
International Journal of Computational Geometry & Applicationsc World Scienti�c Publishing CompanyROUNDING ARRANGEMENTS DYNAMICALLYLEONIDAS J. GUIBASComputer Science Department, Stanford UniversityStanford, California 94305, USAguibas@cs.stanford.eduandDAVID H. MARIMONTXerox Palo Alto Research Center3333 Coyote Hill Road, Palo Alto, California 94304, USAmarimont@parc.xerox.comReceived (received date)Revised (revised date)Communicated by Editor's nameABSTRACTWe describe a robust, dynamic algorithm to compute the arrangement of a set ofline segments in the plane, and its implementation. The algorithm is robust because,following Greene1 and Hobby,2 it rounds the endpoints and intersections of all line seg-ments to representable points, but in a way that is globally topologically consistent. Thealgorithm is dynamic because, following Mulmuley,3 it uses a randomized hierarchy ofvertical cell decompositions to make locating points, and inserting and deleting line seg-ments, e�cient. Our algorithm is novel because it marries the robustness of the Greeneand Hobby algorithms with Mulmuley's dynamic algorithm in a way that preserves thedesirable properties of each.Keywords: arrangement, vertical trapezoidal decomposition, dynamic data structure,randomized algorithm, robustness, rounding1. IntroductionThe goal of this paper is to describe a new, robust, and dynamic algorithmfor constructing arrangements of line segments in the plane, and its implementa-tion. The problem of constructing line-segment arrangements has been well studiedin Computational Geometry and is the focus of some of the most famous algo-rithms in the �eld. Let n denote the number of segments we are given and A thecomplexity of their arrangement (say the number of its vertices). An early solu-tion for this problem was provided by the Bentley-Ottmann sweep,4 which ran intime O((n + A) logn) ; a long sequence of improvements followed, culminating inthe optimal but complex O(n logn+ A) algorithm of Chazelle and Edelsbrunner.5

The introduction of randomization into Computational Geometry revitalized theproblem, and several new randomized incremental algorithms for the problem wereinvented, all with optimal randomized complexity O(n logn + A) and notable fortheir simplicity.6;7;3 Among these authors, Mulmuley3 was especially successful atproviding an algorithm that was dynamic, allowing e�cient segment insertion anddeletion.The key data structure in Mulmuley's algorithm is the vertical cell decomposition(VCD) of a set of line segments. The VCD of a set of line segments is a re�nementof their arrangement into cells that are all trapezoids (possibly degenerate) with twovertical sides. As is well established by now, there is a large class of applicationsin Computational Geometry for which this further re�nement of the arrangementinto cells each with only a small number of sides (four in our case, assuming non-degeneracy) is very useful. The Mulmuley algorithm is randomized and dynamic:that is, it is possible to insert and delete line segments from the VCD. The outputof the algorithm is a hierarchy of (VCDs) vertical cell decompositions of subsets ofthe line segments. The lowest, most detailed level contains all the line segments.Each higher level contains a randomly chosen subset of the line segments presentone level down. The hierarchy makes it possible to locate points, insert and deleteline segments, and otherwise navigate e�ciently around the arrangement.This, as well as all previously mentioned algorithms, were developed assumingan in�nite-precision model of computer arithmetic. In any practical implementa-tion of a line segment arrangement computation, however, the implementors haveto consider the e�ects of �nite precision arithmetic on the above techniques. Thisissue of robust implementation of geometric algorithms has been addressed in sev-eral papers,8;9;10;11;12;13 but with mixed success. We do not attempt to survey thisextensive literature here. In our work, we will address the robustness problem byperturbing all vertices of our arrangement to lie on a �xed grid, assumed for con-venience to be that of the points with integral coordinates. However, in order toensure that the perturbed arrangement has a topology consistent with the original,we will need to perturb to the grid additional features of our arrangement as well. Inthe end, all vertices, edges, and faces of our perturbed arrangement will have exactrepresentations with �nite arithmetic. We call this operation rounding the arrange-ment. Exactly how to accomplish such a perturbation of the arrangement to thegrid was �rst studied by Greene and Yao.14 As we explain below, the Greene-Yaorounding has a number of undesirable properties, which were overcome in anotherrounding scheme proposed by Greene, and independently by Hobby, in as yet un-published manuscripts.1;2 A still third way to round, called shortest path roundingwas proposed by Milenkovic;15 see his paper and the references cited therein.The key contribution of our paper is to show how to combine the ideas of Mulmu-ley's dynamic segment arrangement algorithm, while maintaining (and producing)only the rounding of Greene and Hobby of the arrangement of the current segments.The algorithms proposed by Greene and Hobby are robust but not dynamic; theyare based on �nite-precision arithmetic but operate in a batch mode that assumesall the segments are given at once. The Mulmuley algorithm is dynamic but not

