International Journal of Computational Geometry & Applications
© World Scientific Publishing Company

APPROXIMATING POLYGONS AND SUBDIVISIONS
WITH MINIMUM-LINK PATHS

LEONIDAS J. GUIBAS

Dept. of Computer Science, Stanford, CA USA 94305
DEC SRC, 180 Lytton Ave, Palo Alto, CA USA 94301

JOHN E. HERSHBERGER
DEC SRC, 180 Lytton Ave, Palo Alto, CA USA 94301

JOSEPH S. B. MITCHELL*
Dept. of Applied Math, SUNY, Stony Brook, NY USA 11794-3600

JACK SCOTT SNOEYINK!
Dept. of Computer Science, UBC, Vancouver, B.C. Canada V6T 172

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We study several variations on one basic approach to the task of simplifying a plane
polygon or subdivision: Fatten the given object and construct an approximation inside
the fattened region. We investigate fattening by convolving the segments or vertices with
disks and attempt to approximate objects with the minimum number of line segments,
or with near the minimum, by using efficient greedy algorithms. We give some variants
that have linear or O(nlogn) algorithms approximating polygonal chains of n segments.
We also show that approximating subdivisions and approximating with chains with no

self-intersections are NP-hard.

Keywords: Polygonal approximation, link metric, cartographic line simplification, curve

segmentation, Fréchet metric

1. Introduction

In the practical application of computers to graphics, image processing, and
geographic information systems, great gains can be made by replacing complex ge-
ometric objects with simpler objects that capture the relevant features of the orig-
inal. The need for simplification is most clearly seen in cartography. McMaster?®

*Partially supported by a grant from Hughes Research Laboratories, Malibu, CA, and by NSF

Grant ECSE-8857642.

tPortions of this research were performed while visiting Utrecht University and being supported

by the ESPRIT Basic Research Action No. 3075 (project ALCOM).

lists ways that current methods and technology benefit from data simplification and
reduction, including reduced storage space and faster vector operations, vector to
raster conversion, and plotting. Improving computation and plotting capabilities
does not always help; currently, the speed of data communication is often the bot-
tleneck. Even manual cartography depends on simplification: boundaries must be
simplified when drawing a map at a smaller scale or the map becomes unreadable
because of the inconsequential information it presents. A good example is the map
in Lewis Carroll’s Sylvia and Bruno with a scale of 1: 1.

The theme of our approach to the task of simplifying a plane path, polygon, or
subdivision is: Fatten the given object and construct an approrimation inside the
fattened region. This theme has many variations. In this section, we consider some
variants that apply to the cartographers’ line simplification problem. In section 2
we briefly survey the literature on this and related approximation problems.

A list of n points p1,pa, ..., pn defines a polygonal chain with line segments or
links pip; 1. Given a polygonal chain C', the line simplification problem asks for a
polygonal chain C with fewer than n links that represents C' well. If the criterion
of representing C' well 1s that every point of the approximation C be within ¢ of
a point of (', then the following fattening method could be used. Paint C' with
a circular brush of radius € to obtain a fattened region. Then use a minimum-
link path algorithm to approximate C' within the fattened region, as illustrated in
figure la.

Figure 1: Some approaches to fattening and approximating a polygonal chain

Mathematically, this fattening entails computing the convolution of a path, poly-
gon, or subdivision S with a disk (or some other shape) to obtain a region R in
the plane. The convolutions that we are interested in can be computed by several

known methods:!%!® Given the Voronoi diagram?©:42

of the line segments of S, one
can compute the convolution R on a per-cell basis. Alternatively, divide and con-
quer algorithms can be used.®?° Both of these methods run in in O(nlogn) time

for convolution by disks or constant size polygons.

In the convolution R, the given polygon or subdivision S defines a homotopy
class of curves that can be deformed to S without leaving the region R. We can at-
tempt to find a minimum link representative of the homotopy class. Section 3 makes
the definitions for such a “homotopy method” more precise. Its four subsections
contain the following results:

Sec. 3.1 We briefly recall the minimum-link path algorithms developed in a previ-
ous paper?! and apply them to approximate paths and polygons. These are
greedy algorithms that, after the region R has been triangulated, find a path
in time proportional to the number of triangles that the path passes through.

Sec. 3.2 In contrast, we show that the problem of computing a minimum link
subdivision is NP-hard. The difficulties comes in optimal placement of vertices
of degree three or more; if these are fixed, then we can find the optimum for
each chain independently using a minimum link path algorithm.

Sec. 3.3 Returning to polygons, we show that the problem of finding a minimum
link simple polygon, that is, one with no self-intersections, is also NP-hard.

Sec. 3.4 Given aregion R with h holes, we show that we can find a simple polygon
enclosing the holes with at most O(h) links more than the minimum link

polygon.

Returning to the line simplification problem, we can see some “features” of
this fattening method that are undesirable in some applications. For example,
convolution may create quite large regions where the original chain C' was dense in
the plane; vertices p; in these regions can be quite far from the approximation 6’,
even though every point of C is close to C. A simple example 1s a sharp corner
of angle 26. If we fatten the segments by ¢, the minimum link path can be as
far away as ¢/ sin 6—a 10° corner can be 11.4¢ from the approximation. Also, the
convolution itself is difficult to compute robustly.

To address these problems, we consider fattening just the vertices p; of the
chain C' by replacing each vertex with a disk of radius €. We then require that
our approximation “visit” each of these disks in order. This method, illustrated
in figure 1b, would ensure that vertices of the chain C' would be within ¢ of its
minimum link approximation C. If we further restrict the path to turn only inside
the vertex disks as shown in figure lc, then C would also remain within ¢ of the
original chain C'. An alternative shown in figure 1d, which is more in the spirit of
the convolution approach and for which minimum link paths are easier to compute,
is to convolve each link of (' separately with a disk of radius ¢, glue the resulting
tubes at the vertex disks that they share, then compute a minimum link path in this
region. Notice that turns are allowed in the tubes and not just the vertex disks,
but also that the region formed 1s not planar—it overlaps itself at every angle.

Section 4 generalizes this approach slightly to a problem we call ordered stabbing:
given an ordered list of disjoint convex objects, find a polygonal chain that visits
the objects in order. We have taken the name from Egyed and Wenger'®, who
developed a linear-time greedy algorithm for computing a line stabbing disjoint

objects in order, if such a line exists. We extend their algorithm to stabbing with
a polygonal chain under three possible restrictions on vertices of the stabber (no
restriction, in objects, or in tubes). We also study various definitions of “visiting
order” for stabbing disks that may intersect.

Sec. 4.1 We examine Egyed and Wenger’s algorithm!®, which uses Graham scan
to compute a ordered stabbing line for an ordered set of objects in which
consecutive objects are disjoint.

Sec. 4.2 We modify the algorithm to stab intersecting translates of a convex object
(e.g. unit disks) with a line, under four definitions of visiting or stabbing
order. (The conference version of this paper!” was incorrect in not restricting
the type of intersecting objects.)

Sec. 4.3 We extend the definition of ordered stabbing to polygonal chains. Stab-
bing line algorithms then give a simple procedure for computing a path that is
at most a multiplicative factor of two from the minimum-link ordered stabbing
path.

Sec. 4.4 We give a dynamic programming approach to compute the minimum-link
ordered stabbing path of intersecting translates of a convex object, when path
vertices are not restricted to lie in the translates.

Sec. 4.5 We give a linear-time greedy algorithm to compute the minimum-link
ordered stabbing path for a set of objects in which consecutive objects are
disjoint.

2. Previous results on approximation

Cartographers have a large catalog of algorithms for the line simplification prob-
lem and many measures by which to classify them.”?%3% Their algorithms either
seek a rough but quick reduction of the data or else an accurate but slow reduction.
In comparative tests, the Douglas-Peucker algorithm® (also proposed by Ramer3")
produces the most satisfactory output, but its speed has been criticized.?®*! The
running time of the Douglas-Peucker algorithm has a quadratic worst-case in current
implementations, although this can be improved to O(nlogn) worst-case.?’

A common feature of simplification algorithms i1s that they use original data
points as vertices of the approximation, even these points come from a digitizer
with some error. This could be reasonable, except the volumes of data and slowness
of accurate reduction algorithms lead to using two or more phases of approxima-
tion. In the process of reducing a stream of digitized data to vectors to be plotted
on a map, a cartographer may first cast out points until the remaining points are
separated by at least ¢, and then apply a more complex line simplification algo-
rithm to reduce the data further for storage or display. Though the properties of
the individual algorithms are characterized and classified, the properties of these

6,35,38

heuristic combinations are not. Criteria much like our € fattening are then

used a posterior: to test the quality of the resulting approximations.

22,23,24 and other researchers?%19:19,31,34,40 | 56 chogsen mathemati-

Imai and Iri
cal criteria for the approximations and then sought efficient algorithms to find best
approximations. The algorithms they have developed, however, have quadratic or
greater running times—especially for those that use original data points as vertices
of the approximation.

