International Journal of Computational Geometry & Applications
© World Scientific Publishing Company

ROUNDING ARRANGEMENTS DYNAMICALLY

LEONIDAS J. GUIBAS

Computer Science Department, Stanford University
Stanford, California 94305, USA
gutbas@cs.stanford. edu

and

DAVID H. MARIMONT

Xerox Palo Alto Research Center
38833 Coyote Hill Road, Palo Alto, California 94304, USA

marimont@parc.zeror.com

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We describe a robust, dynamic algorithm to compute the arrangement of a set of
line segments in the plane, and its implementation. The algorithm is robust because,
following Greene! and Hobby,? it rounds the endpoints and intersections of all line seg-
ments to representable points, but in a way that is globally topologically consistent. The
algorithm is dynamic because, following Mulmuley,® it uses a randomized hierarchy of
vertical cell decompositions to make locating points, and inserting and deleting line seg-
ments, efficient. Our algorithm is novel because it marries the robustness of the Greene
and Hobby algorithms with Mulmuley’s dynamic algorithm in a way that preserves the
desirable properties of each.

Keywords: arrangement, vertical trapezoidal decomposition, dynamic data structure,
randomized algorithm, robustness, rounding

1. Introduction

The goal of this paper is to describe a new, robust, and dynamic algorithm
for constructing arrangements of line segments in the plane, and its implementa-
tion. The problem of constructing line-segment arrangements has been well studied
in Computational Geometry and is the focus of some of the most famous algo-
rithms in the field. Let n denote the number of segments we are given and A the
complexity of their arrangement (say the number of its vertices). An early solu-
tion for this problem was provided by the Bentley-Ottmann sweep,* which ran in
time O((n + A)logn) ; a long sequence of improvements followed, culminating in
the optimal but complex O(nlogn + A) algorithm of Chazelle and Edelsbrunner.?

The introduction of randomization into Computational Geometry revitalized the
problem, and several new randomized incremental algorithms for the problem were
invented, all with optimal randomized complexity O(nlogn + A) and notable for
their simplicity.>”? Among these authors, Mulmuley® was especially successful at
providing an algorithm that was dynamic, allowing efficient segment insertion and
deletion.

The key data structure in Mulmuley’s algorithm is the vertical cell decomposition
(VCD) of a set of line segments. The VCD of a set of line segments is a refinement
of their arrangement into cells that are all trapezoids (possibly degenerate) with two
vertical sides. As is well established by now, there is a large class of applications
in Computational Geometry for which this further refinement of the arrangement
into cells each with only a small number of sides (four in our case, assuming non-
degeneracy) is very useful. The Mulmuley algorithm is randomized and dynamic:
that is, it is possible to insert and delete line segments from the VCD. The output
of the algorithm is a hierarchy of (VCDs) vertical cell decompositions of subsets of
the line segments. The lowest, most detailed level contains all the line segments.
Each higher level contains a randomly chosen subset of the line segments present
one level down. The hierarchy makes it possible to locate points, insert and delete
line segments, and otherwise navigate efficiently around the arrangement.

This, as well as all previously mentioned algorithms, were developed assuming
an infinite-precision model of computer arithmetic. In any practical implementa-
tion of a line segment arrangement computation, however, the implementors have
to consider the effects of finite precision arithmetic on the above techniques. This
issue of robust implementation of geometric algorithms has been addressed in sev-

8:9,10,11,12,13 byt with mixed success. We do not attempt to survey this

eral papers,
extensive literature here. In our work, we will address the robustness problem by
perturbing all vertices of our arrangement to lie on a fixed grid, assumed for con-
venience to be that of the points with integral coordinates. However, in order to
ensure that the perturbed arrangement has a topology consistent with the original,
we will need to perturb to the grid additional features of our arrangement as well. In
the end, all vertices, edges, and faces of our perturbed arrangement will have exact
representations with finite arithmetic. We call this operation rounding the arrange-
ment. Exactly how to accomplish such a perturbation of the arrangement to the
grid was first studied by Greene and Yao.!* As we explain below, the Greene-Yao
rounding has a number of undesirable properties, which were overcome in another
rounding scheme proposed by Greene, and independently by Hobby, in as yet un-
published manuscripts.’? A still third way to round, called shortest path rounding
was proposed by Milenkovic;!® see his paper and the references cited therein.

The key contribution of our paper is to show how to combine the ideas of Mulmu-
ley’s dynamic segment arrangement algorithm, while maintaining (and producing)
only the rounding of Greene and Hobby of the arrangement of the current segments.
The algorithms proposed by Greene and Hobby are robust but not dynamic; they
are based on finite-precision arithmetic but operate in a batch mode that assumes
all the segments are given at once. The Mulmuley algorithm is dynamic but not

robust; it provides for inserting and deleting line segments but is based on infinite-
precision arithmetic. The technical challenge we have to overcome is how, using
only the VCD of the rounded arrangement of the present segments (and its hierar-
chy of sampled counterparts), to simulate the effect of doing an insertion or deletion
in the ideal Mulmuley structure and then rounding the result. We guarantee that
the rounded arrangement we compute dynamically is exactly the same as what
would have been produced by the batch algorithms of Greene and Hobby. We have
implemented and extensively tested this new algorithm.

In the paper we begin by describing the rounding of Greene and Hobby and a
new and elementary way to derive its desirable topological properties (Sections 2
and 3). We then provide a succinct summary of our data structures and discuss the
key algorithmic issues in adding a new segment to the arrangement (Sections 4 and
5). Section 6 discusses deletions and the effect of the hierarchy on the algorithm.
In Section 7 we provide a brief analysis of our method. In Section 8 we talk about
some of the experiences from our implementation. We end by presenting some
conclusions in Section 10.

2. Snap Rounding

In this section we briefly discuss a way to round an arrangement of line segments
that 1s especially economical in terms of the number of “kinks” introduced in the
segments. This method, as already mentioned, was introduced by Greene' and
Hobby? — we shall refer to it from here on as snap rounding for reasons that
become apparent below.

