
Computing minimum length paths of a given homotopy classJohn HershbergerDEC Systems Research Center Jack Snoeyink�Department of Computer ScienceUniversity of British ColumbiaAbstractIn this paper, we show that the universal covering space of a surface can be used to unify previousresults on computing paths in a simple polygon. We optimize a given path among obstacles in the planeunder the Euclidean and link metrics and under polygonal convex distance functions. Besides revealingconnections between the minimum paths under these three distance functions, the framework providedby the universal cover leads to simpli�ed linear-time algorithms for shortest path trees, for minimum-linkpaths in simple polygons, and for paths restricted to c given orientations.1 IntroductionIf a wire, a pipe, or a robot must traverse a path among obstacles in the plane, then one might ask what isthe best route to take. For the wire, perhaps the shortest distance is best; for the pipe, perhaps the feweststraight-line segments. For the robot, either might be best depending on the relative costs of turning andmoving.In this paper, we �nd shortest paths and shortest closed curves that wind around the obstacles in aprescribed fashion|that have a certain homotopy type. We consider the Euclidean and link metrics forpaths, and convex and link distance functions for paths that are restricted to use c given orientations, suchas rectilinear paths. Our work presents these distance functions in a unifying framework, a triangulation ofthe unversal covering space. In this framework, we can generalize results for simple polygons to computeshortest paths of a given homotopy class. We also simplify proofs and replace complicated data structuressuch as �nger search trees by simple arrays and stacks.We organize the paper around four variants on shortest path problems: Euclidean shortest paths andshortest path trees in section 3, minimum-link paths in section 4, shortest closed loops in section 5, andpaths with restricted orientations in section 6. In the remainder of this section we review previous resultson these problems and summarize our results using the universal cover. Section 2 gives formal de�nitionsof the universal covering space and of triangulated manifolds, homotopy classes, and distance metrics|theimportant topological tools for our algorithms.1.1 Euclidean shortest pathsMany researchers have investigated the problems of �nding Euclidean shortest paths in simple polygons.Chazelle [7] and Lee and Preparata [33] gave a funnel algorithm that, in a triangulated polygon, computesthe shortest Euclidean path between two points in linear time.The funnel algorithm has been extended to handle one of the tractable cases of river routing in VLSI.Cole and Siegel [10], Leiserson and Maley [34], and Gao et al. [18] give algorithms for routing wires with�xed terminals among �xed obstacles when a sketch of the wires is given|that is, when a homotopy class isspeci�ed for each wire. When no sketch is given or when the terminals are not �xed, the resulting problemsare usually NP-hard [35, 42, 45]. Leiserson and Maley and Gao et al. use the funnel algorithm to computethe rubber-band equivalent of each wire as a basic preprocessing step.In section 3.1 we describe the application of the funnel algorithm in the universal cover of a triangulatedmanifold. Then, in section 3.2, we extend it to e�ciently maintain the shortest path homotopic to a�Portions of the second author's research were performed at Stanford and Utrecht Universities.1



path that is given on-line. Both of these algorithms take time proportional to the time needed to trace therepresentative of the path through the triangulation and both use simple data structures|arrays and stacks.Guibas et al. [23] used �nger-search trees to compute the tree of all shortest paths from one polygonvertex to all other vertices in linear time; they use this as a preprocessing step to solve several shortest pathand visibility query problems. Our on-line shortest path algorithm can compute this shortest path tree usingsimpler data structures.Finding minimumpaths among obstacles when the homotopy class is not given is a more di�cult problem,and is one that we will not discuss. For the Euclidean metric, one typically builds the visibility graph andsearches it with Dijkstra's algorithm [16]; see Ghosh and Mount [21] and Kapoor and Maheshwari [31] fore�cient algorithms.1.2 Link shortest pathsResearchers have also looked at �nding minimumpaths in simple polygons under the link metric, in which thelength of a path is the number of its line segments. Suri [48] developed a linear time algorithm for computingthe minimumpath between two points in a simple polygon. Ghosh [19] recently gave a linear time algorithmas a consequence of his work on computing the visibility polygon from a convex set. Both algorithms arebased on a triangulation and the shortest path tree algorithmof Guibas et al. [23]. We show how to extend ourEuclidean minimum path algorithm to compute the minimum-link path in time proportional to the numberof triangles that this path intersects. This gives yet another linear-time algorithm in a simple polygon, butone that is more direct and also has application to paths of given homotopy class among obstacles.When the homotopy type is not speci�ed, Mitchell, Rote, and Woeginger [37] have given an algorithmthat runs in O(E�(n) log2 n), where n is the number of vertices, E is the size of the visibility graph, and�(n) is the inverse of Ackermann's function. Other recent work has considered combining link and Euclideanmetrics [2, 36].1.3 Shortest loopsThere are special closed loops of interest to computational geometers that �t within the framework of thisresearch. Under the Euclidean metric, the shortest loop enclosing a set of points or line segments is theconvex hull of the set. The shortest loop enclosing a set and contained in the interior of a polygon is therelative convex hull of the set. Toussaint and others have studied relative convex hulls, also called geodesichulls, in connection with the separability of polygons under translation [5, 12, 51, 52, 53]. Czyzowicz etal. [11] have solved the \Aquarium Keeper's Problem," a generalization of the problem of computing theminimum perimeter polygon that touches each edge of a given convex polygon. Essentially, they use there
ection principle to convert this problem to one of computing the shortest loop around a triangulatedannulus or M�obius strip. Our results on closed loops simplify these solutions and generalize them slightly.Minimum-link loops enclosing a set and contained in a polygon separate the set and polygon using thesmallest number of line segments. Aggarwal et al. [1] considered �nding a minimum-link convex polygonseparating two convex polygons with n total vertices. They obtained an O(n log k) algorithm that �ndsthe minimum polygon of k line segments. They also give a simple O(n) algorithm for �nding a polygonwith at most one segment more than the minimum. Wang and Chan [54, 55] show that the algorithm ofAggarwal et al. can �nd the minimum-link convex polygon that encloses a convex polygon lying in the kernelof a star-shaped polygon. They reduce two polygons with a total of n vertices to this case in O(n logn)time. Ghosh [19] computes the reduction in linear time, allowing the computation of the minimum-linkconvex separator in O(n log k) time. For non-convex polygons, Suri and O'Rourke [49] compute a minimum-link polygon separating an m-gon and its enclosing n-gon in O(mn) time; we note (as did Ghosh andMaheshwari [20]) that this is actually the easy case and can be solved in linear time.1.4 Paths restricted to c orientationsIn some applications, most notably VLSI, the orientations of paths are restricted. Rectilinear paths are themost important and, thus, the most studied. 2