robust; it provides for inserting and deleting line segments but is based on in�nite-precision arithmetic. The technical challenge we have to overcome is how, usingonly the VCD of the rounded arrangement of the present segments (and its hierar-chy of sampled counterparts), to simulate the e�ect of doing an insertion or deletionin the ideal Mulmuley structure and then rounding the result. We guarantee thatthe rounded arrangement we compute dynamically is exactly the same as whatwould have been produced by the batch algorithms of Greene and Hobby. We haveimplemented and extensively tested this new algorithm.In the paper we begin by describing the rounding of Greene and Hobby and anew and elementary way to derive its desirable topological properties (Sections 2and 3). We then provide a succinct summary of our data structures and discuss thekey algorithmic issues in adding a new segment to the arrangement (Sections 4 and5). Section 6 discusses deletions and the e�ect of the hierarchy on the algorithm.In Section 7 we provide a brief analysis of our method. In Section 8 we talk aboutsome of the experiences from our implementation. We end by presenting someconclusions in Section 10.2. Snap RoundingIn this section we briey discuss a way to round an arrangement of line segmentsthat is especially economical in terms of the number of \kinks" introduced in thesegments. This method, as already mentioned, was introduced by Greene1 andHobby2 | we shall refer to it from here on as snap rounding for reasons thatbecome apparent below.The setting is as follows: the Euclidean plane is tiled into unit squares eachcentered on a point of the integer grid, in the obvious way; we refer to these tiles aspixels.a As mentioned, we coordinatize the plane so that pixel centers have integralcoordinates and refer to these pixel centers as integral points. When we round anarrangement of line segments, we require that all its vertices (endpoints of segments,as well as intersections of pairs of segments) be perturbed to integral points | inother words, the only points we allow as vertices in our rounded representation arethe integral points.Any rounding scheme must have at least two goals: (1) to keep the perturbedsegments near the originals, and (2) to preserve as much as possible the topologyof the original arrangement. Requirement (1) suggests that each vertex of theideal arrangement be perturbed to its nearest integral point. However, it is wellknown that just doing this can cause topological inconsistencies between the idealand the rounded arrangements. In order to avoid this problem, about eight yearsago, Greene and Yao14 suggested that we treat each representable point as an\obstacle" and do not allow our segments to go over these obstacles while verticesmove to their nearest integral point. These obstacles can create additional \kinks"in the perturbed segments. Greene and Yao showed that, with this additionalfragmentation, no topological inconsistencies arise. They also gave an algorithm foraThese pixels correspond to a tiling of the plane at any desirable resolution and need notcorrespond to the size of the display pixels of an output device.

Figure 1: Left, a small line segment arrangement; right, its Greene-Yao perturba-tion.computing their perturbation e�ciently.The di�culty with the Greene-Yao method is that the requirement of not goingover the obstacle grid adds a large number of additional breaks to each roundedsegment. See, for example, Figure 1(left) showing an ideal line arrangement (dashedlines), and Figure 1(right) its Greene-Yao perturbation (solid lines). In that �gurethe grid lines (gray lines) correspond to pixel boundaries.To get around the excess fragmentation, snap rounding proceeds as describedbelow. To �x the terminology, we call the original unrounded segments ursegments.After the perturbation, each ursegment becomes a polygonal line that we call apolysegment. A polysegment consists of smaller line segments which themselves arecalled fragments. If s denotes an ursegment, we denote the corresponding polyseg-ment by the corresponding Greek letter �. For brevity of exposition, we assume thatevery vertex of our arrangement has a unique nearest integral point | fortunately,such degeneracies do not introduce any substantial di�culties.We declare all pixels containing an ursegment endpoint, or the intersection pointof two ursegments, to be hot. In other words, any pixel containing a vertex of theideal arrangement becomes hot | note that a pixel may become hot for multiplereasons. Snap rounding is then this: if an ursegment terminates in a hot pixel,it is perturbed to terminate at the that pixel's center; and if an ursegment passesthrough a hot pixel, then it is perturbed to pass through that pixel's center. SeeFigure 2 for an illustration. Notice this key aspect of snap rounding: a kink isadded to an ursegment only where a vertex of the arrangement lies on the segment,or where the ursegment passes \very near" an integral point which will become avertex of the rounded arrangement. Figure 2(right) shows snap rounding for thearrangement of Figure 1(left) | it is evident that fewer kinks have been added.We call this snap rounding because all ursegments passing through a hot pixel aresnapped to pass through that pixel's center.

Figure 2: Left; the rules of snap rounding; right, the snap-rounded form of thearrangement in Figure 1(left).The shortest path routing of Milenkovic15 was introduced for performing robustboolean operations on polygons. It is based on the idea of continuously perturbingall arrangement vertices to their nearest integral point while at the same timedetecting when we encounter other fragments and then dragging them along (toprevent topological violations). Shortest path rounding adds even fewer kinks thansnap rounding but it seems more complex to compute and maintain, as it is de�nedby a continuous process and therefore lacks a simple input-output speci�cation.Though all three rounding approaches presented above are de�ned in terms ofmodi�cations to the ideal arrangement, it is conceivable that they can be computedand maintained directly from the input set of segments. Since in practice a roundedarrangement can have far lower complexity that its ideal counterpart, algorithmsthat compute the rounded structure directly, bypassing the ideal arrangement, canbe more e�cient. We have selected to work with snap rounding because of itsclean mathematical properties; these have recently led to a direct output-sensitivealgorithm for the rounded arrangement.163. A Topological Analysis of Snap RoundingIt is �rst of all trivial to prove that after snap rounding, an ursegment and thecorresponding polysegment are quite near each other.Lemma 1 After snap rounding, the polysegment � corresponding to ursegment s iscontained within the Minkowski sum of s with a pixel (unit square) centered at theorigin.Proof. The hot pixels crossed by ursegment s can be linearly ordered in thesequence in which they are crossed by s. Consider now the part of s in and betweentwo successive hot pixels p1 and p2 in this sequence. From the central symmetryof the pixel shape, it follows that the Minkowski sum of s with a pixel containsthe pixel centers of p1 and p2. But this Minkowski sum is obviously convex, so it

