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AbstratSnap rounding is a well known method for onverting arbitrary-preision arrangementsof segments into a �xed-preision representation. We point out that in a snap-roundedarrangement, the distane between a vertex and a non-inident edge an be extremely smallompared with the width of a pixel in the grid used for rounding. We propose and analyzean augmented proedure, iterated snap rounding, whih rounds the arrangement suh thateah vertex is at least half-the-width-of-a-pixel away from any non-inident edge. Iteratedsnap rounding preserves the topology of the original arrangement in the same sense thatthe original sheme does. However, the guaranteed quality of the approximation degrades.Thus eah sheme may be suitable in di�erent situations. We desribe an implementationof both shemes. In our implementation we substitute an intriate data struture forsegment/pixel intersetion that is used to obtain good worst-ase resoure bounds foriterated snap rounding by a simple and e�etive data struture whih is a luster of kd-trees. Finally, we present rounding examples obtained with the implementation.
1 Introdution
Geometri algorithms are typially desribed in the in�nite-preision \real RAM" model ofomputation and under the assumption of general position, namely that the input is degeneray-free. These assumptions raise great diÆulties in implementing robust geometri algorithms. Avariety of tehniques have been proposed in reent years to overome these diÆulties [16℄,[17℄.One approah to robust omputing produes a �nite-preision approximation of the geometriobjets in question; for a survey of �nite-preision approximation algorithms, see, e.g., [15℄. Snap�This work has been supported in part by the IST Programme of the EU as a Shared-ost RTD (FETOpen) Projet under Contrat No IST-2000-26473 (ECG - E�etive Computational Geometry for Curves andSurfaes), by The Israel Siene Foundation founded by the Israel Aademy of Sienes and Humanities (Centerfor Geometri Computing and its Appliations), and by the Hermann Minkowski { Minerva Center for Geometryat Tel Aviv University. 1