For computing rectilinear shortest paths among rectilinear barriers under the Manhattan, or L1, metric,researchers have developed algorithms that work in simple polygons (e.g. [46]) and in the presence of obsta-cles [9, 15, 32]. Mark de Berg [13] has given an algorithm that �nds a path that is both a minimum-linkand an L1 shortest path in a simple polygon. He and others [14] give a quadratic algorithm for a combinedlink and L1 metric for paths among obstacles. The fastest algorithms for the (globally) shortest path amongrectilinear obstacles have subquadratic worst-case complexity: O(n logn) if the obstacles are disjoint [15]and O(n log2 n) if they are not [9].G�uting [29] de�ned c-oriented polygons as a generalization of rectangles; he and others [30, 44, 50] havelooked at various geometry problems with restricted orientations. The recent survey of Nilsson et al. [40]summarizes many results.We show that the universal cover is also a useful tool to compute shortest and minimum-link c-orientedpaths of a given homotopy type. Speci�cally, we show (in section 6.2) that the shortest Euclidean path,measured under a convex distance function, has the length of the shortest c-oriented path. In section 6.3,we give an algorithm to compute minimum-link c-oriented paths and also show how to use it to computea shortest c-oriented path from the shortest Euclidean path. We also look at conditions when a c-orientedpath is simultaneously shortest and minimum-link (section 6.4).1.5 Improved data structures for simple polygonsThe algorithms that we develop for the universal cover have implications in the special case of triangulatedsimple polygons.Section 3.2 By developing a dynamic version of the funnel algorithm, we obtain a linear time algorithm forshortest path trees that uses only a �xed size deque (doubly-ended queue) and a stack for storage.Section 4 For minimum-link paths, where distance is measured by the number of line segments, we developan output-sensitive algorithm that runs in linear time in a simple polygon and uses deques and stacksrather than visibility maps and shortest path trees.Section 5.1 By walking around a loop two or four times, we compute the Euclidean shortest loop in bothorientable and non-orientable manifolds without using shortest path trees.Section 6 We compute minimum length and/or link paths restricted to c orientations in O(n log c) time.2 PreliminariesWe begin by de�ning some important topological objects: triangulated manifolds, homotopy classes, metrics,and covering spaces.2.1 Manifolds and simplicial complexesOur results apply to boundary-triangulated 2-manifolds (BTMs), which we de�ne below. BTMs are slightlymore general than polygonal regions in the Euclidean plane. We consider them primarily because everyBTM has a simply-connected covering BTM such that paths have a unique lift into the covering space.First, recall that a two-dimensional manifoldwith boundary (a 2-manifold) is a topological space in whicheach point has an open neighborhood homeomorphic to a two-dimensional ball or half-ball. The former areinterior points and the latter are boundary points.A two-dimensional simplicial complex is a triangulated 2-manifold. Spelled out, a two-dimensional sim-plicial complex is a collection of triangles, edges, and vertices such that any two triangles either do notintersect, intersect at a vertex, or intersect at two vertices and their common edge; no other intersections arepermitted. At most two triangles are incident to an edge; edges incident to a single triangle are boundaryedges. Furthermore, all the triangles and edges incident to a vertex can be ordered so that boundary edgesare adjacent to their triangles in the ordering. All vertices are either boundary vertices with two incidentboundary edges, or interior vertices with none.Finally, a boundary-triangulated 2-manifold or BTM is a simplicial complex in which all vertices areboundary vertices. Figure 1 depicts two simplicial complexes; the second is a BTM. Because vertices are the3



a. b.Figure 1: Two triangulated manifolds; the one on the right is a boundary-triangulated 2-manifold (BTM)only source of curvature in a piecewise-linear surface, this implies that a BTM is 
at|the neighborhood ofany point looks like a portion of the Euclidean plane [28, 41].One can represent a BTM, or any other 2-d simplicial complex, in a computer using Guibas and Stol�'squad-edge structure [25], Baumgart's winged-edge structure [4], or the dual graph of the simplicial complex.In our algorithms, we require that each triangle ofM be able to access its incident edges and each edge ofMits incident triangles in constant time. If a polygonal region R is given, we can triangulate R and constructone of the above representations of the triangulation in O(n logn) time by a sweepline algorithm [43] or, ifR has a constant number of boundary components, in linear time by Chazelle's algorithm [8].A useful example of a BTM is a triangulated polygonal region R in the Euclidean plane: a set boundedby n line segments with disjoint interiors. Informally, if one considers the line segments as obstacles andlooks at paths avoiding the obstacles, then one can form equivalence classes of paths by relating paths thatcan be deformed to each other within R|relating paths that are homotopic.2.2 Homotopy classesThe topological concept of homotopy formally captures the notion of deforming paths. Let � and � befunctions from a topological space X to a topological space Y that are continuous; that is, the preimage��1(A) of an open set A � Y is open. Functions � and � are homotopic if there is a continuous function�:X � [0; 1]! Y such that �(x; 0) = �(x) and �(x; 1) = �(x). One can see that homotopy is an equivalencerelation [3, 39].In this paper, the range set Y is always a boundary-triangulated 2-manifold M under the subspacetopology. We specify the set X in two di�erent ways.First and most importantly, we consider paths joining two given points, p and q: a path in M is therange of a continuous function �: [0; 1]! M . We set X = [0; 1] and require that the endpoints of a path �be �xed at �(0) = p and �(1) = q. Two paths are path homotopic if one can be deformed to the other inM while keeping the endpoints �xed. Formally, paths � and � are path homotopic if there is a continuousmap �: [0; 1]� [0; 1] ! M such that �(x; 0) = �(x) and �(x; 1) = �(x), and �(0; y) = �(0) = �(0) and�(1; y) = �(1) = �(1).Second, we de�ne a closed loop to be the image of a circle under a continuous map into M . Thus, we setX = S1: the unit circle under the standard topology. Two loops with maps � and � are homotopic if thereis a continuous map �:S1 � [0; 1]!M such that �(x; 0) = �(x) and �(x; 1) = �(x). We use this de�nitiononly in section 5. (A closed loop is di�erent from a path with the starting and ending points identit�ed,because our de�nition of path homotopy never moves the endpoints of a path.)One could go on to de�ne homotopy in M for two subdivisions � and �|indeed, we do so in a paperwith Guibas and Mitchell [27] and show that computing minimum-link subdivisions is NP-hard.A homotopy relation partitions paths or closed loops into equivalence classes. Thus, we can describe ahomotopy class by giving a representative path or loop �. Given �, we seek to compute a minimum length4



representative of �'s class under the Euclidean and link metrics.Let's look at one concrete example of a path homotopy. In a BTM, a path gives a sequence of triangulationedges; we can form a canonical path that visits the midpoints of triangulation edges in the same sequence.It is easy to see that a path is homotopic to its corresponding canonical path|at times we will �nd itconvenient to use the canonical path as the representative of a homotopy class.We can concatenate two paths if one ends where the other begins. The next theorem is a well-knowntool for studying paths.Theorem 2.1 ([3, 39]) The operation of path concatenation has group properties: associativity, identities,and inverses.This has an easy corollary for simply-connected 2-manifolds, in which every loop is homotopic to a point.Corollary 2.2 In a simply connected manifold, any two paths with the same starting and ending points arehomotopic.2.3 Path complexity and metricsIn computer applications, paths are most often speci�ed as a sequence of line segments or pieces of low-degreepolynomials. We de�ne the complexity of a path �, denoted C�, to be the number of pieces that compose�. For a path � in a BTM M we also count ��, the number of times that � crosses a triangulation edge ofM . For the canonical path de�ned above, we have C� = ��, but, in general, either one of the two quantitiescould be greater.We assume that � is represented in the computer in some form that can be traced through the BTM datastructure in time proportional to O(C� +��). For example, if � is piecewise linear, then for each segmentin each triangle we can compute a constant number of segment/segment intersection points to determinewhether we need to advance to the next segment or to the next triangle. Storing the vertices of � in an arrayand the BTM M in any of the data structures mentioned above permits tracing � in O(C� +��) time.We consider two metrics for unrestricted paths in a BTM: the Euclidean and link metrics. The Euclideanmetric is the usual L2 metric; the length of a path or loop is the sum of the lengths of its pieces in all thetriangles it intersects. In the link metric, the length of a path or loop is the number of its line segments.Because BTMs are 
at, the minimum length paths under both metrics are composed of line segments.In applying the link metric, we would like to consider two adjacent triangles of a BTM to be coplanar,even if they are not. Thus, contiguous \line segments" that would be collinear if the triangles they passedthrough were laid out 
at in the plane are counted as a single segment. This unfolding process is what isused to �nd shortest paths on the surface of a polyhedron [38, 47].For some applications, such as VLSI, the paths constructed must use a constant number of �xed directionsor orientations. Rectilinear paths with the four orientations of north, south, east and west are the mostcommon. When paths are restricted, the link metric remains the number of line segment of a path. TheEuclidean metric, however, should be replaced by a distance function that gives the length of the shortestrestricted path between two points. We discuss this more fully in section 6.2.4 Covering spacesInformally, a topological space U is a covering space of a space X if, at each point u 2 U , there is acorresponding point x 2 X such that things around u and x look the same in their respective spaces, butthere may be many points of U mapping to the same point x.Formally, let p:U ! X be a continuous and onto map between connected topological spaces U and X. Ifevery point x 2 X has an open neighborhood N where the inverse image p�1(N ) is a union Si Ui of disjointopen sets of U and the restriction pjUi is a homeomorphism from Ui onto N , then p is a covering map andU is a covering space of X.A space is always a covering space of itself under the identity map. For a more useful example, considerthe covering space of a BTM M formed by the following procedure (see �gure 2): Choose a base triangle ofM , copy it, and make its edges active. Now, any triangle t with an active edge e is a copy of some trianglet0 2 M and of an edge e0 of t0. There is another triangle u0 2 M incident to e0|copy it, forming u, andattach u to t along edge e. Make edge e inactive and the other two edges of u active. One can see that the5