Figure 3: Left, segment fragmentation by nodes at hot pixel boundaries; right,halfway through the �rst stage of the explicit deformation.also contains the fragment of the corresponding polysegment � joining those twocenters. 2Understanding the relation between the topology of the original and roundedarrangements is much more interesting. In his original manuscript, Greene de�nedand proved a number of \topological consistency" properties of his perturbation. Hisargument was phrased in a context allowing more general pixel shapes than we havehere, but it was involved and required a global analysis using graph-theoretic argu-ments. In this paper we give a very di�erent topological analysis of snap rounding.We show topological consistency between the original and rounded arrangementsby giving an explicit continuous deformation that takes an arrangement of segmentsinto its snap-rounded form. During that deformation features of the arrangementmay collapse (as they must in any rounding scheme), but they never invert | in thesense that no vertex of the arrangement ever crosses through one of the segments.We call the latter property the non-penetration condition. Our deformation is easyto visualize and the proof of non-penetration is entirely local and straightforward. Inaddition, because of the clear understanding of this topological transformation thatour deformation provides, we are able to easily prove certain additional lemmatathat are useful in the implementation of our incremental variant of snap rounding.We now proceed to de�ne a deformationD that starts from the original arrange-ment and continuously transforms it to its snap-rounded form. We initially breakup each ursegment into a number of subsegments, by introducing a breakpoint, ornode, whenever the ursegment crosses the boundary of a hot pixel. Note that if anursegment crosses a pixel boundary separating two hot pixels, then two nodes willbe placed there, with a zero-length subsegment between them. See Figure 3(left)for an illustration.Our deformation D proceeds in two stages. In the �rst stage every hot pixelcontracts simultaneously and at the same rate in the x direction, towards the verticalaxis through its center. If at time t = 0 we have the original arrangement, theneach hot pixel is linearly scaled down in the x-direction until, at time say t = 1,all hot pixels have collapsed to their vertical axis. All nodes on the hot pixelboundaries follow the pixel motion. Each ursegment thus is continuously deformedto a polysegment, the polysegment joining the current locations of its nodes for eachtime t. At time t = 1 each hot pixel has become a hot \stick," with nodes markedon it. In the second stage of the deformation, say from t = 1 to t = 2, the hot

sticks vertically contract simultaneously and at the same rate towards their center.Again, the polysegments are de�ned by just tracking the corresponding nodes. SeeFigure 3(right) for an illustration of this process.It is not hard to show that at time t = 2 our polysegments are exactly thosede�ned by snap rounding. Note that, during the deformationD, our nodes partitioneach polysegment into fragments of two kinds: internal | those inside a hot pixel,and external | those connecting nodes on the boundary of two di�erent hot pixels.At the end of the deformation D, internal fragments collapse to pixel centers andonly external fragments remain. No node ever crosses over a fragment during thisdeformation. In particular, an endpoint of a polysegment can never move overanother polysegment, nor does the orientation of an elementary triangle formed bythree polysegments ever invert | see Figure 4.Figure 4: Some of the topological consistency conditions.Theorem 1 During the deformation D, no node ever crosses over a fragment.Proof. It is �rst of all clear that there can be no trouble among all theinternal fragments of a particular hot pixel: they all occur in a region of the planethat undergoes a uniform x- or y-scaling transformation. The crucial part of theproof is the invariant that no external fragment ever touches or enters a contractinghot pixel (other than those at its endpoints). To see this, we can argue as follows.Consider, for example, the x-part of the deformation (�rst stage). If an externalfragment is to enter a hot pixel, then it must overtake during the deformation oneof the corners of that pixel's boundary. Furthermore, at the point of overtaking, theexternal fragment and the corner must be moving in the same direction in x (i.e.,both left or both right), as the hot pixel is contracting. But by the way we havede�ned the x-deformation, the x-velocity of the pixel corners is always maximal inmagnitude among all points on a pixel boundary. And in addition, a point along afragment is moving in x by a velocity which is a convex combination of the velocitiesof its endpoints, which are nodes following other hot pixel boundaries. An entirelyanalogous argument holds for the y-part of the deformation. Thus a fragment cannever overtake a deforming hot pixel. 2As a consequence of the above, we can deduce many topological consistencyproperties between the original line segment arrangement and its snap rounding.Corollary 1 After the snap rounding deformation D:a. No fragments intersect except at their endpoints.

b. The circular ordering of the fragments ending at the same pixel is consistentwith the circular ordering at the pixel's boundary of the corresponding urseg-ments crossing this pixel.c. If ursegment r intersects ursegment s and then ursegment t, then polysegment� cannot intersect polysegment � before polysegment �.d. If a vertical line ` through pixel centers intersects ursegment s and then urseg-ment t, then ` cannot intersect polysegment � before polysegment �.Proof. These claims are immediate.a. At the beginning of the deformation no external fragments properly cross,and this property is maintained throughout D because of the above theorem.Furthermore, all the internal fragments collapse to points at the end of D.b. The hot pixel boundaries deform continuously, and so the ordering of thenodes around them is preserved during D.c. An ursegment r and its corresponding polysegment � go through hot pixelsin the same sequence; in particular this applies to the hot pixels created bythe intersections of r with s and t. When these intersections lie in the samehot pixel, snap-rounding forces them to coincide.d. For such an inversion to happen, ursegments s and t would have to intersect,and snap rounding would have to move the intersection across a vertical linethough pixel centers | which obviously cannot happen. 24. Data StructuresHere we briey summarize the data structures we use. The vertical cell de-composition's top-level data structures are vertices and two types of line segments,fragments and vertical attachments. Figure 5(left) illustrates these structures; avertex is represented by a �lled circle, a fragment with a solid line, and a verticalattachment by a dotted line with an arrow that points to the fragment at one endof the attachment. Note that the `x'-shaped con�guration of fragments at the topof the �gure is not two fragments intersecting at a vertex, which is impossible bycorollary 1, but four fragments that share an endpoint. For convenience, we boundthe VCD with a rectangle of four ursegments with integral endpoints, as is standard.An ursegment is stored with the fragments that make up its polysegment. Snaprounding can cause two or more ursegments to share the same fragment, so eachfragment maintains a list of ursegments that it represents, sorted in their y-order(this is well de�ned because two ursegments cannot cross between the two hot pixelsdelimiting the fragment). Although we can concoct pathological situations where allor most segments share some fragments, experiments with both randomly generatedline segments and edge data from natural images suggest that these lists rarely have

