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Abstra
tSnap rounding is a well known method for 
onverting arbitrary-pre
ision arrangementsof segments into a �xed-pre
ision representation. We point out that in a snap-roundedarrangement, the distan
e between a vertex and a non-in
ident edge 
an be extremely small
ompared with the width of a pixel in the grid used for rounding. We propose and analyzean augmented pro
edure, iterated snap rounding, whi
h rounds the arrangement su
h thatea
h vertex is at least half-the-width-of-a-pixel away from any non-in
ident edge. Iteratedsnap rounding preserves the topology of the original arrangement in the same sense thatthe original s
heme does. However, the guaranteed quality of the approximation degrades.Thus ea
h s
heme may be suitable in di�erent situations. We des
ribe an implementationof both s
hemes. In our implementation we substitute an intri
ate data stru
ture forsegment/pixel interse
tion that is used to obtain good worst-
ase resour
e bounds foriterated snap rounding by a simple and e�e
tive data stru
ture whi
h is a 
luster of kd-trees. Finally, we present rounding examples obtained with the implementation.
1 Introdu
tion
Geometri
 algorithms are typi
ally des
ribed in the in�nite-pre
ision \real RAM" model of
omputation and under the assumption of general position, namely that the input is degenera
y-free. These assumptions raise great diÆ
ulties in implementing robust geometri
 algorithms. Avariety of te
hniques have been proposed in re
ent years to over
ome these diÆ
ulties [16℄,[17℄.One approa
h to robust 
omputing produ
es a �nite-pre
ision approximation of the geometri
obje
ts in question; for a survey of �nite-pre
ision approximation algorithms, see, e.g., [15℄. Snap�This work has been supported in part by the IST Programme of the EU as a Shared-
ost RTD (FETOpen) Proje
t under Contra
t No IST-2000-26473 (ECG - E�e
tive Computational Geometry for Curves andSurfa
es), by The Israel S
ien
e Foundation founded by the Israel A
ademy of S
ien
es and Humanities (Centerfor Geometri
 Computing and its Appli
ations), and by the Hermann Minkowski { Minerva Center for Geometryat Tel Aviv University. 1