function that sends the copy of a point to its original is a covering map. The covering space thus formed isthe universal covering space of M .The dual graph of the universal covering space, the
Figure 2: A portion of the universal cover

graph with a node for each triangle and an arc joining nodesthat correspond to triangles that are incident to the sameedge, is an in�nite tree rooted at a copy of the base trian-gle. One can show that the dual graph, considered as anunrooted tree, is not a�ected by the base triangle chosen, sothe universal cover does not depend on the base triangle.Furthermore, the universal cover is simply connected|ithas no holes:Lemma 2.3 The universal covering space U of a BTM issimply connected.Proof : Consider any path � starting and ending at apoint p in the universal covering space U of the BTMM .The path � intersects some connected subset of the tri-angles of the covering space.If � intersects only one triangle, then � collapses to the point p by the homotopy f(t) = (1� t)�+ tp.Otherwise, we can consider the triangle containing p as the base triangle for the covering space. Thedual graph of the space is a tree, so the dual of the connected subset of triangles that � intersects mustalso be a tree. In any leaf, subpaths of � start and end at the same edge; we can deform these subpathsto the edge by an easy homotopy and trim the leaves. By induction, � can be contracted to p.Thus, the universal covering space is simply connected.
Figure 3: The lift of �Any path that begins in the base triangle has a unique lifting to the covering space, as indicated in�gure 3. Formally, let p:U ! M be a covering map. If a function f from a space W to the BTM M isone-to-one and continuous, then a lifting of f is a map f̂ :W ! U such that the composition pf̂ = f . Whenwe lift a path �, we use U� � U to denote the BTM composed of the triangles of the universal cover U thatintersect the path �̂.One last lemma pulls all of the constructs in this section together:Lemma 2.4 If � is a path in a BTM, M , then we can construct U�, the portion of the universal coveringspace of M that contains the lift of �, in O(C� +��) time.Proof : The construction algorithm is simple: Begin with U� equal to a copy of the triangle of M thatcontains the starting point of the path �. Then trace � through M and, simultaneously, trace the lift of� through the covering space|when � crosses a triangulation edge into a triangle of M , add a copy ofthe triangle to U� if the lift has never crossed the corresponding edge before. (Otherwise, the triangle isalready present.) We can trace the path � through the triangles of M in the stated time bound.6



3 The Euclidean metricWe begin by applying these topological tools to the funnel algorithm, developed by Lee and Preparata [33]and Chazelle [7] and used by many researchers to �nd shortest paths [18, 23, 26, 34]. Section 3.1 reviews thisalgorithm and remarks that it can be used to �nd shortest paths between two points of a given homotopytype. Section 3.2 extends this algorithm to maintain the shortest path homotopic to a path that is givenon-line. As a by-product, we can �nd shortest path trees in linear time without using �nger search trees.This simpli�es an important algorithm of Guibas et al. [23].3.1 Funnels and the shortest path between two points
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Figure 4: A funnel
First we review funnels, de�ned by Leeand Preparata [33]. Let p be a point anduv be a line segment in a simply connectedBTM. The shortest paths from p to v andfrom p to umay travel together for a while.At some point a they diverge and are con-cave until they reach u and v, as illustratedin �gure 4. The region bounded by uv andthe concave chains to a is called the fun-nel; a is the apex of the funnel. We storethe vertices of a funnel in a double-endedqueue, a deque.Figure 5 shows that the extensions offunnel edges de�ne wedges. If we cross thesegment uv into a triangle 4uvw, then wewould like to obtain the shortest path tow to construct the funnel for the segment uw or vw. To �nd the funnel for uw, we pop points from the vend of the deque until we reach b, the apex of the wedge that contains w, then we push w. If the apex ofthe previous funnel is popped during the process, then b becomes the new funnel apex. Notice that the edgebw is on the shortest path from p to w.The shortest path algorithms of Chazelle [7] and
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Lee and Preparata [33] both look for a path in a sleevepolygon|a triangulated simple polygon whose dual treeis a simple path. We shall look for a path in a sleeveBTM.Lemma 3.1 Let � be a path from p to q. One cancompute, in O(C�+��) time and space, a sleeve BTMthat contains the Euclidean shortest path homotopic to�. Proof : Choose the triangle that contains p as thebase triangle and construct U�, the portion of theuniversal cover that contains the lift of �, accordingto lemma 2.4.In the dual tree of U�, there is a unique pathto the triangle containing the lift of q; let �0 be thecanonical path in U� that corresponds to this dualpath. Since U� is simply connected, the lift of �and �0 are homotopic (corollary 2.2).The BTM U�0 � U� is a sleeve. A boundary edge e of U�0 may separate the universal cover butcan not separate p from q. Any path homotopic to �0 that crosses e does so twice and can be shortened7