Figure 5: Left, top-level structures in the VCD; right, a degenerate vertical bound-ary.more than �ve ursegments. An ursegment also has pointers to the vertices at itsendpoints.Snap rounding can produce \degenerate" con�gurations that the VCD must beable to represent, such as the vertical fragment in the upper right of Figure 5(left).Such degenerate con�gurations can make the vertical boundaries of a trapezoidarbitrarily complicated, as shown in Figure 5(right).The VCD's data structures make it easy to move vertically. Moving verticallyfrom a vertex, vertical fragment, or vertical attachment is straightforward becauseeach can have only one structure above and one below. Nonvertical fragments, how-ever, can have a sequence of structures above and below them, which we representwith two doubly linked lists called the ceiling (for the structures above) and oor(for those below) lists of the fragment. In addition to facilitating vertical motionfrom a nonvertical fragment, they make it easy to move along the fragment.Figure 6 illustrates the ceiling and oor lists of some nonvertical fragments ina simple VCD. On the left is a VCD with four nonvertical fragments. We shallrefer to a fragment by the number that appears to the left of its left endpoint.Figure 6(right) shows the ceiling and oor lists of the fragments schematically.Each fragment f is represented by a horizontal line segment with �lled circles at itsendpoints; the number of fragment f appears to the left of the line. The numbersand arrowheads above f 's line correspond to the fragments and vertical attachmentsabove f as we move from its left endpoint to its right. Pointers to these fragmentsand vertical attachments are stored on the ceiling list of f . The numbers andarrowheads below f 's line correspond to the fragments and vertical attachmentsbelow f , pointers to which are stored on the oor list of f .The vertical attachments on a oor or ceiling list de�ne a partition of the intervalin x occupied by the fragment. The open intervals in each list, where anotherfragment is above or below the fragment, we represent with structures called xspans.

1

2

3

4

4

3

2

1

1 2 3 1

2 1

4 3

4 2 3 4

4

1Figure 6: Left, a simple VCD; right, the fragments' ceilings and oors.Each trapezoid in the VCD is bounded below by a ceiling xspan (belonging to thefragment at the bottom of the trapezoid) and above by a oor xspan (belonging tothe fragment at the top). For example, the trapezoid at the center of Figure 6(left)is bounded below by the second xspan on 2's ceiling list, and above by the �rstxspan on 3's oor list. The oor and ceiling xspans that bound a trapezoid point toeach other, which makes it possible to move vertically across a trapezoid. To crossfrom the oor of a nonvertical fragment to its ceiling (or vice versa), we maintainwith each fragment a third doubly linked list consisting of all vertical attachmentson the oor and ceiling lists.A simple traversal algorithm for locating a point illustrates how these structuresare used. We �rst �nd the xspan containing the x coordinate of the point bylinearly searching the ceiling list of the horizontal fragment that de�nes the bottomof the VCD's bounding rectangle. We search upwards in y, using xspans to crosstrapezoids, for example, until we �nd the trapezoid that contains the point. Wediscuss an algorithm for locating points that exploits the hierarchy of VCDs inSection 6.5. Inserting a New UrsegmentInserting a new ursegment s requires three di�erent searches. First, we mustdetermine the new hot pixels created by s by locating its endpoints and detectingits intersections with other ursegments. Second, we must detect the existing hotpixels through which s passes. Third, we must detect the existing ursegments thatpass through the new hot pixels (and perturb the ursegments accordingly).The polysegment � of s is de�ned by the vertices of the new and existing hotpixels found in the �rst two of these searches. Once the vertices of � are known, weinsert those of its fragments not already in the VCD (with the new ursegment theonly member of its list of ursegments); by corollary 1 these fragments intersect noothers, which makes the insertion simple. For a fragment of � already in the VCD,we need only add s to its list of ursegments. Note that the order in which � passesthrough these pixel centers can be immediately determined from the slope of s.Figure 7 illustrates the problem of detecting s's intersections with existing urseg-

ments. The ursegments are the dashed lines, the fragments are the solid ones, andthe vertices are �lled circles. The grid of pixel boundaries are the gray lines. Thenew ursegment s is the near-horizontal dashed line that begins at the left of the�gure. Three existing ursegments and their polysegments are shown.Each ursegment and its polysegment de�ne a closed but not necessarily simplepolygon. We call these polygons slivers. The existing ursegments at the left andthe center of the �gure depict the most common situation. In each case, s passesentirely through a sliver, so that s intersects both the existing ursegment and oneof its fragments. (In general, s may intersect several of the fragments.) Detectingintersections with such ursegments is easy, since we need only �nd intersections withfragments, and test the ursegments to which the fragments belong.The rightmost existing ursegment in the �gure depicts a more challenging situa-tion that can only arise at an endpoint of s. Here s intersects the existing ursegmentr, but because an endpoint Q of s lies inside the sliver, s does not intersect any ofthe fragments of �, the polysegment of r. In this case the endpoint Q will de�ne anew hot pixel h and either r or � (or both) must intersect h. Note that if r doesnot intersect h, then the center of the hot pixel h must lie outside the sliver andthus � must separate it from Q. So in all cases either r intersects h, or � intersectsthe segment from Q to h's center.To �nd the ursegments that intersect s, we use the following algorithm, whichwe call VCD traversal. First, we locate the left endpoint P of s. We then walk,using the VCD, in a straight line from P to the center of the pixel h in which it liesand collect all fragments thus encountered. For each of them we test the associatedursegments to see if they intersect s. We also use the vertical range search outlinedbelow to collect all ursegments intersecting h and test each of them for intersectionwith s. We then follow s itself through the VCD. Whenever s intersects a fragment,we test the fragment's ursegments to see whether they intersect with s. Finally,when the right endpoint Q of the new ursegment s is reached, we perform testsanalogous to those at the left end. The new hot pixels are those containing theendpoints of s and its intersections with existing ursegments.The second of the three searches is for existing hot pixels through which s passes.Let the sausage region of s be the Minkowski sum of s with a pixel centered at theorigin. If s passes through a hot pixel, the vertex at the pixel's center must lie inthe sausage region of s. To �nd the hot pixels through which s passes, we visit eachcell that intersects the sausage region and test whether the vertices that lie on thecell boundary are inside the sausage region. We call this search cell sweep.The algorithm for cell sweep is as follows. We �nd the list of cells that intersects; call this the sweep list. The idea is to sweep upwards from these cells to thetop of the sausage region, then downwards to the bottom. To sweep upwards, wemark each cell on the sweep list and test whether each hot pixel center on the leftboundary of the cell is inside the sausage region. If so, we put it on a list of hotpixels. We remove the �rst cell from the sweep list; call it cell i. We replace it onthe sweep list with a list of the cells above cell i that have not yet been marked,and mark these cells. For cell j to be above cell i, part of cell j's bottom boundary