(a) (b)Figure 1: An arrangement of segments before (a) and after (b) snap rounding
rounding is a method of this type for onverting an arrangement of segments into a low-preisionrepresentation.Given a �nite olletion S of segments in the plane, the arrangement of S, denoted A(S), isthe subdivision of the plane into verties, edges, and faes indued by S. A vertex of the arrange-ment is either a segment endpoint or the intersetion of two segments. Given an arrangementof segments whose verties are represented with arbitrary-preision oordinates, snap rounding(SR, for short) proeeds as follows [9℄,[12℄. We tile the plane with a grid of unit squares, pixels,eah entered at a point with integer oordinates. A pixel is hot if it ontains a vertex of thearrangement. Eah vertex of the arrangement is replaed by the enter of the hot pixel ontain-ing it and eah edge e is replaed by the polygonal hain through the enters of the hot pixelsmet by e, in the same order as they are met by e. See Figure 1 for an illustration.In the proess, verties and edges of the original arrangement may have ollapsed. However,the rounded arrangement preserves ertain topologial properties of the original arrangement:The rounding an be viewed as a ontinuous proess of deforming urves (the original segmentsinto hains) suh that no vertex of the arrangement ever rosses through a urve [11℄. Therounded version s0 of an original segment s approximates s suh that s0 lies within the Minkowskisum of s and a pixel entered at the origin.SR makes the verties of the arrangement well separated. We would expet that in therounded arrangement a vertex v and an edge e not inident to v will also be well separated,namely, that the minimum separation between a vertex and a non-inident edge will be atroughly the same sale as the minimum separation between verties. However, as we show inthe next setion, this is not the ase and the distane between a vertex and a non-inident edgean be extremely small ompared with the width of a pixel in the grid used for rounding.We propose an augmented proedure, iterated snap rounding, ISR for short, whih roundsthe arrangement suh that eah vertex is at least half a unit away from any non-inident edge.ISR preserves the topology of the original arrangement in the same sense as the original shemedoes. However, the guaranteed quality of the approximation degrades and the hain may befurther away from the segment it approximates than the orresponding hain produed by SR.Thus eah sheme may be suitable in di�erent settings. We also show that the maximumombinatorial omplexity, namely the maximum overall number of verties in all the hains aswell as the maximum omplexity of the rounded arrangements, is the same for SR and ISR.We present a oneptually simple algorithm for omputing ISR (as well as SR), whose onlynon-trivial omponent is a data struture to answer segment intersetion queries on a given
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olletion of (hot) pixels. To provide asymptotially good worst-ase resoure bounds we usemulti-level partition trees for this struture. In our implementation, however, we use a simplealternative whih we all -oriented kd-trees. We present below rounding results obtained withour implementation of SR and ISR.Throughout the paper we use the following notation and terminology. The input S onsists ofn line segments s1; : : : ; sn. The rounding shemes transform eah input segment into a polygonalhain. We all eah straight line segment of an output hain between two hot pixels' enters alink. The output of SR for an input segment s is denoted by s0 and the output of ISR for s isdenoted by s�.
Related Work. Greene and Yao [10℄ were the �rst to propose a rounding sheme for polygonalsubdivisions. Hobby [12℄ and Greene [9℄ give snap rounding algorithms for arrangements ofsegments|theirs is the SR sheme that we disuss here. Guibas and Marimont [11℄ give adynami algorithm for snap rounding an arrangement of segments, as well as elementary proofsof the topologial properties maintained by SR. Goodrih et al. [8℄ improve the SR algorithmswhen many segments interset in a pixel. Milenkovi presents a rounding sheme using shortestpaths [14℄. Three-dimensional rounding algorithms of a similar nature have also been suggestedand studied [7℄,[8℄,[13℄.The rest of the paper is organized as follows. In the next setion we show that in SR avertex and a non-inident edge of the rounded arrangement an be very lose to one another.In Setion 3 we desribe the augmented proedure ISR, prove its main properties and outlinean algorithm for omputing it. In Setion 4 we �ll in the algorithmi details of our algorithmand analyze its omplexity. Setion 5 is devoted to the implementation of the algorithm using -oriented kd-trees. Rounding examples obtained with the implementation are given in Setion 6.We onlude in Setion 7 by pointing out possible diretions for future work.
2 The Distane between a Vertex and a Non-InidentEdge
Consider the two segments s; t displayed in Figure 2 before and after SR. We denote the rightendpoint of s0 by s0r. (Reall that u0 is the rounded version of u.) After rounding, t0 penetratesthe hot pixel ontaining s0r, but it does not pass through its enter.We an modify the input segment t so that t0 beomes very lose to s0r: we move the leftendpoint of t arbitrarily lose to the top right orner of the pixel ontaining it. We vertiallytranslate the right endpoint of t far downwards|the farther down we translate it, the loser t0will be to s0r.We annot make t0 arbitrarily lose to s0r. If they are not inident then there is a lower boundon the distane between them. This distane, however, an be rather small. Let b denote thenumber of bits in the representation of the vertex oordinates of the output hains of SR. Wetile a bounding square of the arrangement with 2b � 2b unit pixels. In this setting the distanebetween t0 and s0r an be made as small as 1=p(2b � 1)2 + 1 � 2�b.

3



(a) (b)

t s0 t0s

Figure 2: A vertex beomes very lose to a non-inident edge after (b) snap rounding
One ould argue that although SR produes near-degenerate output, it is still possible, duringthe rounding proess, to determine the orret topology of the rounded arrangement in the hotpixel ontaining s0r. However, this requires that the output of SR should inlude additionalinformation beyond the simple listing of polygonal hains spei�ed by their rounded verties,making it more umbersome to use and further manipulate.

3 Iterated Snap Rounding
We augment SR to eliminate the near-degeneraies mentioned above. Our proedure, whih weall iterated snap rounding (ISR, for short), produes a rounded arrangement where an originalsegment is substituted by a polygonal hain eah vertex of whih is at least 1=2 a unit distantfrom any non-inident edge.Let S = fs1; s2; : : : ; sng be the olletion of input segments whose arrangement we wish toround. Reall that a pixel is hot if and only if it ontains a vertex of the input arrangement.Let H denote the set of hot pixels indued by A(S).Our goal is to reate hains out of the input segments suh that a hain that passes througha hot pixel is re-routed to pass through the pixel's enter. The diÆulty is that one we reroutea hain it may have entered other hot pixels and we need to further reroute it, and so on.Our rounding algorithm onsists of two stages. In a preproessing stage we ompute thehot pixels (by �nding all the verties of the arrangement) and prepare a segment intersetionsearh struture D on the hot pixels to answer queries of the following type: Given a segments, report the hot pixels that s intersets. In the seond stage we operate a reursive proedure,Reroute, on eah input segment. We postpone the algorithmi details of the preproessingstage to the next setions and onentrate here on the rerouting stage.Reroute is a \depth-�rst" proedure. As we show below, the rerouting that we proposedoes not add more hot pixels, so whenever we refer to the set of hot pixels we mean H. Theinput to Reroute is a segment s 2 S. The output is a polygonal hain s� whih approximatess. Whenever s� passes through a hot pixel, it passes through its enter. See Figure 3 for anillustration.We next desribe the ISR algorithm. The routine Reroute will produe an output hains�i in the global parameter output hain as an ordered list of links. If a segment is ontained
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s01 s11 s2;11