(a) (b)Figure 1: An arrangement of segments before (a) and after (b) snap rounding
rounding is a method of this type for 
onverting an arrangement of segments into a low-pre
isionrepresentation.Given a �nite 
olle
tion S of segments in the plane, the arrangement of S, denoted A(S), isthe subdivision of the plane into verti
es, edges, and fa
es indu
ed by S. A vertex of the arrange-ment is either a segment endpoint or the interse
tion of two segments. Given an arrangementof segments whose verti
es are represented with arbitrary-pre
ision 
oordinates, snap rounding(SR, for short) pro
eeds as follows [9℄,[12℄. We tile the plane with a grid of unit squares, pixels,ea
h 
entered at a point with integer 
oordinates. A pixel is hot if it 
ontains a vertex of thearrangement. Ea
h vertex of the arrangement is repla
ed by the 
enter of the hot pixel 
ontain-ing it and ea
h edge e is repla
ed by the polygonal 
hain through the 
enters of the hot pixelsmet by e, in the same order as they are met by e. See Figure 1 for an illustration.In the pro
ess, verti
es and edges of the original arrangement may have 
ollapsed. However,the rounded arrangement preserves 
ertain topologi
al properties of the original arrangement:The rounding 
an be viewed as a 
ontinuous pro
ess of deforming 
urves (the original segmentsinto 
hains) su
h that no vertex of the arrangement ever 
rosses through a 
urve [11℄. Therounded version s0 of an original segment s approximates s su
h that s0 lies within the Minkowskisum of s and a pixel 
entered at the origin.SR makes the verti
es of the arrangement well separated. We would expe
t that in therounded arrangement a vertex v and an edge e not in
ident to v will also be well separated,namely, that the minimum separation between a vertex and a non-in
ident edge will be atroughly the same s
ale as the minimum separation between verti
es. However, as we show inthe next se
tion, this is not the 
ase and the distan
e between a vertex and a non-in
ident edge
an be extremely small 
ompared with the width of a pixel in the grid used for rounding.We propose an augmented pro
edure, iterated snap rounding, ISR for short, whi
h roundsthe arrangement su
h that ea
h vertex is at least half a unit away from any non-in
ident edge.ISR preserves the topology of the original arrangement in the same sense as the original s
hemedoes. However, the guaranteed quality of the approximation degrades and the 
hain may befurther away from the segment it approximates than the 
orresponding 
hain produ
ed by SR.Thus ea
h s
heme may be suitable in di�erent settings. We also show that the maximum
ombinatorial 
omplexity, namely the maximum overall number of verti
es in all the 
hains aswell as the maximum 
omplexity of the rounded arrangements, is the same for SR and ISR.We present a 
on
eptually simple algorithm for 
omputing ISR (as well as SR), whose onlynon-trivial 
omponent is a data stru
ture to answer segment interse
tion queries on a given
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olle
tion of (hot) pixels. To provide asymptoti
ally good worst-
ase resour
e bounds we usemulti-level partition trees for this stru
ture. In our implementation, however, we use a simplealternative whi
h we 
all 
-oriented kd-trees. We present below rounding results obtained withour implementation of SR and ISR.Throughout the paper we use the following notation and terminology. The input S 
onsists ofn line segments s1; : : : ; sn. The rounding s
hemes transform ea
h input segment into a polygonal
hain. We 
all ea
h straight line segment of an output 
hain between two hot pixels' 
enters alink. The output of SR for an input segment s is denoted by s0 and the output of ISR for s isdenoted by s�.
Related Work. Greene and Yao [10℄ were the �rst to propose a rounding s
heme for polygonalsubdivisions. Hobby [12℄ and Greene [9℄ give snap rounding algorithms for arrangements ofsegments|theirs is the SR s
heme that we dis
uss here. Guibas and Marimont [11℄ give adynami
 algorithm for snap rounding an arrangement of segments, as well as elementary proofsof the topologi
al properties maintained by SR. Goodri
h et al. [8℄ improve the SR algorithmswhen many segments interse
t in a pixel. Milenkovi
 presents a rounding s
heme using shortestpaths [14℄. Three-dimensional rounding algorithms of a similar nature have also been suggestedand studied [7℄,[8℄,[13℄.The rest of the paper is organized as follows. In the next se
tion we show that in SR avertex and a non-in
ident edge of the rounded arrangement 
an be very 
lose to one another.In Se
tion 3 we des
ribe the augmented pro
edure ISR, prove its main properties and outlinean algorithm for 
omputing it. In Se
tion 4 we �ll in the algorithmi
 details of our algorithmand analyze its 
omplexity. Se
tion 5 is devoted to the implementation of the algorithm using 
-oriented kd-trees. Rounding examples obtained with the implementation are given in Se
tion 6.We 
on
lude in Se
tion 7 by pointing out possible dire
tions for future work.
2 The Distan
e between a Vertex and a Non-In
identEdge
Consider the two segments s; t displayed in Figure 2 before and after SR. We denote the rightendpoint of s0 by s0r. (Re
all that u0 is the rounded version of u.) After rounding, t0 penetratesthe hot pixel 
ontaining s0r, but it does not pass through its 
enter.We 
an modify the input segment t so that t0 be
omes very 
lose to s0r: we move the leftendpoint of t arbitrarily 
lose to the top right 
orner of the pixel 
ontaining it. We verti
allytranslate the right endpoint of t far downwards|the farther down we translate it, the 
loser t0will be to s0r.We 
annot make t0 arbitrarily 
lose to s0r. If they are not in
ident then there is a lower boundon the distan
e between them. This distan
e, however, 
an be rather small. Let b denote thenumber of bits in the representation of the vertex 
oordinates of the output 
hains of SR. Wetile a bounding square of the arrangement with 2b � 2b unit pixels. In this setting the distan
ebetween t0 and s0r 
an be made as small as 1=p(2b � 1)2 + 1 � 2�b.
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(a) (b)

t s0 t0s

Figure 2: A vertex be
omes very 
lose to a non-in
ident edge after (b) snap rounding
One 
ould argue that although SR produ
es near-degenerate output, it is still possible, duringthe rounding pro
ess, to determine the 
orre
t topology of the rounded arrangement in the hotpixel 
ontaining s0r. However, this requires that the output of SR should in
lude additionalinformation beyond the simple listing of polygonal 
hains spe
i�ed by their rounded verti
es,making it more 
umbersome to use and further manipulate.

3 Iterated Snap Rounding
We augment SR to eliminate the near-degenera
ies mentioned above. Our pro
edure, whi
h we
all iterated snap rounding (ISR, for short), produ
es a rounded arrangement where an originalsegment is substituted by a polygonal 
hain ea
h vertex of whi
h is at least 1=2 a unit distantfrom any non-in
ident edge.Let S = fs1; s2; : : : ; sng be the 
olle
tion of input segments whose arrangement we wish toround. Re
all that a pixel is hot if and only if it 
ontains a vertex of the input arrangement.Let H denote the set of hot pixels indu
ed by A(S).Our goal is to 
reate 
hains out of the input segments su
h that a 
hain that passes througha hot pixel is re-routed to pass through the pixel's 
enter. The diÆ
ulty is that on
e we reroutea 
hain it may have entered other hot pixels and we need to further reroute it, and so on.Our rounding algorithm 
onsists of two stages. In a prepro
essing stage we 
ompute thehot pixels (by �nding all the verti
es of the arrangement) and prepare a segment interse
tionsear
h stru
ture D on the hot pixels to answer queries of the following type: Given a segments, report the hot pixels that s interse
ts. In the se
ond stage we operate a re
ursive pro
edure,Reroute, on ea
h input segment. We postpone the algorithmi
 details of the prepro
essingstage to the next se
tions and 
on
entrate here on the rerouting stage.Reroute is a \depth-�rst" pro
edure. As we show below, the rerouting that we proposedoes not add more hot pixels, so whenever we refer to the set of hot pixels we mean H. Theinput to Reroute is a segment s 2 S. The output is a polygonal 
hain s� whi
h approximatess. Whenever s� passes through a hot pixel, it passes through its 
enter. See Figure 3 for anillustration.We next des
ribe the ISR algorithm. The routine Reroute will produ
e an output 
hains�i in the global parameter output 
hain as an ordered list of links. If a segment is 
ontained
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(b) (
) (d)(a)
s01 s11 s2;11