The setting is as follows: the Euclidean plane is tiled into unit squares each
centered on a point of the integer grid, in the obvious way; we refer to these tiles as
pizels.® As mentioned, we coordinatize the plane so that pixel centers have integral
coordinates and refer to these pixel centers as integral points. When we round an
arrangement of line segments, we require that all its vertices (endpoints of segments,
as well as intersections of pairs of segments) be perturbed to integral points — in
other words, the only points we allow as vertices in our rounded representation are
the integral points.

Any rounding scheme must have at least two goals: (1) to keep the perturbed
segments near the originals, and (2) to preserve as much as possible the topology
of the original arrangement. Requirement (1) suggests that each vertex of the
ideal arrangement be perturbed to its nearest integral point. However, it is well
known that just doing this can cause topological inconsistencies between the ideal
and the rounded arrangements. In order to avoid this problem, about eight years
ago, Greene and Yao'* suggested that we treat each representable point as an
“obstacle” and do not allow our segments to go over these obstacles while vertices
move to their nearest integral point. These obstacles can create additional “kinks”
in the perturbed segments. Greene and Yao showed that, with this additional
fragmentation, no topological inconsistencies arise. They also gave an algorithm for

“These pixels correspond to a tiling of the plane at any desirable resolution and need not
correspond to the size of the display pixels of an output device.

Figure 1: Left, a small line segment arrangement; right, its Greene-Yao perturba-
tion.

computing their perturbation efficiently.

The difficulty with the Greene-Yao method is that the requirement of not going
over the obstacle grid adds a large number of additional breaks to each rounded
segment. See, for example, Figure 1(left) showing an ideal line arrangement (dashed
lines), and Figure 1(right) its Greene-Yao perturbation (solid lines). In that figure
the grid lines (gray lines) correspond to pixel boundaries.

To get around the excess fragmentation, snap rounding proceeds as described
below. To fix the terminology, we call the original unrounded segments ursegments.
After the perturbation, each ursegment becomes a polygonal line that we call a
polysegment. A polysegment consists of smaller line segments which themselves are
called fragments. If s denotes an ursegment, we denote the corresponding polyseg-
ment by the corresponding Greek letter o. For brevity of exposition, we assume that
every vertex of our arrangement has a unique nearest integral point — fortunately,
such degeneracies do not introduce any substantial difficulties.

We declare all pixels containing an ursegment endpoint, or the intersection point
of two ursegments, to be hot. In other words, any pixel containing a vertex of the
ideal arrangement becomes hot — note that a pixel may become hot for multiple
reasons. Snap rounding is then this: if an ursegment terminates in a hot pixel,
it is perturbed to terminate at the that pixel’s center; and if an ursegment passes
through a hot pixel, then it is perturbed to pass through that pixel’s center. See
Figure 2 for an illustration. Notice this key aspect of snap rounding: a kink is
added to an ursegment only where a vertex of the arrangement lies on the segment,
or where the ursegment passes “very near” an integral point which will become a
vertex of the rounded arrangement. Figure 2(right) shows snap rounding for the
arrangement of Figure 1(left) — it is evident that fewer kinks have been added.
We call this snap rounding because all ursegments passing through a hot pixel are
snapped to pass through that pixel’s center.

i N
~. [;\A\
0 | -
/——0) —
N~ - AN
N\ = J
h >~ — D\
\ - N, —
(o — T
\\\ \
N \
N N
\ \
N\ \

Figure 2: Left; the rules of snap rounding; right, the snap-rounded form of the
arrangement in Figure 1(left).

The shortest path routing of Milenkovic!® was introduced for performing robust
boolean operations on polygons. It is based on the idea of continuously perturbing
all arrangement vertices to their nearest integral point while at the same time
detecting when we encounter other fragments and then dragging them along (to
prevent topological violations). Shortest path rounding adds even fewer kinks than
snap rounding but it seems more complex to compute and maintain, as it is defined
by a continuous process and therefore lacks a simple input-output specification.

Though all three rounding approaches presented above are defined in terms of
modifications to the ideal arrangement, it is conceivable that they can be computed
and maintained directly from the input set of segments. Since in practice a rounded
arrangement can have far lower complexity that its ideal counterpart, algorithms
that compute the rounded structure directly, bypassing the ideal arrangement, can
be more efficient. We have selected to work with snap rounding because of its
clean mathematical properties; these have recently led to a direct output-sensitive

algorithm for the rounded arrangement.'®

3. A Topological Analysis of Snap Rounding

It 1s first of all trivial to prove that after snap rounding, an ursegment and the
corresponding polysegment are quite near each other.

Lemma 1 After snap rounding, the polysegment o corresponding to ursegment s is
contained within the Minkowski sum of s with a pizel (unit square) centered at the
origin.

Proof. The hot pixels crossed by ursegment s can be linearly ordered in the
sequence in which they are crossed by s. Consider now the part of s in and between
two successive hot pixels p; and ps in this sequence. From the central symmetry
of the pixel shape, it follows that the Minkowski sum of s with a pixel contains
the pixel centers of p; and p,. But this Minkowski sum is obviously convex, so it

- / B |

Figure 3: Left, segment fragmentation by nodes at hot pixel boundaries; right,
halfway through the first stage of the explicit deformation.

also contains the fragment of the corresponding polysegment o joining those two
centers. O

Understanding the relation between the topology of the original and rounded
arrangements is much more interesting. In his original manuscript, Greene defined
and proved a number of “topological consistency” properties of his perturbation. His
argument was phrased in a context allowing more general pixel shapes than we have
here; but it was involved and required a global analysis using graph-theoretic argu-
ments. In this paper we give a very different topological analysis of snap rounding.
We show topological consistency between the original and rounded arrangements
by giving an explicit continuous deformation that takes an arrangement of segments
into its snap-rounded form. During that deformation features of the arrangement
may collapse (as they must in any rounding scheme), but they never invert — in the
sense that no vertex of the arrangement ever crosses through one of the segments.
We call the latter property the non-penetration condition. Our deformation is easy
to visualize and the proof of non-penetration is entirely local and straightforward. In
addition, because of the clear understanding of this topological transformation that
our deformation provides, we are able to easily prove certain additional lemmata
that are useful in the implementation of our incremental variant of snap rounding.