s2;21
s3;11 s3;21s3;31

Figure 3: Iterated snap rounding for the input (a) results in (d)
inside a single pixel, the hain degenerates to a single point.ISRInput: a set S of n segmentsOutput: a set S� of n polygonal hains; initially S� = ;/* stage 1: preproessing */1. ompute the set H of hot pixels2. onstrut a segment intersetion searh struture D on H/* stage 2: rerouting */3. for eah input segment s 2 S4. initialize output hain to be empty5. Reroute(s)6. add output hain to S�
Reroute(s)/* s is the input segment with endpoints p and q */1. query D to �nd Hs, the set of hot pixels interseted by s2. if Hs ontains a single hot pixel /* s is entirely inside a pixel */3. then add the enter of the hot pixel ontaining s to output hain4. else5. let m1;m2; : : : ;mr be the enters of the r hot pixels in Hs in the ordern of the intersetion along s6. if (r = 2 and p; q are enters of pixels)7. then add the link m1m2 to output hain8. else9. for i = 1 to r � 110. Reroute(mimi+1)

We next disuss the properties of the proedure.We �x an orientation for eah input segment and its indued hains: it is oriented in lexio-graphially inreasing order of its verties. Thus, a non-vertial segment for example is oriented
5



s01
s11

s2;11
s3;11

s2;21
s3;21 s3;31

Figure 4: The tree T1 orresponding to Reroute(s1) of Figure 3. Nodes denoted by full-lineirles ontain segments with whih we query the struture D. The dashed-line irle denotes anode ontaining an exat opy of the segment of its parent.
from its left endpoint to its right endpoint. (The orientation of a hain is well de�ned sine, asis easily veri�ed, a hain is (weakly) x-monotone and (weakly) y-monotone.) We represent theoperation of Reroute on a segment si as a tree Ti. The root ontains si. The leaves of the treeontain the output polygonal hain s�i , one link in eah node, ordered from left to right wherethe �rst link is in the leftmost leaf. Eah internal node � together with its hildren represent oneappliation of Reroute (without reurrene): the segment s of �, whih passes through the hotpixels with enters m1;m2; : : : ;mr, is transformed into the links mqmq+1; q = 1; : : : ; r� 1 whihare plaed in the hildren of � ordered from left to right to preserve the orientation of the hain.We denote all the segments in the nodes at the jth level from left to right by sj;1i ; sj;2i ; : : : ; sj;li;ji ,where li;j denotes the number of nodes at this level. We denote the hain onsisting of all thelinks at level j ordered from left to right by sji . Thus s0i = si. We denote by ki the depth of thetree for si, and let k := maxni=1 ki. For notational onveniene, if a leaf � is at level k� < k thenwe add a linear path of ki � k arti�ial nodes desending from � and all ontaining the samelink that � ontains (we denote it di�erently at any level aording to the level). See Figure 4for an illustration of the tree T1 orresponding to segment s1 of Figure 3. We denote by s(�)the segment (or link) that is ontained in the node �.The next lemma gives an alternative view of ISR.
Lemma 3.1 Given a set of segments S, the output of ISR is equivalent to the �nal output ofa �nite series of appliations of SR starting with S, where the output of one SR is the input tothe next SR.
Proof: One we determine the hot pixels H, snap rounding an input segment s (i.e., bythe standard SR) an be done independently of the other segments. That is, the informationneessary for rounding is in H. Notie that the hains s1i ; i = 1; : : : ; n are the result of applyingSR to the original input segments S.The ruial observation is that SR does not reate new hot pixels. It an break a segment6



