
Cartographic Line Simpli�cation andPolygon CSG Formul� in O(n log� n) TimeJohn Hershberger1Mentor Graphics1001 Ridder Park DriveSan Jose, CA, USA 95131john hershberger@mentorg.com
Jack Snoeyink2Department of Computer ScienceUniversity of British ColumbiaVancouver, B.C., Canada V6T 1Z4snoeyink@cs.ubc.caAugust 31, 1998

1Portions of this research were supported by DEC Systems Research Center.2Supported in part by an NSERC Research Grant, the B.C. Advanced Systems Institute, and the IRISNCE.

Running Title: Line Simpli�cation and CSG Formul�Keywords: Dynamic convex hull, path hull, simple polygonCorrespondence Address: Jack SnoeyinkDepartment of Computer ScienceUniversity of British Columbia201 - 2366 Main MallVancouver, BC V6T 1Z4Canadafax : (604) 822-5485email: snoeyink@cs.ubc.ca

AbstractA constructive solid geometry (CSG) conversion for a polygon takes a list of vertices and producesa formula representing the polygon as an intersection and union of primitive halfspaces. Thecartographers' favorite line simpli�cation algorithm recursively selects from a list of data pointsthose to be used to represent a linear feature, such as a coastline, on a map. By using a datastructure that maintains convex hulls of polygonal lines under splits, both were known to haveO(n log n) time solutions in the worst-case. This paper shows that both are easier than sorting bypresenting an O(n log� n) algorithm for maintaining convex hulls under splits at extreme points. Itopens the question of whether there are practical, linear-time solutions to these problems.

1 Introduction: CSG formula computation and Line simpli�cationA plane polygon can be represented either by the sequence of vertices and edges around its boundaryor by a boolean combination of \primitive" regions such as halfspaces. Solid modeling systems mayconvert from the former to the latter; this is a 2-dimensional example of a conversion from aboundary representation (B-rep) to a constructive solid geometry (CSG) representation.Peterson [11] showed that a simple polygon always has a CSG formula
a b

c
d

ef

Figure 1: CSGformula isa(b+ ((c+ d)e))f
using one primitive halfplane for each edge of the polygon. In fact, one canwrite down the formula by starting at the leftmost vertex and listing thehalfspaces in the order that their edges appear around the polygon, insertingan \AND" for every convex corner and an \OR" for every reex corner. Theinteresting part is to add parentheses appropriately.In the dart in Figure 1, for example, the three terms a, (b + ((c + d)e)),and f can be joined by \AND"s since extensions of segments a and f , and ofthe polyline bcde by extending segments b and e, do not return to intersect the polygon. Segment ecannot appear at the top level because its extension intersects edges a and b. Dobkin et al. [1] gavean O(n log n) algorithm to recursively add parentheses. They maintain convex hulls of fragments ofthe polygon and split at hull vertices that are extreme in a direction determined by the directionsof the �rst and last edges of each fragment.To draw a coastline or other linear feature on a simple and readable map, one may need toperform line simpli�cation to reduce the detailed data available in a database.

1

Cartographers have identi�ed the recursive algorithm detailed
Figure 2: Line simpli�cation

