and update the support hulls andlimiting lines as under de�nition 2 if the remaining portion of Oi no longer intersectsone of the limiting lines. Next, discard portions of Oi+1 that lie in Oi and updateaccording to de�nition 1 if necessary.If disks O1 and O2 intersect, then the initial support hulls A and B are the upperand lower intersection points, respectively, of the boundaries of O1 and O2. Theinitial limiting lines are the two orientations of the line through the two intersectionpoints. 2Proof for Def. 4: The fourth de�nition is di�erent from the others in that itinvolves choosing points rather than de�ning an order for intervals. There is anequivalent formulation in terms of intervals, however: no later interval may endbefore an earlier one begins.Lemma 8 Let [ai; bi], for i 2 [1 : : :n], be non-empty intervals of the real line. Onecan choose a set of points fp1; p2; : : : ; png with pi 2 [ai; bi] and pi � pj for all1 � i < j � n if and only if there is no pair j < k with bk < aj. Furthermore, thepis can be chosen from the set fa1; a2; : : : ; ang.Proof : Form a set of truncated intervals [a0i; b0i] with a0i = maxj�i aj andb0i = mink�i bk. If these intervals are non-empty then the set fa01; a02; : : : ; a0ngsatis�es the lemma. Otherwise, some interval [a0i; b0i] is empty; there is a j � iand a k � i such that bk < aj . 2 22

We are not able to give a linear time algorithm for this de�nition of visiting orderbecause the line-stabbing wedge has non-constant complexity. When our disks areconstant size polygons or equal radius circles, however, we can maintain the wedgeby an intersection algorithm that allows us to stab i disks in O(i log i) time.As before, we want the line-stabbing wedge of the �rst i disks to be the locus ofall points p that have a line that visits the i disks before visiting p. Assume thatwe have two limiting lines t and t0 that de�ne an angle of less than 180� and let Wjbe the region between these lines and not left of disk Oj. De�ne the line-stabbingwedge as the intersection Tj�iWj, drawn shaded in �gure 20.We can maintain the wedge as n disks are added incrementally using O(n logn)total time, according the the following lemma.Lemma 9 One can incrementally form all wedges for a sequence of n convex poly-gons with O(n) sides altogether or n unit radius circles in a total of O(n logn)time.Proof : A convex polygon is the intersection of the halfplanes de�ned by itssides, so it is su�cient to compute halfplane intersections incrementally. Thiscan be done by the dual of Preparata's convex hull algorithm36: Store the edgesof the current wedge in a binary search tree. To add a halfplane h, computethe intersection of h and the current wedge in O(logn) time and discard edgesoutside of h in O(logn) time apiece.For equal radius circles, Melkman and O'Rourke31 have shown that, whenlooking from the intersection point t \ t0, the order of the centers of the circlesis the reverse of the order of the edges bounding the wedge. By storing thecenters in a binary search tree, they show how to update the wedge boundaryin O(n logn) total time. 2
A

B

t

t’Figure 20: Wedge maintenance, de�nition 4Let us �rst discuss updating the line-stabbing wedge and the description ofstabbers when disk Oi+1 is added. We'll discuss their initialization afterwards.To begin, we must determine if Oi+1 intersects the wedge|if it does not, thenthere is no ordered stabber of the �rst i + 1 disks. We discard portions of Oi+1 thatlie outside the wedge. If what remains does not intersect the ccw (or cw) limiting23