Figure 7: Detecting a new ursegment's intersections with existing ursegments.must coincide with part of cell i's top boundary. We exclude from the sweep listcells that are completely outside the sausage region. When a cell is placed on thesweep list, we test whether the hot pixel centers that lie on its left boundary areinside in the sausage region and if they are, we add them to the hot-pixels list.We keep removing the �rst cell on the sweep list and replacing it with theones above until the sweep list is empty. We then perform an analogous sweepdownwards. We unmark all marked cells and return the list of hot pixels. Theseare the hot pixels through which s passes. It is clear that the cost of the cell sweepis proportional to the number of cells that intersect the sausage region of s.The third search is for existing ursegments that pass through a new hot pixel.Figure 8 shows an example of this search at one hot pixel. The top left panel showsthe VCD at the beginning of the search; the hot pixel is the shaded square nearthe center. This VCD consists of two ursegments (aside from those making up thebounding rectangle), each with a single-fragment polysegment. Each ursegmentcoincides with its fragment because it has integral endpoints. Both ursegmentspass through the new hot pixel. The �rst step is to insert a vertex at the hot pixel.This is shown in the top right panel. The new vertex does not lie on a fragment,and it has vertical attachments extending up and down to the vertically adjacentfragments. (Such isolated vertices are another degenerate con�guration supportedby our data structures.)To �nd these ursegments, we perform a vertical range search. First, we searchup the vertical attachment extending above the new vertex. Whenever a fragmentis encountered, its ursegment is tested to see whether it passes through the hotpixel. If it does, the fragment is perturbed to pass through the new vertex. Thisperturbation is illustrated in the left panel of Figure 8. Here an ursegment s on theursegments list of the fragment f above the new vertex does pass through the hotpixel; in this case s = � = f . In the bottom left we see that the fragment f has

Figure 8: The search for existing ursegments that pass through a new hot pixel.been split in two, so that � now passes through the new vertex; we see the originalursegment s as a dashed line. The vertical attachment above the new vertex nowpoints to the fragment above the one that was just perturbed. In this case, thisfragment is the upper boundary of the VCD's bounding rectangle. Its ursegmentdoes not pass through the new hot pixel, and therefore the search upwards can beterminated. This algorithm works because, by corollary 1, snap rounding ensuresthat the order of fragments along any vertical line through pixel centers contains noreversals of the order of the ursegments to which they belong. An analogous searchis performed downwards. The bottom right panel of Figure 8 shows the VCD afterthe search downwards has terminated.6. Deletions and the HierarchyTo delete an ursegment, we visit the fragments of s's polysegment � and removes from each fragment's list of ursegments. When a list becomes empty, we deletethe fragment. Next, we delete each vertex of � in a hot pixel that became hot onlybecause s ended or intersected another ursegment in the pixel; this can be decidede�ciently by using the order in which the ursegments enter or leave that pixel. (Thisorder is available to us by combining the ordering of the fragments around eachvertex and the ordering of the ursegments within each fragment.) These operationsleave the VCD in the state in which it would have been had s never been inserted.As mentioned earlier, our algorithm produces a hierarchy of VCDs, where thelowest level (level zero) contains all the ursegments, and each successively higherlevel contains a subset of the ursegments present one level down. Adjacent levelsare linked through their hot pixels and ursegments; each hot pixel or ursegment atlevel i has a descent pointer down to the corresponding hot pixel or ursegment atlevel i� 1.To locate a point at the bottom level of the hierarchy of VCDs, �rst we locateit in the top (least detailed) VCD in the hierarchy, say at level i, using the point