in Douglas and Peucker [2] as best in mathematical [8] and percep-tual [15] studies. This algorithm �rst approximates a polygonalline p1; p2; : : : ; pn with the segment p1pn. If the vertex pmax atmaximum distance from the line !p1pn is within tolerance, this ap-proximation is accepted, otherwise, the two polygonal lines fromp1 to pmax and from pmax to pn are approximated recursively, asin Figure 2. This algorithm has been called Ramer's algorithm [13] in vision and the sandwichalgorithm [14] in computational geometry.If implemented in a straightforward fashion, this algorithm has a worst-case running time of�(n2) (and best-case of �(n logn) when the tolerance is small). Because the vertices at maximumdistance will be found on the convex hull, this same simpli�cation can be computed in O(n logn)worst-case time [5, 6] using a convex hull data structure that supports splitting at extreme vertices.Here and throughout this paper, we assume that the polygonal line p1; p2; : : : ; pn is simple: the onlyintersections between its line segments occur where adjacent segments share a common endpoint.It should be noted that the algorithm does not guarantee simplicity of the output, however.Thus, the problems of CSG formula computation and line simpli�cation can both be solved bya data structure that stores fragments of a polygonal line and supports the operation of �ndingan extreme vertex in a particular direction and splitting the polygonal line there. The choice ofdirection depends upon the problem and the current fragment, so the extreme vertices are foundon-line.It is natural to ask whether these problems are easier than sorting. This paper gives an a�rma-tive answer for CSG formula computation and for a modi�cation of line simpli�cation by presentingan O(n log� n) algorithm for maintaining convex hulls of a polyline under splits. In Section 2 wereview the \path hull" of Dobkin et al. [1] and other data structures for dynamic convex hulls.Section 3 describes our new data structure, which builds an augmented path hull data structureon \beads"|convex hulls of polylog-size fragments of the polygonal line. Section 4 analyzes theoperations of �nding extreme vertices and splitting for this structure.2

Note: All logarithms in this paper are taken base 2. The iterated logarithm, log� n, is thenumber of times the logarithm function must be applied to reduce the argument to less than 2. Itis a slowly growing function: log� 16 = 3, log� 216 = 4, and the �rst n with log� n � 5 has about20,000 decimal digits.2 A brief review of 2-d dynamic convex hullsAs mentioned in the previous section, we wish to support splitting and �nding extreme verticesof fragments of a polyline in the plane. At the cost of additional logarithmic factors, one coulduse general convex hull algorithms for points in the plane [12]. Overmars and van Leeuwen [10]showed that the divide-and-conquer algorithm can support �nding extreme points in O(log n) time.Deletions and insertions of points take amortized O(log2 n) time per operation; no algorithm isknown to achieve amortized O(log n) time.2.1 Hulls of polygonal linesWhen the points lie on a simple polygonal line then the con-
1

4

7

9

10

15

13Figure 3: Vertex numbers onthe hull
vex hull has additional structure, as many have observed. (SeeFigure 3.)Observation 2.1 If the vertices are numbered along the poly-line, then the sequence of vertex numbers around the hull, whenread counter-clockwise from the maximum, decreases to the min-imum number and then increases to the maximum.Guibas et al. [3] used this observation to build an O(n)-sizedata structure for \subpath hull queries," which include the ability to �nd an extreme point of anycontiguous fragment of the polyline in O(log n log log n) time after O(n) preprocessing. This levelof generality is not needed in the applications considered in this paper.One consequence of Observation 2.1 is that common tangents to the convex hulls of two con-secutive fragments of a simple polyline can be computed in polylogarithmic time. Guibas et al. [3]give a matching lower bound for simple array data structures (as well as an improvement usingmore complex data structures.) 3

Lemma 2.2 Given array representations of the convex hulls of two consecutive fragments of apolygonal line with m vertices, one can compute the at most two tangents between them in O(log2m)time.Proof: Because the polyline fragments are consecutive, if, say, the �rst hull is contained insidethe second, then it is contained entirely inside one of the two bays determined by the hull edgesincident to the lowest numbered vertex.For a speci�c example with hull A inside hull B, consider
b

e'

e

B

A

Figure 4: Hull A (shaded) in B
Figure 4. Vertex b on hull B has the lowest index, and isincident to hull edges e and e0; the bay de�ned by e containsthe hull A. To detect this, one can test, in O(logm) time,whether the extreme vertices of A in the directions normalto e and e0 are left of the lines through e and e0. If so, thenA is inside.If neither one is inside the other, then we will have founda pair of \helper points"|a point on each hull that is not contained in the other. Guibas etal. [3] show how to use helper points to reduce to the problem of �nding a common tangentof two intersecting, upper convex hulls. This can be solved by nested binary search: choose amedian vertex on one hull and use binary search to determine the tangent to the other hull, ifit exists.2.2 Melkman's hull algorithm with a history stackMelkman [9] uses Observation 2.1 in a di�erent way to give an incremental algorithm that computesthe convex hull of a polyline p1; p2; : : : ; pm in O(m) time. It uses a doubly-ended queue (a deque)to store vertices of a convex hull in counter-clockwise order from front to back; the hull vertex withhighest appears at both front and back. The deque can easily implemented as an array of size 2mwith pointers to the front and back elements.Start with the convex hull of the �rst two points by placing p2, p1, p2 in the middle of the array.To add pi, check if pi appears on the convex hull; as noted in the proof of Lemma 2.2, it su�cientto inspect the edges incident on the hull vertex of highest index, which are found at the ends of the4