line, then we must update the support hulls, limiting lines, and line-stabbing wedge.To perform the intersection, �nd the tangents from t \ t0 to Oi+1 (or, if t \ t0 isinside Oi+1, use the rays along t and t0) and break Oi+1 into left and right portionswhere they hit its boundary. Form the region bounded by the right portion andthe segments to t \ t0, then intersect it with the wedge by walking along the wedgefrom t and t0|any edges walked on will be removed from the wedge. Then updatethe limiting lines and support hulls by Graham scan as under previous de�nitions.Finally, use the procedure of lemma 9 to update the wedge using the left portionof Oi+1.To initialize the description of stabbers and the line-stabbing wedge, we beginby computing the intersection Tj<iOj incrementally by a procedure similar to thatof lemma 9. While this intersection is non-empty, any line that stabs it stabs thedisks in order according to de�nition 4. When Oi is disjoint from this intersection,then Oi must be disjoint from a disk Oj with j < i and a slight modi�cation ofthe intersection procedure of Melkman and O'Rourke31 will give the disk Oj. Wecan then limit the directions of stabbers to lie between the directions of the innercommon tangents directed from Oj to Oi and restart processing with O1. Thealgorithm will �nd a line stabbing at least the �rst i disks. 2This completes the proof of theorem 7. In the next section we show that thesestabbing line methods can be used to give linear-time algorithms to compute astabbing chain that has at most twice the minimum number of links.4.3. Ordered stabbing with a polygonal chainThe problem of ordered stabbing with a polygonal chain instead of a line bringsits own complications. In this section, we extend the de�nitions of visiting orderand look at restrictions that can be placed on the vertices of the chains. We noterelationships to the Fr�echet metric for curve similarity and line stabbing.Figure 21 shows an example of a path � stabbing three
1

O

2
O

3
O

πFigure 21: Pairwiseorder is not enoughdisjoint objects O1, O2, andO3. For each pair of objects, wecan choose intervals of their intersections �s that have thecorrect order, but can hardly call � an ordered stabber ofO1, O2, and O3. Instead, we require that there is a sequenceof intervals I1; I2; : : : ; In in order along the path � such thatIj is a maximal connected interval of the intersection �\Oj.If these intervals happen to intersect, then we also applyour favorite de�nition 1, 2, 3 or 4.One bene�t of our chosen de�nition is that the stabbingproblem can be viewed as minimum-link path problem ina non-manifold space M. For 1 � i � n� 1, take a manifold Mi that is a Eu-clidean plane containing copies of objects Oi and Oi+1. Then identify (glue) thecorresponding points in the copies of Oi+1 contained in Mi and Mi+1. Any path inM from O1 in M1 to On in Mn�1 visits the objects in order.24

Further variations arise from di�erent restrictions on the vertices of the approx-imation. We concentrate on three, listed in order of increasing restriction.1. No restriction: The approximate path can turn anywhere.2. Turn in tubes: Each vertex of the approximation must lie within a regionbounded by two consecutive objects and their outer common tangents.3. Turn in objects: Each vertex of the approximation must lie in one of theoriginal objects.The non-manifold space M constructed above can be modi�ed so that any path inM automatically satis�es the second restriction: simply let Mi be the convex hullof Oi and Oi+1 rather than the entire plane. The third restriction is of a di�erentcharacter.If we combine the restriction that vertices must lie in tubes with the de�nition 4for visiting order, then we obtain minimum link approximations under the Fr�echetmetric3;14. Two curves are within distance " under this metric i� they have mono-tone parameterizations � and �, which are functions from [0; 1] to R2, such thatd(�(t); �(t)) � " for all t 2 [0; 1]. This can be understood intuitively as a person on� can walk a dog along � with a leash of length ". The next theorem was suggestedby Michael Godau (personal communication) and has been reported for the L1 andL1 cases by Natarajan and Ruppert.33Theorem 10 Let O1; O2; : : : ; On be a sequence of "-balls and c1; c2; : : : ; cn be theircenters. A minimum link chain stabbing O1; O2; : : : ; On in order according to de�-nition 4, whose vertices are constrained to lie in tubes, is a minimum link path withFr�echet distance at most " from the polygonal chain c1; c2; : : : ; cn.Proof : Let � : [0; 1] ! R2 be a parameterization of the polygonal chainc1; c2; : : : ; cn and let ti be a parameter at which �(ti) = ci.For any curve � with Fr�echet distance at most " from �, the point �(ti) 2 Oi.By monotonicity of the parameterization, the sequence of points �(t1) � �(t2) �� � � � �(tn) reveals that � visits the objects in order according to de�nition 4.For any piecewise-linear curve �, let t be a parameter of one of its verticesand suppose that ti � t < ti+1. Then, in between visiting Oi and Oi+1, thecurve � remains within " of the line segment cici+1, which is simply remainingin the convex hull of Oi and Oi+1. Thus the vertices of � lie in tubes.Therefore, the minimum-link curve � with Fr�echet distance at most " from� is an ordered stabber satisfying the hypothesis. 2Using an algorithm for ordered stabbing with a line, there is a simple method to�nd a stabbing path for the strongest restriction using at most twice the minimumnumber of links.Theorem 11 One can compute an ordered stabbing path with vertices inside objectsO1; O2; : : : ; On that has less than twice as many segments as the minimum linkstabbing path.Proof : Compute a line that stabs as many objects in order as possible. Thencrop the line to a segment from the �rst to last objects stabbed, discard these25