by following e. Thus, the shortest path from p to q homotopic to �0 (and, under projection, to �) iscontained in U�0 .Trace the canonical path �0 through U�0 and maintain the funnel of the triangulation edges crossed. Theset of all edges added to the funnel comprises the shortest path tree rooted at p, that is, the union of allshortest paths from p to vertices of U�0 . From this tree it is easy to recover the shortest path from p to q.Thus, we have obtainedTheorem 3.2 The Euclidean shortest path that is homotopic to a given path � can be computed in O(C�+��) time and jU�j space.3.2 On-line shortest paths and shortest path treesIn this section, we show how to maintain the deque that represents the funnel for a path � that is givenon-line. We wish to trace � through the universal cover in O(C� +��) time, as above. Since, however, wedo not know the entire path ahead of time, we must be able to handle doubling back over the same triangleedge many times; we cannot a�ord to do more than a constant amount of work to update the deque eachtime.Besides being useful for interactive applications, this procedure can be adapted to compute shortest pathtrees in a simply connected BTM. (The shortest path tree from a point p is the union of all shortest pathsfrom p to vertices of the BTM.) Guibas et al. [23] compute the shortest path tree of any triangulated simplepolygon by splitting funnels|they use �nger search trees to �nd the splitting vertices and split the funnelse�ciently. We �nd the shortest path tree by tracing the boundary and maintaining the funnel; the edgesadded to the funnel compose the tree. Our algorithm uses arrays in place of �nger search trees and still runsin linear time. We describe �rst the data structure and then the algorithm that uses it.We use an array and a history stack to support �ve operations on a deque that stores a funnel.Length(deque) Return the number of items in the deque.Index(deque; i) Return the ith item in the deque.Add(f; deque; x ) Add the item x to the f=front (or b=back) of the deque.Split(f; deque; i) Return the items in f=front (or b=back) of and includingitem i and discard the other half of the deque.Undo(deque) Undo the most recent Add() or Split() operation.We store the deque in the entries of an array with indices from �rst through last . When we perform anAdd() or Split(), we record the previous values of changed array entries and/or indices in a history stackso that the Undo() operation can return the array to the previous state. The code fragments in table 1indicate that the operations can be implemented to run in constant time. If we begin with an empty deque,denoted by indices �rst = n and last = n � 1, and perform at most n Add() operations, then an array ofsize 2n is su�cient to hold the deque.Length(deque)return last � �rst + 1Add(f; deque; x )decrement �rstpush (Add; f; deque[�rst]) to stackset deque[�rst] xSplit(f; deque; i)check 0 � i < Length(deque)push (Split; f; last) to stackset last  i+ �rst Index(deque; i)check 0 � i < Length(deque)return deque[i + �rst]Undo(deque)if stack top is (Add; f; x)set deque[�rst] xincrement �rstelse stack top is (Split; f; i)set last  iTable 1: Code fragments for the front-of-deque operations8



Suppose the path � begins at point p in a BTM M . The algorithm will trace � through the universalcover according to lemma 2.4|beginning with the base triangle that contains p. Notice that whenever thelift of � is in the base triangle, the funnel deque should consist only of p. Whenever the lift of � crossesan edge uv out of the base triangle, we add the endpoints to the funnel deque by Add(f; deque; u) andAdd(b; deque; v).Suppose the path � crosses an edge uv into a new triangle 4uvw that is added to U�. If � later leavesthrough one of the other edges of 4uvw, then the current funnel is split into the funnels de�ned by uw andby vw as illustrated in �gure 5. The key observation is that whenever the lift of � is in 4uvw, the indexi of where the deque is to split is the same. We use an increasing increment search to compute this indexi: check the extension of the 1st, 2nd, 4th, 8th, etc., edge of the funnel until we pass the point w, thenperform binary search to �nd the wedge containing w. By searching from the front and back simultaneously,we �nd the splitting index in O(log d) steps, where d = minfi;Length(deque)� ig. Finger search trees wereused in [23] to implement the simultaneous increasing-increment search, but arrays avoid the extra pointercomplexity. We store this splitting index with 4uvw in U�.Now, consider the dual graph of U�|the triangles of the universal cover that intersect the lift of �|asa tree rooted at and directed toward the base triangle. When the path � encounters a triangulation edge,� is heading either away from or toward the base triangle. If � is heading away, then we perform a Split()indicated by the index stored in the current triangle and Add() the new triangle vertex to obtain the nextfunnel. If � is heading toward the base, then we Undo() the last two operations: usually a split/add pair,but an add/add when � is returning to the base triangle. Lemma 3.3 establishes that this on-line algorithmand the previous section's o�-line algorithm compute the same funnel.Lemma 3.3 For a curve � from p to q in a BTMM , the on-line algorithm computes the funnel correspondingto the sleeve of the path from p to q in the universal cover of M .Proof : We prove this lemma by induction on the number of triangulation edges that � crosses. Theinduction hypothesis is that the pairs of operations that have been placed on the history stack are exactlythose that would be performed by the o�-line algorithm. This is trivially true if � is entirely containedin the base triangle.Suppose the invariant holds for all paths crossing k triangulation edges, and let � be the concatenationof �0, which crosses k triangulation edges, and �00, which crosses one edge. If �00 traverses an edge awayfrom the base triangle, then the sleeve of � is the sleeve of �0 with one new triangle added to the end.The split/add (or add/add) performed and put on the history stack establishes the hypothesis for �.Otherwise, �00 traverses an edge towards the base triangle. Since the sleeve of � is the sleeve of �0 minusthe last triangle, undoing the last two operations performed and removing them from the history stackdoes the right thing.Except for �nding the splitting index|which one does once for each triangle of the universal cover U�|one does a constant amount of work when visiting a triangle. The analysis of Guibas et al. [23] can beapplied here to show that the time to �nd the splitting indices is linear in ��. In brief, the time to computesplitting indices for the triangles of U� is bounded by T (��) whereT (n) � maxi �T (i) + T (n � i) + logminfi; n� ig	:Thus, we have established the following theorem.Theorem 3.4 One can trace a path � through the universal cover of a BTM and maintain the funnel inO(C� +��) time and space.If P is a triangulated simple polygon and � is the path from a vertex p around the boundary of P andback to p, then the algorithm computes the edges of the shortest paths from p to each of the vertices of thepolygon|that is, the shortest path tree of P .4 The link metricIn this section we show how to compute the minimum-link path, �0, homotopic to a given path � in timeproportional to C� + �� + ��0, the complexity of the path � plus the number of triangles intersected by9



both paths. Our approach is inspired by Ghosh's [19] observations about the relationship between minimumEuclidean and link paths in simple polygons. We compute the Euclidean shortest path and then use a greedyapproach to minimize the number of line segments. Our algorithm is output-sensitive and is simpler thanthat of Ghosh in the simple polygon case; it avoids his middle step of computing a visibility polygon.First, some de�nitions: Since we have enough time, O(C�+��), to compute the Euclidean shortest pathin the homotopy class of �, we may assume that � is the shortest path from p to q. (The shortest path hascomplexity at most ��0 , so we perform all remaining complexity analysis in terms of ��0.) As before, U isthe universal covering space and U� consists of the triangles of U that intersect �.Traversing � from p to q, we can label each
p
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a t v
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s Figure 6: Extension ext(tu) separates U
vertex as a left or right turn. We call an edgetu of � an in
ection edge if the labels of t andu di�er; edges incident to p and to q can alsobe called in
ection edges. (Ghosh calls suchedges eaves.) The extension of a line segmenttu in U , denoted ext(tu), is the line segment,ray, or in�nite line formed by extending tu un-til it hits boundary points of U . In a sim-ple polygon, Ghosh observed that there is al-ways a minimum-link path including one linesegment from the extension of each in
ectionedge. This is also true in the universal cover:Lemma 4.1 If tu is an in
ection edge of aEuclidean shortest path �, then a minimum-link path homotopic to � can be assumed touse a subsegment of ext (tu).Proof : Let s and v be the endpoints of the extension ext(tu) so that these points appear in order s, t,u, v. Each of the segments st, tu, and uv separates p from q in the universal covering space U , so anypath from p to q must cross all three segments, as shown in �gure 6. If a path �0 from p to q intersectsst at a and uv at b, we can shortcut �0 with the segment ab � ext(tu). Since some line segment of �0intersected tu, this shortcut does not increase the number of segments on the path.Thus we can assume that any in
ection edges are included in the minimum-link path. We have reducedour problem to one of �nding the minimal link path from uv, a segment extending one in
ection edge, tou0v0, a segment extending another, where the shortest path from u to u0 is concave; see �gure 7.If the extension segments uv and u0v0 intersect in U�, then no additional segments are needed. Otherwise,consider the Euclidean shortest path 
 from v to v0 in U�; the path from u to u0 and 
 form what has beencalled the hourglass of uv and u0v0. The path 
 helps �nd a segment of the minimum-link path.Lemma 4.2 The minimum-link path joining uv and u0v0 either has zero or one segments or it can be chosento include an in
ection edge of 
, the shortest path from v to v0.Proof : If 
 is concave, then the concave chains can be separated by a line; one segment can join uv tou0v0.Otherwise, 
 has an in
ection edge. Let bc be the in
ection edge closest to v as shown in �gure 7.(We consider v to be labeled opposite u so that b may be v.) Because the paths from u to c and v to care both concave, the extension of bc intersects uv at some point a. Let cd be the extension of bc throughc in U�. Any path from uv to u0v0 must intersect both bc and cd. If we shortcut the path by followingthe subsegment of ad from a, through c, to the intersection of the path with cd, then we do not increasethe number of line segments on the path.Finally, we discover the in
ection edge bc, if it exists, in time proportional to the number of trianglesthat ac intersects by the procedure outlined in table 2 and described in the rest of this section.Notice that ac is tangent to the concave chain. We �nd ac by moving the point a up the edge uv andmaintaining the point c tangent to the chain. We stop the motion when one of three cases occurs:10