We now proceed to define a deformation D that starts from the original arrange-
ment and continuously transforms it to its snap-rounded form. We initially break
up each ursegment into a number of subsegments, by introducing a breakpoint, or
node, whenever the ursegment crosses the boundary of a hot pixel. Note that if an
ursegment crosses a pixel boundary separating two hot pixels, then two nodes will
be placed there, with a zero-length subsegment between them. See Figure 3(left)
for an illustration.

Our deformation D proceeds in two stages. In the first stage every hot pixel
contracts simultaneously and at the same rate in the x direction, towards the vertical
axis through its center. If at time { = 0 we have the original arrangement, then
each hot pixel 1s linearly scaled down in the z-direction until, at time say ¢t = 1,
all hot pixels have collapsed to their vertical axis. All nodes on the hot pixel
boundaries follow the pixel motion. Each ursegment thus is continuously deformed
to a polysegment, the polysegment joining the current locations of its nodes for each
time t. At time ¢t = 1 each hot pixel has become a hot “stick,” with nodes marked
on it. In the second stage of the deformation, say from ¢ = 1 to ¢ = 2, the hot

sticks vertically contract simultaneously and at the same rate towards their center.
Again, the polysegments are defined by just tracking the corresponding nodes. See
Figure 3(right) for an illustration of this process.

It is not hard to show that at time ¢ = 2 our polysegments are exactly those
defined by snap rounding. Note that, during the deformation D, our nodes partition
each polysegment into fragments of two kinds: internal — those inside a hot pixel,
and ezternal — those connecting nodes on the boundary of two different hot pixels.
At the end of the deformation D, internal fragments collapse to pixel centers and
only external fragments remain. No node ever crosses over a fragment during this
deformation. In particular, an endpoint of a polysegment can never move over
another polysegment, nor does the orientation of an elementary triangle formed by
three polysegments ever invert — see Figure 4.

\\i/ R D\/

R

Figure 4: Some of the topological consistency conditions.

Theorem 1 During the deformation D, no node ever crosses over a fragment.

Proof. It is first of all clear that there can be no trouble among all the
internal fragments of a particular hot pixel: they all occur in a region of the plane
that undergoes a uniform z- or y-scaling transformation. The crucial part of the
proof is the invariant that no external fragment ever touches or enters a contracting
hot pixel (other than those at its endpoints). To see this, we can argue as follows.
Consider, for example, the z-part of the deformation (first stage). If an external
fragment is to enter a hot pixel, then 1t must overtake during the deformation one
of the corners of that pixel’s boundary. Furthermore, at the point of overtaking, the
external fragment and the corner must be moving in the same direction in z (i.e.,
both left or both right), as the hot pixel is contracting. But by the way we have
defined the z-deformation, the z-velocity of the pixel corners is always maximal in
magnitude among all points on a pixel boundary. And in addition, a point along a
fragment is moving in « by a velocity which is a convex combination of the velocities
of its endpoints, which are nodes following other hot pixel boundaries. An entirely
analogous argument holds for the y-part of the deformation. Thus a fragment can
never overtake a deforming hot pixel. ad

As a consequence of the above, we can deduce many topological consistency
properties between the original line segment arrangement and its snap rounding.

Corollary 1 After the snap rounding deformation D:

a. No fragments intersect except at their endpoints.

b. The circular ordering of the fragments ending at the same pixel is consistent
with the circular ordering at the pizel’s boundary of the corresponding urseg-
ments crossing this pixel.

c. If ursegment v intersects ursegment s and then ursegment t, then polysegment
p cannot intersect polysegment T before polysegment o.

d. If a vertical line £ through pizel centers intersects ursegment s and then urseg-
ment t, then £ cannot intersect polysegment T before polysegment o.

Proof. These claims are immediate.

a. At the beginning of the deformation no external fragments properly cross,
and this property is maintained throughout D because of the above theorem.
Furthermore, all the internal fragments collapse to points at the end of D.

b. The hot pixel boundaries deform continuously, and so the ordering of the
nodes around them is preserved during D.

c. An ursegment r and its corresponding polysegment p go through hot pixels
in the same sequence; in particular this applies to the hot pixels created by
the intersections of » with s and £. When these intersections lie in the same
hot pixel, snap-rounding forces them to coincide.

d. For such an inversion to happen, ursegments s and ¢ would have to intersect,
and snap rounding would have to move the intersection across a vertical line
though pixel centers — which obviously cannot happen.

4. Data Structures

Here we briefly summarize the data structures we use. The vertical cell de-
composition’s top-level data structures are vertices and two types of line segments,
fragments and vertical attachments. Figure b(left) illustrates these structures; a
vertex is represented by a filled circle, a fragment with a solid line, and a vertical
attachment by a dotted line with an arrow that points to the fragment at one end
of the attachment. Note that the ‘x’-shaped configuration of fragments at the top
of the figure 1s not two fragments intersecting at a vertex, which is impossible by
corollary 1, but four fragments that share an endpoint. For convenience, we bound
the VCD with a rectangle of four ursegments with integral endpoints, as is standard.

An ursegment is stored with the fragments that make up its polysegment. Snap
rounding can cause two or more ursegments to share the same fragment, so each
fragment maintains a list of ursegments that it represents; sorted in their y-order
(this is well defined because two ursegments cannot cross between the two hot pixels
delimiting the fragment). Although we can concoct pathological situations where all
or most segments share some fragments, experiments with both randomly generated
line segments and edge data from natural images suggest that these lists rarely have

Figure 5: Left, top-level structures in the VCD; right, a degenerate vertical bound-
ary.

more than five ursegments. An ursegment also has pointers to the vertices at its
endpoints.