s2;21
s3;11 s3;21s3;31

Figure 3: Iterated snap rounding for the input (a) results in (d)
inside a single pixel, the 
hain degenerates to a single point.ISRInput: a set S of n segmentsOutput: a set S� of n polygonal 
hains; initially S� = ;/* stage 1: prepro
essing */1. 
ompute the set H of hot pixels2. 
onstru
t a segment interse
tion sear
h stru
ture D on H/* stage 2: rerouting */3. for ea
h input segment s 2 S4. initialize output 
hain to be empty5. Reroute(s)6. add output 
hain to S�
Reroute(s)/* s is the input segment with endpoints p and q */1. query D to �nd Hs, the set of hot pixels interse
ted by s2. if Hs 
ontains a single hot pixel /* s is entirely inside a pixel */3. then add the 
enter of the hot pixel 
ontaining s to output 
hain4. else5. let m1;m2; : : : ;mr be the 
enters of the r hot pixels in Hs in the ordern of the interse
tion along s6. if (r = 2 and p; q are 
enters of pixels)7. then add the link m1m2 to output 
hain8. else9. for i = 1 to r � 110. Reroute(mimi+1)

We next dis
uss the properties of the pro
edure.We �x an orientation for ea
h input segment and its indu
ed 
hains: it is oriented in lexi
o-graphi
ally in
reasing order of its verti
es. Thus, a non-verti
al segment for example is oriented
5



s01
s11

s2;11
s3;11

s2;21
s3;21 s3;31

Figure 4: The tree T1 
orresponding to Reroute(s1) of Figure 3. Nodes denoted by full-line
ir
les 
ontain segments with whi
h we query the stru
ture D. The dashed-line 
ir
le denotes anode 
ontaining an exa
t 
opy of the segment of its parent.
from its left endpoint to its right endpoint. (The orientation of a 
hain is well de�ned sin
e, asis easily veri�ed, a 
hain is (weakly) x-monotone and (weakly) y-monotone.) We represent theoperation of Reroute on a segment si as a tree Ti. The root 
ontains si. The leaves of the tree
ontain the output polygonal 
hain s�i , one link in ea
h node, ordered from left to right wherethe �rst link is in the leftmost leaf. Ea
h internal node � together with its 
hildren represent oneappli
ation of Reroute (without re
urren
e): the segment s of �, whi
h passes through the hotpixels with 
enters m1;m2; : : : ;mr, is transformed into the links mqmq+1; q = 1; : : : ; r� 1 whi
hare pla
ed in the 
hildren of � ordered from left to right to preserve the orientation of the 
hain.We denote all the segments in the nodes at the jth level from left to right by sj;1i ; sj;2i ; : : : ; sj;li;ji ,where li;j denotes the number of nodes at this level. We denote the 
hain 
onsisting of all thelinks at level j ordered from left to right by sji . Thus s0i = si. We denote by ki the depth of thetree for si, and let k := maxni=1 ki. For notational 
onvenien
e, if a leaf � is at level k� < k thenwe add a linear path of ki � k arti�
ial nodes des
ending from � and all 
ontaining the samelink that � 
ontains (we denote it di�erently at any level a

ording to the level). See Figure 4for an illustration of the tree T1 
orresponding to segment s1 of Figure 3. We denote by s(�)the segment (or link) that is 
ontained in the node �.The next lemma gives an alternative view of ISR.
Lemma 3.1 Given a set of segments S, the output of ISR is equivalent to the �nal output ofa �nite series of appli
ations of SR starting with S, where the output of one SR is the input tothe next SR.
Proof: On
e we determine the hot pixels H, snap rounding an input segment s (i.e., bythe standard SR) 
an be done independently of the other segments. That is, the informationne
essary for rounding is in H. Noti
e that the 
hains s1i ; i = 1; : : : ; n are the result of applyingSR to the original input segments S.The 
ru
ial observation is that SR does not 
reate new hot pixels. It 
an break a segment6