Variables:Points a, c, c0:
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H

bFigure 8: The hull H
a sweeps \upward" along segment uv.ac is tangent to the concave chain at c.Point c0 follows c on the concave chain.Edge e: the �rst (t-edge) hit by *avData structure:(H; b�): the convex hull and the pointhaving a tangent of slope � (�gure 8)Description:Uses Graham scan [22] to maintain the convex hullof endpoints of triangulation edges (t-edges)Operations:Add(p; f or b): Add points to front or back of HChangeSlope(�): Change slope to � and recalculate b�Initializea u, c next(a), and c0  next(c)e the �rst t-edge hit by *avfor each t-edge crossing ac in order from a to cif an endpoint p lies in 6 vac then Add(p;b)b�  the last point Add()ed to HrepeatChangeSlope(slope of ac)move a along uv, rotating ac around c untilcase 1: if ac is part of u0v0use ac as the last link in the pathexit programcase 2: a reaches v.use vc in the minimum-link pathexit loopcase 3: Line segment ac hits b�use ac in the minimum-link pathexit loopcase 4: slope of ac points into H at b�ChangeSlope(slope of ac)case 5: a hits eif an endpoint p lies in 6 vac then Add(p; f)e �rst t-edge hit by *avcase 6: a, c, and c0 become collinearFor each t-edge that hits cc0 in order from c to c0if an endpoint p lies in 6 vac0 then Add(p; b)change pivot c c0, c0  next(c0)loopif c 6= u0, repeat program using ext(ac) as uvTable 2: Computing the minimum-link path between in
ection edges uv and u0v011
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Figure 7: The path 
 has in
ection edge bc1. The tangent *ac becomes a segment of u0v0: no extra segments are needed.2. The moving point a reaches the polygon boundary, which implies a = v: the segment vc is the in
ectionedge of 
.3. The tangent *ac encounters a point b between a and c: the segment bc is the in
ection edge.The third case is the most di�cult to detect; we use the following technical lemma:Lemma 4.3 The point b �rst encountered by the sweeping tangent is the endpoint of a triangulation edgethat crosses the segment ua or the chain from u to c.Proof : Because a triangulation has no re
ex an-
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Figure 9: The sweep stops at b
gles, the tangent segment ac must cross a triangula-tion edge incident to b before it touches b. Since thesegments ua and ac and the concave chain from u toc form a closed region, shown in �gure 9, the lemmaholds.Lemma 4.3 implies that we need look only at the con-vex hull of the endpoints of triangulation edges that weencounter during the sweep. These endpoints appear onthe hull above ac in the same order as their edges ap-pear along ac. Points are added only at the ends of thesegment ac, so we can maintain the convex hull by a Gra-ham scan [22] in a deque. Furthermore, the slope of acchanges monotonically, so we can also maintain b�, thepoint of the hull having a tangent with this slope. Whenac hits b�, then b�c is an in
ection edge that lemma 4.2says can be used in a minimum-link path.These arguments establish the correctness of the algorithm outlined in table 2. To establish the runningtime, notice that the amount of work required to �nd a segment of the minimum-link path is proportional tothe number of triangulation edges that intersect the region depicted in �gure 9. Since this region is free ofpoints, these edges must intersect either ua or ac. Since these segments are part of the minimum-link path,we can charge this work to the number of triangles crossed by the computed path and obtain theorem 4.4.12



Theorem 4.4 A minimum-link path �0, homotopic to �, can be computed in space and time proportionalto O(C� +�� +��0).In a simply connected BTM, a minimum-link path can cross
Figure 10: The k-link minimum pathintersects �(kn) edges

any triangulation edge at most three times: any path thatcrosses a triangulation edge e four or more times can be short-cut by a portion of e, decreasing its length without changing itshomotopy class since all paths with the same starting and end-ing point have the same homotopy class. Thus, the total timeto compute minimum-link paths in simple polygons is linear.Among many obstacles, a minimum-link path with k segmentscan intersect �(kn) triangulation edges, as shown in �gure 10.5 LoopsThe algorithms of the previous section can be used to �nd theshortest and minimum-link closed path whose starting and end-ing points coincide|that is, for a loop that is pinned to thestarting point. For completeness, we show how to use the uni-versal cover to help �nd shortest and minimum-link loops of a given homotopy class that is not pinned topass through any given point. We compute Euclidean shortest loops in section 5.1 by simply walking aroundthe loop at most four times; this can be applied to compute relative convex hulls [12, 51, 53] and minimum-perimeter inpolygons [11]. For minimum-link loops, section 5.2, we have nothing new to add except theobvious generalizations from nested polygons to BTMs.5.1 Euclidean shortest loopsThe funnel algorithm, outlined in section 3.1, computed a shortest path in a sleeve polygon|a triangulatedpolygon whose dual was a path. For shortest loops, we de�ne a band analogously as a BTM whose dual is asingle cycle. In this section, we �rst reduce the problem of computing the shortest loop of a given homotopytype to the problem of �nding the shortest loop around a band.A band is orientable if and only if the boundaries of its triangles can be be traversed so that each internaledge is traversed once in each direction. Orientable bands have two boundary cycles and non-orientablebands have only one. Subsections 5.1.1 and 5.1.2 deal with the orientable and non-orientable cases of thereduced problem.Lemma 5.1 In a BTM M with a loop �, we can compute a band whose shortest loop is the lift of theshortest loop homotopic to � in M . Computation time and space is O(��).
13