Snap rounding can produce “degenerate” configurations that the VCD must be
able to represent, such as the vertical fragment in the upper right of Figure 5(left).
Such degenerate configurations can make the vertical boundaries of a trapezoid
arbitrarily complicated, as shown in Figure 5(right).

The VCD’s data structures make it easy to move vertically. Moving vertically
from a vertex, vertical fragment, or vertical attachment is straightforward because
each can have only one structure above and one below. Nonvertical fragments, how-
ever, can have a sequence of structures above and below them, which we represent
with two doubly linked lists called the ceiling (for the structures above) and floor
(for those below) lists of the fragment. In addition to facilitating vertical motion
from a nonvertical fragment, they make it easy to move along the fragment.

Figure 6 illustrates the ceiling and floor lists of some nonvertical fragments in
a simple VCD. On the left is a VCD with four nonvertical fragments. We shall
refer to a fragment by the number that appears to the left of its left endpoint.
Figure 6(right) shows the ceiling and floor lists of the fragments schematically.
Each fragment f is represented by a horizontal line segment with filled circles at its
endpoints; the number of fragment f appears to the left of the line. The numbers
and arrowheads above f’s line correspond to the fragments and vertical attachments
above f as we move from its left endpoint to its right. Pointers to these fragments
and vertical attachments are stored on the ceiling list of f. The numbers and
arrowheads below f’s line correspond to the fragments and vertical attachments
below f, pointers to which are stored on the floor list of f.

The vertical attachments on a floor or ceiling list define a partition of the interval
in z occupied by the fragment. The open intervals in each list, where another
fragment is above or below the fragment, we represent with structures called zspans.

4 T T ¥
4=1‘2 A 3 A1‘
a 4 e
3e 5 1 - o
° 4 \ J 3 .
2 e ; 0
1e-2 Y 2 Y 3 V4,4
1 ¥ ¥ ¥

Figure 6: Left, a simple VCD; right, the fragments’ ceilings and floors.

Fach trapezoid in the VCD is bounded below by a ceiling xspan (belonging to the
fragment at the bottom of the trapezoid) and above by a floor xspan (belonging to
the fragment at the top). For example, the trapezoid at the center of Figure 6(left)
is bounded below by the second xspan on 2’s ceiling list, and above by the first
xspan on 3’s floor list. The floor and ceiling xspans that bound a trapezoid point to
each other, which makes it possible to move vertically across a trapezoid. To cross
from the floor of a nonvertical fragment to its ceiling (or vice versa), we maintain
with each fragment a third doubly linked list consisting of all vertical attachments
on the floor and ceiling lists.

A simple traversal algorithm for locating a point illustrates how these structures
are used. We first find the xspan containing the x coordinate of the point by
linearly searching the ceiling list of the horizontal fragment that defines the bottom
of the VCD’s bounding rectangle. We search upwards in y, using xspans to cross
trapezoids, for example, until we find the trapezoid that contains the point. We
discuss an algorithm for locating points that exploits the hierarchy of VCDs in
Section 6.

5. Inserting a New Ursegment

Inserting a new ursegment s requires three different searches. First, we must
determine the new hot pixels created by s by locating its endpoints and detecting
its intersections with other ursegments. Second, we must detect the existing hot
pixels through which s passes. Third, we must detect the existing ursegments that
pass through the new hot pixels (and perturb the ursegments accordingly).

The polysegment ¢ of s is defined by the vertices of the new and existing hot
pixels found in the first two of these searches. Once the vertices of o are known, we
insert those of its fragments not already in the VCD (with the new ursegment the
only member of its list of ursegments); by corollary 1 these fragments intersect no
others, which makes the insertion simple. For a fragment of ¢ already in the VCD,
we need only add s to its list of ursegments. Note that the order in which o passes
through these pixel centers can be immediately determined from the slope of s.

Figure 7 illustrates the problem of detecting s’s intersections with existing urseg-

ments. The ursegments are the dashed lines, the fragments are the solid ones, and
the vertices are filled circles. The grid of pixel boundaries are the gray lines. The
new ursegment s i1s the near-horizontal dashed line that begins at the left of the
figure. Three existing ursegments and their polysegments are shown.

Each ursegment and its polysegment define a closed but not necessarily simple
polygon. We call these polygons slivers. The existing ursegments at the left and
the center of the figure depict the most common situation. In each case, s passes
entirely through a sliver, so that s intersects both the existing ursegment and one
of its fragments. (In general, s may intersect several of the fragments.) Detecting
intersections with such ursegments is easy, since we need only find intersections with
fragments, and test the ursegments to which the fragments belong.

The rightmost existing ursegment in the figure depicts a more challenging situa-
tion that can only arise at an endpoint of s. Here s intersects the existing ursegment
r, but because an endpoint) of s lies inside the sliver, s does not intersect any of
the fragments of p, the polysegment of ». In this case the endpoint ¢ will define a
new hot pixel h and either r or p (or both) must intersect h. Note that if » does
not intersect h, then the center of the hot pixel A must lie outside the sliver and
thus p must separate it from). So in all cases either r intersects h, or p intersects
the segment from @ to A’s center.

To find the ursegments that intersect s, we use the following algorithm, which
we call VCD traversal. First, we locate the left endpoint P of s. We then walk,
using the VCD, in a straight line from P to the center of the pixel & in which it lies
and collect all fragments thus encountered. For each of them we test the associated
ursegments to see if they intersect s. We also use the vertical range search outlined
below to collect all ursegments intersecting i and test each of them for intersection
with s. We then follow s itself through the VCD. Whenever s intersects a fragment,
we test the fragment’s ursegments to see whether they intersect with s. Finally,
when the right endpoint @ of the new ursegment s is reached, we perform tests
analogous to those at the left end. The new hot pixels are those containing the
endpoints of s and 1its intersections with existing ursegments.

