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Abstract

A constructive solid geometry (CSG) conversion for a polygon takes a list of vertices and produces
a formula representing the polygon as an intersection and union of primitive halfspaces. The
cartographers’ favorite line simplification algorithm recursively selects from a list of data points
those to be used to represent a linear feature, such as a coastline, on a map. By using a data
structure that maintains convex hulls of polygonal lines under splits, both were known to have
O(nlogn) time solutions in the worst-case. This paper shows that both are easier than sorting by
presenting an O(n log® n) algorithm for maintaining convex hulls under splits at extreme points. It

opens the question of whether there are practical, linear-time solutions to these problems.



1 Introduction: CSG formula computation and Line simplification

A plane polygon can be represented either by the sequence of vertices and edges around its boundary
or by a boolean combination of “primitive” regions such as halfspaces. Solid modeling systems may
convert from the former to the latter; this is a 2-dimensional example of a conversion from a
boundary representation (B-rep) to a constructive solid geometry (CSG) representation.

Peterson [11] showed that a simple polygon always has a CSG formula
using one primitive halfplane for each edge of the polygon. In fact, one can
write down the formula by starting at the leftmost vertex and listing the
halfspaces in the order that their edges appear around the polygon, inserting

an “AND” for every convex corner and an “OR” for every reflex corner. The

interesting part is to add parentheses appropriately.

Figure 1: CSG
formula is
0+ ((c+d)e))f

In the dart in Figure 1, for example, the three terms a, (b+ ((c + d)e)),
and f can be joined by “AND”s since extensions of segments a and f, and of ¢
the polyline bede by extending segments b and e, do not return to intersect the polygon. Segment e
cannot appear at the top level because its extension intersects edges ¢ and b. Dobkin et al. [1] gave
an O(nlogn) algorithm to recursively add parentheses. They maintain convex hulls of fragments of
the polygon and split at hull vertices that are extreme in a direction determined by the directions

of the first and last edges of each fragment.

To draw a coastline or other linear feature on a simple and readable map, one may need to

perform line simplification to reduce the detailed data available in a database.



Cartographers have identified the recursive algorithm detailed
in Douglas and Peucker [2] as best in mathematical [8] and percep-
tual [15] studies. This algorithm first approximates a polygonal
line p1,po,...,pn with the segment pip,. If the vertex ppax at

maximum distance from the line pyp;, is within tolerance, this ap-

proximation is accepted, otherwise, the two polygonal lines from

Figure 2: Line simplification

p1 t0 Pmax and from pax to p, are approximated recursively, as
in Figure 2. This algorithm has been called Ramer’s algorithm [13] in vision and the sandwich
algorithm [14] in computational geometry.

If implemented in a straightforward fashion, this algorithm has a worst-case running time of
O(n?) (and best-case of ©(nlogn) when the tolerance is small). Because the vertices at maximum
distance will be found on the convex hull, this same simplification can be computed in O(nlogn)
worst-case time [5, 6] using a convex hull data structure that supports splitting at extreme vertices.
Here and throughout this paper, we assume that the polygonal line py, po, ..., py is simple: the only
intersections between its line segments occur where adjacent segments share a common endpoint.

It should be noted that the algorithm does not guarantee simplicity of the output, however.

Thus, the problems of CSG formula computation and line simplification can both be solved by
a data structure that stores fragments of a polygonal line and supports the operation of finding
an extreme vertex in a particular direction and splitting the polygonal line there. The choice of
direction depends upon the problem and the current fragment, so the extreme vertices are found
on-line.

It is natural to ask whether these problems are easier than sorting. This paper gives an affirma-
tive answer for CSG formula computation and for a modification of line simplification by presenting
an O(nlog®n) algorithm for maintaining convex hulls of a polyline under splits. In Section 2 we
review the “path hull” of Dobkin et al. [1] and other data structures for dynamic convex hulls.
Section 3 describes our new data structure, which builds an augmented path hull data structure
on “beads”—convex hulls of polylog-size fragments of the polygonal line. Section 4 analyzes the

operations of finding extreme vertices and splitting for this structure.