deque. If pi does not appear on the hull, then no changes to the deque are required. Otherwise, pimay hide some vertices of the previous hull; pop these hidden vertices from the front and/or backof the deque, and then push pi onto both front and back to produce the convex hull of p1 . . . pi.Since each vertex is pushed, and therefore popped, at most twice, the total time is O(m).Because this algorithm is incremental, it actually computes convex hulls of all pre�xes of thepolyline. Dobkin et al. [1] added a history stack that records the elements pushed onto and poppedfrom the deque so that these pre�x convex hulls can be recovered as vertices are deleted from theend of the polyline.Lemma 2.3 Given a polygonal line p1; p2; : : : ; pm, where p1 is the start or anchor vertex, one canbuild a convex hull data structure in O(m) time that supports the operations of deletion from the(non-anchor) end in amortized O(1) time and search for the extreme vertex pd in a given directionin O(logminfd;m� d+ 1g) time.Proof: We sketch the analysis; greater detail on the structure can be found in Dobkin et al. [1].Construction by Melkman's algorithm is described above; the history stack merely increasesthe constant. Deletion from the end is accomplished by playing back the history stack andreversing the operations; this can be charged against construction time so that deletion may beconsidered to take constant amortized time.To enable the search for an extreme vertex, maintain a pointer to the hull vertex with lowestindex. Note that the hull vertex with highest index appears at both the front and back of thedeque. These lowest and highest indices split the deque into two arrays; one containing verticeswith increasing numbers and the other with decreasing numbers. A constant-time computationon these vertices and their neighbors on the hull is su�cient to determine which array containsthe extreme vertex. Search that array by starting two increasing-increment searches in parallelfrom the ends: Check the �rst, second, fourth, eighth, . . . , from the end until the extreme vertexlies in the interval between the current vertex and the end, then �nish with binary search onthat interval.When pd is the extreme vertex desired, then there will be at most 2minfd;m�d+1g verticesin the search interval because the vertices in the search interval appear in order along the hull.5

Therefore, the search takes O(logminfd;m� d+ 1g) time.We could say that Melkman-plus-history supports \one-sided" splits|splitting at a vertex pro-duces a valid convex hull data structure for the �rst part of the polygonal line by simply deletingvertices from the second part. Of course, no structure is produced for the second part, so splits thatoccur near the beginning of the polyline waste most of the computation of Melkman's algorithm.Dobkin et al. [1] used this observation to de�ne a \path hull" data structure that supportstwo-sided splits in amortized O(log n) time. They choose an anchor in the middle of a polyline anduse Melkman-plus-history to build two convex hull structures outward from the anchor. Thus, thesplits that waste computation are those near the middle; since these splits now break the probleminto two equal-sized subproblems, a credit scheme shows that the total splitting time is O(n log n).Extreme vertices are found in O(logn) time apiece by �nding the two candidate extreme vertices,one on each of the convex hulls that make up the path hull, and returning the true extreme.3 The bead hull data structure and its constructionTo improve on the path hull structure sketched at the end of the previous section, we need to reusemore computation|we cannot a�ord to have all previous computation wasted by a single split.Less evident, but equally important, is the fact that the cost of �nding an extreme vertex must berelated to the size of the smaller polyline that will be created by splitting there|we cannot a�ordto �nd candidates at which we do not perform a split. (This will force a modi�cation of the linesimpli�cation procedure in Section 5.)We break a polyline of length n at vertices to form n=k fragments of length k, where k can bechosen to be log2 n. (We justify the choice of k in Section 4.) Adjacent fragments share a commonendpoint. For each fragment, we build a convex hull using Melkman-plus-history as described inLemma 2.3. We call such a fragment-with-hull a bead. We actually build the convex hull twice,once from each end. Because these data structures can be built in linear time (Lemma 2.3), weobtainCorollary 3.1 Beads of size k for a polyline of length n can be built in O(n) total time and space.6