location algorithm described in Section 4. Next, we �nd a nearby hot pixel and useits descent pointer to locate the corresponding hot pixel in the VCD one level down,at level i � 1. (This nearby hot pixel is never more than a pointer or two away,because every cell has at least two hot pixels on its boundary.) To locate the pointfrom a vertex at level i� 1, we trace a straight line through the VCD from the hotpixel to the point. We repeat this process until the bottom level of the hierarchyhas been reached.A new ursegment is inserted into the l bottommost levels of the hierarchy, wherel is computed independently for each ursegment by ipping a coin until tails is ob-tained. To insert the ursegment, we locate an endpoint at all levels of the hierarchyas above, and then insert the ursegment at the bottommost l levels independentlyusing the algorithm described in Section 5. At each level, the descent pointers ofthe ursegment and of any new vertices created by the insertion are linked to thecorresponding ursegments and vertices one level down.Figure 9 depicts a hierarchy of VCDs associated with an arrangement of 14ursegments. Each row in the �gure shows one level of the hierarchy, with ursegmentson the left and fragments on the right. The top row is the top of the hierarchyand contains only one ursegment; the other rows contain two, nine, and fourteenrespectively.An ursegment is deleted from the hierarchy by deleting it independently fromeach level.These algorithms are quite similar to those proposed by Mulmuley.3 In the Mul-muley algorithm, of course, there are no hot pixels, so there is no need to decidewhether a vertex is still in a hot pixel after deleting an ursegment, as we must.7. Analysis of the algorithmLet n be the number of ursegments we have and let A denote the combinatorialcomplexity (say, the number of vertices) of their ideal arrangement A. It is wellknown that Mulmuley's randomized incremental algorithm3 builds A in expectedtime O(n logn+A). Let R denote the rounded arrangement of these same segmentsand let R denote the combinatorial complexity of R; it is clear that R � A. Thereduction in complexity from A to R is due to the fact that in the latter severalfeatures (e.g., vertices) collapse to the same feature. It is useful to think of R asfollows. Let H denote the set of hot pixels; for a hot pixel h, let jhj denote itscombinatorial size, i.e. the number of ursegments passing through it. Then it isclear that R = O(Xh2H jhj): (1)(Note that R can actually be less, as when many tiny segments appear within thesame hot pixel). In our representation of the VCD, we store with each fragment alist of all the ursegments that gave rise to it. The additional storage required forthese lists is easily bounded by O(Ph2H jhj) as well. We observe that the lattersum can be either larger or smaller than A (the sum of hot pixel sizes can exceed thetrue arrangement complexity if many ursegments cross through many hot pixels,

Figure 9: A hierarchy of VCDs: the rows are the levels of the hierarchy from top tobottom. The left column shows the ursegments, and the right column the fragments.

but without giving rise to features of A there). For our analysis we also need thefollowing quantity: de�ne a pixel as being warm if it contains the endpoint of avertical attachment in the ideal VCD of A. We let W denote the set of warm pixelsand W0 the set of pixels that are either warm or are neighbors (king-wise) of warmpixels. Let C = Pw2W0 jwj be the total complexity of these `near-warm' pixels:this quantity is used to bound the complexity of the cell sweeps.The most delicate issue in the analysis of our incremental snap rounding algo-rithm is the e�ect of pixel size on performance. If the pixel size is extremely smallcompared to separation of the vertices in A, then we expect our algorithm to behavethe same as the ideal randomized algorithmworking over the reals. As the pixel sizegets larger, two opposite e�ects come into play. On the one hand the VCD becomescoarser and its size can drop signi�cantly | and so can the cost of traversing it. Onthe other hand, we lose any knowledge of the structure of A within the now largehot pixels, and as a result discovering intersections between existing ursegments anda newly added one can become expensive. In particular, when a few pixels cover allof A, our algorithm naturally reduces to the naive quadratic algorithm that checksall pairwise ursegment intersections though, as mentioned earlier, better methodshave recently been found.16Consider an existing polysegment � and its corresponding ursegment s. As wealready remarked, the vertices of � de�ne a sequence of hot pixels which both �and s pass through in the same sequence. The following obvious lemma is criticalfor our analysis.Lemma 2 During the incremental construction, if a new ursegment t intersects thefragment f of an existing polysegment � between hot pixels h1 and h2, then one ofthe following three situations holds:a. t also intersects s, the ursegment corresponding to �, between (and outside)h1 and h2, orb. t terminates in the sliver between s and �, orc. t enters at least one of the hot pixels h1 and h2.Proof. This is because s, together with f and the two pixels h1 and h2 de�nea closed region entered by t. 2This lemma allows us to estimate the cost of the VCD traversal for a newursegment t. The cost of this search, over and above that of the ideal Mulmuleyalgorithm, is in checking for the possible but non-existing or already discoveredintersection between t and other ursegments associated with fragments crossed byt. It is clear that t may cross several of the fragments de�ning �, while it can crosss only once, or not at all. Case (a) of the above lemma is the favorable one |where a fragment crossing has a corresponding ursegment crossing; this is paid forby A. In case (b) the endpoint of t will will require the local search through thefragments around the hot pixel vertices of the its surrounding trapezoid in the VCD,as explained in Section 5. Finally note that each time case (c) holds, ursegments sand t must pass though the same hot pixel (h1 or h2).

Another di�erence between our situation and that of Mulmuley is that we can-not assume non-degeneracy. We may have trapezoids in the VCD whose verticalsides are not just vertical attachments: a particular side can be an arbitrarily longalternation of vertical fragments and vertical attachments. Thus we can no longerassume that traversal through a trapezoid in a constant-time operation. We candeal with this problem by using the Mulmuley hierarchy not only for end-point loca-tion but for the VCD traversal itself as well. In other words, when a new ursegments is given, we `drop it' through the VCD hierarchy starting from its left endpointand proceeding to the right, letting the hierarchy navigate us though such complexvertical sides. It is not di�cult to estimate the cost of this method and show thatit leads to the same asymptotic bounds as the standard Mulmuley analysisb.These observations lead to the following analysis for our algorithm; note thatC =Pw2W0 jwj, the quantity introduced earlier, bounds the total number of urseg-ments (with multiplicity) that pass within half-a-pixel above or below the non-hot-pixel endpoints of all vertical attachments.Theorem 2 The complexity of our incremental rounded arrangement constructionprocedure is O(n logn+ A+Xh2H jhj2 +C): (2)Proof. The key is to understand the insertion cost of a new ursegment t. Theabove paragraph takes care of the VCD search for the intersections between t andother existing ursegments t; these intersections, together with the endpoints of tde�ne the new hot pixels created by t. The total cost of these searches, summedover all insertions, is captured by the bound in the theorem. To see this we argueas follows. Events of type (a) in the above lemma can be charged to vertices ofthe ideal arrangement, and thus can be paid out of the A term in our bound. Anevent of type (b) requires us to look at all fragments passing between an endpointof t and the center of the hot pixel h it lies in, as outlined in in Section 5. Suchfragments whose corresponding ursegments intersect t can also be paid out of the Aterm. Any other such fragments must have an ursegment that intersects h. Thesefragments, as well as all those examined in case (c) of the above lemma, can be paidout of the term Ph2H jhj2 in the theorem. This is so because they all correspondto a unique pair of ursegments passing through the same hot pixel (h, h1, or h2 asthe case may be).Any existing ursegments crossing the new hot pixels need also to be snap-rounded to these new pixel centers. The vertical range search method for thisgiven in Section 5 takes time proportional to the number of such ursegments (plusone, to be exact), as the search (down or up) stops as soon as we encounter anon-crossing ursegment. The total cost for these searches is then O(Ph2H jhj).It remains to deal with the cell sweeps. During the insertion of t, the cellsweep �nds any existing hot pixels crossed by the new ursegment t. Without lossof generality, we con�ne our attention to the upwards sweep; the analysis for thebIn our current implementation we do not do this; we simply walk along a vertical side to �ndwhere the segment currently being added crosses it.