Note: All logarithms in this paper are taken base 2. The iterated logarithm, log* n, is the
number of times the logarithm function must be applied to reduce the argument to less than 2. It
is a slowly growing function: log* 16 = 3, log*2'® = 4, and the first n with log*n > 5 has about

20,000 decimal digits.

2 A brief review of 2-d dynamic convex hulls

As mentioned in the previous section, we wish to support splitting and finding extreme vertices
of fragments of a polyline in the plane. At the cost of additional logarithmic factors, one could
use general convex hull algorithms for points in the plane [12]. Overmars and van Leeuwen [10]
showed that the divide-and-conquer algorithm can support finding extreme points in O(logn) time.
Deletions and insertions of points take amortized O(log2 n) time per operation; no algorithm is

known to achieve amortized O(logn) time.

2.1 Hulls of polygonal lines

When the points lie on a simple polygonal line then the con-
vex hull has additional structure, as many have observed. (See

Figure 3.)

Observation 2.1 If the vertices are numbered along the poly- 1
line, then the sequence of vertex numbers around the hull, when %
read counter-clockwise from the maximum, decreases to the min- 1

imum number and then increases to the maximum. Figure 3: Vertex numbers on

Guibas et al. [3] used this observation to build an O(n)-size the hull

data structure for “subpath hull queries,” which include the ability to find an extreme point of any
contiguous fragment of the polyline in O(logn loglogn) time after O(n) preprocessing. This level
of generality is not needed in the applications considered in this paper.

One consequence of Observation 2.1 is that common tangents to the convex hulls of two con-
secutive fragments of a simple polyline can be computed in polylogarithmic time. Guibas et al. [3]
give a matching lower bound for simple array data structures (as well as an improvement using

more complex data structures.)



Lemma 2.2 Given array representations of the convex hulls of two consecutive fragments of a
polygonal line with m vertices, one can compute the at most two tangents between them in O(log® m)

time.

Proof: Because the polyline fragments are consecutive, if, say, the first hull is contained inside
the second, then it is contained entirely inside one of the two bays determined by the hull edges
incident to the lowest numbered vertex.

For a specific example with hull A inside hull B, consider
Figure 4. Vertex b on hull B has the lowest index, and is
incident to hull edges e and ¢'; the bay defined by e contains
the hull A. To detect this, one can test, in O(logm) time,
whether the extreme vertices of A in the directions normal

to e and ¢’ are left of the lines through e and ¢'. If so, then

A is inside.

If neither one is inside the other, then we will have found Figure 4: Hull A (shaded) in B
a pair of “helper points”—a point on each hull that is not contained in the other. Guibas et
al. [3] show how to use helper points to reduce to the problem of finding a common tangent
of two intersecting, upper convex hulls. This can be solved by nested binary search: choose a

median vertex on one hull and use binary search to determine the tangent to the other hull, if

1t exists. m

2.2 Melkman’s hull algorithm with a history stack

Melkman [9] uses Observation 2.1 in a different way to give an incremental algorithm that computes
the convex hull of a polyline p1,ps,...,pn in O(m) time. It uses a doubly-ended queue (a deque)
to store vertices of a convex hull in counter-clockwise order from front to back; the hull vertex with
highest appears at both front and back. The deque can easily implemented as an array of size 2m
with pointers to the front and back elements.

Start with the convex hull of the first two points by placing po, p1, p2 in the middle of the array.
To add p;, check if p; appears on the convex hull; as noted in the proof of Lemma 2.2, it sufficient

to inspect the edges incident on the hull vertex of highest index, which are found at the ends of the



deque. If p; does not appear on the hull, then no changes to the deque are required. Otherwise, p;
may hide some vertices of the previous hull; pop these hidden vertices from the front and/or back
of the deque, and then push p; onto both front and back to produce the convex hull of p; ... p;.
Since each vertex is pushed, and therefore popped, at most twice, the total time is O(m).
Because this algorithm is incremental, it actually computes convex hulls of all prefixes of the
polyline. Dobkin et al. [1] added a history stack that records the elements pushed onto and popped
from the deque so that these prefix convex hulls can be recovered as vertices are deleted from the

end of the polyline.