Proof : Choose any point p on � and �nd the sleeve
p Figure 11: Constructing a band

of the path from p to p along �. An initial sequence oftriangles and triangulation edges of this sleeve will ap-pear in reverse order at the end of the sleeve, as shown in�gure 11. Remove all but the last of these common trian-gles, and glue those together. The result is either a singletriangle, in which case � is homotopic to a point, or elseit is a 2-manifold M 0 whose dual has a single cycle|M 0is a band. We must show that the band M 0 contains thelift of the shortest loop homotopic to �.We can begin with the band and perform the universalcover construction to obtain a 2-manifold of genus onethat contains the lift of �. Suppose we remove an edgefrom this manifold. We either separate the manifold or, if the edge is an internal edge of the band, wereduce the genus to zero. This proves that edges internal to the band must be crossed an odd numberof times and all other edges must be crossed an even number of time by any loop homotopic to �. But,just as in lemma 3.1, this implies that the shortest path crosses internal edges once and no other edges.Thus, the band contains the shortest loop homotopic to �.Before we solve the problem of computing the shortest loop around a band, we de�ne the concepts ofturn angles and cut manifolds.The turn angle (�gure 12) of an oriented piecewise-linear path with given
θFigure 12: Turn anglestarting and ending points in a BTMM is measured by following the orientationof the path and summing the angles of its turns. Each turn has an angle�� < � < �; (locally) right turns are negative and left are positive. The turnangle of a loop is the turn angle of the path around the loop starting and endingat the orientation of some edge|which edge is chosen does not a�ect the angle.If we cut a bandM along any non-boundary triangulation edge e, we obtaina simply connected manifold Mcut whose boundary has two copies of e. Theshortest loop around M becomes a shortest path in Mcut between two copiesof a point p 2 e. (Czyzowicz et al. [11] show how to use shortest path maps tocompute the shortest path between the two copies of e in linear time|we willuse somewhat lighter artillery.) Around the boundary of Mcut, the copies of ehave the same or opposite orientations, depending on whether the band M was orientable or non-orientable.We will handle these cases separately in the following two subsections.5.1.1 Orientable bandsIn this section, we show how to �nd the shortest loop around an orientable band. After de�ning the innerboundary of the band, we state a procedure using the funnel algorithm [33] to compute the shortest loop bywalking around the inner boundary twice. We prove its correctness in the rest of the section.The boundary of an orientable band M consists of two closed curves, �R to the right and �L to the leftofM 's cycle. According to the next lemma, the turn angle of the shortest loop in an orientable band equalsthe turn angle of the canonical loop or either boundary curve.Lemma 5.2 In an orientable BTM, two simple (i.e., non-self-intersecting) oriented loops that are homotopichave the same turn angle.If the turn angle of M is negative, then we say that �R is the inner boundary, otherwise �L is the innerboundary. In the �gures, the triangles are laid out 
at in the plane, which would give turn angles of �2�.Manifolds that cannot be embedded in the plane give rise to other turn angles.14



The following procedure computes the shortest loop:
v

inner boundary

u
p

αFigure 13: Around the inner boundary
1. Let uv be a line segment of the inner boundary.2. Use the funnel algorithm to compute the shortest path� from u to v that winds around the band twice. (See�gure 13.)3. Let p be a vertex that appears twice on the path; thepath from p to p is the shortest loop.This algorithm is based on the fact that once we identify apoint p on a shortest loop, we can compute the loop by com-puting the shortest path from p back around to p. Lemma 5.3says that there is a shortest loop touching a vertex of the innerboundary.Lemma 5.3 There is a shortest loop that touches a vertex ofthe inner boundary.Proof : If the turn angle of a band M is positive, then theshortest loop must make a left turn. It can only do so by turning at a vertex of the left or inner boundary.The case of a negative turn angle is symmetric.If the turn angle of the band M is zero then any shortest loop turns as much to the right as to theleft. Thus, if it turns at all, it turns at vertices of both the inner and outer boundaries. If the shortestloop does not turn, then cut the band M along a triangulation edge e|the two copies of e are paralleland the shortest loop becomes a straight line segment ` between corresponding points of the copies of e.Without changing the length of the segment `, one can translate ` to the left until it touches a vertex ofthe inner boundary.With this lemma, we can prove correctness.Theorem 5.4 Given an orientable band M composed of n triangles, the procedure above correctly computesthe shortest loop around M in linear time.Proof : Let p be the vertex on the inner boundary of some shortest loop whose existence is proved bylemma 5.3. The shortest path � from u starts on or inside this shortest loop and reaches p before goingcompletely around the band. Similarly, the shortest path from v reaches p before going around the bandin the other direction. Thus, p is reached twice.The path � can thus be decomposed into three pieces: the shortest path from u to p, denoted �u; theshortest loop around the band, denoted �; and the shortest path from p to v, denoted �v. The verticesof � are obviously the vertices of the shortest loop. Together �u and �v compose the shortest path fromu around to v|a vertex appears on this path only once. Thus, any vertex that appears twice on � is onthe shortest loop and can be used in place of p.5.1.2 Non-orientable bandsOne might think that computing the shortest loop in a non-orientable band would be more di�cult. In thissection, however, we show how to �nd the shortest loop that winds twice around the band by a reduction toan orientable band. We then show how to obtain the shortest loop from this curve. The result is theorem 5.5.Theorem 5.5 Given a non-orientable band M composed of n triangles, one can compute the shortest looparound M in linear time.We can conceptually take two copies ofMcut, reverse one left-to-right, and paste them into a single bandMdouble, as shown in �gure 14. The band Mdouble is orientable and has turn angle zero: starting fromtriangulation edge e, you travel through one copy of Mcut until you encounter the reversed copy, denotedeR. Then you travel through the reversed copy of Mcut until you reach e again. The turn angles in eachcopy of Mcut have opposite sign. We can use the procedure of the previous section to �nd the shortest loopin Mdouble that touches the left boundary|call it �. Notice that � is the shortest loop that winds around15



M twice, so its length is at most double the length of the shortest loop in M . We shall see that the lengthis exactly double.Suppose � intersects e at a point p. Then the shortest loop touching the right boundary is the shortestpath starting and ending at the corresponding point pR 2 eR. In other words, the shortest loop in Mdoubletouching the right boundary is �R|the loop � viewed from the perspective of edge eR. This should not besurprising as M has only one boundary.We now consider two cases depicted in �gure 14. First, if
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qFigure 14: Cases for the shortest loop inMdouble

the shortest loop � in Mdouble makes any turns, then � makesturns on vertices of both the right and left boundaries. Sincethe shortest loop touching a given boundary is unique, bothloops � and �R are identical. Therefore, � passes through thepoint pR 2 eR|that is, � winds around the shortest loop inM twice.Second, if the shortest loop � makes no turns, then bycutting the manifold Mdouble along e, we see that the loopstouching the left and right boundaries, � and �R, form twoparallel lines. If the intersections with e are points p on theleft and q on the right, as shown in �gure 14b, then the in-tersections with eR are the corresponding points qR on theleft and pR on the right. The line �0 parallel to � and �Rand passing through the midpoint of the segment pq is alsoa shortest loop in Mdouble. Moreover, �0 also passes throughthe midpoint of qRpR. But these two midpoints are just thecorresponding points on two copies of e. As a result, �0 windsaround the shortest loop in M twice.5.2 Minimum-link loopsAs in section 5.1, if we know a vertex or edge of a minimum-link loop, we can use the path algorithm tocompute it. When a minimum-link loop is convex, however, it seems di�cult to �nd such a vertex or edge.Because of the algorithm of section 5.1, we can assume that our loop � is the minimum Euclidean curveof its homotopy class. If � has an in
ection edge, then we can use the path algorithm of table 2 to �nd thepaths between in
ection edges|a fact that has also been noted by Ghosh and Maheshwari [20]. Lemma 4.1implies that the resulting loop is a minimum-link curve.If � has no in
ection edges, then all minimum-link loops are convex. One can use the technique ofAggarwal et al. [1] as extended by Wang [54] and Ghosh [19] to �nd a minimum-link loop. Brie
y, one �ndsan initial loop �nding a minimum-link path from p around to p; the resulting path has at most one segmentmore than the minimum. One then rotates this loop, keeping track of its points of contact with the innerand outer chains, to see if one can shorten the loop. The algorithm �nds a minimum-link loop with k linesegments in O(n log k) time. It would be interesting to discover a matching lower bound.6 Paths with restricted orientationsFor some applications, such as VLSI, the paths are restricted to c �xed directions; we call such paths c-oriented. Rectilinear paths with the four orientations of north, south, east and west are the most common.In this section, we show that the universal cover is also a good tool for �nding minimal c-oriented paths ofa given homotopy class.First, in section 6.1, we de�ne convex polygonal distance functions appropriate to a given set of orien-tations. Then we show in section 6.2 that the length, under a convex distance function, of the Euclideanshortest path computed in section 3.1 equals the length of the shortest c-oriented path. Section 6.3 showshow to modify the minimum-link algorithm of section 4 to compute minimum-link c-oriented paths. Finally,section 6.4 shows that for paths restricted to three directions and for rectilinear paths, each homotopy class16