The second of the three searches 1s for existing hot pixels through which s passes.
Let the sausage region of s be the Minkowski sum of s with a pixel centered at the
origin. If s passes through a hot pixel, the vertex at the pixel’s center must lie in
the sausage region of s. To find the hot pixels through which s passes, we visit each
cell that intersects the sausage region and test whether the vertices that lie on the
cell boundary are inside the sausage region. We call this search cell sweep.

The algorithm for cell sweep is as follows. We find the list of cells that intersect
s; call this the sweep list. The idea is to sweep upwards from these cells to the
top of the sausage region, then downwards to the bottom. To sweep upwards, we
mark each cell on the sweep list and test whether each hot pixel center on the left
boundary of the cell is inside the sausage region. If so, we put it on a list of hot
pixels. We remove the first cell from the sweep list; call it cell . We replace it on
the sweep list with a list of the cells above cell ¢ that have not yet been marked,
and mark these cells. For cell j to be above cell 7, part of cell j’s bottom boundary

Figure 7: Detecting a new ursegment’s intersections with existing ursegments.

must coincide with part of cell ¢’s top boundary. We exclude from the sweep list
cells that are completely outside the sausage region. When a cell is placed on the
sweep list, we test whether the hot pixel centers that lie on its left boundary are
inside in the sausage region and if they are, we add them to the hot-pixels list.

We keep removing the first cell on the sweep list and replacing it with the
ones above until the sweep list is empty. We then perform an analogous sweep
downwards. We unmark all marked cells and return the list of hot pixels. These
are the hot pixels through which s passes. It 1s clear that the cost of the cell sweep
is proportional to the number of cells that intersect the sausage region of s.

The third search is for existing ursegments that pass through a new hot pixel.
Figure 8 shows an example of this search at one hot pixel. The top left panel shows
the VCD at the beginning of the search; the hot pixel is the shaded square near
the center. This VCD consists of two ursegments (aside from those making up the
bounding rectangle), each with a single-fragment polysegment. Fach ursegment
coincides with its fragment because it has integral endpoints. Both ursegments
pass through the new hot pixel. The first step is to insert a vertex at the hot pixel.
This is shown in the top right panel. The new vertex does not lie on a fragment,
and 1t has vertical attachments extending up and down to the vertically adjacent
fragments. (Such isolated vertices are another degenerate configuration supported
by our data structures.)

To find these ursegments, we perform a wvertical range search. First, we search
up the vertical attachment extending above the new vertex. Whenever a fragment
is encountered, its ursegment is tested to see whether it passes through the hot
pixel. If it does, the fragment is perturbed to pass through the new vertex. This
perturbation is illustrated in the left panel of Figure 8. Here an ursegment s on the
ursegments list of the fragment f above the new vertex does pass through the hot
pixel; in this case s = ¢ = f. In the bottom left we see that the fragment f has

Figure 8: The search for existing ursegments that pass through a new hot pixel.

been split in two, so that o now passes through the new vertex; we see the original
ursegment s as a dashed line. The vertical attachment above the new vertex now
points to the fragment above the one that was just perturbed. In this case, this
fragment is the upper boundary of the VCD’s bounding rectangle. Its ursegment
does not pass through the new hot pixel, and therefore the search upwards can be
terminated. This algorithm works because, by corollary 1, snap rounding ensures
that the order of fragments along any vertical line through pixel centers contains no
reversals of the order of the ursegments to which they belong. An analogous search
is performed downwards. The bottom right panel of Figure 8 shows the VCD after
the search downwards has terminated.

6. Deletions and the Hierarchy

To delete an ursegment, we visit the fragments of s’s polysegment ¢ and remove
s from each fragment’s list of ursegments. When a list becomes empty, we delete
the fragment. Next, we delete each vertex of o in a hot pixel that became hot only
because s ended or intersected another ursegment in the pixel; this can be decided
efficiently by using the order in which the ursegments enter or leave that pixel. (This
order is available to us by combining the ordering of the fragments around each
vertex and the ordering of the ursegments within each fragment.) These operations
leave the VCD in the state in which it would have been had s never been inserted.

As mentioned earlier, our algorithm produces a hierarchy of VCDs, where the
lowest level (level zero) contains all the ursegments, and each successively higher
level contains a subset of the ursegments present one level down. Adjacent levels
are linked through their hot pixels and ursegments; each hot pixel or ursegment at
level i has a descent pointer down to the corresponding hot pixel or ursegment at
level ¢ — 1.

To locate a point at the bottom level of the hierarchy of VCDs, first we locate
it in the top (least detailed) VCD in the hierarchy, say at level ¢, using the point

location algorithm described in Section 4. Next, we find a nearby hot pixel and use
its descent pointer to locate the corresponding hot pixel in the VCD one level down,
at level ¢ — 1. (This nearby hot pixel is never more than a pointer or two away,
because every cell has at least two hot pixels on its boundary.) To locate the point
from a vertex at level ¢ — 1, we trace a straight line through the VCD from the hot
pixel to the point. We repeat this process until the bottom level of the hierarchy
has been reached.

A new ursegment is inserted into the ! bottommost levels of the hierarchy, where
l i1s computed independently for each ursegment by flipping a coin until tails is ob-
tained. To insert the ursegment, we locate an endpoint at all levels of the hierarchy
as above, and then insert the ursegment at the bottommost [levels independently
using the algorithm described in Section 5. At each level, the descent pointers of
the ursegment and of any new vertices created by the insertion are linked to the
corresponding ursegments and vertices one level down.

Figure 9 depicts a hierarchy of VCDs associated with an arrangement of 14
ursegments. Fach row in the figure shows one level of the hierarchy, with ursegments
on the left and fragments on the right. The top row is the top of the hierarchy
and contains only one ursegment; the other rows contain two, nine, and fourteen
respectively.