Lemma 2.3 Given a polygonal line py1,p2,...,pm, where py is the start or anchor vertex, one can
build a convex hull data structure in O(m) time that supports the operations of deletion from the
(non-anchor) end in amortized O(1) time and search for the extreme vertex pq in a given direction
in O(log min{d,m —d + 1}) time.

Proof: We sketch the analysis; greater detail on the structure can be found in Dobkin et al. [1].

Construction by Melkman’s algorithm is described above; the history stack merely increases
the constant. Deletion from the end is accomplished by playing back the history stack and
reversing the operations; this can be charged against construction time so that deletion may be
considered to take constant amortized time.

To enable the search for an extreme vertex, maintain a pointer to the hull vertex with lowest
index. Note that the hull vertex with highest index appears at both the front and back of the
deque. These lowest and highest indices split the deque into two arrays; one containing vertices
with increasing numbers and the other with decreasing numbers. A constant-time computation
on these vertices and their neighbors on the hull is sufficient to determine which array contains
the extreme vertex. Search that array by starting two increasing-increment searches in parallel
from the ends: Check the first, second, fourth, eighth, ..., from the end until the extreme vertex
lies in the interval between the current vertex and the end, then finish with binary search on
that interval.

When pyq is the extreme vertex desired, then there will be at most 2 min{d, m —d+1} vertices

in the search interval because the vertices in the search interval appear in order along the hull.



Therefore, the search takes O(log min{d, m —d + 1}) time. m

We could say that Melkman-plus-history supports “one-sided” splits—splitting at a vertex pro-
duces a valid convex hull data structure for the first part of the polygonal line by simply deleting
vertices from the second part. Of course, no structure is produced for the second part, so splits that
occur near the beginning of the polyline waste most of the computation of Melkman’s algorithm.

Dobkin et al. [1] used this observation to define a “path hull” data structure that supports
two-sided splits in amortized O(logn) time. They choose an anchor in the middle of a polyline and
use Melkman-plus-history to build two convex hull structures outward from the anchor. Thus, the
splits that waste computation are those near the middle; since these splits now break the problem
into two equal-sized subproblems, a credit scheme shows that the total splitting time is O(n logn).
Extreme vertices are found in O(logn) time apiece by finding the two candidate extreme vertices,

one on each of the convex hulls that make up the path hull, and returning the true extreme.

3 The bead hull data structure and its construction

To improve on the path hull structure sketched at the end of the previous section, we need to reuse
more computation—we cannot afford to have all previous computation wasted by a single split.
Less evident, but equally important, is the fact that the cost of finding an extreme vertex must be
related to the size of the smaller polyline that will be created by splitting there—we cannot afford
to find candidates at which we do not perform a split. (This will force a modification of the line
simplification procedure in Section 5.)

We break a polyline of length n at vertices to form n/k fragments of length k, where k can be
chosen to be log? n. (We justify the choice of k in Section 4.) Adjacent fragments share a common
endpoint. For each fragment, we build a convex hull using Melkman-plus-history as described in
Lemma 2.3. We call such a fragment-with-hull a bead. We actually build the convex hull twice,
once from each end. Because these data structures can be built in linear time (Lemma 2.3), we

obtain

Corollary 3.1 Beads of size k for a polyline of length n can be built in O(n) total time and space.



Our polyline will be subject to splits. Splitting at a vertex in a bead produces two broken beads—
fragments of the polyline with length at most k& that have Melkman-plus-history representations of
their convex hulls built from the original endpoints towards the split. Further splitting a broken
bead produces a smaller broken bead and an unstructured fragment between the two splits.

A string of beads is a two-level convex hull structure that represents the hull of a sequence of
consecutive whole beads. The lower level consists of the convex hull arrays for the beads. The
upper level is an array of tangents between beads, with pointers into the corresponding bead hull
arrays.