has a shortest path that is also a minimum-link path. Mark de Berg [13] has independently noted this factfor rectilinear paths in simple polygons.In each of the following sections, when we wish to construct paths restricted to c orientations explicitly,then we also restrict the boundary of the obstacles to the same set of c orientations. With such a restriction,there is always a path with at most O(n) segments that follows obstacle boundaries. Without such arestriction, one can construct examples where any c-oriented path joining a given pair of points has in�nitelymany line segments.6.1 Metrics versus distance functionsWhen paths are restricted, the link metric remains the number of line segment of a path. We can replacethe Euclidean metric, however, by a distance function that gives the length of the shortest restricted pathbetween two points. The Manhattan or L1 metric, in which the length of a vector v is the sum of the lengthsof the projections of v on the horizontal and vertical axes, is an example of a distance function for rectilinearpaths.More generally, we can use Minkowski's convex distance functions [6]. Let A be a convex set whoseinterior contains the origin. The length of a vector v with respect to A is the amount that A must be scaledto include v; that is, kvkA = inff� � 0 : v 2 �Ag. The distance from point r to s is ks � rkA. The distancefunction need not induce a metric because it need not be symmetric: kvkA may not equal k � vkA . It does,however, satisfy the triangle inequality [6]: if u+ v = w then kukA + kvkA � kwkA.The points of the boundary of A are precisely the unit vectors of the distance function k � kA. ChoosingA to be the unit circle gives the Euclidean metric; choosing A to be the diamond de�ned by the four unitvectors in the axial directions gives the L1 metric. For a c-oriented path, which is a path restricted tofollow the orientations of c unit-length basis vectors u1; u2; : : : ; uc, we choose A to be the convex hull off~0; u1; : : : ; ucg. We assume that the ui appear on A in the order listed.As an aside, if the origin ~0 is on the boundary of A then vectors that are not contained in the angleformed by the boundary of A at ~0 have in�nite length. They cannot be reached by a c-oriented path becausethey cannot be expressed as a positive linear combination of the basis vectors.A path that follows c chosen orientations has the same length under the Euclidean metric and underthe associated convex distance function. More importantly, a vector v measured under a convex distancefunction has the length of the shortest c-oriented path from the origin to v|we show this in the next lemma.Lemma 6.1 Let A be the convex hull of fu1; u2; : : : ; ucg, a circularly-ordered set of basis vectors and let v bea vector in the wedge de�ned by adjacent basis vectores ui and ui+1. Vector v = aui+ bui+1 i� kvkA = a+ b.Proof : This is true for the unit vectors of the distance function kvkA = 1, which are on segments,�ui + (1 � �)ui+1 for 0 � � � 1, that join adjacent basis vectors on the boundary of the convex hull.Since length scales with the vector, it remains true for arbitrary vectors v.6.2 Shortest paths under a convex distance functionWe use lemma 6.1 to �nd the length of the shortest path of a given homotopy type under a convex distancefunction. As before, we �rst compute the Euclidean shortest path � from p to q and use it as the representativeof the homotopy class. This takes O(C� +��) time.The proofs leading to theorem 3.2 use only the triangle inequality to show that the path computed insection 3.1 is minimum under the Euclidean metric. But this implies thatTheorem 6.2 The Euclidean shortest path computed in section 3.1 is a shortest path under any convexdistance function.Lemma 6.1 implies that if we replace each segment of the Euclidean shortest path by a \zig-zag" or\staircase" made from the two adjacent basis vectors, then we will have a c-oriented path of the same(minimum) length. By cutting the Euclidean shortest path at all points with tangent vectors that areamong the c basis vectors and computing c-oriented \staircases" for the resulting pieces we will �nd ashortest c-oriented path that has the fewest possible links.17



Lemma 6.3 Let t be a point of the Euclidean shortest path � having a basis vector u as a tangent vector.Any minimum length path under the convex distance function goes through t.Proof : Slice the universal cover into three pieces by a line segment through t and parallel to u. Anypath from p to q �rst crosses this segment at or before t and last crosses it at or after t. By applyinglemma 6.1 to the wedge containing u alone, we see that the shortest path under the convex distancefunction is inside this segment from the �rst to last crossing and therefore passes through t.We can perform this cutting by simply traversing the Euclidean path|think of driving a car along thepath, as in Guibas, Ramshaw, and Stol�'s kinetic framework for computational geometry [24]|and cuttingit whenever the direction of travel is one of the c basis vectors. (If c is not considered a constant, then wecan use binary search to �nd the wedges that contain the slopes of edges. The time complexity becomesO(C� log c).)The slopes on each resulting path lie in a wedge de�ned by two adjacent basis vectors. Thus, by lemma6.1,each path should be replaced by a path using only those two orientations. If we are unconcerned about thenumber of links then, using the two orientations, we can remain within an arbitrarily small neighborhood ofthe Euclidean shortest path. More likely, however, one would want to construct a shortest c-oriented pathusing the smallest number of links. The next section develops an algorithm for the more general problem ofcomputing minimum-link c-oriented paths. Section 6.4 mentions how this algorithm can be simpli�ed whenthere are only two directions of interest and also discusses when a minimum link path can also be a shortestpath under the convex distance function.6.3 Minimum-link c-oriented pathsThis section develops a greedy algorithm to compute a minimum-link c-oriented path homotopic to a path �from p to q: Each link (line segment) reaches as far as possible towards q, guided by the Euclidean shortestpath. De�ne the i-link region of p, denoted Ri(p), to be the set of all points of the universal cover thatcan be reached by a c-oriented path of i links from p. If q is not in Ri(p) then we shall �nd two c-orientedsegments on the boundary @(Ri(p)) with adjacent orientations that separate p from q in the universal cover.We compute the two segments of @(Ri+1(p)) that separate p from q from the two segments of @(Ri(p)).Section 4 used essentially this greedy approach to compute an unrestricted minimum-link path. In thatcase, however, the boundary of the i-link region is a single line segment and one can compute the links ofthe path in time proportional to the number of triangles that the path crosses. In this section we will haveto explore two possible ways to reach the goal q. This di�culty arises already in rectilinear paths, whereone must decide whether to begin with a horizontal or a vertical step. (It is interesting that, even with moreallowed orientations, no more than two paths need be considered at any time.) The time required by ouralgorithm will therefore be proportional to the number of triangles explored, which may be greater than thenumber of triangles intersected by the �nal path. The worst-case bounds are similar to those of section 4:If c is a constant, O(nk) time is su�cient to construct a k link path of a given homotopy class and O(n+ k)time is su�cient in a simple polygon. If c is not a constant but the basis vector directions are initially sorted,then the algorithm can be implemented to run in O(nk log c) and O(n+ k log c) time, respectively.Lemma 6.4 Let � be a Euclidean shortest path from p to q in a BTM M , and let U be the universal coveringspace of M . Suppose Q is the connected component of U �Ri(p) that contains q. Then @(Q)�@(U ) consistsof at most two segments from a point r that have adjacent orientations u and v.Proof :We prove this by induction. The 1-link regionR1(p) consists of maximal length segments radiatingout from p in the permitted orientations. If we cut the universal cover U along these segments and lookat the component Q that contains q, we �nd that @(Q) contains a portion of one of these segments indegenerate cases or two adjacent segments meeting at p in non-degenerate cases.Now, assume that the i-link region has boundary segments ru and rv that come from the point r indirections u and v, as depicted in �gure 15. Without loss of generality, we can assume that u is clockwiseof v and that the Euclidean path � turns to the right. Any minimum-link c-oriented path � that ishomotopic to � must cross one of the segments ru or rv; by cutting the path � at this crossing point andreplacing the initial portion with an i link path, we can assume that � uses part of ru or rv as its ithlink. 18