An ursegment is deleted from the hierarchy by deleting it independently from
each level.

These algorithms are quite similar to those proposed by Mulmuley.? In the Mul-
muley algorithm, of course, there are no hot pixels, so there is no need to decide
whether a vertex is still in a hot pixel after deleting an ursegment, as we must.

7. Analysis of the algorithm

Let n be the number of ursegments we have and let A denote the combinatorial
complexity (say, the number of vertices) of their ideal arrangement A. Tt is well
known that Mulmuley’s randomized incremental algorithm? builds A in expected
time O(nlogn—+ A). Let R denote the rounded arrangement of these same segments
and let R denote the combinatorial complexity of R; it is clear that R < A. The
reduction in complexity from A4 to R is due to the fact that in the latter several
features (e.g., vertices) collapse to the same feature. Tt is useful to think of R as
follows. Let H denote the set of hot pixels; for a hot pixel h, let |h| denote its
combinatorial size, i.e. the number of ursegments passing through it. Then it is
clear that

R=0([h). (1)

heH

(Note that R can actually be less, as when many tiny segments appear within the
same hot pixel). In our representation of the VCD, we store with each fragment a
list of all the ursegments that gave rise to it. The additional storage required for
these lists is easily bounded by O(} ;4 |h|) as well. We observe that the latter
sum can be either larger or smaller than A (the sum of hot pixel sizes can exceed the
true arrangement complexity if many ursegments cross through many hot pixels,

/
/

/

N

Figure 9: A hierarchy of VCDs: the rows are the levels of the hierarchy from top to
bottom. The left column shows the ursegments, and the right column the fragments.

but without giving rise to features of A there). For our analysis we also need the
following quantity: define a pixel as being warm if it contains the endpoint of a
vertical attachment in the ideal VCD of A. We let W denote the set of warm pixels
and W’ the set of pixels that are either warm or are neighbors (king-wise) of warm
pixels. Let €' =)" . |w| be the total complexity of these ‘near-warm’ pixels:
this quantity is used to bound the complexity of the cell sweeps.

The most delicate issue in the analysis of our incremental snap rounding algo-
rithm is the effect of pixel size on performance. If the pixel size is extremely small
compared to separation of the vertices in A, then we expect our algorithm to behave
the same as the 1deal randomized algorithm working over the reals. As the pixel size
gets larger, two opposite effects come into play. On the one hand the VCD becomes
coarser and its size can drop significantly — and so can the cost of traversing it. On
the other hand, we lose any knowledge of the structure of A within the now large
hot pixels, and as a result discovering intersections between existing ursegments and
a newly added one can become expensive. In particular, when a few pixels cover all
of A, our algorithm naturally reduces to the naive quadratic algorithm that checks
all pairwise ursegment intersections though, as mentioned earlier, better methods
have recently been found.®

Consider an existing polysegment ¢ and its corresponding ursegment s. As we
already remarked, the vertices of o define a sequence of hot pixels which both o
and s pass through in the same sequence. The following obvious lemma is critical
for our analysis.

Lemma 2 During the incremental construction, if a new ursegment t intersects the
fragment [of an existing polysegment o between hot pizels hi and hs, then one of
the following three situations holds:

a. t also intersects s, the ursegment corresponding to o, between (and outside)
hy and ho, or

b. t terminates in the sliver between s and o, or
c. t enters at least one of the hot pizels hy and hs.

Proof. This is because s, together with f and the two pixels h; and hy define
a closed region entered by . ad

This lemma allows us to estimate the cost of the VCD traversal for a new
ursegment ¢. The cost of this search, over and above that of the ideal Mulmuley
algorithm, i1s in checking for the possible but non-existing or already discovered
intersection between ¢ and other ursegments associated with fragments crossed by
t. It is clear that ¢ may cross several of the fragments defining o, while it can cross
s only once, or not at all. Case (a) of the above lemma is the favorable one —
where a fragment crossing has a corresponding ursegment crossing; this is paid for
by A. In case (b) the endpoint of ¢ will will require the local search through the
fragments around the hot pixel vertices of the its surrounding trapezoid in the VCD,
as explained in Section 5. Finally note that each time case (¢) holds, ursegments s
and ¢ must pass though the same hot pixel (hy or ha).

Another difference between our situation and that of Mulmuley is that we can-
not assume non-degeneracy. We may have trapezoids in the VCD whose vertical
sides are not just vertical attachments: a particular side can be an arbitrarily long
alternation of vertical fragments and vertical attachments. Thus we can no longer
assume that traversal through a trapezoid in a constant-time operation. We can
deal with this problem by using the Mulmuley hierarchy not only for end-point loca-
tion but for the VCD traversal itself as well. In other words, when a new ursegment
s is given, we ‘drop it’ through the VCD hierarchy starting from its left endpoint
and proceeding to the right, letting the hierarchy navigate us though such complex
vertical sides. It is not difficult to estimate the cost of this method and show that
it leads to the same asymptotic bounds as the standard Mulmuley analysis®.

These observations lead to the following analysis for our algorithm; note that
C =) wew |wl, the quantity introduced earlier, bounds the total number of urseg-
ments (with multiplicity) that pass within half-a-pixel above or below the non-hot-
pixel endpoints of all vertical attachments.

Theorem 2 The complexity of our incremental rounded arrangement construction
procedure 1s
O(nlogn+ A+ > |h]>+C). (2)
heH

Proof. The key is to understand the insertion cost of a new ursegment ¢. The
above paragraph takes care of the VCD search for the intersections between ¢ and
other existing ursegments ¢; these intersections, together with the endpoints of ¢
define the new hot pixels created by ¢t. The total cost of these searches, summed
over all insertions, is captured by the bound in the theorem. To see this we argue
as follows. Events of type (a) in the above lemma can be charged to vertices of
the ideal arrangement, and thus can be paid out of the A term in our bound. An
event of type (b) requires us to look at all fragments passing between an endpoint
of ¢t and the center of the hot pixel A it lies in, as outlined in in Section 5. Such
fragments whose corresponding ursegments intersect ¢ can also be paid out of the A
term. Any other such fragments must have an ursegment that intersects h. These
fragments, as well as all those examined in case (c) of the above lemma, can be paid
out of the term 3", ., |h|* in the theorem. This is so because they all correspond
to a unique pair of ursegments passing through the same hot pixel (h, hy, or hq as
the case may be).