We remove the restriction that vertices of the approximation must be origi-
nal data points in an attempt to find faster algorithms that fulfill mathematical
specifications. Our goal is linear or O(nlogn) algorithms that find the best ap-
proximation. Failing that, we may look for a slower algorithm or find a suboptimal
approximation—we usually opt for the latter, especially if we can determine how

close the approximation is to the optimal.

3. Homotopy classes and minimum link representatives

We begin by studying approximations to polygonal chains and subdivisions that
are computed by fattening the original and finding minimum-link paths and subdi-
visions inside the fattened region.

For this section, we abstract away the method and mechanics of fattening and
just suppose that we have a path, polygon, or subdivision S in the plane and a
region R containing S. If we bend and move the components of S, without leaving
R, we obtain other paths, polygons, or subdivisions that could be said to be equiv-
alent to S by deformation within R. The topological concept of homotopy formally
captures this notion of deformation. Let « and 8 be continuous functions from a
topological space S to a topological space R. Functions « and 3 are homotopic
if there is a continuous function I': S x [0,1] — R such that T'(s,0) = a(s) and
['(s,1) = B(s). One can see that homotopy is an equivalence relation.*3?
We specialize this definition for paths, polygons, and subdivisions:

e Informally, two paths are path homotopic if one can be deformed to the other
in R while keeping the endpoints fixed. Formally, we set S = [0, 1] and find a
function T where T'(0,?) and T'(1,¢) are the two paths and T'(s,0) and T'(s, 1)
are the endpoints of the paths.

e A polygon is the image of a circle S! under a continuous map into R. Two
polygons with maps « and 3 are homotopic if there is a continuous map

[: St x [0,1] — R such that ['(z,0) = a(z) and ['(z,1) = B(z).

e Two subdivisions @ and 2 in R are homotopic in R if « can be deformed to

4 within R.

If the fattened region R is actually obtained by convolving the path, polygon, or
subdivision S with a disk of radius ¢ (that is, by drawing it with a fat brush) then
the minimum-link object homotopic to S not only remains within ¢ of the original,
but can also be deformed to the original while remaining within e.

The homotopy class can be represented to a computer by giving a representative
path, such as the Euclidean shortest path that is homotopic to .S. A more useful
representation for computation comes from triangulating the the region R so that

all of the vertices of the triangulation are on the boundary. The homotopy class of
S can be represented by the sequences of triangles and triangulation edges that the
curves of .S intersect.

3.1. Computing minimum link paths and polygons of a given homotopy type

Hershberger and Snoeyink?! have investigated computing minimum link paths

and closed curves of a given homotopy class in triangulated polygons. (They also
consider minimum length and restricted orientations.) They prove:
Theorem 1 One can compute a minimum link path o that is homotopic to a chain
a i time proportional to the number of links of o and the number of triangles
intersecting o and o'. In the same time, one can compute a closed polygon o
homotopic to a polygon o and having the minimum number of links if o' is non-
convexr or at most one more than the minimum number if o' is conver.

These paths and polygons are computed by a greedy procedure, following Suri®®
and Ghosh.'? In brief, the idea is to illuminate as much of the region R as possible
from the starting endpoint of a path; this is as far as one link can reach. Repeat the
illumination from the appropriate boundary of the lit area until the goal point is
found. The “appropriate boundary” is determined by the homotopy class of a—or
more specifically, by the triangulation edges crossed by the Euclidean shortest path
of the homotopy class of &. Thus, we have an algorithm whose running time is a
small polynomial in the complexity of the fattened region and the input and output
paths.

3.2. The man-link subdwision problem s NP-hard

Given a subdivision S in a polygonal region, P, the min-link subdivision prob-
lem (MinLinkSub) asks for the polygonal subdivision S* homeomorphic to S in P
that is composed of the minimum number of line segments. This problem is re-
lated to simplifying an entire map. We look at the decision problem to show that
MinLinkSub is NP-hard: Given S and P and an integer k, i1s there a polygonal
subdivision S’ with at most k segments that is homeomorphic to S in P?

First, we note that the planar case of a problem that Garey, Johnson and
Stockmeyer!? have called maximum 2-sat (Max2Sat) is NP-complete. The gen-
eral case of Max2Sat is: Given a set of variables V', an integer k, and disjunctive
clauses C,CY, ...,), each containing one or two variables, determine if some truth
assignment to the variables satisfies at least k& clauses. The variable graph of an
instance of Max2Sat is defined to be the graph G = (V,), with an edge (u,v) € E
if and only if the variables u and v appear together in some clause C;. An instance
of Max2Sat is planar if its variable graph is planar.

Theorem 2 Planar mazimum 2-sat (Maz25at) is NP-complete.

Proof: One can guess a truth assignment and, in linear time, verify that at
least k clauses are satisfied. Thus, planar Max2Sat is in NP.

Garey, Johnson, and Stockmeyer'? prove that Max2Sat is NP-hard by re-
ducing 3-sat to Max2Sat. Their reduction preserves planarity, so we use it to

reduce planar 3-sat to planar Max2Sat and show that the latter is also NP-hard.

Consider an instance of planar 3-
sat with m clauses. Since we can du- e e
plicate variables, we can assume that
each clause has three variables. Con-
struct an instance of Max2Sat by re- @ - e
placing every clause (a; V b; V ¢;) with = /\
ten clauses (a;), (b;), (i), (di), (a;Vb;), (®) OO, ©)
(bi V ei), (ai V ei), (a; vV dy), (b V dy),
and (¢; V d;). At most six of these Figure 2: From planar 3-sat to planar
clauses can be satisfied if the original Max2Sat
was not—seven can be satisfied if the original was. Thus, a total of 7m 2-sat
clauses can be satisfied if and only if all m 3-sat clauses can be satisfied.

Given a planar embedding of the clauses and variables of the 3-sat instance,
we form a planar embedding of the Max2Sat variable graph by replacing the
clause (a; V b; V ¢;) with the variable d; as shown in figure 2. Since planar 3-sat
is NP-hard %27 planar Max2Sat is, too. O

We prove that the minimum link subdivision problem, MinLinkSub, is NP-
hard by taking an instance of planar Max2Satand constructing an instance of Min-
LinkSub that has a solution if and only if the instance of Max2Sat has a solution.
Let us take an informal look at the gadgets for truth assignments and for unary and
binary clauses that are used in the construction. We embed the variable graph of
the 2-sat instance in the plane with straight-line edges such that no edge is vertical.
Then we fatten each vertex to a disk and each edge to a rectangular strip build
our MinLinkSub instance within the resulting region. Within each disk we place
true and false points, directly above and below the disk center, and force the vertex
of the minimum-link subdivision to lie at one of these points by using appropriate
gadgets.

Figure 3: An enforcer and its cone

For a unary clause, we add an enforcer pointing to the true point for a positive
clause and the false point for a negative clause. Figure 3 illustrates an enforcer—
dashed lines are subdivision edges and solid lines are region boundaries. The en-
forcer can be realized by four line segments if and only if the subdivision vertex lies
in the shaded cone.

For the binary clauses on two variables, we divide the rectangular strip of the
fattened edge joining the two variables into four strips. In each we form negaters
for variables that need them and a gate to simulate an OR gate. Figure 4 illustrates

a negater and gate combination for the clause (a V b)—the dashed line is the subdi-
vision edge, solid lines are region boundaries, and grey lines are possible satisfying
assignments.

Figure 4: A negater and gate combination for (a V b)

In a minimum link subdivision, each clause that is not satisfied requires one
extra line segment. Thus, there is a number, &/, such that % clauses of the instance
of Max2Sat can be satisfied if and only if the instance of MinLinkSub uses at most
k' line segments. Theorem 3 shows that this construction can be carried out.
Theorem 3 MinLinkSub is NP-hard.

Proof: We prove that MinLinkSub is NP-hard by a reduction from Max2Sat.

Embed the variable graph, G, of a Max2Sat instance in the plane with
straight edges such that no edge is vertical. Let #;, be the minimum angle
between edges, 8yt be the minimum angle of an edge from vertical, d. be the
length of the shortest edge, and dy. be the shortest distance from a vertex to
a non-incident edge. Table 1 lists these and other important dimensions of the
construction, figure 5 illustrates them, and table 2 gives the relations between
them.

We fatten the vertices of G to vertex disks of radius r, and edges to strips of
width w. This fattening preserves the face structure of G if there is a one-to-one
correspondence between the faces of G and the connected components of the
complement of its fattening such that a face bounded by a sequence of edges
and vertices maps to a component bounded by portions of the disks from the
same edges and vertices in the same sequence. Conditions 2—4 in table 2 ensure

Variable Description
de Length of shortest edge
dye Shortest distance from a vertex to a non-incident edge
B min Minimum angle between two edges
Byvert Minimum angle of an edge from vertical
Ty Radius of vertex disks (fattened vertices)
w Width of fattened edge
[Radius of boolean disks (e.g. the ball around a true point)
h Height of true point above a vertex
Bens Minimum angle between two enforcers
c Enforcer cone width at r,

Table 1: Variables for the construction, illustrated in figure 5

Constraint Reason

1. de, dye, Omin, Overt Given by the embedding

2. 0<ry <de/8 Vertex disks don’t engulf edges

3. 0<w < rytan(fmin/2)/2 Vertex disks appear on face between adj. edges
4. ry +w < dye No edge & vertex become incident by fattening
5. tan(fent/2) > ¢/rp No point outside a bool. disk is in three cones
6. 2h+ 1) < w/8 Boolean disks are visible along fattened edges
7. sin(fvert /2) > 1/ h Slopes that intersect both bool. disks < fyept /2

Table 2: Constraints on the variables. (See table 1 and figure 5.)

that the fattening of G' by r, and w preserves the face structure.