into two segments that meet at the enter of an existing hot pixel, but it annot reate a newendpoint nor a new intersetion point (with another segment) whih are not at the enter of anexisting hot pixel|this would violate the topology preservation properties of SR [11℄.It follows that with the same set H of hot pixels, the hains sj+1i ; i = 1; : : : ; n are the resultof applying SR to the links in the hains sji ; i = 1; : : : ; n, and so on.The proess terminates when the link in eah leaf of the tree has its endpoints in the enterof hot pixels and it does not ross any other hot pixel besides the hot pixels that ontain itsendpoints.The tree ontinues to grow beyond level j only as long as for at least one node � in level jwhen we query with s(�) we disover a new hot pixel through whih s(�) passes. We laim thata hot pixel is not disovered more than one per tree. This is so sine, as already mentioned,eah hain sji is (weakly) x-monotone and (weakly) y-monotone. Sine there are at most O(n2)hot pixels, the proess will stop after a �nite number of steps. �
The lemma's algorithmi interpretation is ineÆient, but it is useful for proving some of thefollowing properties.

Corollary 3.2 ISR preserves the topology of the arrangement of the input segments in the samesense that SR does.
Proof: The topologial properties that are preserved by SR an be summarized by viewingSR as a ontinuous proess of deforming urves (the original segments into hains) suh thatno vertex of the arrangement ever rosses through a urve [11℄. Sine SR does not reate newverties, the assertion follows from Lemma 3.1. �
Lemma 3.3 (i) If an output hain of ISR passes through a hot pixel then it passes through itsenter.(ii) In the output hains eah vertex is at least 1/2 a unit away from any non-inident segment.
Proof: Claim (i) follows from the de�nition of the proedure Reroute. Sine all the vertiesof the rounded arrangement are enters of hot pixels, laim (ii) is an immediate onsequene of(i). �

A drawbak of ISR is that an output hain s�i an be farther away from the original segmentsi ompared with the hain produed for the same input segment by SR. Reall that ki denotesthe depth of the reursion of Reroute(si).
Lemma 3.4 A �nal hain s�i lies in the Minkowski sum of si and a square of side size ki enteredat the origin.
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Proof: In SR, a rounded segment s0 lies inside the Minkowski sum of the input segment s anda unit square entered at the origin. Sine the ISR is equivalent to ki appliations of SR, thelaim follows. �
This deviation may be aeptable in situations where the pixel size is suÆiently small orwhen k := maxni=1 ki is small.

4 Algorithmi Details and Complexity Analysis
Let I denote the number of intersetion points of segments in the original arrangement A(S).We �rst ompute the set H of hot pixels. For that we use an algorithm for segment intersetion.This ould be done with a plane sweep algorithm, or more eÆiently in O(I + n log n) time bymore involved algorithms [2℄,[4℄. To ompute the hot pixels, the algorithm should also be givena pixel's width w and a point p that will be assigned the oordinates (0; 0). The plane will betiled with pixels that we will onsider to be of unit width, and their enters will have integeroordinates. We denote the number of hot pixels by N . Notie that N is at most O(n+ I).Remark. One ould alternatively detet the hot pixels by the SR algorithm of Goodrih etal. [8℄ and thus get rid of the dependene of the running time of the algorithm on the numberof intersetions I. Notie however that for this step alone (namely for deteting the hot pixels)and for ertain inputs (e.g., the input depited in Figure 5 and desribed below) this alternativeis ostly.Next we prepare the data struture D on the hot pixels H to answer segment intersetionqueries. We onstrut a multi-level partition tree [1℄ on the vertial boundary segments of thehot pixels, and an analogous tree for the horizontal boundary segments. The partition treesreport the segments interseted by a query segment s from whih we dedue the hot pixelsinterseted by s. Eah tree requires O(M1+") preproessing time when allowed M units ofstorage for N �M � N2. A query takes O(N1+"=pM + g) time, where g is the number of hotpixels found [1℄.How many times do we query the struture D for segment intersetion?
Lemma 4.1 If an output hain s�i onsists of li links then during Reroute(si) the strutureD is queried at most 2li times.
Proof: During Reroute(si) when we query with a link (line 1 of Reroute) either we do not�nd new hot pixels (new for the rounded version of si) in whih ase we harge the query to thelink whih is then a link of the �nal hain, or we harge it to the �rst new hot pixel (reall thatwe assigned an orientation to eah segment and to eah link). Eah �nal link is harged exatlyone and eah vertex of the �nal hain is harged at most one, besides the last vertex whih isnever harged. The bound follows. �
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Let L denote the overall number of links in all the hains output by ISR. We summarize theperformane bounds of ISR in the following theorem.
Theorem 4.2 Given an arrangement of n segments with I intersetion points, the iteratedsnap rounding algorithm requires O(n log n + I + L2=3N2=3+" + L) time for any " > 0 andO(n+N +L2=3N2=3+") working storage , where N is the number of hot pixels (whih is at most2n+ I) and L is the overall number of links in the hains produed by the algorithm.
Proof: To �nd the intersetions of the input segments we use Balaban's algorithm whihrequires O(n log n+I) time and O(n) working storage. When an intersetion is found we simplykeep its orresponding hot pixel. For onstruting and querying the multi-level partition trees(by Lemma 4.1 we perform at most 2L queries overall) we use a standard trik that balanesbetween the preproessing time and the overall query time, and does not require that we knowthe number of queries in advane. See, e.g., [5℄. �

We onlude this setion with ombinatorial bounds on the maximum omplexity of therounded arrangements. Interestingly, as shown next, there is no di�erene between the maximumasymptoti omplexity of the rounded arrangements between SR and ISR.
Theorem 4.31 Given an arrangement of n segments in the plane, in its rounded version: (i)the maximum number of hot pixels through whih a single output hain passes is �(n2), and (ii)the maximum overall number of inidenes between output hains and hot pixels is �(n3). (iii)The number of segments in the rounded arrangement (namely without ounting multipliities)is �(n2), and if the input segments indue N hot pixels then this number is �(N). All thesebounds apply both to SR and to ISR.
Proof: The upper bounds in laims (i) and (ii) are obvious. To see that these bounds aretight onsider the following onstrution (see Figure 5). We take n=2 long horizontal segmentsspanning a row of n2=4 pixels. Next we take n=2 short, slightly slanted segments, eah spanningn=2 pixels suh that overall eah pixel in the row is interseted by exatly one short segment.The short segments are slanted suh that in eah pixel that they ross they interset exatly oneof the long segments. Eah pixel in the row is now a hot pixel, and eah of the long segmentsrosses all the hot pixels. The rounding obtained with both SR and ISR is the same.The onstrution yields a degenerate rounded arrangement. Eah of the output hains is infat a horizontal line segment. This onstrution an be slanted so that eah rounded versionof a long segment is a hain with \true" 
(n2) links. In the slanted version we use n2=2 pixelsarranged in n2=4 rows. In eah row at least one pixel is hot. See Figure 6 for an illustration.Finally, we ignore the hains, and we ask how omplex an the rounded arrangement be,that is, we ignore multipliities (overlap) of hains. Obviously, the rounded arrangement anhave 
(n2) omplexity. But this is also an upper bound sine the (rounded) arrangement has1The slanted version of our horizontal onstrution was suggested to us by Olivier Devillers. Claim (iii) isdue to Mark de Berg.
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Figure 5: �(n) hains in the rounded arrangement are eah inident to �(n2) hot pixels

Figure 6: The slanted version yields �(n) rounded segments with �(n2) links eah
N verties and it is a planar graph. Therefore the number of edges an be at most O(N). Nan be at most O(n2). Again, our arguments do not depend on how the rounding was done (bySR or ISR). �
5 -Oriented kd-Trees
In our implementation we use a plane sweep algorithm to �nd the intersetions between segmentsin S and thus we identify the hot pixels. The non-trivial part to implement is the searh strutureD with whih we answer segment/pixel intersetion queries. In the theoretial analysis we usepartition trees for D, as these lead to asymptotially good worst-ase omplexity. In pratie,(multi-level) partition trees are diÆult to implement. Instead, we implemented a data strutureonsisting of several kd-trees. Next we explain the details.
Observation 5.1 A segment s intersets a pixel p of width w, if and only if the Minkowski sumof s with a pixel of width w entered at the origin ontains the enter of p.