into two segments that meet at the 
enter of an existing hot pixel, but it 
annot 
reate a newendpoint nor a new interse
tion point (with another segment) whi
h are not at the 
enter of anexisting hot pixel|this would violate the topology preservation properties of SR [11℄.It follows that with the same set H of hot pixels, the 
hains sj+1i ; i = 1; : : : ; n are the resultof applying SR to the links in the 
hains sji ; i = 1; : : : ; n, and so on.The pro
ess terminates when the link in ea
h leaf of the tree has its endpoints in the 
enterof hot pixels and it does not 
ross any other hot pixel besides the hot pixels that 
ontain itsendpoints.The tree 
ontinues to grow beyond level j only as long as for at least one node � in level jwhen we query with s(�) we dis
over a new hot pixel through whi
h s(�) passes. We 
laim thata hot pixel is not dis
overed more than on
e per tree. This is so sin
e, as already mentioned,ea
h 
hain sji is (weakly) x-monotone and (weakly) y-monotone. Sin
e there are at most O(n2)hot pixels, the pro
ess will stop after a �nite number of steps. �
The lemma's algorithmi
 interpretation is ineÆ
ient, but it is useful for proving some of thefollowing properties.

Corollary 3.2 ISR preserves the topology of the arrangement of the input segments in the samesense that SR does.
Proof: The topologi
al properties that are preserved by SR 
an be summarized by viewingSR as a 
ontinuous pro
ess of deforming 
urves (the original segments into 
hains) su
h thatno vertex of the arrangement ever 
rosses through a 
urve [11℄. Sin
e SR does not 
reate newverti
es, the assertion follows from Lemma 3.1. �
Lemma 3.3 (i) If an output 
hain of ISR passes through a hot pixel then it passes through its
enter.(ii) In the output 
hains ea
h vertex is at least 1/2 a unit away from any non-in
ident segment.
Proof: Claim (i) follows from the de�nition of the pro
edure Reroute. Sin
e all the verti
esof the rounded arrangement are 
enters of hot pixels, 
laim (ii) is an immediate 
onsequen
e of(i). �

A drawba
k of ISR is that an output 
hain s�i 
an be farther away from the original segmentsi 
ompared with the 
hain produ
ed for the same input segment by SR. Re
all that ki denotesthe depth of the re
ursion of Reroute(si).
Lemma 3.4 A �nal 
hain s�i lies in the Minkowski sum of si and a square of side size ki 
enteredat the origin.
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Proof: In SR, a rounded segment s0 lies inside the Minkowski sum of the input segment s anda unit square 
entered at the origin. Sin
e the ISR is equivalent to ki appli
ations of SR, the
laim follows. �
This deviation may be a

eptable in situations where the pixel size is suÆ
iently small orwhen k := maxni=1 ki is small.

4 Algorithmi
 Details and Complexity Analysis
Let I denote the number of interse
tion points of segments in the original arrangement A(S).We �rst 
ompute the set H of hot pixels. For that we use an algorithm for segment interse
tion.This 
ould be done with a plane sweep algorithm, or more eÆ
iently in O(I + n log n) time bymore involved algorithms [2℄,[4℄. To 
ompute the hot pixels, the algorithm should also be givena pixel's width w and a point p that will be assigned the 
oordinates (0; 0). The plane will betiled with pixels that we will 
onsider to be of unit width, and their 
enters will have integer
oordinates. We denote the number of hot pixels by N . Noti
e that N is at most O(n+ I).Remark. One 
ould alternatively dete
t the hot pixels by the SR algorithm of Goodri
h etal. [8℄ and thus get rid of the dependen
e of the running time of the algorithm on the numberof interse
tions I. Noti
e however that for this step alone (namely for dete
ting the hot pixels)and for 
ertain inputs (e.g., the input depi
ted in Figure 5 and des
ribed below) this alternativeis 
ostly.Next we prepare the data stru
ture D on the hot pixels H to answer segment interse
tionqueries. We 
onstru
t a multi-level partition tree [1℄ on the verti
al boundary segments of thehot pixels, and an analogous tree for the horizontal boundary segments. The partition treesreport the segments interse
ted by a query segment s from whi
h we dedu
e the hot pixelsinterse
ted by s. Ea
h tree requires O(M1+") prepro
essing time when allowed M units ofstorage for N �M � N2. A query takes O(N1+"=pM + g) time, where g is the number of hotpixels found [1℄.How many times do we query the stru
ture D for segment interse
tion?
Lemma 4.1 If an output 
hain s�i 
onsists of li links then during Reroute(si) the stru
tureD is queried at most 2li times.
Proof: During Reroute(si) when we query with a link (line 1 of Reroute) either we do not�nd new hot pixels (new for the rounded version of si) in whi
h 
ase we 
harge the query to thelink whi
h is then a link of the �nal 
hain, or we 
harge it to the �rst new hot pixel (re
all thatwe assigned an orientation to ea
h segment and to ea
h link). Ea
h �nal link is 
harged exa
tlyon
e and ea
h vertex of the �nal 
hain is 
harged at most on
e, besides the last vertex whi
h isnever 
harged. The bound follows. �
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Let L denote the overall number of links in all the 
hains output by ISR. We summarize theperforman
e bounds of ISR in the following theorem.
Theorem 4.2 Given an arrangement of n segments with I interse
tion points, the iteratedsnap rounding algorithm requires O(n log n + I + L2=3N2=3+" + L) time for any " > 0 andO(n+N +L2=3N2=3+") working storage , where N is the number of hot pixels (whi
h is at most2n+ I) and L is the overall number of links in the 
hains produ
ed by the algorithm.
Proof: To �nd the interse
tions of the input segments we use Balaban's algorithm whi
hrequires O(n log n+I) time and O(n) working storage. When an interse
tion is found we simplykeep its 
orresponding hot pixel. For 
onstru
ting and querying the multi-level partition trees(by Lemma 4.1 we perform at most 2L queries overall) we use a standard tri
k that balan
esbetween the prepro
essing time and the overall query time, and does not require that we knowthe number of queries in advan
e. See, e.g., [5℄. �

We 
on
lude this se
tion with 
ombinatorial bounds on the maximum 
omplexity of therounded arrangements. Interestingly, as shown next, there is no di�eren
e between the maximumasymptoti
 
omplexity of the rounded arrangements between SR and ISR.
Theorem 4.31 Given an arrangement of n segments in the plane, in its rounded version: (i)the maximum number of hot pixels through whi
h a single output 
hain passes is �(n2), and (ii)the maximum overall number of in
iden
es between output 
hains and hot pixels is �(n3). (iii)The number of segments in the rounded arrangement (namely without 
ounting multipli
ities)is �(n2), and if the input segments indu
e N hot pixels then this number is �(N). All thesebounds apply both to SR and to ISR.
Proof: The upper bounds in 
laims (i) and (ii) are obvious. To see that these bounds aretight 
onsider the following 
onstru
tion (see Figure 5). We take n=2 long horizontal segmentsspanning a row of n2=4 pixels. Next we take n=2 short, slightly slanted segments, ea
h spanningn=2 pixels su
h that overall ea
h pixel in the row is interse
ted by exa
tly one short segment.The short segments are slanted su
h that in ea
h pixel that they 
ross they interse
t exa
tly oneof the long segments. Ea
h pixel in the row is now a hot pixel, and ea
h of the long segments
rosses all the hot pixels. The rounding obtained with both SR and ISR is the same.The 
onstru
tion yields a degenerate rounded arrangement. Ea
h of the output 
hains is infa
t a horizontal line segment. This 
onstru
tion 
an be slanted so that ea
h rounded versionof a long segment is a 
hain with \true" 
(n2) links. In the slanted version we use n2=2 pixelsarranged in n2=4 rows. In ea
h row at least one pixel is hot. See Figure 6 for an illustration.Finally, we ignore the 
hains, and we ask how 
omplex 
an the rounded arrangement be,that is, we ignore multipli
ities (overlap) of 
hains. Obviously, the rounded arrangement 
anhave 
(n2) 
omplexity. But this is also an upper bound sin
e the (rounded) arrangement has1The slanted version of our horizontal 
onstru
tion was suggested to us by Olivier Devillers. Claim (iii) isdue to Mark de Berg.
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Figure 5: �(n) 
hains in the rounded arrangement are ea
h in
ident to �(n2) hot pixels

Figure 6: The slanted version yields �(n) rounded segments with �(n2) links ea
h
N verti
es and it is a planar graph. Therefore the number of edges 
an be at most O(N). N
an be at most O(n2). Again, our arguments do not depend on how the rounding was done (bySR or ISR). �
5 
-Oriented kd-Trees
In our implementation we use a plane sweep algorithm to �nd the interse
tions between segmentsin S and thus we identify the hot pixels. The non-trivial part to implement is the sear
h stru
tureD with whi
h we answer segment/pixel interse
tion queries. In the theoreti
al analysis we usepartition trees for D, as these lead to asymptoti
ally good worst-
ase 
omplexity. In pra
ti
e,(multi-level) partition trees are diÆ
ult to implement. Instead, we implemented a data stru
ture
onsisting of several kd-trees. Next we explain the details.
Observation 5.1 A segment s interse
ts a pixel p of width w, if and only if the Minkowski sumof s with a pixel of width w 
entered at the origin 
ontains the 
enter of p.