Within each vertex disk we place true and false points, h above and h below
the vertex. Around each point, we draw a boolean disk of radius r,. We can
force the vertex of a minimum link subdivision to lie in one of these two boolean
disks by using enforcers, each consisting of a path from the vertex to a small
triangle such that the path can be a single line segment if the vertex lies inside
the enforcer cone as illustrated in figure 3. The enforcers are placed around the
vertex disks; the cones can be made to have radius at most ¢ at distance r, by
moving the walls of the enforcer together.

For a variable used in & binary clauses, we add k& + 3 enforcers pointing
to each boolean disk. If condition 5 holds, then cones from enforcers pointing
to the same boolean disk do not intersect outside the disk; this implies that
any point outside the boolean disks lies in at most two enforcer cones. In a
minimum link subdivision, each subdivision vertex is placed in a boolean disk
because placement at any other point causes at least 2k + 4 enforcers to have an
extra line segment, while placement at a true or false point adds k 4 3 segments
to enforcers and at most k to clauses. Thus, the placement of a vertex in a
minimum link subdivision can be interpreted as a truth assignment.

Next we form clauses. For a unary clause, we simply add another enforcer
pointing to the true point for a positive clause or the false point for a negative

- ﬂ‘@?)

= :

e " 7 AN
2 4

b
&)

Figure 5: Variables in the construction, described in table 1.

Q]

clause.

For the binary clauses on a given pair of variables, we divide the fattened
edge into four strips and form boolean balls at both ends of each strip. Then,
for a clause (an OR gate) with both variables positive, we add a block within
a strip so that the edge can be a single line segment if and only if one of the
incident vertices 1s placed in a true disk. When both variables are negative, we
add the block so that one of the vertices must be placed in a false disk. When
the variables differ in sign, we pair an OR gate with a negater for the negative
literal as shown in figure 4. Condition 6 ensures that satisfiable edges can be
represented by one segment and condition 7 ensures that unsatisfiable edges
require two segments.

Each clause that is not satisfied adds one extra line segment to the minimum
link subdivision. Thus, there is some k' such that k clauses of the instance of
Max2Sat can be satisfied if and only if the instance of MinLinkSub uses at most
k' line segments. O

Placement of vertices of degree at least three is the difficult part of MinLinkSub.

If one could guess the locations of the vertices of degree three or greater, then

one could use a minimum-link path algorithm?3?:!3:2! to find paths joining adjacent

vertices: Connect each guessed vertex to its original by a path using at most n

links. Then, for every pair of adjacent vertices, @ and b, compute the minimum link

10

path homotopic to the path that goes from guessed a to original a to original b to
guessed b. The path algorithm performs this computation in polynomial time in
the size of its input.

3.8. Minimum-link stmple polygons

A desirable and natural restriction to add to the line simplification problem
is that boundaries that do not self-intersect should not be made to self-intersect.
That is, simple polygonal chains should be replaced by simple polygonal chains. In
constrast to the polynomial time algorithms of theorem 1, we show that the problem
of finding a minimum-link simple polygon of a given homotopy type (MinLinkSP)
is NP-hard by a reduction from planar Max2Sat.

The reduction i1s much like the one used in section 3.2: We embed an Euler tour
of the variable graph as a simple closed curve in the plane and place obstacles so
that graph vertices are pinned in place. Then we form toggle switches at each graph
vertex and use enforcers to ensure that an approximate path can be interpreted as
a truth assignment. Finally, we arrange negaters and gates so that an edge of the
graph can be embedded using fewer links if the clause is satisfied.

Theorem 4 MinLinkSP s NP-hard.

Proof: Suppose we are given an of Max2Sat. We puncture the plane by a

polynomial number of holes and construct a simple (non-self-intersecting), rep-

resentative curve of a homotopy class of curves in the resulting region. We prove
that there is a simple, polygonal curve in this homotopy class having fewer than

k' line segments if and only if the instance of Max2Sat has a truth assignment

satisfying at least &k clauses.

Figure 6: A graph and its edge polygon

Embed the variable graph of the Max2Sat instance in the plane so that no
edge is vertical. Add short vertical edges just above and below each vertex. By
splitting vertices, we can form a planar tree that contains all the edges of the
variable graph; an edge tree. A walk around the edge tree gives us the edge
polygon, a simple polygon in which each clause edge appears twice. See figure 6.

In subsection 3.2, we constructed a region in which the number of edges of
a minimum link embedding of a variable graph was a function of the number of

11

Figure 7: Vertex gadgets

satisfiable clauses. Here we embed the edge polygon in a manner that mimics
the variable graph embedding. For a vertex of degree d, we add a vertex gadget
of < 2d holes that the edge polygon must wind through as shown in figure 7.
We also add pentagonal holes above
and below each vertex and turn the
short vertical paths that we added to
the edge polygon into two toggles, which
together form a switch. The homotopy
class of the lower toggle 1s illustrated in
figure 8. Qualitatively, the path from
the vertex zig-zags among some holes
on on the left that we call enforcers,
then goes back and forth across the
pentagon, with more holes to hold it in
place, and then among more enforcers

on the right. The upper toggle lacks

enforcers, but otherwise is symmetric
through the vertex.

Figure 8: The homotopy class of a
Each path across a pentagon can toggle

consist of as few as three line segments.

In a minimum link embedding with no self intersections the paths across both
pentagons must be nearly parallel, as shown in figure 9, to be realized with three
segments. We then say that the toggles have parallel slants. The enforcers on
the lower toggle encourage both toggles to slant to the extreme right or left. A
switch with toggles slanting down to the right is considered set true; slanting
left 1s considered false.

The switch for a vertex corresponding to a variable that appears in & unary
and binary clauses has 2k + 1 enforcers on each side of the lower toggle so that
any slant other than extreme right or extreme left adds extra segments to 4k +2
enforcers, whereas an extreme slant adds segments to 2k 4+ 1 enforcers and at
most 2k to edges. Each toggle path goes back and forth at least 6k 4 3 times so

12

that adding segments to enforcers and edges is preferable to adding segments to
a toggle. Thus, in a minimum link path with no self-intersections, each switch is
unambiguously true or false. Because two holes are sufficient for each toggle path
and four for each enforcer, the number of holes required is less than 40(k + 1).

Figure 9: A switch with enforcers

To simulate a unary clause, we add two extra enforcers to the true (or false)
side of the lower toggle so that each enforcer each require an additional segment
if the clause 1s not satisfied. Binary clause OR gates are simulated by blocking
the appropriate segment, just as in subsection 3.2; negaters use two blocks. Fig-
ure 10 illustrates a single binary clause—the grey lines are possible embeddings
of satisfying assignments and the dashed is the embedding of an unsatisfying as-
signment. Since each edge of the variable graph is doubled in forming the edge
polygon, any binary clause that is not satisfied by a truth assignment requires
two extra line segments in the minimum link simple polygon.

Thus, there is a number, &/, such that k clauses of the instance of Max2Sat
can be satisfied if and only if the instance of MinLinkSP, the minimum link
simple polygon problem, uses at most k' line segments. O

One can break the polygon inside one of the vertex gadgets and anchor its
endpoints to obtain a path. Thus, the minimum link simple path problem is also
NP-complete.

13

Figure 10: A negater and gate combination

3.4. Minimum link stmple curves enclosing all holes

The reduction in the previous section requires holes both inside and outside the
curve; whether one can efficiently find a minimum link simple curve in a polygon
with & holes that encloses all the holes is an open question. We can find a sim-
ple curve that has only O(h) more segments than the (non-simple) minimum link
curve; this is independent of the number of segments of the minimum link curve.
We identify O(h) junction triangles of the triangulation and group the rest of the
triangles into corridors. In each corridor we find the minimum link path.

Theorem 5 In a polygon P with n vertices and h holes, one can, in O(n) time,
find a simple closed curve enclosing all the holes that has O(h) segments more than
the minimum link curve of the same homotopy class.
Proof: Let o' be the Euclidean shortest curve homotopic to a—the relative
convex hull of the holes. The curve o’ intersects any triangulation edge at most
twice.

Because all the holes are inside of o', the curve o’ does not cross any trian-
gulation edge between two holes. We cut along any edges between two holes,
forming bigger holes. Because the original holes do not intersect, the number
of cuts around the boundaries of the new holes is bounded by the length of a
circular Davenport-Schinzel sequence with at most three alternations.! Thus,
there are at most 2k — 2 cuts.