objects and repeat. When all the objects have been stabbed, join the k segmentsformed into a path by adding k � 1 segments.Since each of the k segments, except for the last, stabs as many objects aspossible, the minimum link path has at least k edges even if vertex placement isunrestricted. Therefore, the path constructed has less than twice as many edgesas the minimum path. 2Figure 22: The greedy path (dotted) versus the minimum path (solid)Figure 22 illustrates that when path vertices must lie inside stabbed objects, agreedy approach that always attempts to stab as many objects as possible can attain2k � 1 links when the minimum link path has k links. The bound of theorem 11is tight. This is in contrast to the algorithms for minimum link paths in simplepolygons13;21;39, where greedy methods do obtain a minimum link stabbing path.4.4. A dynamic programming approachIn this section we develop a dynamic programmingalgorithm to stab intersectingunit disks with a minimum link chain. For each disk Oi, we compute a chain-stabbing wedge, de�ned below, and the length of the minimumlink ordered stabbingchains that stab disks O1 through Oi. For visiting orders 1 and 2, we obtain aminimum link stabbing paths in O(n2) time and linear space. For de�nition 4, thetime increases to O(n2 logn). Vertices must either be unrestricted or restricted tolie in tubes.This should be compared to the general graph-based approach of Imai and Iri24,which, in our terminology, creates a graph with an edge (j; k) if there is an orderedstabber from Oj through Ok and then search the graph for the shortest path. Ourdynamic programming method shares the problem of a super-quadratic runningtime, but saves a factor of O(n) in space by better organization of computation andrelaxing the restriction that verticies be original data points. (We recently learnedthat Chin and Chan, in an unpublished manuscript, have improved Imai and Iri'salgorithm to quadratic time.)Extending the de�nition of wedges is key. In sections 4.1 and 4.2 we formedline-stabbing wedges under visiting orders 1, 2, and 4. For polygonal chains wede�ne the chain-stabbing wedge Wi of the �rst i disks as the locus of all points psuch that there is a minimum link chain visiting the �rst i disks and then p.As an example, if disks O1 through Oi can be stabbed by a line, then the chain-stabbing wedge Wi is a line-stabbing wedge, as de�ned in the previous sections.If the minimum path stabbing O1 through Oi has k > 1 links, then wedge Wi is26