We 
ould use Observation 5.1 in order to answer segment interse
tion queries in the followingway: build a range sear
h stru
ture on the 
enters of the hot pixels. Let s be the query segmentand M(s) be its Minkowski sum with a pixel 
entered at the origin. Then query the stru
turewith the range M(s). Unfortunately, the known data stru
tures for this type of queries aresimilar to the multi-level data stru
tures that we have used in the previous se
tion.Instead we use kd-trees as an approximation of this s
heme. A kd-tree answers range queriesfor axis-parallel re
tangles [6℄. Its guaranteed worst-
ase query time is far from optimal but itis pra
ti
ally eÆ
ient. A trivial solution would be to query with the axis-parallel bounding box
10
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Figure 7: The bounding box of the Minkowski sum of a segment with a pixel 
entered at theorigin. The shaded area is the redundant range
of M(s), whi
h we denote by B(s); see Figure 7. This may not be suÆ
iently satisfa
tory sin
ethe area of B(s), whi
h we denote by jB(s)j, may be mu
h larger than the area of M(s).If we rotate the plane together withM(s) the (area of the) axis-parallel bounding box 
hangeswhereas M(s) remains �xed. The di�eren
e between the bounding boxes for two di�erentrotations 
an be huge. Our goal is to produ
e a number of rotated 
opies of the set of 
entersof hot pixels so that for ea
h query segment s there will be one rotation for whi
h the area ofthe bounding box is not too mu
h di�erent from the area of M(s). Noti
e that if a segments is rotated by �=2 radians, the size of the relevant bounding box remains the same. Sin
ethe determination of whi
h rotation to 
hoose is dependent only on the size of the respe
tivebounding box, the range of rotations should be the half-open interval [0 : �=2).We 
onstru
t a 
olle
tion of kd-trees ea
h serving as a range sear
h stru
ture for a rotated
opy of the 
enters of hot pixels. We 
all this 
luster 
-oriented kd-trees. Let 
 be a positiveinteger and let �i := (i� 1) �2
 for 1 � i � 
. The stru
ture 
onsists of 
 kd-trees su
h that thei-th kd-tree, denoted by kdi, has the input points rotated by �i. Let Ri(s) be the segment srotated by �i. For ea
h query with segment s we do the following: for ea
h kdi; 1 � i � 
, we
ompute jB(Ri(s))j. Let 1 � h � 
 be the serial number of the kd-tree for whi
h jB(Rh(s))j =min
i=1 jB(Ri(s))j. Then we use the h-th kd-tree to answer the query with the segment s rotatedby �h. Finally, we dis
ard all the points for whi
h the segment does not interse
t the respe
tivehot pixels.We next dis
uss a few important issues regarding the implementation and usage of thisstru
ture.
Exa
t rotations. We used exa
t arithmeti
 to implement ISR. Unfortunately, the availableexa
t arithmeti
 data-types do not support the 
al
ulations of sines and 
osines whi
h arene
essary for 
al
ulating rotations. Instead we use only angles for whi
h the sines and 
osines
an be expressed as rational numbers with small enumerator and denominator [3℄. We keep anarray Z of approximations to the sines of integer degree angles between 0� 89. We emphasizethat on
e we �x an angle � we have the exa
t sine and 
osine of �. What we 
annot do isobtain the exa
t values of the trigonometri
 fun
tions of a pres
ribed arbitrary angle. Sin
e our
hoi
e of rotation angles is heuristi
 to begin with, the pre
ise angle is immaterial, and the anglewe use is never more than one degree o� the pres
ribed angle. Moreover, there are te
hniques
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to a
hieve better approximations [3℄, but we prefer not to use them be
ause of performan
ereasons.
How big should 
 be? There are advantages and drawba
ks in using few kd-tress, say evenone kd-tree 
ompared to using many. When using one kd-tree, we are prone to get many falsepoints in the range queries, resulting in more time to �lter out the results. When using manykd-trees, we need to invest time in their 
onstru
tion and a little more time per query to �ndthe best rotation. Our experiments show that in many 
ases a small number of trees suÆ
es.Consider for example the numeri
al table \di�erent number of kd-trees" in Figure 8. (Therounding example in this �gure as well as the other examples are explained in detail in thenext se
tion; here we only refer to the number of kd-trees used in their 
omputation.) The�rst 
olumn shows how many kd-trees were used and the last 
olumn shows how mu
h timethe overall rerouting stage took 
ompared with the time when using only one kd-tree (the fulllegend is given in Table 1). The best performan
e is obtained when we use 7 kd-trees. The timesavings in this 
ase is 17% over using a single kd-tree. The analogous table in the next example(Figure 9) shows that in that example there is no bene�t in using more than one kd-tree.2 Inthe next paragraph we present a heuristi
 improvement of the number of kd-trees. However, weleave the 
omputation of the best number of kd-trees together with the best rotation angles ofea
h one for further resear
h.
Skipping kdi's. Sin
e 
 should be small, we expe
t most of the links of a 
ertain input segmentto have the same rotation as the input segment, sin
e they should all have nearby slopes. LetJi be the number of input segments that are rotated by �i. If Ji is very small, it is not e�e
tiveto 
reate the respe
tive kd-tree. Thus we �x a lower limit � , and 
onstru
t a kd-tree kdi onlyif Ji � � . Obviously � should be a fun
tion of 
, and be suÆ
iently small to ensure that atleast one kd-tree will be 
onstru
ted. We 
hose to use � = n2
 . In the examples of Figures 8and 9 � is always greater than n2
 . In other examples, su
h as geographi
 data, not all 
 treesare always 
onstru
ted|in Figure 10, when the algorithm is given 
 > 7 it 
hooses to skip someof the kdi's. In this example, using more than one kd-tree is wasteful sin
e the map is relativelysparse, most of the segments are relatively small 
ompared to the whole map and the boundingbox of their Minkowski sum with a unit pixel does not interse
t many hot pixels 
enters.
6 Rounding Examples: SR vs. ISR
To give the 
avor of how the output of ISR di�ers from that of SR we present the roundingresults for three input examples; see Figures 8, 9, and 10. For ea
h example we display theinput, the SR result and the ISR result. Then we zoom in on a spe
i�
 area of interest in thesethree drawings|an area where the rounding s
hemes di�er noti
eably. A square near a drawingrepresents the a
tual pixel size used for rounding. Then we provide two tables of statisti
s.The �rst one refers to the best number of kd-trees as related to the dis
ussion in the previous2The running time indi
ated in the tables is in se
onds while using arbitrary pre
ision rational arithmeti
.The pixel size in the �rst example is 1 and in the se
ond example is 15.
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Abbreviation Explanationinkd input number of kd-treesnkd a
tual number of kd-trees 
reatednfhp overall number of false hot pixels in all the queriestt total time relative to using one treemd maximum deviation over all 
hainsad average deviationmnv maximum number of verti
es in an output 
hainanv average number of verti
es in an output 
hainmdvs minimum distan
e between a vertex and a non-in
ident edgen
vs number of pairs of a vertex and a non-in
ident edgethat are less than half the width of a pixel apartps pixel sizenhp number of hot pixels
Table 1: Abbreviations