Call any triangle in which o’ crosses all three sides a junction triangle. There
are two types: three-way junctions, in which all vertices lie on the outer bound-
ary and two-way junctions, in which two vertices lie on the outer boundary and
one lies on a hole.

Removal of a three-way junction triangle leaves three connected components,
each of which must have a hole. One can form a three-way tree whose leaves

14

Figure 11: Cuts and junction triangles bound corridors

contain holes and whose internal nodes are three-way junctions such that the
holes of a component formed by removing a junction are all in the same subtree.
This implies that the number of three-way junctions is at most h — 2. Further-
more, one can cut the edge of a two-way junction that goes from outer boundary
to outer boundary to separate P into two components, each of which has a hole
and in one of which the hole has a vertex of the junction triangle. A particular
partition of holes can happen in only two ways, so there are only 2h two-way
junction triangles.

The triangles with at least one vertex on the outer boundary can now be
grouped into maximally connected corridors, bounded by junction triangles and
cuts, through which the shortest path o’ passes one or two times. Within each
corridor, C'; we find the minimum link path S¢ that goes from p¢, the midpoint
of one bounding junction triangle, to ¢¢, the midpoint of the other, using a
minimum link path algorithm as discussed in section 3.1.

The minimum link path S¢ may require more segments than the minimum
link path from pe to ¢¢ of the same homotopy type because the latter path may
cross cuts that bound the corridor. A path that crosses a cut, however, does
so an even number of times. By connecting the first and last crossing with a
portion of the cut, we obtain a path that remains within the corridor and has
only as many additional segments as there are cuts bounding the corridor. As
we argued above, the number of cuts bounding all corridors i1s at most 2h — 2.

Finally, we link up the paths through corridors into a closed curve g in
the homotopy class of a. The curve gains at most two segments more than
the minimum curve through corridors for each junction triangle that it passes
through. Thus, 8 is within O(h) line segments of the minimum link closed curve
enclosing the & holes. O

The worst case for our procedure has no cuts, h — 2 three-way junctions and h
two-way junctions. This results in 10h — 12 additional line segments. We have yet
to find a polygon that requires more than 2h — 2 additional segments to make a
minimum link curve simple.

15

4. Ordered Stabbing

In this section, we study the ordered stabbing problem: Given an ordered se-
quence of n convex objects, @ = {01,0s,...,0,}, find a polygonal chain, con-
sisting of the minimum number of line segments, that wvisits the objects in order.
Different variants of the ordered stabbing problem arise from restrictions on the
stabbed objects or stabbing path as well as from different definitions of “visiting
order.” We consider several variants in the following subsections, emphasizing those
for which there are efficient greedy algorithms.

4.1. Ordered stabbing of disjoint objects with a line

Egyed and Wenger!'? looked at the problem of stabbing disjoint convex objects
in order with a line. They show that the actual shape of the objects matters less
than the ability to find inner and outer common tangents—if one assumed that
computing these tangents took constant time, then one could find a line stabbing
the objects in order by a simple Graham scan. We reinvent (and simplify) their
algorithm for stabbing disjoint objects with a line and extend it in later subsections.

It may help to think about a simple instance of ordered stabbing: Is there a
line stabbing a set of vertical segments ordered by z-coordinates? To answer this
question, one can form the convex hulls of the “above” endpoints of segments and
the hull of the “below” endpoints. If these hulls are separable—if they have inner
common tangents, for example—then and only then does a stabbing line exist. We
define support hulls and limiting lines to allow us to use this method for stabbing
more general objects.

If « is a direction, then let —« denote the reverse direction.

We call an object O € O a support object for direction « if

there is a line £, in direction « such that O lies on and to

the left of ¢, and no object O' € @ lies strictly to the left

of £,. The support object in figure 12 is shaded. The line ¢, is

called a support line for direction « and the point or points of

ON{, are called support points. We can observe the following Ly
connection between support lines and stabbing lines.

Observation 1 The lines parallel to direction « that stab a Figure 12:

set of objects O are evactly the lines to the left of both support Support line £,
lines £y, and {_,, if any exist.

By analogy with the convex hull of segment endpoints, we can define the support
hull of a set of n objects as the circular list of support objects, ordered by the angles
of their support lines. Repetitions are possible, as figure 13 shows, but if any two
objects O and O’ have at most two outer common tangents, then any subsequence
of the list can have only two alternations between O and O’. Thus, the size of the
list is at most 2n — 2 by Davenport-Schinzel sequence bounds'.

A support line £, is a limiting line if its reverse ¢_, 1s also a support line, as
shown in figure 13. Limiting lines are analogous to inner common tangents. A
limiting line £, hits two support points; we name them the first contact, p, and

16

second contact, q, so that the vector ¢ — p has direction ov. We name the objects
that contain these points the first and second contact objects for £, respectively. We
can distinguish two types of limiting lines: ¢, is a counterclockwise (ccw) limiting
line if the first contact p is the support point for £,, as shown in figure 13, and a
clockwise (cw) limiting line if the second contact ¢ is the support point for 4.
Limiting lines are stabbers, as in
figure 13, but rotating a ccw limiting
line counterclockwise gives a line that
is no longer a stabber. In our ordered
stabbing problems, we will find at most
one limiting line of each type; they will
delimit the possible slopes for stabbing
lines. The above and below portions of
the support hull between these slopes
limit the extent that a stabbing line
can move up and down. Thus, the

hulls and limiting lines give a linear

size description of all possible stabbers. Figure 13: Support hull with limiting

In the rest of this section, we show how I
ines

to maintain this description under the
assumption that basic operations, such as computing the intersection of an object
with a line and computing common tangents of two objects, take constant time.
We prove the following theorem.
Theorem 6 Let O = {01,02,0s,...} be a sequence of convex objects in which
consecutive objects are disjoint. One can compute a line that stabs the longest
possible prefiz O1,04,...,0; in order using O(i) time and space.
Proof: We outline the idea; algorithm 1 gives more complete pseudocode.
Assume that a vertical line separates
the first two objects with Oy left of O,
as 1n figure 14. We can easily compute

a description of all ordered stabbers for
01 and Os: Initialize the ccw limiting
line ¢ and the cw limiting line ¢’ to the

appropriate inner common tangents di-
rected from O; toward O,. Two por-

tions of the support hull have slopes that
fall between the slopes of ¢ and ¢’; these

Figure 14: Initial description

portions are delimited by the contact
points of ¢ and #. We name them the above hull, A, and the below hull, B, as
shown. To represent A and B, we store the list of support objects in a deque—a
doubly-ended queue—which we will maintain by a Graham scan procedure.!®
Initially, both deques contain O; at the tail and O» at the head.

We would like to add objects successively and maintain the description of

ordered stabbers. Given above and below hulls A and B for the first ¢ objects and

17

DATA STRUCTURES: Store the above support hull A, in a deque that supports the
following in constant time: The operations Push(A, end, O;) and Pop(A, end) push
and pop objects from the head or tail of A, depending on whether end is head or tail.
Pointers Tail(A), NTail(A4), NHead(A) and Head(A) are maintained to the tail
(lowest index) next-to-tail, next-to-head, and head (highest index) objects in A.
Store B similarly.

INITIALIZATION: Place object O; at the tail and Oy at the head of both A and B
and set limiting lines ¢ and ¢’ to the ccw and cw inner common tangents. Then set
¢ := 2 and execute the following algorithm to add O;4.

1. While O;4 intersects the wedge between ¢ and ' and right of O; do
2. If O;41 does not intersect ¢ then

(x Update the head of support hull A *)
3. While Head(A) is above the higher outer common tangent
from NHead(A) to O;41 do
4. Pop(A4, head)
EndWhile
6. Push(A, head, O;41)
(x Update ccw limit line t and the tail of support hull B)
7. Set ¢ to the ccw inner tangent from Tail(B) to 0,41
8. While NTail(B) is not below ¢ do
9. Pop(B, tail)
10. Set t to the cew tangent from Tail(B) to 0,41
11. EndWhile
12. EndIf

13. If O;41 does not intersect ¢’ then
(x Update the head of support hull B *)
14. While Head(B) is below the lower outer common tangent
from NHead(B) to 0,11 do
15. Pop(B, head)
16. EndWhile
17. Push(B, head, O;41)
(x Update cw limit line t' and the tail of support hull A *)
18. Set ¢’ to the cw inner tangent from Tail(A4) to O;14
19. While NTail(A) is not above ¢ do
20. Pop(A, tail)
21. Set t' to the cw tangent from Tail(A) to O;41
22. EndWhile
23. EndIf
24. Set ¢ :=1+ 1.
25. EndWhile

&

Algorithm 1: The basic algorithm for the ordered stabbing of disjoint objects with
a line

18

limiting lines ¢ and ¢/, we want to add object O;41. We define the line-stabbing
wedge to be the region between ¢ and ¢’ that is right of object O;—drawn shaded
in figures 14 and 15. For every point p in the line-stabbing wedge there is a line
through p that visits the first ¢ objects before visiting p. If O;41 does not
intersect the wedge, then no stabbing line visits the first ¢ + 1 objects in order.
If it does, then we update the limiting lines, which are ordered stabbing lines,
and the portions of the support hull.