We ould use Observation 5.1 in order to answer segment intersetion queries in the followingway: build a range searh struture on the enters of the hot pixels. Let s be the query segmentand M(s) be its Minkowski sum with a pixel entered at the origin. Then query the struturewith the range M(s). Unfortunately, the known data strutures for this type of queries aresimilar to the multi-level data strutures that we have used in the previous setion.Instead we use kd-trees as an approximation of this sheme. A kd-tree answers range queriesfor axis-parallel retangles [6℄. Its guaranteed worst-ase query time is far from optimal but itis pratially eÆient. A trivial solution would be to query with the axis-parallel bounding box
10
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Figure 7: The bounding box of the Minkowski sum of a segment with a pixel entered at theorigin. The shaded area is the redundant range
of M(s), whih we denote by B(s); see Figure 7. This may not be suÆiently satisfatory sinethe area of B(s), whih we denote by jB(s)j, may be muh larger than the area of M(s).If we rotate the plane together withM(s) the (area of the) axis-parallel bounding box hangeswhereas M(s) remains �xed. The di�erene between the bounding boxes for two di�erentrotations an be huge. Our goal is to produe a number of rotated opies of the set of entersof hot pixels so that for eah query segment s there will be one rotation for whih the area ofthe bounding box is not too muh di�erent from the area of M(s). Notie that if a segments is rotated by �=2 radians, the size of the relevant bounding box remains the same. Sinethe determination of whih rotation to hoose is dependent only on the size of the respetivebounding box, the range of rotations should be the half-open interval [0 : �=2).We onstrut a olletion of kd-trees eah serving as a range searh struture for a rotatedopy of the enters of hot pixels. We all this luster -oriented kd-trees. Let  be a positiveinteger and let �i := (i� 1) �2 for 1 � i � . The struture onsists of  kd-trees suh that thei-th kd-tree, denoted by kdi, has the input points rotated by �i. Let Ri(s) be the segment srotated by �i. For eah query with segment s we do the following: for eah kdi; 1 � i � , weompute jB(Ri(s))j. Let 1 � h �  be the serial number of the kd-tree for whih jB(Rh(s))j =mini=1 jB(Ri(s))j. Then we use the h-th kd-tree to answer the query with the segment s rotatedby �h. Finally, we disard all the points for whih the segment does not interset the respetivehot pixels.We next disuss a few important issues regarding the implementation and usage of thisstruture.
Exat rotations. We used exat arithmeti to implement ISR. Unfortunately, the availableexat arithmeti data-types do not support the alulations of sines and osines whih areneessary for alulating rotations. Instead we use only angles for whih the sines and osinesan be expressed as rational numbers with small enumerator and denominator [3℄. We keep anarray Z of approximations to the sines of integer degree angles between 0� 89. We emphasizethat one we �x an angle � we have the exat sine and osine of �. What we annot do isobtain the exat values of the trigonometri funtions of a presribed arbitrary angle. Sine ourhoie of rotation angles is heuristi to begin with, the preise angle is immaterial, and the anglewe use is never more than one degree o� the presribed angle. Moreover, there are tehniques
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to ahieve better approximations [3℄, but we prefer not to use them beause of performanereasons.
How big should  be? There are advantages and drawbaks in using few kd-tress, say evenone kd-tree ompared to using many. When using one kd-tree, we are prone to get many falsepoints in the range queries, resulting in more time to �lter out the results. When using manykd-trees, we need to invest time in their onstrution and a little more time per query to �ndthe best rotation. Our experiments show that in many ases a small number of trees suÆes.Consider for example the numerial table \di�erent number of kd-trees" in Figure 8. (Therounding example in this �gure as well as the other examples are explained in detail in thenext setion; here we only refer to the number of kd-trees used in their omputation.) The�rst olumn shows how many kd-trees were used and the last olumn shows how muh timethe overall rerouting stage took ompared with the time when using only one kd-tree (the fulllegend is given in Table 1). The best performane is obtained when we use 7 kd-trees. The timesavings in this ase is 17% over using a single kd-tree. The analogous table in the next example(Figure 9) shows that in that example there is no bene�t in using more than one kd-tree.2 Inthe next paragraph we present a heuristi improvement of the number of kd-trees. However, weleave the omputation of the best number of kd-trees together with the best rotation angles ofeah one for further researh.
Skipping kdi's. Sine  should be small, we expet most of the links of a ertain input segmentto have the same rotation as the input segment, sine they should all have nearby slopes. LetJi be the number of input segments that are rotated by �i. If Ji is very small, it is not e�etiveto reate the respetive kd-tree. Thus we �x a lower limit � , and onstrut a kd-tree kdi onlyif Ji � � . Obviously � should be a funtion of , and be suÆiently small to ensure that atleast one kd-tree will be onstruted. We hose to use � = n2 . In the examples of Figures 8and 9 � is always greater than n2 . In other examples, suh as geographi data, not all  treesare always onstruted|in Figure 10, when the algorithm is given  > 7 it hooses to skip someof the kdi's. In this example, using more than one kd-tree is wasteful sine the map is relativelysparse, most of the segments are relatively small ompared to the whole map and the boundingbox of their Minkowski sum with a unit pixel does not interset many hot pixels enters.
6 Rounding Examples: SR vs. ISR
To give the avor of how the output of ISR di�ers from that of SR we present the roundingresults for three input examples; see Figures 8, 9, and 10. For eah example we display theinput, the SR result and the ISR result. Then we zoom in on a spei� area of interest in thesethree drawings|an area where the rounding shemes di�er notieably. A square near a drawingrepresents the atual pixel size used for rounding. Then we provide two tables of statistis.The �rst one refers to the best number of kd-trees as related to the disussion in the previous2The running time indiated in the tables is in seonds while using arbitrary preision rational arithmeti.The pixel size in the �rst example is 1 and in the seond example is 15.
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Abbreviation Explanationinkd input number of kd-treesnkd atual number of kd-trees reatednfhp overall number of false hot pixels in all the queriestt total time relative to using one treemd maximum deviation over all hainsad average deviationmnv maximum number of verties in an output hainanv average number of verties in an output hainmdvs minimum distane between a vertex and a non-inident edgenvs number of pairs of a vertex and a non-inident edgethat are less than half the width of a pixel apartps pixel sizenhp number of hot pixels
Table 1: Abbreviations