Lemma 3.2 Given m beads with size at most k, a string of beads can be built using a modification
of Melkman’s algorithm in O(mlog® k) time.

Proof: As in Melkman’s algorithm for points, we can maintain the current list of tangents

between beads in a deque with the tangents to the most recently added bead at the front and

back of the deque.

To add the ¢th bead, we first check if it appears on the hull by testing against the common
tangents to beads at the front and back of the deque. If so, we pop beads from the deque whose
tangent lines intersect the bead—these will no longer be on the convex hull. We use the nested
binary search of Lemma 2.2 to compute at most two tangents between the ith bead and the
beads remaining at the front and back of the deque, then add these tangents and push the i¢th
bead onto the front and back of the deque.

Because there are at most 2m tangents added, there are at most 2/ tangents popped at a

total cost of O(mlogk). Adding new tangents costs O(mlog® k) time. m

Our final data structure, the bead hull, consists of the following parts, which are depicted
schematically in figure 5.
e An anchor verter that is the common endpoint of two beads (broken or whole). An anchor
is initially chosen in the middle of a sequence of beads.
e Two, possibly empty, strings of beads constructed to the left and right of the anchor.
e Two, possibly empty, broken beads; one at the end of each string.

e Tangents (at most four) from the broken beads to their adjacent strings.



tangent (between Structres)
Figure 5: Schematic depiction of a bead hull with anchor in the middle

e Tangents (zero or two) between the structures to the right and left of the anchor.
Lemma 3.3 Given m > 1 beads with size at most k, a bead hull can be built in O(mlog®k) time.

Proof: The anchor can be chosen in constant time and two strings of beads constructed in
O(mlog? k) time. By Lemma 2.2, the two tangents between the strings of beads can be found

by nested binary search in O((logm + log k)?) < O(mlog? k) time. m

4 Analysis of bead hull operations

In a bead hull, finding an extreme vertex in a chosen direction is relatively easy because all hull
edges are represented.
Lemma 4.1 Given a bead hull representing pi1,po,...,Pn, the extreme vertex pg in a particular
direction can be found in O(logmin{d,n —d + 1}) time.
Proof: We can use increasing-increment searches in parallel from both ends, as in Lemma 2.3.
The two-level structure increases the programming complexity, but not the asymptotic running

time. m

To maintain bead hulls under the operation of splitting the polyline a a vertex, split operations,
we must perform computation at several levels: a bead is split into two broken beads or a broken
bead is split into a smaller broken bead and a polyline fragment that was contained entirely within

the bead; a bead string is split giving a bead string containing the anchor and forcing recomputation



of the other, and new tangents are computed for the two bead strings that make up a bead hull.
In the next lemma we analyze the cost of splitting a bead hull structure so that all the remaining
fragments are contained within beads. We defer the recursive cost of handling fragments within

beads until Theorem 4.3.

Lemma 4.2 Suppose that we are given a polyline with n vertices and an on-line sequence of splitting
vertices. Then, in O(n + (n/k)logn(logn + log k)) total time, we can build beads of size k and
maintain bead hulls under splits for all fragments that are not strictly contained within the original

beads.

Proof: Corollary 3.1 and Lemma 3.3 say that Melkman’s algorithm can be used to build
the initial beads and initial bead hull in the desired time. We record the history of these
computations.

To prove this lemma, we will give bead hulls three types of credits with which to pay for
all construction and tangent computation after the initialization. We maintain the following
invariants: If a bead hull has [ (whole) beads to the left of the anchor and r beads to the right,
then it has (I + r)log(max{l,r}) hull credits. Each unbroken bead has one bead credit. And
each vertex has up to three vertex credits: one if it is inside the convex hull, one if it is inside
the convex hull of its string, and one if it is inside the convex hull of its bead. We establish
the invariants by giving (n/k) log(n/2k) hull credits, (n/k) bead credits, and at most 3n vertex
credits to the initial bead hull.