downwards one will be symmetric. We remarked in Section 5 that the cost of thiscell sweep is proportional to the number of trapezoids contained in the sausage oft. Note that each trapezoid of the VCD has at least two vertices which are hotpixels. If a trapezoid is fully contained in the sausage of t, then at least one of itsvertices is a hot pixel center, and t crosses that hot pixel. This leaves unaccountedfor trapezoids which partially intersect the sausage and all of whose vertices in thesausage are endpoints of vertical attachments. It is easy to check that in that caseeach such vertex must be within a 1-neighborhood of some warm pixel, and thatthe ursegment t must intersect this neighborhood. Thus such vertices and theirtrapezoids are paid for by the term C =Pw2W0 jwj. 2Although we have not observed this in practice, the quadratic term above (thesum of the squares of the hot pixel complexities) can be quite large. Using a moreelaborate insertion algorithm, which we have not implemented, it is possible toreduce the total insertion cost toO(n logn+ A+Xh2H jhj log jhj+C): (3)To do so we need to exploit the fact that all ursegments associated with a particularfragment f possess a linear ordering within the region de�ned by the Minkowskisum of the fragment and a hot pixel, minus the two hot pixels at which f terminates| the ursegments neither terminate nor cross in that region. All these orderingscan be computed and maintained in O(Ph2H jhj log jhj) time. During the VCDtraversal associated with the insertion of a new ursegment t, every time t crosses afragment f in the VCD outside a hot pixel, we can traverse the list of ursegmentsof f in the appropriate order, and look for intersections with ursegments, but onlywithin the above Minkowski sum. We stop as soon as we detect a non-intersection,or enter one of the hot pixels at the ends of f , or t ends. The cost of the operationsthat do not yield a vertex of the ideal arrangement can be changed to either thehot pixel entered by t, or to an endpoint of t. It would also be highly desirableto eliminate the term C in the above bound, which is due to the search for theexisting hot pixels entered by t (some, but not all such, will be found by the newmodi�ed VCD search explained here). Unfortunately, points can be within the samepixel, yet belong to trapezoids that are far away in the graph structure the VCDrepresents (think of a fan of closely spaced fragments going through the same pixel).In fact, in the worst case, C can be as large as �(n2). Eliminating the cost of the Cterm will require us either to exploit the randomized hierarchy better, or to buildand maintain some independent data structures.We omit a detailed analysis of the deletion procedure. We only remark that wecan implement the test for whether a vertex of a polysegment � becomes deletable(after the deletion of the corresponding ursegment s) in time proportional to thelogarithm of the number of ursegments crossing the hot pixel of that vertex.8. Implementation and Veri�cationWe have implemented the algorithms and data structures described above in

Allegro Common Lisp on a Silicon Graphics Indigo Elan. We began by construct-ing a naive and ine�cient implementation of snap rounding. Each component ofthe more sophisticated implementation, which takes advantage of the algorithmsdescribed earlier, was developed and tested independently by replacing the corre-sponding component in the naive implementation. To verify the new \partiallysophisticated" implementation, we generated large numbers of test cases and, usingsoftware to test whether two VCDs were identical, compared the output of the newimplementation to that of the naive one.For example, to implement the search for existing ursegments that pass throughthe new hot pixels, we used exhaustive versions of the search for new hot pixels andof the search for the existing hot pixels through which the new ursegment passes.We implemented the more e�cient local search only for the existing ursegmentsthat pass through the new hot pixels discovered by the exhaustive search.This process quickly revealed errors in earlier versions of our algorithms. Usuallythe errors arose because we did not anticipate certain con�gurations of ursegmentsthat have a very low probability of occurring. Only after many random trials werethe errors exposed. To understand how these con�gurations caused our algorithmto fail, we wrote visualization tools tailored to our data structures. Using thesetools, we could explore the problematic con�gurations in detail, and in most casesit rapidly became obvious why the algorithm failed { although not always how to�x it!A number of factors were key to our implementation and veri�cation of the soft-ware. The existence of a naive implementation simple enough for us to be con�dentthat it was producing correct results provided a benchmark against which more so-phisticated implementations could be tested. Our strategy of constructing the moresophisticated implementation by incrementally replacing components of the naiveimplementation made it much easier to identify the errors in our algorithms. Thesoftware that automated comparing one VCD to another made it possible for us totest the incremental algorithms with very large numbers of cases by comparing theresulting VCDs to those constructed by the naive algorithm. Finally, our tools tovisualize and inspect local structures in the VCD helped us to better understandthe algorithms, especially when they were producing incorrect results.Figure 10 shows an arrangement of 50 ursegments and corresponding snap-rounded arrangement of fragments. The ursegments are on the top, and the frag-ments are on the bottom.9. Future DirectionsOur work leaves open several questions on the proper implementation of dynamicsnap rounding. The only data structure currently used is the rounded VCD, withreferences from the fragments to the corresponding ursegments. As our discussionin Section 5 showed, we have di�culty in locating existing hot pixels that a newursegment passes through. This is because the area of the plane covered by hotpixels is not explicitly represented in the VCD in any way, and thus a point in a hotpixel can be topologically arbitrarily far in the VCD from that pixel's center (which