the union of line-stabbing wedges that �rst stab a point of a chain-stabbing wedgeWj that has a path of k � 1 links and then stab disks Oj+1 through Oi. This isnot quite correct as stated, because we have not taken into account the restrictionplaced on turns. The true computation of Wi goes as follows. Let Rj be the regionwhere the turn vertex between Oj and Oj+1 can lie. Region Rj depends upon whichof the three restrictions is placed on turns: With no restriction, Rj is the entireplane. For tubes, Rj is the region bounded by disks Oj and Oj+1 and their outercommon tangents. For each j < i such that the chain-stabbing wedge Wj is formedby stabbing paths with k� 1 links, compute the stabbing wedge for lines that stab,in order, Wj \Rj, Oj+1, Oj+2, : : : , Oi. The union of these stabbing wedges is thechain-stabbing wedge Wi.We show that chain-stabbing wedges can enlarge only when the path gains anextra link.Lemma 12 If the chain-stabbing wedgesWi and Wi+1 both have minimum stabbingpaths with k-links, then Wi+1 � Wi.Proof : A point p is in Wi+1 because there is a k-link path that visits the �rsti + 1 disks before reaching p. The same path certi�es that p is also in Wi. 2Next, we show that chain-stabbing wedges really are wedge-like.Lemma 13 The chain-stabbing wedge Wi is bounded by two rays and, dependingon the de�nition of visiting order, a concave (def. 1) or convex (def. 2) portion ofthe boundary of Oi or a convex chain (def. 4) of the boundary of the intersection ofOh, Oh+1, : : : , Oi�1, Oi for some h � i.Proof :We prove this by induction on the number of links in the chains formingchain-stabbing wedgeWi. Clearly, the lemma is satis�ed by the stabbing wedgesfor lines, which are chain-stabbing wedges de�ned by 1-link chains.Suppose that Wi is formed by m-link chains.Let !j, for j � i, denote the line stabbing wedge for objects Oi, Oi�1, : : :down to Oj. (Since the ordering is reversed the de�nition of visiting order for!j should be the opposite of that of Wi. That is, substitute 1 for 2 and viceversa. Def. 4 is its own inverse.) Wedge Wj contributes rays to Wi if and onlyif the intersection Wj \Rj \ !j+1 is non-empty.Suppose that Wj does contribute rays to Wi. We show that either no wedgeWk contributes to Wi, for all k < j, or else for the greatest k < j whosewedge contributes, there is a line that stabs Wj�1 \Rk; Ok+1; : : : ; Oi and Wj \Rj; Oj+1; : : : ; Oi. This shows that the union of the stabbing wedges that makeup Wi has at most two rays on the boundary.So, consider a j such that Wj \ Rj \ !j+1 is non-empty. If !j+1 intersectsOj \Wj then Wj�1 \ Rj�1 \ !j is also non-empty and there is a desired raystarting in Oj \Wj \ !j . If !j+1 does not intersect Oj then !k+1 is empty forall k < j and no wedge Wk contributes to Wi. What remains are the cases inwhich !j+1 intersects Oj outside of Wj.Suppose that !j+1 intersects Oj after Wj . Since Wj�1 does not intersectOj \ !j+1, the intersection Wj�1 \ !j is empty in this case. Furthermore, sinceall objects Ok for k < j will either miss !k+1 or interesct after Wj , we can show27

that no rays are contributed to Wi from any such Wk.Finally, suppose that !j+1 intersects Oj before Wj . Again, Wj�1 does notintersect Oj \ !j+1. Now there is an intersection point of the boundaries ofWj�1 and !j that is either in Rj�1 or outside of Rj�1. If it is in Rj�1, thensome ray from that point is the desired ray. If not, then there is no contributionfrom Wj�1 and will be no contribution until that point is in the next Rk. Thisestablishes the lemma. 2We now sketch the dynamic programming algorithm.Theorem 14 Under visiting order de�nitions 1, 2, or 4, one can compute the min-imum link path visiting disks O1; O2; : : : ; On in order that either has no restrictionson vertices or has vertices in the convex hull of consecutive disks. Space is O(n).Under de�nitions 1 and 2 the time is O(n2 logn). Under de�nition 4, the timeincreases to O(n2 log2 n).Proof : For de�nitions 1 and 2 (entering or leaving the objects in the speci-�ed order) lemma 13 says that a chain-stabbing wedge is an object of constantcomplexity|we can store all chain-stabbing wedges in O(n) space. We alsostore the number of links to each chain-stabbing wedge.With this information, we can carry out the computation of an m-link chain-stabbing wedge Wi described above: given the descriptions of all (m � 1)-linkchain-stabbing wedges Wj;Wj+1; : : : ;Wk, we compute each of the line-stabbingwedges of the objects W` \R`, O`+1, Oj+2, : : : , Oi, for j � ` � k, where R` isthe region where the turn vertex between O` and O`+1 can lie; R` is convex andhas a constant-size description for the restrictions we allow.This computation can be carried out in O(n logn) time by initially runningthe line-stabbing algorithm of section 4.2 on the objects ordered from Oi downto Ok+1|this requires reversing the current de�nition of visiting order. Then,looping from ` = k down to ` = j, compute the limiting lines that would beformed by adding object W`\R`: one can do this in logarithmic time by binarysearch of the current support hulls. Next, insert O` into the current line stabbingwedge and decrement `. The limiting lines computed by binary search and Oidelimit the desired line-stabbing wedges.The union of these stabbing wedges can be computed by �nding the extremerays. Since the computation of a single wedge O(n logn), the total time isbounded by O(n2 logn).For de�nition 4, we cannot store the chain-stabbing wedges because theyhave non-constant complexity. We store only the two bounding rays for chain-stabbing wedges and construct wedge boundaries when we need them by in-tersecting arcs of unit circles using Melkman and O'Rourke's algorithm31 as insection 4.2. This, of course, further complicates the algorithm for �nding thebounding rays.To compute an m-link chain-stabbing wedge Wi, we �nd the range of all(m � 1)-link chain-stabbing wedges Wj ;Wj+1; : : : ;Wk. Then we compute line-stabbing wedges from Oi down to Oj and record all the changes to the supporthull data structures so that we can delete the objects Oj; : : : ; Ok by playing the28