If the cew limiting line ¢ does
not intersect object O;41, then we
must move ¢ clockwise until it does.
We also update the head of the
above hull list A by Graham scan.
Specifically, to add object O;y1
to A, some suffix may first need
to be removed as in lines 3 to 6
of algorithm 1. Furthermore, the
first contact object of ¢ in B may

change during the motion. If it
does, the old contact is removed
from the tail of B by line 9. The Figure 15: Updating the wedge and hulls
cw limiting line ¢’ is handled sim-
ilarly.

All operations performed when O, is added take constant time except for
deque maintainence. Since an object is added to each deque once and removed at

most once, the total computation is linear in the number of objects considered. O

Remark: We described the algorithm as started at the beginning of the sequence
of objects and always adding objects to the end. Because adding objects to the tail
(in reverse sequence, of course) is symmetrical, one could begin in the middle and

add to both sides.

4.2. Ordered stabbing of intersecting unit disks with a line

In this section, we extend algorithm 1 to stab an ordered set of possibly in-
tersecting unit disks with a line. Our algorithm can be applied to translates of a
constant-sized convex polygon as well—unit squares, for example, which arise when
e-disks are computed in the Ly or Lo metrics. We continue to say “disks” for
convenience.

We consider four possible definitions of wisiting order for intersecting objects.
All four definitions are equivalent to the natural definition if the objects are disjoint.
Given two points p and ¢ on a directed line ¢, we say that p < ¢ if the vector from p
to ¢ 1s in the direction of £. Let the intersection £N O; have extreme points a; < b;.
Given a sequence of objects 01,032, ...,0, and a line ¢ such that the intersection
£ N O; has extreme points a; < b;, we say that ¢ visits the objects in order if

19

Def. 1: Line ¢ exits the objects in the correct order: For i < j, we have
b; < b]'.

Def. 2: Line ¢ enters the objects in the correct order: For ¢ < j, we have
a; < aj.

Def. 3: Line £ both enters and exits the objects in the correct order: For
t < j, we have a; < a; and b; < b;.

Def. 4: Line ¢ hits points py,ps,...,pn, With p; € £ Oy, in the correct
order: For ¢ < j, the point p; < p;.

Definitions 1 and 2 could be considered equivalent: given an algorithm that
computes stabbing lines for one definition we can compute stabbing lines for the
other by reversing the sequence of objects. We will, however, combine the algorithms
for 1 and 2 to handle definition 3. Since the algorithms that compute stabbers
without reversing the sequence are slightly different, we treat definitions 1 and 2
separately. Definition 4 is perhaps the most natural and, as we will see in section 4.3,
is related to the Fréchet metric.

As in the previous section, our task 1s to maintain support hulls and line-
stabbing wedges as we consider disks O1,0;,...,0, in sequence. The wedge
for 01,0, ...,0;, which is the locus of all points p such that some line visits
01,03, ...,0; in order and then visits p, depends on the definition of visiting or-
der.

Theorem 7 Let O = {01,02,0s3, ...} be a sequence of unit disks or translates of a
constant-size conver polygon. One can compute a line that stabs the longest possible
prefir 01,04, ..., 0; using O(i) space and O(3) time for visiting order definitions
1-3 or O(ilog?) time for definition 4.

Proof for Def. 1: Let us begin with definition 1: exiting the disks in the correct
order. A way to view the result that we are trying to obtain is to imagine that the
disks are painted on the plane in reverse order—starting with disk O,. An ordered
stabbing line must exit a visible portion of the boundary of each disk. We will not
compute this “painting;” it will, however, guide us in modifying algorithm 1 to add
disk O;41 and update the description of the stabbers of the first ¢ disks. First we
outline how to maintain this description, then how to initialize it.

Figure 16: Updating the wedge under definition 1

To add O;41, we must determine the ordered stabbers of Oq,...,O; that exit
O; 41 after O;. As before, the line-stabbing wedge is the region between the limiting

20

lines ¢ and ¢’ and right of O;. Because O; is exited last, no disk O; with j < i
intersects the wedge. Also as before, if O;41 does not intersect the wedge then no
stabbing line exists.

In our imaginary painting, ;411 may be obscured by O;; thus, we discard por-
tions of O;41 that lie outside the line-stabbing wedge. By restricting our objects
to translates of a given object, we can be assured that what remains of O;y1 is
connected. If what remains does not intersect the ccw limiting line ¢, then we must
update the support hulls and the line ¢.

First update the head of the above hull A, as in lines 3 to 6 of algorithm 1.
If O; and O;41 intersect, then their upper intersection point may become a point
on the support hull, as will occur in figure 16. To this end, the tangent from this
intersection point to NHead(A) must be considered in line 3 and the deque data
structure must be extended to store support points as well as support disks.

Once the support hull A is updated, ¢ moves clockwise until it comes to rest on
the disk or point that is last in A. This may cause disks to be removed from the
tail of B as in line 9. The cw limiting line is adjusted in a similar fashion.

What remains is to initialize the description of or-
dered stabbers. We can reuse the description of figure 14 t
if O; and O3 do not intersect. If they do intersect, the \ ________
description 1s rather strange. The above hull A con-)
sists of Oy follwed by the upper intersection point of ! O1 02
01N O3; the below hull B of O; and the lower intersec-
tion point. The limitinglines, then, are tangents from an ,/ """"
intersection point to O; that cannot be rotated further t
as shown in figure 17. The wedge they form is greater
than 180° so angle comparisons must be performed care- Figure 17: Initial wedge,
fully. This adds to the programming complexity, but not definition 1
the asymptotic time complexity. O

Proof for Def. 2: Stabbing lines satisfying definition 2, entering the disks in the
correct order, must hit the boundaries of disks in a “painting” that starts with O;.
They can be found by a similar algorithm.

Figure 18: Updating the wedge under definition 2

Define the line-stabbing wedge to be the convex region bounded by the two
limiting lines and not left of O;. In figures 18 and 19, the line-stabbing wedges are

21

shaded. Any stabber that crosses into the wedge has already entered every disk up
through O;. Thus, we need to determine and discard the stabbers that enter 0,41
and O; in the wrong order.

Following the painting model, discard portions of O; that lie inside O; 1. If the
remaining portion of O; no longer intersects the ccw (or cw) limiting line, or if 0,41
does not intersect the line, then we must update the support hull and limiting line
as before. We again use a Graham scan to maintain support points and support
disks in A and B with the key property that the support points or disks for the
limiting lines are the first and last entries in A and B.

The initial hulls and limiting lines of figure 14 can
be reused if O and O3 do not intersect. If they do
intersect, the initial support hulls A and B consist of
the upper and lower intersection points, respectively,
followed by O5. The limiting lines are tangents to Os
from the intersection points, as shown in figure 19.
Again, the wedge is greater than 180°. O

Proof for Def. 3: We can combine the two previ- . -
Figure 19: Initial wedge,

ous algorithms to find stabbing lines satisfying defini- definition 2

tion 3. Given the support hulls A and B and limiting

lines after the first ¢ disks we need to determine the ordered stabbing lines that en-
ter and exit ;41 after O;. Unless O;41 intersects the line-stabbing wedges of both
definitions 1 and 2, there are no stabbing lines of the first ¢ + 1 disks.

First, discard portions of O; that lie in O;41 and update the support hulls and
limiting lines as under definition 2 if the remaining portion of O; no longer intersects
one of the limiting lines. Next, discard portions of O;41 that lie in O; and update
according to definition 1 if necessary.

If disks O; and O intersect, then the initial support hulls A and B are the upper
and lower intersection points, respectively, of the boundaries of O, and Os. The
initial limiting lines are the two orientations of the line through the two intersection
points. O

Proof for Def. 4: The fourth definition is different from the others in that it
involves choosing points rather than defining an order for intervals. There is an
equivalent formulation in terms of intervals, however: no later interval may end
before an earlier one begins.

Lemma 8 Let [a;,b;], fori € [1...n], be non-emply intervals of the real line. One
can choose a set of points {p1,pa,...,pn} with p; € [a;,b;] and p; < p; for all
1<t <j<nifand only of there ts no pair j < k with by, < a;. Furthermore, the

pis can be chosen from the sel {ay,az,... an}.
Proof: Form a set of truncated intervals [af,b]] with af = max;<;a; and
b; = ming>; by. If these intervals are non-empty then the set {a’y,da’s,..., d'y}

satisfies the lemma. Otherwise, some interval [af, b] is empty; there is a j < i
and a k > 7 such that by < a;. O

22

We are not able to give a linear time algorithm for this definition of visiting order
because the line-stabbing wedge has non-constant complexity. When our disks are
constant size polygons or equal radius circles, however, we can maintain the wedge
by an intersection algorithm that allows us to stab ¢ disks in O(élog) time.