setion. The seond table summarizes the di�erenes in the rounding for di�erent pixel sizes.The abbreviations we use in these two tables are explained in Table 1. The deviation of a hainfrom its induing segment s is the maximal distane of a point on the hain from s.
6.1 Congestion DataThe data ontains 200 segments with 18; 674 intersetions. (For larity, the pitures in Figure 8depit a similar example with only 100 segments.) The bottom left part of the arrangement iszoomed in.Both rounding shemes will ollapse thin triangles that have two orners lose by. However,not allowing proximity between verties and non-inident edges, ISR ollapses `skinny' faes ofthe arrangement that SR does not (see the bottom of the zoomed-in area), for example trianglesthat have one orner lose to the middle of the opposite edge.For pixel size 1, SR and ISR are very di�erent and the number of verties that are less thanhalf a unit away from a non-inident edge in the SR output is in the hundreds. The averagedeviation in ISR in this example is never more than 2.5 times that of the orresponding SRoutput. For pixel size greater than 1 the average deviation of a hain in ISR is almost the sameas in SR. However, for pixel size smaller than 1, the average deviation is larger in the ISR outputthan in the SR output.In terms of ombinatorial omplexity the results are similar and the average number ofverties per hain is roughly the same in both outputs. This is a phenomenon we have observedin all our experiments.

13



6.2 Triangulation DataFigure 9 shows a set of input points (ourtesy of Jak Snoeyink) and a triangulation of thisset. The triangulation onsists of 906 segments. The zoomed in pitures show a part of thetriangulation for whih there is onsiderable di�erene between SR and ISR.Again ISR ollapses thin polygons that SR does not ollapse. The seond table in Figure 9shows that in this ase the average deviation of a hain in both shemes does not di�er by muh.The maximum deviation in ISR is always less than twie the pixel width. Here also the averagenumber of links per hain is almost the same for the output of SR and ISR.
6.3 Geographi DataWe ran both shemes on several geographi maps of ountries and ities whih are less lutteredthan the examples above. The experiments for this type of data typially show little di�erenebetween the SR and ISR results. Figure 10 depits the result for a map of the USA. The dataontains 486 segments interseting only at endpoints.The seond table in Figure 10 shows the di�erene of using SR and ISR. In most of the tests,there are oasional ases in whih the distane between a vertex and a non-inident segmentis shorter than half the size of a pixel. Thus there are di�erenes between the SR and the ISRoutput. These di�erenes are however minor. In the ISR output the maximum deviation is nomore than twie that of the SR output. The average deviation in both the SR and ISR outputis similar.
7 Conlusions
We presented an augmented snap rounding proedure whih rounds an arbitrary preision ar-rangement of segments in IR2 with the advantage that eah vertex in the rounded arrangementis at least half a unit away from any non-inident edge. The new sheme makes the roundedarrangement more robust for further manipulation with limited preision arithmeti than theoutput that the standard snap rounding algorithm produes. We implemented ISR using exatarithmeti.We propose several diretions for further researh: (1) Can deteting all the hot pixelsthrough whih an output hain passes be done more eÆiently? (2) Extend the sheme tonon-linear urves. (3) The rounded arrangement an have at most O(n2) segments, whereasour algorithm (as well as the known algorithms for SR) may produe 
(n3) output links. Thetask here is to devise an output sensitive algorithm where the output size is the size of therounded arrangement and not the overall omplexity of the hains. (4) Improve the heuristisfor hoosing the diretions of the kd-trees.
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Input SR output ISR output