record backwards. We compute the wedge Wj by intersecting the objects beforeOj with the wedge de�ned by Oj and its two extreme rays, if necessary. Startingwith ` = j, we compute the limiting lines for R` \ W` and O`+1; : : : ; Oi by�nding common tangents between R`\W` and the support hulls of O`+1; : : : ; Oiwith nested binary search. Then we intersect the boundary of O`+1 with theboundary of the wedge W`, if necessary, delete object O`+1 from the the currentline stabbing wedge and decrement `. The computation for a single wedge isO(n log2 n), so the total time is O(n2 log2 n). 24.5. A linear-time greedy algorithmWhen consecutive objects are disjoint, then we can give a linear-time greedyalgorithm that computes a minimum-link stabbing chain. As in the previous section,vertices are unrestricted or are restricted to lie in tubes|inside the convex hull oftwo consecutive objects.Natarajan and Ruppert33 have independently developed a similar algorithm forstabbing unit squares and have used it to compute minimum link L1 and L1 ap-proximations to polygonal chains when each original segment is longer than unity.They also noted the relationship to the Fr�echet metric that we established in theo-rem 10.The idea is the following. If we have a line stabbing wedge W for the �rst i� 1objects and �nd that Oi does not intersect W , then we must consider how manyof the �rst i � 1 objects that we should stab with the �rst segment. It may beadvantageous not to stab them all, as �gure 22 shows. What we �nd, however,is that we can take the posibly turning locations into account in the way that weinitialize the constraints for the next stabbing line. If Oj is below the wedge W ,for example, then for the upper constraint we want only that the line stabs W . Weput in all the objects O1 through Oi�1 as lower constraints, however, because we donot want to miss one of the objects by passing underneath it. We content ourselveswith a detailed sketch of the proof.Theorem 15 Let O = O1; O2; : : : ; On be a sequence of convex objects in whichconsecutive objects are disjoint. One can compute, in O(n) time, the minimum-linkordered stabbing path whose vertices either have no restrictions or lie in or betweenconsecutive objects.Proof : We begin by �nding the longest pre�x that can be stabbed by a lineusing algorithm 1. We record the current limiting lines after we add each newobject. If the pre�x has i objects, then the algorithm ends in O(i) time with astabbing wedge, which is bounded by two limiting lines and a portion of Oi anddoes not intersect Oi+1.Let us �rst consider restricting the vertices to lie in tubes, that is, in theconvex hull of consecutive objects. We consider three cases, illustrated in �g-ure 23|these cases could actually be uni�ed at the cost of making the expositioncompletely opaque. For each case, we consider �rst the computation when ver-tices lie in tubes, that is, in the convex hull of consecutive objects, and secondthe modi�cations required if the vertices are unrestricted.29

AB.

Oi

B.

Oi

Oi+1

A.

Oi

Oi+1

Oi+1Figure 23: Cases A, B, and ABCase A: Case A obtains when some line separates object Oi from objectsOi�1 and Oi+1. A vertex of the approximation must lie between Oi�1 and Oi+1,and if vertices are restricted to lie in tubes, then this vertex lies in the portionof Oi that lies in the stabbing wedge, shaded heavily in the �gure. We can runalgorithm 1 starting with this portion of Oi to �nd the next sequence that canbe stabbed.If the vertices are unrestricted, then we begin algorithm 1 with the stabbingwedge, shaded in the �gure, which is an object that is disjoint from Oi+1. Thisbeginning implicitly assumes that the vertex between Oi�1 and Oi+1 shouldoccur in or after Oi. One can argue, however, that no possible stabbers arelost by this assumption: although removing Oi may enlarge the stabbing wedge,any segment of a minimum-link stabbing chain that originates from a point inthe enlarged wedge must cross Oi before Oi+1 and thus must cross the stabbingwedge bounded by Oi.Case B: Case B obtains when some line separates Oi�1 from Oi and Oi+1. Letus assume that Oi+1 is right of the cw limiting line t0 as shown in �gure 23B.The computation when Oi+1 is left of the ccw limiting line t is symmetric.We begin algorithm1 with above and below support hulls de�ned by di�erentobjects. For the above hull we use a single object, the convex hull of Oi and thepoint t\ t0, if the vertices must lie in tubes (darker shading), or the wedge rightof t and left of t0 (dark and light shading), if vertices are unrestricted. For thebelow hull, we begin with the support hull of a sequence of objects: start fromthe second contact object Oj of the cw limiting line t0 and continue throughOi|trim the top of each objects by the ccw limit line that existed when theobject was inserted. This support hull is drawn darkly in �gure 23B.Decoupling the above and below constraints avoid the implicit committmentto place a vertex between a given pair of consecutive objects that lead to extrasegments in the algorithm of the previous section. As illustrated in �gure 23B,the vertex can be placed on t0 between two consecutive objects and the below30