As before, we want the line-stabbing wedge of the first ¢ disks to be the locus of
all points p that have a line that visits the i disks before visiting p. Assume that
we have two limiting lines ¢ and ¢’ that define an angle of less than 180° and let W;
be the region between these lines and not left of disk O;. Define the line-stabbing
wedge as the intersection ﬂj<i W;, drawn shaded in figure 20.

We can maintain the wedge as n disks are added incrementally using O(nlogn)
total time, according the the following lemma.

Lemma 9 One can incrementally form all wedges for a sequence of n convez poly-
gons with O(n) sides altogether or n unit radius circles in a total of O(nlogn)
time.

Proof: A convex polygon is the intersection of the halfplanes defined by its
sides, so it 1s sufficient to compute halfplane intersections incrementally. This
can be done by the dual of Preparata’s convex hull algorithm?3°: Store the edges
of the current wedge in a binary search tree. To add a halfplane h, compute
the intersection of h and the current wedge in O(logn) time and discard edges
outside of h in O(logn) time apiece.

For equal radius circles, Melkman and O’Rourke®' have shown that, when
looking from the intersection point ¢ N¢’, the order of the centers of the circles
is the reverse of the order of the edges bounding the wedge. By storing the
centers in a binary search tree, they show how to update the wedge boundary
in O(nlogn) total time. O

Figure 20: Wedge maintenance, definition 4

Let us first discuss updating the line-stabbing wedge and the description of
stabbers when disk O;41 1s added. We’ll discuss their initialization afterwards.

To begin, we must determine if 0,41 intersects the wedge—if it does not, then
there is no ordered stabber of the first ¢ 4+ 1 disks. We discard portions of O; 41 that
lie outside the wedge. If what remains does not intersect the ccw (or cw) limiting

23

line, then we must update the support hulls, limiting lines, and line-stabbing wedge.
To perform the intersection, find the tangents from ¢ Nt to O;41 (or, if t N is
inside O;41, use the rays along ¢ and ¢') and break O;41 into left and right portions
where they hit its boundary. Form the region bounded by the right portion and
the segments to ¢ N ¢/, then intersect it with the wedge by walking along the wedge
from ¢ and #'—any edges walked on will be removed from the wedge. Then update
the limiting lines and support hulls by Graham scan as under previous definitions.
Finally, use the procedure of lemma 9 to update the wedge using the left portion
of Oi+1~

To initialize the description of stabbers and the line-stabbing wedge, we begin

by computing the intersection (). _, O; incrementally by a procedure similar to that

2
of lemma 9. While this intersec%fon is non-empty, any line that stabs it stabs the
disks in order according to definition 4. When O; is disjoint from this intersection,
then O; must be disjoint from a disk O; with j < ¢ and a slight modification of
the intersection procedure of Melkman and O’Rourke®! will give the disk O;. We
can then limit the directions of stabbers to lie between the directions of the inner
common tangents directed from O; to O; and restart processing with O;. The

algorithm will find a line stabbing at least the first ¢ disks. O

This completes the proof of theorem 7. In the next section we show that these
stabbing line methods can be used to give linear-time algorithms to compute a
stabbing chain that has at most twice the minimum number of links.

4.3. Ordered stabbing with a polygonal chain

The problem of ordered stabbing with a polygonal chain instead of a line brings
its own complications. In this section, we extend the definitions of visiting order
and look at restrictions that can be placed on the vertices of the chains. We note
relationships to the Fréchet metric for curve similarity and line stabbing.

Figure 21 shows an example of a path 7 stabbing three
disjoint objects O1, O2, and O3. For each pair of objects, we
can choose intervals of their intersections ms that have the
correct order, but can hardly call # an ordered stabber of
01, O3, and O3. Instead, we require that there is a sequence
of intervals I, I», ..., I, in order along the path = such that
I; is a maximal connected interval of the intersection mN0O;.

If these intervals happen to intersect, then we also apply
our favorite definition 1, 2, 3 or 4.

Figure 21: Pairwise
One benefit of our chosen definition is that the stabbing ,yder is not enough

problem can be viewed as minimum-link path problem in

a non-manifold space M. For 1 < i < n— 1, take a manifold M; that is a Eu-
clidean plane containing copies of objects O; and O;41. Then identify (glue) the
corresponding points in the copies of O; 41 contained in M; and M;41. Any path in
M from Oy in My to O, in M, _; visits the objects in order.

24

Further variations arise from different restrictions on the vertices of the approx-
imation. We concentrate on three, listed in order of increasing restriction.

1. No restriction: The approximate path can turn anywhere.

2. Turn in tubes: Fach vertex of the approximation must lie within a region
bounded by two consecutive objects and their outer common tangents.

3. Turn in objects: Each vertex of the approximation must lie in one of the
original objects.

The non-manifold space M constructed above can be modified so that any path in
M automatically satisfies the second restriction: simply let M; be the convex hull
of O; and O;41 rather than the entire plane. The third restriction is of a different
character.

If we combine the restriction that vertices must lie in tubes with the definition 4
for visiting order, then we obtain minimum link approximations under the Fréchet
metric>1?, Two curves are within distance ¢ under this metric iff they have mono-
tone parameterizations o and 3, which are functions from [0, 1] to R?, such that
d(a(t), 8(1)) < e for all t € [0,1]. This can be understood intuitively as a person on
a can walk a dog along G with a leash of length . The next theorem was suggested
by Michael Godau (personal communication) and has been reported for the L; and
L., cases by Natarajan and Ruppert.?3
Theorem 10 Let O1,03,...,0, be a sequence of e-balls and c1,¢o, ..., ¢, be thewr
centers. A munimum link chain stabbing O1,0s,...,0, wn order according to defi-
nition 4, whose vertices are constrained to lie in tubes, is a mintmum link path with
Fréchet distance at most € from the polygonal chain ci,¢co, ..., ¢y.

Proof: Let a : [0,1] — R? be a parameterization of the polygonal chain

€1,¢a,...,¢n and let ¢; be a parameter at which a(t;) = ¢.

For any curve § with Fréchet distance at most € from «, the point 3(¢;) € O;.

By monotonicity of the parameterization, the sequence of points 3(¢1) < A(t2) <

-+ < B(ty) reveals that g visits the objects in order according to definition 4.

For any piecewise-linear curve 3, let ¢ be a parameter of one of its vertices
and suppose that ¢; <t < t;41. Then, in between visiting O; and O;41, the
curve 3 remains within € of the line segment ¢;¢; 11, which is simply remaining
in the convex hull of O; and O; 1. Thus the vertices of g lie in tubes.

Therefore, the minimum-link curve g with Fréchet distance at most ¢ from
« 1s an ordered stabber satisfying the hypothesis. O

Using an algorithm for ordered stabbing with a line, there is a simple method to
find a stabbing path for the strongest restriction using at most twice the minimum
number of links.

Theorem 11 One can compute an ordered stabbing path with vertices inside objects
01,05, ...,0, that has less than twice as many segments as the minimum link
stabbing path.

Proof: Compute a line that stabs as many objects in order as possible. Then

crop the line to a segment from the first to last objects stabbed, discard these

25

objects and repeat. When all the objects have been stabbed, join the k segments
formed into a path by adding & — 1 segments.

Since each of the & segments, except for the last, stabs as many objects as
possible, the minimum link path has at least k edges even if vertex placement is
unrestricted. Therefore, the path constructed has less than twice as many edges
as the minimum path. O

Figure 22: The greedy path (dotted) versus the minimum path (solid)

Figure 22 illustrates that when path vertices must lie inside stabbed objects, a
greedy approach that always attempts to stab as many objects as possible can attain
2k — 1 links when the minimum link path has & links. The bound of theorem 11
is tight. This is in contrast to the algorithms for minimum link paths in simple

13,21,39

polygons , where greedy methods do obtain a minimum link stabbing path.

4.4. A dynamic programming approach

In this section we develop a dynamic programming algorithm to stab intersecting
unit disks with a minimum link chain. For each disk O;, we compute a chain-
stabbing wedge, defined below, and the length of the minimum link ordered stabbing
chains that stab disks O; through O;. For visiting orders 1 and 2, we obtain a
minimum link stabbing paths in O(n?) time and linear space. For definition 4, the
time increases to O(n?logn). Vertices must either be unrestricted or restricted to
lie in tubes.

This should be compared to the general graph-based approach of Imai and Iri%*,
which, in our terminology, creates a graph with an edge (4, k) if there is an ordered
stabber from O; through Oy, and then search the graph for the shortest path. Our
dynamic programming method shares the problem of a super-quadratic running
time, but saves a factor of O(n) in space by better organization of computation and
relaxing the restriction that verticies be original data points. (We recently learned
that Chin and Chan, in an unpublished manuscript, have improved Imai and Iri’s
algorithm to quadratic time.)