Our polyline will be subject to splits. Splitting at a vertex in a bead produces two broken beads|fragments of the polyline with length at most k that have Melkman-plus-history representations oftheir convex hulls built from the original endpoints towards the split. Further splitting a brokenbead produces a smaller broken bead and an unstructured fragment between the two splits.A string of beads is a two-level convex hull structure that represents the hull of a sequence ofconsecutive whole beads. The lower level consists of the convex hull arrays for the beads. Theupper level is an array of tangents between beads, with pointers into the corresponding bead hullarrays.Lemma 3.2 Given m beads with size at most k, a string of beads can be built using a modi�cationof Melkman's algorithm in O(m log2 k) time.Proof: As in Melkman's algorithm for points, we can maintain the current list of tangentsbetween beads in a deque with the tangents to the most recently added bead at the front andback of the deque.To add the ith bead, we �rst check if it appears on the hull by testing against the commontangents to beads at the front and back of the deque. If so, we pop beads from the deque whosetangent lines intersect the bead|these will no longer be on the convex hull. We use the nestedbinary search of Lemma 2.2 to compute at most two tangents between the ith bead and thebeads remaining at the front and back of the deque, then add these tangents and push the ithbead onto the front and back of the deque.Because there are at most 2m tangents added, there are at most 2m tangents popped at atotal cost of O(m log k). Adding new tangents costs O(m log2 k) time.Our �nal data structure, the bead hull, consists of the following parts, which are depictedschematically in �gure 5.� An anchor vertex that is the common endpoint of two beads (broken or whole). An anchoris initially chosen in the middle of a sequence of beads.� Two, possibly empty, strings of beads constructed to the left and right of the anchor.� Two, possibly empty, broken beads; one at the end of each string.� Tangents (at most four) from the broken beads to their adjacent strings.7

broken
 bead

anchor
 vertex

bead
 string

 tangent
(str to br. bead)

tangent (between structures)Figure 5: Schematic depiction of a bead hull with anchor in the middle� Tangents (zero or two) between the structures to the right and left of the anchor.Lemma 3.3 Given m > 1 beads with size at most k, a bead hull can be built in O(m log2 k) time.Proof: The anchor can be chosen in constant time and two strings of beads constructed inO(m log2 k) time. By Lemma 2.2, the two tangents between the strings of beads can be foundby nested binary search in O((logm+ log k)2) � O(m log2 k) time.4 Analysis of bead hull operationsIn a bead hull, �nding an extreme vertex in a chosen direction is relatively easy because all hulledges are represented.Lemma 4.1 Given a bead hull representing p1; p2; : : : ; pn, the extreme vertex pd in a particulardirection can be found in O(logminfd; n� d+ 1g) time.Proof: We can use increasing-increment searches in parallel from both ends, as in Lemma 2.3.The two-level structure increases the programming complexity, but not the asymptotic runningtime.To maintain bead hulls under the operation of splitting the polyline a a vertex, split operations,we must perform computation at several levels: a bead is split into two broken beads or a brokenbead is split into a smaller broken bead and a polyline fragment that was contained entirely withinthe bead; a bead string is split giving a bead string containing the anchor and forcing recomputation8