support hull will ensure that objects after the vertex are stabbed by the nextsegment of the path. This choice of constraints captures the boundary of theilluminated region in the space M.Case AB: In case AB, the separators of Oi�1 and Oi intersect Oi+1. Case ABis handled just like case B, with the decision whether Oi+1 is left of t or rightof t0 based on the intersection of Oi+1 with a separator of Oi�1 and Oi. In�gure 23, the initial above and below support hulls for B and AB are the same.All cases can be set up in time proportional to the number of objects. Eachobject in the entire sequence is considered at most twice in the computation ofa minimum-link stabber, therefore the total computation is linear. 25. Conclusions and open problemsWe have examined minimum link approximations that lie in convolutions or areordered stabbers as part of a basic approach to approximating paths, polygons,and subdivisions. We have developed some e�cient algorithms and indicated thatothers are unlikely to ever be developed.There are many avenues that we hope to explore further|the most importantbeing practical studies of implementations of theoretically e�cient approximationmethods. A few of the many open questions that remain are: Is computing the min-imum link simple polygon enclosing all holes NP-complete? What other restrictionson approximation can be handled in subquadratic time? For example, the verticesmay be required to lie within some � < " of the original path. Can subquadratictime algorithms be developed for ordered stabbing of intersection objects or forother de�nitions of visiting order?AcknowledgementsWe thank Michael Godau for suggesting theorem 10 and Jim Ruppert for apreliminary version of his paper with Natarajan.33References1. P. K. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the lengthof general Davenport-Schinzel sequences. Journal of Combinatorial Theory, SeriesA, 52:228{274, 1989.2. H. Alt, J. Bl�omer, M. Godau, and H. Wagener. Approximation of convex polygons.In Seventeenth International Colloquium on Automata, Languages and Program-ming, number 443 in Lecture Notes in Computer Science, pages 703{716. Springer-Verlag, 1990.3. H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Pro-ceedings of the Eighth Annual ACM Symposium on Computational Geometry, pages102{109, 1992.4. M. A. Armstrong. Basic Topology. McGraw-Hill, London, 1979.5. R. Bellman. On the approximation of curves by line segments using dynamic pro-gramming. Communications of the Association for Computing Machinery, 4:284,1961. 31