se
tion. The se
ond table summarizes the di�eren
es in the rounding for di�erent pixel sizes.The abbreviations we use in these two tables are explained in Table 1. The deviation of a 
hainfrom its indu
ing segment s is the maximal distan
e of a point on the 
hain from s.
6.1 Congestion DataThe data 
ontains 200 segments with 18; 674 interse
tions. (For 
larity, the pi
tures in Figure 8depi
t a similar example with only 100 segments.) The bottom left part of the arrangement iszoomed in.Both rounding s
hemes will 
ollapse thin triangles that have two 
orners 
lose by. However,not allowing proximity between verti
es and non-in
ident edges, ISR 
ollapses `skinny' fa
es ofthe arrangement that SR does not (see the bottom of the zoomed-in area), for example trianglesthat have one 
orner 
lose to the middle of the opposite edge.For pixel size 1, SR and ISR are very di�erent and the number of verti
es that are less thanhalf a unit away from a non-in
ident edge in the SR output is in the hundreds. The averagedeviation in ISR in this example is never more than 2.5 times that of the 
orresponding SRoutput. For pixel size greater than 1 the average deviation of a 
hain in ISR is almost the sameas in SR. However, for pixel size smaller than 1, the average deviation is larger in the ISR outputthan in the SR output.In terms of 
ombinatorial 
omplexity the results are similar and the average number ofverti
es per 
hain is roughly the same in both outputs. This is a phenomenon we have observedin all our experiments.
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6.2 Triangulation DataFigure 9 shows a set of input points (
ourtesy of Ja
k Snoeyink) and a triangulation of thisset. The triangulation 
onsists of 906 segments. The zoomed in pi
tures show a part of thetriangulation for whi
h there is 
onsiderable di�eren
e between SR and ISR.Again ISR 
ollapses thin polygons that SR does not 
ollapse. The se
ond table in Figure 9shows that in this 
ase the average deviation of a 
hain in both s
hemes does not di�er by mu
h.The maximum deviation in ISR is always less than twi
e the pixel width. Here also the averagenumber of links per 
hain is almost the same for the output of SR and ISR.
6.3 Geographi
 DataWe ran both s
hemes on several geographi
 maps of 
ountries and 
ities whi
h are less 
lutteredthan the examples above. The experiments for this type of data typi
ally show little di�eren
ebetween the SR and ISR results. Figure 10 depi
ts the result for a map of the USA. The data
ontains 486 segments interse
ting only at endpoints.The se
ond table in Figure 10 shows the di�eren
e of using SR and ISR. In most of the tests,there are o