Input zoom in SR output zoom in ISR output zoom innkd nfhp tt1 613477 100% = 213.2 s2 513551 87.2%3 474997 83.6%4 478749 84%5 479507 84.3%6 463025 83.4%7 456882 83%8 456269 84%9 455334 84.8%10 456196 86.3%
Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs nvs md ad mnv anv mdvs nvs0.125 8488 1.01 0.19 120 90.96 0.08 0 0.09 0.09 106 87.95 0.04 170.25 8261 1.5 0.41 124 94.15 0.15 0 0.17 0.17 112 89.16 0.06 580.5 7711 1.68 0.67 135 97.9 0.28 0 0.35 0.35 126 91.66 0.08 1351 6003 1.58 0.99 154 101.85 0.55 0 0.71 0.71 153 95.99 0.07 3282 2538 1.51 1.41 101 72.9 1.26 0 1.41 1.41 101 72.87 0.88 33 1143 2.12 1.84 67 49.1 2.12 0 2.12 1.84 67 49.09 1.34 14 673 2.82 2.7 51 37.56 2.82 0 2.82 2.7 51 37.56 2.82 05 439 3.53 3.32 41 30.31 3.53 0 3.53 3.32 41 30.3 2.23 110 120 7.07 6.6 21 15.58 7.07 0 7.07 6.6 21 15.58 7.07 0
ISR and SR omparisonFigure 8: Congestion data



Input points Input triangulation SR output ISR output

Input zoom in SR output zoom in ISR output zoom innkd nfhp tt1 4872 100% = 15.4 s2 4789 103.2%3 4852 102.6%4 4597 101.9%5 4487 102.6%6 4349 103.2%7 4349 102.6%8 4399 102.6%9 4419 103.2%10 4358 102.6%
Di�erent number of kd-trees

isr srps nhp md ad mnv anv mdvs nvs md ad mnv anv mdvs nvs2 306 2.231 0.825 6 2.219 1.223 0 1.341 0.812 6 2.198 0.318 95 300 9.804 2.691 7 2.625 3.14 0 3.494 2.442 6 2.48 0.741 5010 249 17.194 5.18 9 2.761 5.368 0 7.028 4.847 7 2.637 1.414 4515 195 22.088 6.985 10 2.75 9.486 0 10.559 6.512 10 2.622 2.631 6720 162 32.207 7.614 9 2.621 11.767 0 13.914 7.19 8 2.532 4.85 45ISR and SR omparisonFigure 9: Triangulation data



Input SR output ISR output

Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 293 100% = 9.11 s2 2 306 102%3 3 302 103.1%4 4 284 103.8%5 5 293 105%6 6 275 106%7 7 260 106.8%8 6 269 106.1%9 8 272 107.9%10 8 253 107.9%
Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs nvs md ad mnv anv mdvs nvs0.125 486 0.097 0.088 4 2.098 0.111 0 0.088 0.088 4 2.096 0.045 10.25 485 0.353 0.177 5 2.113 0.196 0 0.176 0.176 5 2.107 0.039 20.5 480 0.392 0.353 4 2.104 0.377 0 0.353 0.353 4 2.100 0.039 21 475 1.414 0.715 5 2.137 0.569 0 0.707 0.707 5 2.115 0.196 32 432 2.236 1.063 5 2.137 1.264 0 1.414 1.043 5 2.102 0.392 93 379 3.807 1.353 5 2.037 2.121 0 2.121 1.336 5 2.020 1.341 24 338 3.333 1.764 6 1.991 2.828 0 2.828 1.758 5 1.983 1.264 25 299 4.735 2.124 5 1.897 3.535 0 3.535 2.110 4 1.884 1.581 310 177 10.606 3.732 5 1.615 7.071 0 7.071 3.696 5 1.602 7.071 0
ISR and SR omparisonFigure 10: Geographi data