Extending the definition of wedges i1s key. In sections 4.1 and 4.2 we formed
line-stabbing wedges under visiting orders 1, 2, and 4. For polygonal chains we
define the chain-stabbing wedge W; of the first ¢ disks as the locus of all points p
such that there i1s a minimum link chain visiting the first ¢ disks and then p.

As an example, if disks O; through O; can be stabbed by a line, then the chain-
stabbing wedge W; is a line-stabbing wedge, as defined in the previous sections.
If the minimum path stabbing O; through O; has & > 1 links, then wedge W; is

26

the union of line-stabbing wedges that first stab a point of a chain-stabbing wedge
W; that has a path of k¥ — 1 links and then stab disks O;4; through O;. This is
not quite correct as stated, because we have not taken into account the restriction
placed on turns. The true computation of W; goes as follows. Let R; be the region
where the turn vertex between O; and O; 1, can lie. Region R; depends upon which
of the three restrictions is placed on turns: With no restriction, R; is the entire
plane. For tubes, R; is the region bounded by disks O; and O;4; and their outer
common tangents. For each j < ¢ such that the chain-stabbing wedge W; is formed
by stabbing paths with &£ — 1 links, compute the stabbing wedge for lines that stab,
in order, W; N R;, Oj41, Oj42, ..., O;. The union of these stabbing wedges is the
chain-stabbing wedge W;.

We show that chain-stabbing wedges can enlarge only when the path gains an
extra link.
Lemma 12 If the chain-stabbing wedges Wy and Wiy1 both have minimum stabbing
paths with k-links, then W;41 C W;.

Proof: A point p is in Wiy1 because there is a k-link path that visits the first

t + 1 disks before reaching p. The same path certifies that p is also in W;. O

Next, we show that chain-stabbing wedges really are wedge-like.
Lemma 13 The chain-stabbing wedge W; is bounded by two rays and, depending
on the definition of visiting order, a concave (def. 1) or conver (def. 2} portion of
the boundary of O; or a convex chain (def. 4} of the boundary of the intersection of
Ohn, Ony1, ..., Oi—1, O; for some h < 1.
Proof: We prove this by induction on the number of links in the chains forming
chain-stabbing wedge W;. Clearly, the lemma is satisfied by the stabbing wedges
for lines, which are chain-stabbing wedges defined by 1-link chains.
Suppose that W; is formed by m-link chains.
Let w;, for j < ¢, denote the line stabbing wedge for objects O;, O;_1, ...
down to O;. (Since the ordering is reversed the definition of visiting order for
w; should be the opposite of that of W;. That is, substitute 1 for 2 and vice
versa. Def. 4 is its own inverse.) Wedge W; contributes rays to W; if and only
if the intersection W; N R; Nw;41 is non-empty.
Suppose that WW; does contribute rays to W;. We show that either no wedge
Wi contributes to W;, for all & < j, or else for the greatest & < j whose
wedge contributes, there is a line that stabs W;_1 N Ry, Op41,...,0; and W; N
R;,0;541,...,0;. This shows that the union of the stabbing wedges that make
up W; has at most two rays on the boundary.
So, consider a j such that W; N R; Nw;i is non-empty. If w;y; intersects
O; NW; then W;_1 N Rj_1 Nwj is also non-empty and there is a desired ray
starting in O; N W; Nw;. If w;ji1 does not intersect O; then wpy, is empty for
all ¥ < j and no wedge W;, contributes to W;. What remains are the cases in
which w;y; intersects O; outside of Wj.
Suppose that w; 1 intersects O; after W;. Since W;_, does not intersect
O; Nwj41, the intersection W;_; Nw; is empty in this case. Furthermore, since
all objects Oy, for k < j will either miss wy41 or interesct after 1, we can show

27

that no rays are contributed to W; from any such Wj.

Finally, suppose that w;4, intersects O; before W;. Again, W;_; does not
intersect O; Nw;y1. Now there is an intersection point of the boundaries of
W;_1 and w; that is either in R;_; or outside of R;_;. If it is in R;_;, then
some ray from that point is the desired ray. If not, then there is no contribution
from W;_, and will be no contribution until that point is in the next Rj. This
establishes the lemma. O

We now sketch the dynamic programming algorithm.
Theorem 14 Under visiting order definitions 1, 2, or 4, one can compute the min-
tmum link path visiting disks O1,0a, ..., O, in order that either has no restrictions
on vertices or has vertices in the conver hull of consecutive disks. Space is O(n).
Under definitions 1 and 2 the time is O(n?logn). Under definition 4, the time
increases to O(n*log®n).
Proof: For definitions 1 and 2 (entering or leaving the objects in the speci-
fied order) lemma 13 says that a chain-stabbing wedge is an object of constant
complexity—we can store all chain-stabbing wedges in O(n) space. We also
store the number of links to each chain-stabbing wedge.

With this information, we can carry out the computation of an m-link chain-
stabbing wedge W, described above: given the descriptions of all (m — 1)-link
chain-stabbing wedges W;, W;1,..., Wy, we compute each of the line-stabbing
wedges of the objects Wy N Ry, Or11, Ojya, ..., Oy, for j < £ <k, where R, is
the region where the turn vertex between O, and Q41 can lie; R, is convex and
has a constant-size description for the restrictions we allow.

This computation can be carried out in O(n logn) time by initially running
the line-stabbing algorithm of section 4.2 on the objects ordered from O; down
to Opy1—this requires reversing the current definition of visiting order. Then,
looping from ¢ = k down to ¢ = j, compute the limiting lines that would be
formed by adding object W, N R;: one can do this in logarithmic time by binary
search of the current support hulls. Next, insert O, into the current line stabbing
wedge and decrement . The limiting lines computed by binary search and O;
delimit the desired line-stabbing wedges.

The union of these stabbing wedges can be computed by finding the extreme
rays. Since the computation of a single wedge O(nlogn), the total time is
bounded by O(n?logn).

For definition 4, we cannot store the chain-stabbing wedges because they
have non-constant complexity. We store only the two bounding rays for chain-
stabbing wedges and construct wedge boundaries when we need them by in-
tersecting arcs of unit circles using Melkman and O’Rourke’s algorithm3! as in
section 4.2. This, of course, further complicates the algorithm for finding the
bounding rays.

To compute an m-link chain-stabbing wedge W;, we find the range of all
(m — 1)-link chain-stabbing wedges W;, W;41,..., W). Then we compute line-
stabbing wedges from O; down to O; and record all the changes to the support
hull data structures so that we can delete the objects O;, ..., O by playing the

28

record backwards. We compute the wedge W; by intersecting the objects before
O; with the wedge defined by O; and its two extreme rays, if necessary. Starting
with ¢ = j, we compute the limiting lines for R, N W, and O¢41,...,0; by
finding common tangents between R, NW, and the support hulls of Ogy1,...,0;
with nested binary search. Then we intersect the boundary of Opy1 with the
boundary of the wedge Wy, if necessary, delete object Opy1 from the the current
line stabbing wedge and decrement ¢. The computation for a single wedge is
O(nlog®n), so the total time is O(n”log®n). O

4.5. A linear-time greedy algorithm

When consecutive objects are disjoint, then we can give a linear-time greedy
algorithm that computes a minimum-link stabbing chain. Asin the previous section,
vertices are unrestricted or are restricted to lie in tubes—inside the convex hull of
two consecutive objects.

Natarajan and Ruppert®® have independently developed a similar algorithm for
stabbing unit squares and have used it to compute minimum link Z; and L., ap-
proximations to polygonal chains when each original segment is longer than unity.
They also noted the relationship to the Fréchet metric that we established in theo-
rem 10.

The idea is the following. If we have a line stabbing wedge W for the first ¢« — 1

objects and find that O; does not intersect W, then we must consider how many
of the first ¢ — 1 objects that we should stab with the first segment. It may be
advantageous not to stab them all, as figure 22 shows. What we find, however,
is that we can take the posibly turning locations into account in the way that we
initialize the constraints for the next stabbing line. If O; is below the wedge W,
for example, then for the upper constraint we want only that the line stabs W. We
put in all the objects O through O;_; as lower constraints, however, because we do
not want to miss one of the objects by passing underneath it. We content ourselves
with a detailed sketch of the proof.
Theorem 15 Let O = 01,0,,...,0, be a sequence of convex objects in which
consecutive objects are disjoint. One can compute, in O(n) time, the minimum-link
ordered stabbing path whose vertices either have no restrictions or lie in or between
consecutive objects.

Proof: We begin by finding the longest prefix that can be stabbed by a line

using algorithm 1. We record the current limiting lines after we add each new

object. If the prefix has ¢ objects, then the algorithm ends in O(é) time with a

stabbing wedge, which is bounded by two limiting lines and a portion of O; and

does not intersect O;41.

Let us first consider restricting the vertices to lie in tubes, that is, in the
convex hull of consecutive objects. We consider three cases, illustrated in fig-
ure 23—these cases could actually be unified at the cost of making the exposition
completely opaque. For each case, we consider first the computation when ver-
tices lie in tubes, that is, in the convex hull of consecutive objects, and second
the modifications required if the vertices are unrestricted.