of the other, and new tangents are computed for the two bead strings that make up a bead hull.In the next lemma we analyze the cost of splitting a bead hull structure so that all the remainingfragments are contained within beads. We defer the recursive cost of handling fragments withinbeads until Theorem 4.3.Lemma 4.2 Suppose that we are given a polyline with n vertices and an on-line sequence of splittingvertices. Then, in O(n + (n=k) log n(log n + log2 k)) total time, we can build beads of size k andmaintain bead hulls under splits for all fragments that are not strictly contained within the originalbeads.Proof: Corollary 3.1 and Lemma 3.3 say that Melkman's algorithm can be used to buildthe initial beads and initial bead hull in the desired time. We record the history of thesecomputations.To prove this lemma, we will give bead hulls three types of credits with which to pay forall construction and tangent computation after the initialization. We maintain the followinginvariants: If a bead hull has l (whole) beads to the left of the anchor and r beads to the right,then it has (l + r) log(maxfl; rg) hull credits. Each unbroken bead has one bead credit. Andeach vertex has up to three vertex credits: one if it is inside the convex hull, one if it is insidethe convex hull of its string, and one if it is inside the convex hull of its bead. We establishthe invariants by giving (n=k) log(n=2k) hull credits, (n=k) bead credits, and at most 3n vertexcredits to the initial bead hull.Each split produces one or two new bead hulls (only one, if one of the fragments is completelycontained in an original bead). We assign credits to the new bead hulls according to theinvariants. The credit budget is the the total number of credits before the split minus thenumber after the split. We will see that the credit budget is non-negative. We charge O(log2 k)computation to each hull credit, O(log2 n) to each bead credit, and O(1) to each vertex creditin the budget. Together, these charges establish the lemma.There are two cases to consider when splitting: either a whole bead is split for the �rst timeor the splitting vertex is contained in one of the broken beads.
9

Case 1: When a whole bead is split, we charge tangent computation to the bead credit andspend hull credits to rebuild strings of beads. Assume that s whole beads are split o� beforethe anchor; the analysis for splitting after the anchor is symmetric.The bead hull for the fragment containing the anchor can be obtained in three steps. First,play back the history of Melkman's algorithm to give the string of whole beads between theanchor and splitting vertex. Second, break the bead containing the splitting vertex. Finally,compute tangents from the broken bead to the string, and between the strings before and afterthe anchor. The �rst two steps run hull construction algorithms backwards, so we can chargetheir computation to the initial build. By Lemma 2.2, the third step can be performed inO(log2 n) time, which can be charged to the bead credit obtained by breaking a bead. Theresulting bead hull must be given(l � s� 1 + r) logmaxfl � s� 1; rg � (l � s� 1 + r) logmaxfl; rghull credits to satisfy the invariant.The bead hull for the fragment not containing the anchor must be built from scratch inO(s log2 k) time (Lemma 3.3), which consumes s hull credits. Since an anchor is chosen in themiddle, s logbs=2c � s(log s� 1) � s logmaxfl; rg � shull credits must be given to this fragment.In case 1, the (l + r) log(maxfl; rg) hull credits available are su�cient to pay for the buildand satisfy the invariants for the resulting bead hulls. The bead and vertex credits are alsosu�cient, since splitting decreases the number of unbroken beads by one, and can only increasethe total number of hull vertices.Case 2: When a broken bead is split, we spend vertex credits on updating tangents for thebead hull. No bead or hull credits are spent on computation, as all are needed to maintainthe invariants. The new broken bead is formed by playing back the history of the bead'sconstruction, which is charged to the initial construction. Notice that the vertices removedfrom the broken bead form a fragment that is entirely contained within the original bead. Inthis lemma, the computation required for such fragments is not considered.10

The bead hull has four tangents that may need to be up-
Figure 6: Updating atangent while shrinking abroken bead