Figure 10: Top, an arrangement of 50 ursegments; bottom, the snap-rounded formof the arrangement.

is in the VCD). It seems worthwhile to investigate a data structure that wouldrepresent the hot pixels better and allow more e�cient detection and traversal ofhot pixel regions by a new ursegment.This might also allow us also to remove the dependence on A, the complexityof the ideal arrangement, in the running time of our algorithm. In e�ect now weare paying to discover certain aspects of the micro-structure of the arrangement Ainside the hot pixel regions, even though we really do not need to. Thus we couldhope for an algorithm which is output sensitive in terms of the complexity R of therounded arrangement only.An extension of our work to handle arrangements of arcs of curves in the plane,or of planar or curved surface patches in space would also be highly desirable.10. ConclusionsTrapezoidal decompositions, at or hierarchical, are now part of the standardmachinery of cuttings in Computational Geometry. Yet when we try to perturb andround these structures so as to make all their features exactly representable in �nitearithmetic, many subtle issues arise. This is especially so in a dynamic context, asmany of the invariants that guarantee the correctness and good performance of thein�nite precision algorithms do not hold when we try to emulate these algorithmsusing the �nite-precision structures we can actually store.The key contribution of our paper has been to show how to marry the planarVCD rounding with dynamic operations on the arrangement of line segments itrepresents. We do so while maintaining as much as possible the performance of theideal algorithms and producing in all cases a canonical rounding | the structurecomputed depends only on the set of segments present and not the history of themodi�cations made. In developing these techniques we saw a true interplay betweentheory and implementation. We have been able to employ simpler algorithms foroperating on the rounded VCDs because we could go back and theoretically deriveadditional properties of snap rounding which then enabled us to prove the correct-ness of these simpler methods, as well as to analyze their performance.We expect that this combination of theory, analysis, and implementation shouldapply to many other �nite-precision models of geometric data structures and algo-rithms. We also believe that this type of algorithm will necessitate a new kind ofanalysis that elucidates the interaction between metric (distance, area) and combi-natorial measures on geometric con�gurations.AcknowledgmentsWe thank Dan Greene for useful discussions. Leonidas Guibas wishes to ac-knowledge support by NSF grants CCR-9215219 and IRI-9306544.An earlier version of this paper appeared in the ACM Symposium on Compu-tational Geometry, 1995.17

References1. Daniel H. Greene, \Integer Line Segment Intersection," unpublished manuscript.2. John D. Hobby, \Practical Segment Intersection with Finite Precision Output,"submitted for publication.3. Ketan Mulmuley, Computational Geometry: An Introduction Through RandomizedAlgorithms, (Prentice Hall, Englewood Cli�s, NJ, 1994).4. J. L. Bentley and T. A. Ottmann, \Algorithms for reporting and counting geometricintersections," IEEE Trans. Comput. C-28 (1979) 643{647.5. B. Chazelle and H. Edelsbrunner, \An optimal algorithm for intersecting line seg-ments in the plane," J. Assoc. Comput. Mach. 39 (1992) 1{54.6. K. Clarkson and P. Shor, \Applications of random sampling in computational ge-ometry II", Discrete Comput. Geom. 4 (1989) 387-421.7. Ketan Mulmuley, \A fast planar partition algorithm I", J. Symbolic Comput. 10(1990) 253-280.8. C. Ho�man, J. Hopcroft, and M. Karasick, \Towards implementing robust geometriccomputation," Proc. Fourth Ann. Symp. on Computational Geometry, 1988, pp.106{117.9. V. Milenkovic, Veri�able Implementations of Geometric Algorithms using FinitePrecision Arithmetic, Ph.D. Thesis, Carnegie-Mellon, 1988. Also Technical ReportCMU-CS-88-168, Carnegie Mellon University, 1988.10. K. Sugihara and M. Iri, Geometric algorithms in �nite-precision arithmetic,ResearchMemorandum RMI 88-10, University of Tokyo, September 1988.11. S. Fortune, \Stable maintenance of point-set triangulation in two dimensions," un-published manuscript, AT&T Bell Laboratories. (An abbreviated version appearedin Proc. 30th Ann. Symp. on Foundations of Computer Science, 1989, pp. 494-499.)12. L. Guibas, D. Salesin, and J. Stol�, \Epsilon Geometry: building robust algorithmsfrom imprecise calculations," Proc. Fifth Ann. Symp. on Computational Geometry,1989, pp. 208{217.13. S. Fortune and V. Milenkovic, \Numerical stability of algorithms for line arrange-ments," Proc. Seventh Ann. Symp. on Computational Geometry, 1991, pp. 334-341.14. Daniel H. Greene and Frances F. Yao, \Finite-Resolution Computational Geometry,"Proc. 27th Ann. Symp. on Foundations of Computer Science, 1986, pp. 143-152.15. V. Milenkovic, \Practical methods for set operations on polygons using exact arith-metic," Proceedings of the 7th Canadian Computational Geometry Conference,1995, pp. 55{60.16. Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Tanen-baum, \Snap Rounding Line Segments E�ciently in Two and Three Dimensions,"Proc. Thirteenth Ann. Symp. on Computational Geometry, 1997 (to appear).17. Leonidas J. Guibas and David H. Marimont, \Rounding Arrangements Dynami-cally," Proc. Eleventh Ann. Symp. on Computational Geometry, 1995, pp. 190-199.