29

Figure 23: Cases A, B, and AB

Case A: Case A obtains when some line separates object O; from objects
O;_1 and O;y1. A vertex of the approximation must lie between O;_1 and O;41,
and if vertices are restricted to lie in tubes, then this vertex lies in the portion
of O; that lies in the stabbing wedge, shaded heavily in the figure. We can run
algorithm 1 starting with this portion of O; to find the next sequence that can
be stabbed.

If the vertices are unrestricted, then we begin algorithm 1 with the stabbing
wedge, shaded in the figure, which is an object that is disjoint from O;41. This
beginning implicitly assumes that the vertex between O;_; and O;41 should
occur in or after O;. One can argue, however, that no possible stabbers are
lost by this assumption: although removing O; may enlarge the stabbing wedge,
any segment of a minimum-link stabbing chain that originates from a point in
the enlarged wedge must cross O; before O; 41 and thus must cross the stabbing

wedge bounded by O;.

Case B: Case B obtains when some line separates O;_; from O; and O;41. Let
us assume that O;yq is right of the cw limiting line ¢’ as shown in figure 23B.
The computation when O; 41 is left of the ccw limiting line ¢ is symmetric.

We begin algorithm 1 with above and below support hulls defined by different
objects. For the above hull we use a single object, the convex hull of O; and the
point t N#', if the vertices must lie in tubes (darker shading), or the wedge right
of ¢t and left of ¢’ (dark and light shading), if vertices are unrestricted. For the
below hull, we begin with the support hull of a sequence of objects: start from
the second contact object O; of the cw limiting line ¢ and continue through
O;—trim the top of each objects by the ccw limit line that existed when the
object was inserted. This support hull is drawn darkly in figure 23B.

Decoupling the above and below constraints avoid the implicit committment
to place a vertex between a given pair of consecutive objects that lead to extra
segments in the algorithm of the previous section. As illustrated in figure 23B,
the vertex can be placed on t' between two consecutive objects and the below

30

support hull will ensure that objects after the vertex are stabbed by the next
segment of the path. This choice of constraints captures the boundary of the
illuminated region in the space M.

Case AB: In case AB, the separators of O;_1 and O; intersect O;41. Case AB
is handled just like case B, with the decision whether O;4; is left of ¢ or right
of ¢ based on the intersection of O;y1 with a separator of O;_; and O;. In
figure 23, the initial above and below support hulls for B and AB are the same.

All cases can be set up in time proportional to the number of objects. Each
object in the entire sequence is considered at most twice in the computation of
a minimum-link stabber, therefore the total computation is linear. O

5. Conclusions and open problems

We have examined minimum link approximations that lie in convolutions or are
ordered stabbers as part of a basic approach to approximating paths, polygons,
and subdivisions. We have developed some efficient algorithms and indicated that
others are unlikely to ever be developed.

There are many avenues that we hope to explore further—the most important
being practical studies of implementations of theoretically efficient approximation
methods. A few of the many open questions that remain are: Is computing the min-
imum link simple polygon enclosing all holes NP-complete? What other restrictions
on approximation can be handled in subquadratic time? For example, the vertices
may be required to lie within some é < ¢ of the original path. Can subquadratic
time algorithms be developed for ordered stabbing of intersection objects or for
other definitions of visiting order?

Acknowledgements

We thank Michael Godau for suggesting theorem 10 and Jim Ruppert for a

preliminary version of his paper with Natarajan.33

References

1. P. K. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the length
of general Davenport-Schinzel sequences. Journal of Combinatorial Theory, Series
A, 52:228-274, 1989.

2. H. Alt, J. Blomer, M. Godau, and H. Wagener. Approximation of convex polygons.
In Seventeenth International Collogquium on Automata, Languages and Program-
ming, number 443 in Lecture Notes in Computer Science, pages 703—716. Springer-
Verlag, 1990.

3. H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Pro-
ceedings of the Fighth Annual ACM Symposium on Computational Geometry, pages
102-109, 1992.

4. M. A. Armstrong. Basic Topology. McGraw-Hill, London, 1979.

5. R. Bellman. On the approximation of curves by line segments using dynamic pro-
gramming. Communications of the Association for Computing Machinery, 4:284,
1961.

31

. M. Blakemore. Generalisation and error in spatial data bases. Cartographica,

21:131-139, 1984.
B. Buttenfield. Treatment of the cartographic line. Cartographica, 22:1-26, 1985.

8. D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Implicitly searching convo-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

lutions and computing depth of collision. In Algorithms: International Symposium
Sigal 90, number 450 in Lecture Notes in Computer Science, pages 165-180, 1990.

D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of
points required to represent a line or its caricature. The Canadian Cartographer,
10(2):112-122, 1973.

P. Egyed and R. Wenger. Ordered stabbing of pairwise disjoint convex sets in linear
time. Discrete Applied Mathematics, 31:133-140, 1991.

M. R. Garey and D. S. Johnson. Computers and Intractabeility: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1:237-267, 1976.

S. K. Ghosh. Computing the visibility polygon from a convex set and related prob-
lems. Journal of Algorithms, 12:75-95, 1991.

M. Godau. Die Fréchet-Metrik fir Polygonzige— Algorithmen zur Abstandsmessung
und Approximation. PhD thesis, Fachbereich Mathematik, FU Berlin, 1991.

R. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1:132-133, 1972.

L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational
geometry. In Proceedings of the 24th IFEE Symposium on Foundations of Computer
Science, pages 100-111, 1983.

L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Minimum
link approximation of polygons and subdivisions. In W. L. Hsu and R. C. T. Lee,
editors, ISA ‘91 Algorithms, number 557 in Lecture Notes in Computer Science,
pages 151-162. Springer-Verlag, 1991.

L. J. Guibas and R. Seidel. Computing convolutions by reciprocal search. Discrete
& Computational Geometry, 2:175-193, 1987.

S. L. Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points in
the plane. CVGIP: Graphical Models and Image Processing, 53(2):132-136, 1991.

J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line simplifica-

tion algorithm. In Proceedings of the 5th International Symposium on Spatial Data
Handling, pages 134-143. IGU Commision on GIS, 1992.

J. Hershberger and J. Snoeyink. Computing minimum length paths of a given
homotopy class. Computational Geometry: Theory and Applications, 1993.

H.Imai and M. Iri. Computational-geometric methods for polygonal approximations
of a curve. Computer Vision, Graphics, and Image Processing, 36:31-41, 1986.

H. ITmai and M. Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of Information Processing, 9(3):159-162, 1986.

H. Imai and M. In. Polygonal approximations of a curve—formulations and al-
gorithms. In G. T. Toussaint, editor, Computational Morphology. North Holland,
1988.

K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete & Compu-
tational Geometry, 1:59-71, 1986.

32

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

D. Leven and M. Sharir. Planning a purely translational motion for a convex polyg-
onal object in two dimensional space using generalized Voronoi diagrams. Discrete
& Computational Geometry, 2:9-31, 1987.

D. Litchenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329-343, 1982.

R. B. McMaster. A statistical analysis of mathematical measures for linear simpli-
fication. The American Cartographer, 13:103-116, 1986.

R. B. McMaster. Automated line generalization. Cartographica, 24(2):74-111, 1987.

R. B. McMaster. The integration of simplification and smoothing algorithms in line
generalization. Cartographica, 26(1):101-121, 1989.

A. Melkman and J. O’Rourke. On polygonal chain approximation. In G. T. Tous-
saint, editor, Computational Morphology. North Holland, 1988.

J. R. Munkres. Topology: A First Course. Prentice-Hall, Englewood Cliffs, N.J.,
1975.

B. K. Natarajan and J. Ruppert. On sparse approximations of curves and functions.
Manuscript, 1991.

J. O’Rourke. An on-line algorithm for fitting straight lines between data ranges.
Communications of the Association for Computing Machinery, 24(9):574-578, Sept.
1981.

J. Perkal. On the length of empirical curves. In Discussion Paper 10, Michigan
Inter- University Community of Mathematical Geographers, University of Michigan,
Ann Arbor, 1966.

F. P. Preparata. An optimal real time algorithm for planar convex hulls. Commu-
nications of the Association for Computing Machinery, 22(7):402-405, 1979.

U. Ramer. An iterative procedure for the polygonal approximation of plane curves.
Computer Vision, Graphics, and Image Processing, 1:244-256, 1972.

A. Rosenfeld. Axial representation of shape. Computer Vision, Graphics, and Image
Processing, 33:156-173, 1986.

S. Suri. A linear time algorithm for minimum link paths inside a simple polygon.
Computer Vision, Graphics, and Image Processing, 35:99-110, 1986.

G. Toussaint. On the complexity of approximating polygonal curves in the plane.
In Proc. IASTED, International Symposium on Robotics and Automation, Lugano,
Switzerland, 1985.

E. R. White. Assessment of line-generalization algorithms using characteristic
points. The American Cartographer, 12(1):17-27, 1985.

C. K. Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve
segments. Discrete & Computational Geometry, 2:365-393, 1987.

33