Any existing ursegments crossing the new hot pixels need also to be snap-
rounded to these new pixel centers. The vertical range search method for this
given in Section 5 takes time proportional to the number of such ursegments (plus
one, to be exact), as the search (down or up) stops as soon as we encounter a
non-crossing ursegment. The total cost for these searches is then O3,y |h])-

It remains to deal with the cell sweeps. During the insertion of ¢, the cell
sweep finds any existing hot pixels crossed by the new ursegment ¢. Without loss
of generality, we confine our attention to the upwards sweep; the analysis for the

bIn our current implementation we do not do this; we simply walk along a vertical side to find
where the segment currently being added crosses it.

downwards one will be symmetric. We remarked in Section 5 that the cost of this
cell sweep 1s proportional to the number of trapezoids contained in the sausage of
t. Note that each trapezoid of the VCD has at least two vertices which are hot
pixels. If a trapezoid is fully contained in the sausage of ¢, then at least one of its
vertices is a hot pixel center, and ¢ crosses that hot pixel. This leaves unaccounted
for trapezoids which partially intersect the sausage and all of whose vertices in the
sausage are endpoints of vertical attachments. It is easy to check that in that case
each such vertex must be within a 1-neighborhood of some warm pixel, and that
the ursegment ¢ must intersect this neighborhood. Thus such vertices and their
trapezoids are paid for by the term C'= 3" ..,/ [w]. a

Although we have not observed this in practice, the quadratic term above (the
sum of the squares of the hot pixel complexities) can be quite large. Using a more
elaborate insertion algorithm, which we have not implemented, it is possible to
reduce the total insertion cost to

O(nlogn+ A+ > _ |h|log|h|+ C). (3)
heH

To do so we need to exploit the fact that all ursegments associated with a particular
fragment f possess a linear ordering within the region defined by the Minkowski
sum of the fragment and a hot pixel, minus the two hot pixels at which f terminates
— the ursegments neither terminate nor cross in that region. All these orderings
can be computed and maintained in O3, 4 |k|log|h|) time. During the VCD
traversal associated with the insertion of a new ursegment ¢, every time ¢ crosses a
fragment f in the VCD outside a hot pixel, we can traverse the list of ursegments
of f in the appropriate order, and look for intersections with ursegments, but only
within the above Minkowski sum. We stop as soon as we detect a non-intersection,
or enter one of the hot pixels at the ends of f, or ¢t ends. The cost of the operations
that do not yield a vertex of the ideal arrangement can be changed to either the
hot pixel entered by ¢, or to an endpoint of ¢. It would also be highly desirable
to eliminate the term C' in the above bound, which is due to the search for the
existing hot pixels entered by ¢ (some, but not all such, will be found by the new
modified VCD search explained here). Unfortunately, points can be within the same
pixel, yet belong to trapezoids that are far away in the graph structure the VCD
represents (think of a fan of closely spaced fragments going through the same pixel).
In fact, in the worst case, C' can be as large as O(n?). Eliminating the cost of the C'
term will require us either to exploit the randomized hierarchy better, or to build
and maintain some independent data structures.

We omit a detailed analysis of the deletion procedure. We only remark that we
can 1mplement the test for whether a vertex of a polysegment ¢ becomes deletable
(after the deletion of the corresponding ursegment s) in time proportional to the
logarithm of the number of ursegments crossing the hot pixel of that vertex.

8. Implementation and Verification

We have implemented the algorithms and data structures described above in

Allegro Common Lisp on a Silicon Graphics Indigo Elan. We began by construct-
ing a naive and inefficient implementation of snap rounding. Each component of
the more sophisticated implementation, which takes advantage of the algorithms
described earlier, was developed and tested independently by replacing the corre-
sponding component in the naive implementation. To verify the new “partially
sophisticated” implementation, we generated large numbers of test cases and, using
software to test whether two VCDs were 1dentical, compared the output of the new
implementation to that of the naive one.

For example, to implement the search for existing ursegments that pass through
the new hot pixels, we used exhaustive versions of the search for new hot pixels and
of the search for the existing hot pixels through which the new ursegment passes.
We implemented the more efficient local search only for the existing ursegments
that pass through the new hot pixels discovered by the exhaustive search.

This process quickly revealed errors in earlier versions of our algorithms. Usually
the errors arose because we did not anticipate certain configurations of ursegments
that have a very low probability of occurring. Only after many random trials were
the errors exposed. To understand how these configurations caused our algorithm
to fail, we wrote visualization tools tailored to our data structures. Using these
tools, we could explore the problematic configurations in detail, and in most cases
it rapidly became obvious why the algorithm failed — although not always how to
fix it!

A number of factors were key to our implementation and verification of the soft-
ware. The existence of a naive implementation simple enough for us to be confident
that it was producing correct results provided a benchmark against which more so-
phisticated implementations could be tested. Our strategy of constructing the more
sophisticated implementation by incrementally replacing components of the naive
implementation made it much easier to identify the errors in our algorithms. The
software that automated comparing one VCD to another made 1t possible for us to
test the incremental algorithms with very large numbers of cases by comparing the
resulting VCDs to those constructed by the naive algorithm. Finally, our tools to
visualize and inspect local structures in the VCD helped us to better understand
the algorithms, especially when they were producing incorrect results.

Figure 10 shows an arrangement of 50 ursegments and corresponding snap-
rounded arrangement of fragments. The ursegments are on the top, and the frag-
ments are on the bottom.