dated. As a representative example, consider the tangent thatgoes counter-clockwise (ccw) from the string to the broken beadin Figure 6. We shrink the broken bead, playing back the historyof Melkman's algorithm, until we reach the splitting vertex. Thismay cause new vertices to appear on the hull of the broken bead.We need to update the tangent if and only if the tangentendpoint is removed. The candidates for the tangent endpoint on the broken bead are the newvertices and those adjacent to them. Candidates on the string are at or ccw of the old tangentendpoint. If we begin by joining the clockwise-most candidates on both bead and string, then bytesting incident edges we can determine whether we have found the tangent or which candidateendpoint should move ccw. We can advance until we �nd a tangent or determine that thebroken bead is contained in the hull of the string; we charge the search time to vertex creditstaken from vertices that now join the bead and string convex hulls.When the splitting vertex is common to two beads, then two beads are a�ected. Whenthe splitting vertex is the anchor, both strings are also a�ected. These reduce to combinationsof cases 1 and 2, however, depending on whether the a�ected beads were previously whole orbroken.In the previous lemma, it was not necessary that the splits occur at extreme vertices of thebead hull. For applications that do involve �nding and splitting at extreme vertices, we can provethe following theorem.Theorem 4.3 For a simple polygonal line with n vertices, bead hulls of all fragments can beconstructed and maintained under the operations of �nding and splitting at extreme vertices inO(n log� n) time and O(n) space.Proof: By Lemma 4.1, each search for a splitting vertex can be performed in time logarithmicin the size of the smaller fragment. It is known that recursion trees with this behavior takelinear time in total [4, 7]. 11

For a polyline of n vertices, let us choose beads of size k = log2 n. Then Lemma 4.2 saysthat one level of bead hull computation produces, in timeO(n+ (n= log2 n) log n(logn+ (log(log2 n))2)) = O(n);a set of fragments of sizes n1; n2; : : : ; nf , with each ni < k and Pi ni � n.Let T (m) be an upper bound on the total time to handle a fragment of size m recursively:building beads and maintaining bead hulls until the fragments are of size less than log2m. Ifwe handle fragments with less than 512 vertices by a non-recursive method and account for thistime separately, then we obtain a base condition of T (m) = 0 for 0 < m < 512; we will showthat T (n) = O(n log� n) for all n > 0.Since T (m) is a convex function that is at least linear, we can bound T (n) for n � 512 bya recurrence that is maximized when all fragment sizes, ni, are as large as possible:T (n) � O(n) + X1�i�f T (ni) � O(n) + nlog2 nT (dlog2 ne):We can de�ne a function t(n) by iterating log2, such that T (n) = O(nt(n)):t(n) = 8><>: 0 if n < 5121 + t(dlog ne2) otherwise.Recall that the function log� n has a similar de�nition as the number of times to iterate thelogarithm function until its argument is less than 2. The reader can check that t(n) � 2 log� nfor all n > 0 by verifying the inequality for values of n with t(n) � 3, and then observing thatd log2dlog2 nee � dlog ne for all n > 229 .This establishes the total time complexity as T (n) = O(n log� n).Finally, we establish the total memory space required. Any single bead hull data structuretakes space proportional to the number of its vertices. If fragments are handled from largest tosmallest, then no vertex need participate in more than two fragments at a time. Thus, linearspace is su�cient.From the work of Dobkin et al. [1], we obtain an algorithm for building CSG formul� as asimple corollary. 12

Corollary 4.4 CSG formul� for simple polygons of n vertices can be computed in O(n log� n) timeand O(n) space.The path-hull implementation of the line simpli�cation method in Douglas and Peucker [2]becomes as simple corollary if we add a side selection rule, which we will now de�ne. Recall thedescription of the method from Section 1: to approximate the polygonal line P = fp1; p2; : : : ; png,the two extreme points from the line !p1pn must be found, and the farther one is used as a splittingvertex. We modify this description as follows: search in parallel on each side of the line !p1pn untilthe �rst extreme point is found. The search information on the other side may tell us that there isa point at greater distance, in which case we continue to �nd the true extreme point and split there.Or it may say that we already have the extreme point and can split. If, however, the informationis inconclusive, then we need a side selection rule that decides, in O(1) time, which side to spliton the basis of the information we have so far. Example rules include always splitting on the �rstextreme point found, always splitting on the second, splitting on the side opposite the last splitthat formed this fragment, and so forth.Corollary 4.5 For simple polylines of n vertices, the Douglas-Peucker line simpli�cation with anyside-selection policy can be computed in O(n log� n) time and O(n) space.The danger of not having a an O(1)-time side selection rule is that perhaps the true extremepoint is found right away, but more time must be spent to verify that it is the true extreme. Thisadditional cannot be charged against the few vertices that are removed by the split. However, it isdi�cult, and perhaps impossible, to construct examples in which this happens repeatedly.5 ConclusionWe have given an O(n log� n) algorithm for maintaining a convex hull under splits; this gives atheoretical improvement to the running time for building CSG formul� for planar polygons and fora modi�ed version of Douglas-Peucker line simpli�cation|showing that both problems are easierthan sorting. We expect that the original line simpli�cation procedure is also faster than sorting,but are unable to prove this. The most interesting open problem is whether these problems havepractical, linear-time solutions. 13