Each split produces one or two new bead hulls (only one, if one of the fragments is completely
contained in an original bead). We assign credits to the new bead hulls according to the
invariants. The credit budget is the the total number of credits before the split minus the
number after the split. We will see that the credit budget is non-negative. We charge O(log? k)
computation to each hull credit, O(log?n) to each bead credit, and O(1) to each vertex credit
in the budget. Together, these charges establish the lemma.

There are two cases to consider when splitting: either a whole bead is split for the first time

or the splitting vertex is contained in one of the broken beads.



Case 1: When a whole bead is split, we charge tangent computation to the bead credit and
spend hull credits to rebuild strings of beads. Assume that s whole beads are split off before
the anchor; the analysis for splitting after the anchor is symmetric.

The bead hull for the fragment containing the anchor can be obtained in three steps. First,
play back the history of Melkman’s algorithm to give the string of whole beads between the
anchor and splitting vertex. Second, break the bead containing the splitting vertex. Finally,
compute tangents from the broken bead to the string, and between the strings before and after
the anchor. The first two steps run hull construction algorithms backwards, so we can charge
their computation to the initial build. By Lemma 2.2, the third step can be performed in
O(log?n) time, which can be charged to the bead credit obtained by breaking a bead. The

resulting bead hull must be given
(l—s—14r)logmax{l—s—1,r} < (I —s—1+r)logmax{l,r}

hull credits to satisfy the invariant.

The bead hull for the fragment not containing the anchor must be built from scratch in
O(slog? k) time (Lemma 3.3), which consumes s hull credits. Since an anchor is chosen in the
middle,

slog|s/2] < s(logs —1) < slogmax{l,r} —s

hull credits must be given to this fragment.

In case 1, the (I 4+ r)log(max{l,r}) hull credits available are sufficient to pay for the build
and satisfy the invariants for the resulting bead hulls. The bead and vertex credits are also
sufficient, since splitting decreases the number of unbroken beads by one, and can only increase

the total number of hull vertices.

Case 2: When a broken bead is split, we spend vertex credits on updating tangents for the
bead hull. No bead or hull credits are spent on computation, as all are needed to maintain
the invariants. The new broken bead is formed by playing back the history of the bead’s
construction, which is charged to the initial construction. Notice that the vertices removed
from the broken bead form a fragment that is entirely contained within the original bead. In

this lemma, the computation required for such fragments is not considered.

10



The bead hull has four tangents that may need to be up-
dated. As a representative example, consider the tangent that

goes counter-clockwise (ccw) from the string to the broken bead

in Figure 6. We shrink the broken bead, playing back the history
of Melkman’s algorithm, until we reach the splitting vertex. This

Figure 6: Updating a
may cause new vertices to appear on the hull of the broken bead. tangent while shrinking a

We need to update the tangent if and only if the tangent broken bead
endpoint is removed. The candidates for the tangent endpoint on the broken bead are the new
vertices and those adjacent to them. Candidates on the string are at or ccw of the old tangent
endpoint. If we begin by joining the clockwise-most candidates on both bead and string, then by
testing incident edges we can determine whether we have found the tangent or which candidate
endpoint should move ccw. We can advance until we find a tangent or determine that the

broken bead is contained in the hull of the string; we charge the search time to vertex credits

taken from vertices that now join the bead and string convex hulls.

When the splitting vertex is common to two beads, then two beads are affected. When
the splitting vertex is the anchor, both strings are also affected. These reduce to combinations
of cases 1 and 2, however, depending on whether the affected beads were previously whole or

broken. m

In the previous lemma, it was not necessary that the splits occur at extreme vertices of the

bead hull. For applications that do involve finding and splitting at extreme vertices, we can prove

the following theorem.

Theorem 4.3 For a simple polygonal line with n wvertices, bead hulls of all fragments can be

constructed and maintained under the operations of finding and splitting ot extreme vertices in

O(nlog* n) time and O(n) space.

Proof: By Lemma, 4.1, each search for a splitting vertex can be performed in time logarithmic
in the size of the smaller fragment. It is known that recursion trees with this behavior take

linear time in total [4, 7].