6. M. Blakemore. Generalisation and error in spatial data bases. Cartographica,21:131{139, 1984.7. B. Butten�eld. Treatment of the cartographic line. Cartographica, 22:1{26, 1985.8. D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Implicitly searching convo-lutions and computing depth of collision. In Algorithms: International SymposiumSigal 90, number 450 in Lecture Notes in Computer Science, pages 165{180, 1990.9. D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number ofpoints required to represent a line or its caricature. The Canadian Cartographer,10(2):112{122, 1973.10. P. Egyed and R. Wenger. Ordered stabbing of pairwise disjoint convex sets in lineartime. Discrete Applied Mathematics, 31:133{140, 1991.11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W. H. Freeman and Company, New York, 1979.12. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli�ed NP-completegraph problems. Theoretical Computer Science, 1:237{267, 1976.13. S. K. Ghosh. Computing the visibility polygon from a convex set and related prob-lems. Journal of Algorithms, 12:75{95, 1991.14. M. Godau. Die Fr�echet-Metrik f�ur Polygonz�uge|Algorithmen zur Abstandsmessungund Approximation. PhD thesis, Fachbereich Mathematik, FU Berlin, 1991.15. R. Graham. An e�cient algorithm for determining the convex hull of a �nite planarset. Information Processing Letters, 1:132{133, 1972.16. L. Guibas, L. Ramshaw, and J. Stol�. A kinetic framework for computationalgeometry. In Proceedings of the 24th IEEE Symposium on Foundations of ComputerScience, pages 100{111, 1983.17. L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Minimumlink approximation of polygons and subdivisions. In W. L. Hsu and R. C. T. Lee,editors, ISA `91 Algorithms, number 557 in Lecture Notes in Computer Science,pages 151{162. Springer-Verlag, 1991.18. L. J. Guibas and R. Seidel. Computing convolutions by reciprocal search. Discrete& Computational Geometry, 2:175{193, 1987.19. S. L. Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points inthe plane. CVGIP: Graphical Models and Image Processing, 53(2):132{136, 1991.20. J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line simpli�ca-tion algorithm. In Proceedings of the 5th International Symposium on Spatial DataHandling, pages 134{143. IGU Commision on GIS, 1992.21. J. Hershberger and J. Snoeyink. Computing minimum length paths of a givenhomotopy class. Computational Geometry: Theory and Applications, 1993.22. H. Imai and M. Iri. Computational-geometric methods for polygonal approximationsof a curve. Computer Vision, Graphics, and Image Processing, 36:31{41, 1986.23. H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linearfunction. Journal of Information Processing, 9(3):159{162, 1986.24. H. Imai and M. Iri. Polygonal approximations of a curve|formulations and al-gorithms. In G. T. Toussaint, editor, Computational Morphology. North Holland,1988.25. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions andcollision-free translational motion amidst polygonal obstacles. Discrete & Compu-tational Geometry, 1:59{71, 1986. 32

26. D. Leven and M. Sharir. Planning a purely translational motion for a convex polyg-onal object in two dimensional space using generalized Voronoi diagrams. Discrete& Computational Geometry, 2:9{31, 1987.27. D. Litchenstein. Planar formulae and their uses. SIAM Journal on Computing,11(2):329{343, 1982.28. R. B. McMaster. A statistical analysis of mathematical measures for linear simpli-�cation. The American Cartographer, 13:103{116, 1986.29. R. B. McMaster. Automated line generalization. Cartographica, 24(2):74{111, 1987.30. R. B. McMaster. The integration of simpli�cation and smoothing algorithms in linegeneralization. Cartographica, 26(1):101{121, 1989.31. A. Melkman and J. O'Rourke. On polygonal chain approximation. In G. T. Tous-saint, editor, Computational Morphology. North Holland, 1988.32. J. R. Munkres. Topology: A First Course. Prentice-Hall, Englewood Cli�s, N.J.,1975.33. B. K. Natarajan and J. Ruppert. On sparse approximations of curves and functions.Manuscript, 1991.34. J. O'Rourke. An on-line algorithm for �tting straight lines between data ranges.Communications of the Association for Computing Machinery, 24(9):574{578, Sept.1981.35. J. Perkal. On the length of empirical curves. In Discussion Paper 10, MichiganInter-University Community of Mathematical Geographers, University of Michigan,Ann Arbor, 1966.36. F. P. Preparata. An optimal real time algorithm for planar convex hulls. Commu-nications of the Association for Computing Machinery, 22(7):402{405, 1979.37. U. Ramer. An iterative procedure for the polygonal approximation of plane curves.Computer Vision, Graphics, and Image Processing, 1:244{256, 1972.38. A. Rosenfeld. Axial representation of shape. Computer Vision, Graphics, and ImageProcessing, 33:156{173, 1986.39. S. Suri. A linear time algorithm for minimum link paths inside a simple polygon.Computer Vision, Graphics, and Image Processing, 35:99{110, 1986.40. G. Toussaint. On the complexity of approximating polygonal curves in the plane.In Proc. IASTED, International Symposium on Robotics and Automation, Lugano,Switzerland, 1985.41. E. R. White. Assessment of line-generalization algorithms using characteristicpoints. The American Cartographer, 12(1):17{27, 1985.42. C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curvesegments. Discrete & Computational Geometry, 2:365{393, 1987.
33