6 AcknowledgmentWe thank the referees for their careful reading and constructive comments that have improved thepresentation of this paper.References[1] D. Dobkin, L. Guibas, J. Hershberger, and J. Snoeyink. An e�cient algorithm for �nding theCSG representation of a simple polygon. Algorithmica, 10:1{23, 1993.[2] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points requiredto represent a line or its caricature. The Canadian Cartographer, 10(2):112{122, 1973.[3] L. Guibas, J. Hershberger, and J. Snoeyink. Compact interval trees: A data structure forconvex hulls. International Journal of Computational Geometry & Applications, 1(1):1{22,1991.[4] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithmsfor visibility and shortest path problems inside triangulated simple polygons. Algorithmica,2:209{233, 1987.[5] J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line simpli�cation algorithm.In Proceedings of the 5th International Symposium on Spatial Data Handling, pages 134{143.IGU Commission on GIS, 1992.[6] J. Hershberger and J. Snoeyink. An O(n logn) implementation of the Douglas-Peucker linesimpli�cation algorithm. In Proceedings of the Tenth Annual ACM Symposium on Compu-tational Geometry, pages 383{384, 1994. Video Review of Computational Geometry. 4:45animation.[7] K. Ho�mann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan. Sorting Jordan sequences inlinear time. Information and Control, 68:170{184, 1986.[8] R. B. McMaster. A statistical analysis of mathematical measures for linear simpli�cation. TheAmerican Cartographer, 13:103{116, 1986.[9] A. A. Melkman. On-line construction of the convex hull of a simple polyline. InformationProcessing Letters, 25:11{12, 1987. 14

[10] M. Overmars and J. van Leeuwen. Maintenance of con�gurations in the plane. Journal ofComputer and System Sciences, 23:166{204, 1981.[11] D. P. Peterson. Halfspace representation of extrusions, solids of revolution, and pyramids.SANDIA Report SAND84-0572, Sandia National Laboratories, 1984.[12] F. P. Preparata and M. I. Shamos. Computational Geometry|An Introduction. Springer-Verlag, New York, 1985.[13] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. ComputerVision, Graphics, and Image Processing, 1:244{256, 1972.[14] G. Rote. The convergence rate of the Sandwich algorithm for approximating convex functions.Computing, 48:337{361, 1992.[15] E. R. White. Assessment of line-generalization algorithms using characteristic points. TheAmerican Cartographer, 12(1):17{27, 1985.

15

a b

c
d

ef

Figure 1: CSG formula is a(b+ ((c+ d)e))f

16

Figure 2: Line simpli�cation

17

1

4

7

9

10

15

13

Figure 3: Vertex numbers on the hull

18

b

e'

e

B

A

Figure 4: Hull A (shaded) in B

19

broken
 bead

anchor
 vertex

bead
 string

 tangent
(str to br. bead)

tangent (between structures)

Figure 5: Schematic depiction of a bead hull with anchor in the middle

20

Figure 6: Updating a tangent while shrinking a broken bead

21

Figure 1: CSG formula is a(b+ ((c + d)e))fFigure 2: Line simpli�cationFigure 3: Vertex numbers on the hullFigure 4: Hull A (shaded) in BFigure 5: Schematic depiction of a bead hull with anchor in the middleFigure 6: Updating a tangent while shrinking a broken bead

22