11



For a polyline of n vertices, let us choose beads of size k = log? n. Then Lemma 4.2 says

that one level of bead hull computation produces, in time
O(n + (n/log® n) log n(logn + (log(log?n))?)) = O(n),

a set of fragments of sizes ni,nsy,...,ny, with each n; <k and }7; n; < n.

Let T'(m) be an upper bound on the total time to handle a fragment of size m recursively:
building beads and maintaining bead hulls until the fragments are of size less than log?m. If
we handle fragments with less than 512 vertices by a non-recursive method and account for this
time separately, then we obtain a base condition of T'(m) = 0 for 0 < m < 512; we will show
that T'(n) = O(nlog* n) for all n > 0.

Since T'(m) is a convex function that is at least linear, we can bound 7'(n) for n > 512 by

a recurrence that is maximized when all fragment sizes, n;, are as large as possible:

T T([log? n)).

T(n) <0(n)+ Z T'(ni) < O(n) + logZ 1

1<i<f

We can define a function #(n) by iterating log?, such that T'(n) = O(nt(n)):

0 ifn <512
t(n) =
1+ t([logn]?) otherwise.
Recall that the function log*n has a similar definition as the number of times to iterate the

logarithm function until its argument is less than 2. The reader can check that ¢(n) < 2log*n

for all n > 0 by verifying the inequality for values of n with ¢(n) < 3, and then observing that
[log?[log®n]] < [logn] for all n > 22°.

This establishes the total time complexity as T'(n) = O(nlog* n).

Finally, we establish the total memory space required. Any single bead hull data structure
takes space proportional to the number of its vertices. If fragments are handled from largest to
smallest, then no vertex need participate in more than two fragments at a time. Thus, linear

space is sufficient. m

From the work of Dobkin et al. [1], we obtain an algorithm for building CSG formula as a

simple corollary.

12



Corollary 4.4 CSG formule for simple polygons of n vertices can be computed in O(nlog* n) time
and O(n) space.

The path-hull implementation of the line simplification method in Douglas and Peucker [2]
becomes as simple corollary if we add a side selection rule, which we will now define. Recall the
description of the method from Section 1: to approximate the polygonal line P = {p1,p2,...,pn},
the two extreme points from the line pyp;, must be found, and the farther one is used as a splitting
vertex. We modify this description as follows: search in parallel on each side of the line pyp;, until
the first extreme point is found. The search information on the other side may tell us that there is
a point at greater distance, in which case we continue to find the true extreme point and split there.
Or it may say that we already have the extreme point and can split. If, however, the information
is inconclusive, then we need a side selection rule that decides, in O(1) time, which side to split
on the basis of the information we have so far. Example rules include always splitting on the first
extreme point found, always splitting on the second, splitting on the side opposite the last split
that formed this fragment, and so forth.

Corollary 4.5 For simple polylines of n vertices, the Douglas-Peucker line simplification with any
side-selection policy can be computed in O(nlog*n) time and O(n) space.

The danger of not having a an O(1)-time side selection rule is that perhaps the true extreme
point is found right away, but more time must be spent to verify that it is the true extreme. This
additional cannot be charged against the few vertices that are removed by the split. However, it is

difficult, and perhaps impossible, to construct examples in which this happens repeatedly.

5 Conclusion

We have given an O(nlog*n) algorithm for maintaining a convex hull under splits; this gives a
theoretical improvement to the running time for building CSG formulza for planar polygons and for
a modified version of Douglas-Peucker line simplification—showing that both problems are easier
than sorting. We expect that the original line simplification procedure is also faster than sorting,
but are unable to prove this. The most interesting open problem is whether these problems have

practical, linear-time solutions.

13
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Figure 1: CSG formula is a(b+ ((c + d)e))f
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Figure 2: Line simplification
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Figure 3: Vertex numbers on the hull
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Figure 4: Hull A (shaded) in B
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Figure 5: Schematic depiction of a bead hull with anchor
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Figure 6: Updating a tangent while shrinking a broken bead
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