9. Future Directions

Our work leaves open several questions on the proper implementation of dynamic
snap rounding. The only data structure currently used is the rounded VCD, with
references from the fragments to the corresponding ursegments. As our discussion
in Section b showed, we have difficulty in locating existing hot pixels that a new
ursegment passes through. This is because the area of the plane covered by hot
pixels is not explicitly represented in the VCD in any way, and thus a point in a hot
pixel can be topologically arbitrarily far in the VCD from that pixel’s center (which

ded form

ap-roun

ngement of 50 ursegments; bottom, the sn

Figure 10: Top, an arra

of the arran

geme

is in the VCD). It seems worthwhile to investigate a data structure that would
represent the hot pixels better and allow more efficient detection and traversal of
hot pixel regions by a new ursegment.

This might also allow us also to remove the dependence on A, the complexity
of the ideal arrangement, in the running time of our algorithm. In effect now we
are paying to discover certain aspects of the micro-structure of the arrangement A
inside the hot pixel regions, even though we really do not need to. Thus we could
hope for an algorithm which is output sensitive in terms of the complexity R of the
rounded arrangement only.

An extension of our work to handle arrangements of arcs of curves in the plane,
or of planar or curved surface patches in space would also be highly desirable.

10. Conclusions

Trapezoidal decompositions, flat or hierarchical, are now part of the standard
machinery of cuttings in Computational Geometry. Yet when we try to perturb and
round these structures so as to make all their features exactly representable in finite
arithmetic, many subtle issues arise. This is especially so in a dynamic context, as
many of the invariants that guarantee the correctness and good performance of the
infinite precision algorithms do not hold when we try to emulate these algorithms
using the finite-precision structures we can actually store.

The key contribution of our paper has been to show how to marry the planar
VCD rounding with dynamic operations on the arrangement of line segments it
represents. We do so while maintaining as much as possible the performance of the
ideal algorithms and producing in all cases a canonical rounding — the structure
computed depends only on the set of segments present and not the history of the
modifications made. In developing these techniques we saw a true interplay between
theory and implementation. We have been able to employ simpler algorithms for
operating on the rounded VCDs because we could go back and theoretically derive
additional properties of snap rounding which then enabled us to prove the correct-
ness of these simpler methods, as well as to analyze their performance.

We expect that this combination of theory, analysis, and implementation should
apply to many other finite-precision models of geometric data structures and algo-
rithms. We also believe that this type of algorithm will necessitate a new kind of
analysis that elucidates the interaction between metric (distance, area) and combi-
natorial measures on geometric configurations.

Acknowledgments

We thank Dan Greene for useful discussions. Leonidas Guibas wishes to ac-
knowledge support by NSF grants CCR-9215219 and TRI-9306544.

An earlier version of this paper appeared in the ACM Symposium on Compu-
tational Geometry, 1995.17

References

10.

11.

12.

13.

14.

15.

16.

17.

Daniel H. Greene, “Integer Line Segment Intersection,” unpublished manuscript.

John D. Hobby, “Practical Segment Intersection with Finite Precision Output,”
submitted for publication.

Ketan Mulmuley, Computational Geometry: An Introduction Through Randomized
Algorithms, (Prentice Hall, Englewood Cliffs, NJ, 1994).

J. L. Bentley and T. A. Ottmann, “Algorithms for reporting and counting geometric
intersections,” IEEE Trans. Comput. C-28 (1979) 643-647.

B. Chazelle and H. Edelsbrunner, “An optimal algorithm for intersecting line seg-
ments in the plane,” J. Assoc. Comput. Mach. 39 (1992) 1-54.

. K. Clarkson and P. Shor, “Applications of random sampling in computational ge-

ometry 117, Discrete Comput. Geom. 4 (1989) 387-421.

Ketan Mulmuley, “A fast planar partition algorithm 17, J. Symbolic Comput. 10
(1990) 253-280.

. C. Hoffman, J. Hopcroft, and M. Karasick, “Towards implementing robust geometric

computation,” Proc. Fourth Ann. Symp. on Computational Geometry, 1988, pp.
106-117.

. V. Milenkovic, Verifiable Implementations of Geometric Algorithms using Finite

Precision Arithmetic, Ph.D. Thesis, Carnegie-Mellon, 1988. Also Technical Report
CMU-CS-88-168, Carnegie Mellon University, 1988.

K. Sugihara and M. Iri, Geometric algorithms in finite-precision arithmetic, Research
Memorandum RMI 88-10, University of Tokyo, September 1988.

S. Fortune, “Stable maintenance of point-set triangulation in two dimensions,” un-
published manuscript, AT&T Bell Laboratories. (An abbreviated version appeared
in Proc. 30th Ann. Symp. on Foundations of Computer Science, 1989, pp. 494-499.)

L. Guibas, D. Salesin, and J. Stolfi, “Epsilon Geometry: building robust algorithms
from imprecise calculations,” Proc. Fifth Ann. Symp. on Computational Geometry,
1989, pp. 208-217.

S. Fortune and V. Milenkovic, “Numerical stability of algorithms for line arrange-
ments,” Proc. Seventh Ann. Symp. on Computational Geometry, 1991, pp. 334-341.

Daniel H. Greene and Frances F. Yao, “Finite-Resolution Computational Geometry,”
Proc. 27th Ann. Symp. on Foundations of Computer Science, 1986, pp. 143-152.

V. Milenkovic, “Practical methods for set operations on polygons using exact arith-
metic,” Proceedings of the Tth Canadian Computational Geometry Conference,
1995, pp. 55-60.

Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Tanen-
baum, “Snap Rounding Line Segments Efficiently in Two and Three Dimensions,”
Proc. Thirteenth Ann. Symp. on Computational Geometry, 1997 (to appear).

Leonidas J. Guibas and David H. Marimont, “Rounding Arrangements Dynami-
cally,” Proc. Eleventh Ann. Symp. on Computational Geometry, 1995, pp. 190-199.