asional 
ases in whi
h the distan
e between a vertex and a non-in
ident segmentis shorter than half the size of a pixel. Thus there are di�eren
es between the SR and the ISRoutput. These di�eren
es are however minor. In the ISR output the maximum deviation is nomore than twi
e that of the SR output. The average deviation in both the SR and ISR outputis similar.
7 Con
lusions
We presented an augmented snap rounding pro
edure whi
h rounds an arbitrary pre
ision ar-rangement of segments in IR2 with the advantage that ea
h vertex in the rounded arrangementis at least half a unit away from any non-in
ident edge. The new s
heme makes the roundedarrangement more robust for further manipulation with limited pre
ision arithmeti
 than theoutput that the standard snap rounding algorithm produ
es. We implemented ISR using exa
tarithmeti
.We propose several dire
tions for further resear
h: (1) Can dete
ting all the hot pixelsthrough whi
h an output 
hain passes be done more eÆ
iently? (2) Extend the s
heme tonon-linear 
urves. (3) The rounded arrangement 
an have at most O(n2) segments, whereasour algorithm (as well as the known algorithms for SR) may produ
e 
(n3) output links. Thetask here is to devise an output sensitive algorithm where the output size is the size of therounded arrangement and not the overall 
omplexity of the 
hains. (4) Improve the heuristi
sfor 
hoosing the dire
tions of the kd-trees.
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Input SR output ISR output

Input zoom in SR output zoom in ISR output zoom innkd nfhp tt1 613477 100% = 213.2 s2 513551 87.2%3 474997 83.6%4 478749 84%5 479507 84.3%6 463025 83.4%7 456882 83%8 456269 84%9 455334 84.8%10 456196 86.3%
Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs n
vs md ad mnv anv mdvs n
vs0.125 8488 1.01 0.19 120 90.96 0.08 0 0.09 0.09 106 87.95 0.04 170.25 8261 1.5 0.41 124 94.15 0.15 0 0.17 0.17 112 89.16 0.06 580.5 7711 1.68 0.67 135 97.9 0.28 0 0.35 0.35 126 91.66 0.08 1351 6003 1.58 0.99 154 101.85 0.55 0 0.71 0.71 153 95.99 0.07 3282 2538 1.51 1.41 101 72.9 1.26 0 1.41 1.41 101 72.87 0.88 33 1143 2.12 1.84 67 49.1 2.12 0 2.12 1.84 67 49.09 1.34 14 673 2.82 2.7 51 37.56 2.82 0 2.82 2.7 51 37.56 2.82 05 439 3.53 3.32 41 30.31 3.53 0 3.53 3.32 41 30.3 2.23 110 120 7.07 6.6 21 15.58 7.07 0 7.07 6.6 21 15.58 7.07 0
ISR and SR 
omparisonFigure 8: Congestion data



Input points Input triangulation SR output ISR output

Input zoom in SR output zoom in ISR output zoom innkd nfhp tt1 4872 100% = 15.4 s2 4789 103.2%3 4852 102.6%4 4597 101.9%5 4487 102.6%6 4349 103.2%7 4349 102.6%8 4399 102.6%9 4419 103.2%10 4358 102.6%
Di�erent number of kd-trees

isr srps nhp md ad mnv anv mdvs n
vs md ad mnv anv mdvs n
vs2 306 2.231 0.825 6 2.219 1.223 0 1.341 0.812 6 2.198 0.318 95 300 9.804 2.691 7 2.625 3.14 0 3.494 2.442 6 2.48 0.741 5010 249 17.194 5.18 9 2.761 5.368 0 7.028 4.847 7 2.637 1.414 4515 195 22.088 6.985 10 2.75 9.486 0 10.559 6.512 10 2.622 2.631 6720 162 32.207 7.614 9 2.621 11.767 0 13.914 7.19 8 2.532 4.85 45ISR and SR 
omparisonFigure 9: Triangulation data



Input SR output ISR output

Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 293 100% = 9.11 s2 2 306 102%3 3 302 103.1%4 4 284 103.8%5 5 293 105%6 6 275 106%7 7 260 106.8%8 6 269 106.1%9 8 272 107.9%10 8 253 107.9%
Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs n
vs md ad mnv anv mdvs n
vs0.125 486 0.097 0.088 4 2.098 0.111 0 0.088 0.088 4 2.096 0.045 10.25 485 0.353 0.177 5 2.113 0.196 0 0.176 0.176 5 2.107 0.039 20.5 480 0.392 0.353 4 2.104 0.377 0 0.353 0.353 4 2.100 0.039 21 475 1.414 0.715 5 2.137 0.569 0 0.707 0.707 5 2.115 0.196 32 432 2.236 1.063 5 2.137 1.264 0 1.414 1.043 5 2.102 0.392 93 379 3.807 1.353 5 2.037 2.121 0 2.121 1.336 5 2.020 1.341 24 338 3.333 1.764 6 1.991 2.828 0 2.828 1.758 5 1.983 1.264 25 299 4.735 2.124 5 1.897 3.535 0 3.535 2.110 4 1.884 1.581 310 177 10.606 3.732 5 1.615 7.071 0 7.071 3.696 5 1.602 7.071 0
ISR and SR 
omparisonFigure 10: Geographi
 data