There are two cases to consider when extending the path � by one link, depending on whether thereis some c-oriented segment from ru or rv that is tangent to the Euclidean shortest path � or not.
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rvFigure 15: Computing part of @(Ri+1(p)) from @(Ri(p)), shadedSuppose, �rst, that there is no such tangent, as in �gure 15a. Imagine drawing maximal lengthsegments in Q from rv in direction u; there will be some segment s that that is the last one crossed by� en route to q. Similarly, draw the segment t from ru in direction v that is last crossed by �.We notice that segments s and t intersect: If � hits s after t, as in �gure 15a, then ru, rv, s and �bound a simply connected region in U that t enters by crossing �. Since t cannot cross ru or rv or recross�, t must cross s. Let r0 = s \ t. The (i + 1)-link region is bounded by the portions of s and t in thedirections of u and v from r0 because they are the extremal segments in the directions of u and v andsegments in other orientations cannot reach from ru or rv to the segments from r0. This establishes thelemma for the �rst case.Second, suppose that there is a c-oriented tangent to � from rv. Let t be the c-oriented tangentfurthest clockwise from v, as shown in �gure 15b. Tangent t � U has an end on rv, is tangent to �at b, and has maximal length. Now, draw segments from rv in the next orientation clockwise from theorientation of t and let s be the last segment crossed by �. Let r0 = s \ t. If r0 lies between rv and bon t, then the (i+ 1)-link region is bounded by the segment of t following b. Otherwise, r0 follows b on tand the (i + 1)-link region is bounded by the two segments from r0 in the directions of s and t.This lemma and its proof indicate a way to start from p and obtain a sequence of points, each of which aminimum-link c-oriented path can pass through in one of two adjacent directions. If we can compute thesepoints and directions, then we can construct the minimum-link path as follows: Begin at r = p with the atmost two candidate paths whose initial orientations delimit the smallest wedge containing the orientation ofthe �rst segment of the Euclidean shortest path �. Obtain the next point r0 and the pair of directions, whichcome from non-tangents in the �rst case of lemma 6.4 and from a tangent and a non-tangent in the secondcase. In the �rst case, both candidate paths are extended by one link. In the second, the candidate paththat cannot be extended by a tangent is discarded and the path up through r is �xed. Then new candidatepaths are begun that pass through r0 in two directions and the process continues. The algorithm stops witha minimum-link c-oriented path when one of the candidate paths reaches q|a fact that can be detected bythe tangent-�nding algorithm.To compute the sequence of points and directions we need to �nd extreme c-oriented tangents to �, ifthey exist, and �nd extreme segments of �xed orientations that connect the old link region boundary to �.Both of these tasks can be performed by a modi�cation of the minimum-link path algorithm presented intable 2. Since this algorithm �nds the extreme tangent by sweeping a tangent segment and recording in aconvex hull the endpoints of triangulation edges that cross the sweep, there is little modi�cation required to�nd an extreme c-oriented tangent. In �gure 15a, the sweep would begin at the intersection of � and ru andmaintain a tangent segment to � as the other endpoint moved up to r and then along rv. When the extremetangent is found, the extreme c-oriented tangent, if any, can be reported by searching the list of orientations.The same idea|sweeping a segment and maintaining the endpoints of triangulation edges that cross the19



sweep|applies to �nd the extreme segment with a given orientation. Since the orientation is �xed, one doesnot need to record the convex hull of the endpoints ahead of the sweep. Storing the �rst endpoint that willbe encountered is su�cient.The extra exploring means that we do not have output-sensitive bounds for c-oriented paths.Theorem 6.5 One can construct a minimum-link c-oriented path homotopic to � in time and space pro-portional to the number of triangles that contain candidate segments for the minimum-link path.If the c allowed orientations are initially sorted, then the worst-case time bound to compute a k-link pathin a BTM with n triangles is O(nk log c). This analysis can be sharpened for a simply connected BTM ifthere are two opposite basis vectors. If we use the algorithm of Fournier and Montuno [17] to change thetriangulation to a trapezoidation with sides parallel to these basis vectors, then c-oriented paths can followthe edges of the trapezoids. Any trapezoid edge that intersected more than three edges of a path could beused to shorten the path. Thus, each trapezoid is explored a constant number of times. The running timeof the algorithm in this case is O(n+ k log c).6.4 Simultaneous minimization of length and linksIn the c-oriented case, as in the unrestricted case, a minimum-link path is usually not the shortest pathand vice versa. A \long" straight detour can generally save several turns. In this section we remark that asimpli�ed version of the minimum-link path algorithm can compute the path with fewest links of all shortestc-oriented paths. For rectilinear paths and paths restricted to three directions, we prove that this path isalso a minimum-link path|that length and links are minimized simultaneously.Section 6.2 showed that the shortest c-oriented path under a convex distance function can be obtainedby breaking the Euclidean shortest path at all vertices with basis vector tangents and approximating eachpiece by a path that follows two adjacent orientations. But this breaking implies that only the �rst casefor extending a path can arise in lemma 6.4. Therefore, we can compute such paths entirely by sweepingsegments with �xed orientations|we need not maintain convex hulls to determine where the sweep ends.We do need to try both candidate paths, however, and merge collinear segments from separate pieces tocompute the shortest c-oriented path with the fewest links.To determine when this path is also a minimum-link path, we make the following de�nition. A member uof a set of basis vectors B satis�es the halfplane condition if there is a halfplane that contains all of B exceptu. Now, consider driving along the Euclidean shortest path, moving and turning in accordance to Guibas,Ramshaw, and Stol�'s kinetic framework for computational geometry [24], and noting in which basis vectororientations you face during a turn about a vertex. If the basis vector tangent at a vertex has the halfplanecondition, then shortest and minimum-link paths can both pass through that vertex in the direction of thebasis vector.Lemma 6.6 If a tangent basis vector, u, of a point t on the Euclidean shortest path � satis�es the halfplanecondition, then a minimum-link c-oriented path homotopic to � has an edge passing through t in direction u.
t v
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v Figure 16: The halfplane condition20
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