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1 IntrodutionA number of very useful algorithms on planar polygonal objets have been desribed in the om-putational geometry literature. Among these are union, intersetion, omplement, Minkowski sum,onvex hull, and triangulation (or other deomposition) of polygonal regions in the plane. Givenan initial set of points and lines or line segments, these algorithms use only a few binary onstru-tive geometri primitives: 1) join two points to reate a new line or line segment, 2) interset twolines or line segments to generate a new point, and 3) add two points (oordinate-wise) togetherto generate a new point. Symbolially, eah point or line (segment) that an algorithm outputs liesat the root of a binary \onstrution tree" whose leaves are the input points or lines and whosenodes are onstrutive primitives. For most algorithms, these trees have onstant depth. However,when CAD systems and other software systems apply these algorithms, they do not apply them inisolation. Usually, the algorithms are asaded: the output from one algorithm beomes the inputto another. Also, these systems might onstrut new points and lines by translating, rotating, sal-ing, or applying other transformations to geometri objets. From an algorithmi point of view,transformations are trivial, yet they also add to the numerial \history" of points and lines. Inpratie, the height of the onstrution tree for a point or line an grow without bound.This paper argues that no matter whih exat numerial representation one hooses, the spaerequired to represent a point or line (segment) grows exponentially with the height of its onstru-tion tree. As a onsequene, the running time of geometri algorithms also grows exponentially.To avoid exponential ost, a geometri system must employ rounding. Rounding trades aurayfor ost. Of ourse, rounding is not a new idea: for more than 30 years, omputers have hadhardware-supported rounded oating point arithmeti. An entire mature �eld of disipline, nu-merial analysis, addresses the problems arising from implementing numerial algorithms usingrounded arithmeti. Unfortunately, geometri algorithms are subtly and exquisitely sensitive torounding in ways not addressed by numerial analysis. For many years, suh numerial problemswere thought to be \bugs," but it is now well understood that one annot naively (or even not sonaively) implement geometri algorithms using rounded oating point arithmeti in plae of exatreal arithmeti.This paper presents a tehnique alled shortest path geometri rounding for rounding sets of pointsand line segments. Green and Yao �rst introdued the idea of rounding an arrangement of linesegments to an integer grid [16℄. Eah line segment is replaed by a polygonal urve in a way that(in some sense) preserves the topology of the arrangement. Geometri rounding has the advantagethat it is applied to geometri objets after they have been generated by a geometri algorithm,and therefore it solves the problem of exponential ost (albeit at the prie of reduing auray)without any modi�ation of existing geometri algorithms. Unlike Green and Yao's algorithmand snap rounding [15, 19℄ (see also [18℄), shortest path geometri rounding 1) introdues theminimum possible geometri error, 2) introdues the minimum ombinatorial hange, and 3) anround verties to any rounding lattie with onneted rounding ells. The other methods an onlyround to the integer lattie. We argue that statistially, shortest path rounding auses 1=6 to 1=4the ombinatorial damage and introdues about 1=3 the exess geometri error introdued by snaprounding. Shortest path rounding is also easy to use in pratie, we have used it for industriallayout algorithms sine 1992. As we desribe later in the paper, these layout algorithms use avariety of geometri algorithms and have arbitrary asading, even for a single layout problem.The following setion argues that exat methods are likely to have exponential ost no matter howone implements them. Setion 1.2 ompares shortest path rounding to other geometri rounding1



algorithms and other tehniques for implementing geometri algorithms using rounded arithmeti.Setion 1.3 gives an outline for the rest of the paper.1.1 The Cost of CasadingThis setion examines the ost of asading geometri algorithms without rounding. The basiproblem is that the number of bits in eah output oordinate an be two or more times the numberof bits in eah input oordinate. Casading auses this bit-omplexity to grow exponentially withthe number of operations. One might think that this worst ase is diÆult to attain or that there issome speial way to represent derived oordinates that avoids exponential growth. Unfortunately,these are vain hopes. This setion shows that any exat arithmeti alulation an be enoded asasaded geometry, and it is easy to give an example of exat arithmeti with exponential growth inbit omplexity. In short, eliminating rounding from the �eld of omputational geometry is equivalentto eliminating rounding from the �eld of numerial analysis.To simplify the analysis, we onsider only straight-edge onstrutions: 1) join two points to generatea line and 2) interset two lines to generate a point.1 As previously stated, these are not the onlyway to generate new points; however, almost every geometri algorithm uses these two. Goodrih,Pollak, and Sturmfels [14℄ desribe arrangements of points and lines whose realizations on theinteger grid must have exponential bit-omplexity. Their tehnique uses a geometri implementationof repeated squaring. In fat any arithmeti operation an be implemented given a straight-edgeand a �nite olletion of referene points [2℄:Lemma 1.1 Given the integer grid points (x; y), jxj; jyj 2 f0; 1g, the following transformationsan be done using O(1) straight-edge onstrutions:(a; b) ! (a; 0); (b; 0); (1)(a; 0); (b; 0) ! (a+ b; 0); (a � b; 0); (a � b; 0); (a=b; 0); (a; b): (2)Lemma 1.1 implies that an exat geometri system with asading an perform any exat alulationon integers or exat rational numbers. The following lemma shows that exat arithmeti neessarilyhas exponential growth in bit-omplexity.Lemma 1.2 Given the set f1g and the operations + and �, the set of all integers in the range from1 to 22k an be onstruted in 2k generations, for all k > 0.Proof: Clearly 1 = 1, 2 = 1+ 1, 3 = (1 + 1) + 1, 4 = (1 + 1) � (1 + 1), and so the lemma holds fork = 1. Assume the lemma holds for k = l� 1. Any number in the range 1 to 22l an be written as,�22l�1 �m�+ n;where m and n are in the range 1 to 22l�1 . By the assumption, eah number in this expressionis in generation 2(l � 1). Performing the multipliation and addition only adds two generations,and therefore the number is in generation 2l. This proves the lemma for k = l and �nishes theindution.1These are lassial straight-edge and ompass onstrutions{but without the ompass!2



Keep in mind that 2k is the height of the onstrution tree, not the number of nodes, and thereforethe number of operations might be muh larger than the number of generations. However, repeatedsquaring an generate large numbers using very few operations. In partiular, repeated squaringan generate 22k in k+ 1 generations and k+ 1 operations. Every realization of the orrespondinggeometri struture (Lemma 1.1) in the integer grid requires bit-omplexity at least lg 22k = 2k.This is essential the result of Goodrih et al. This setion has shown that this result is not anisolated ase. Any large number that an arise in a non-geometri alulation an also arise in ageometri alulation.1.2 Related WorkThe previous setion establishes that rounding is unavoidable in general. This setion disussesmethods for implementing algorithms of omputational geometry in the presene of rounding.Setion 1.2.1 disusses four approahes, inluding geometri rounding. Setion 1.2.2 disusses teh-niques for geometri rounding.1.2.1 Robust GeometryMany geometri systems ahieve a high level of robustness though the appliation of toleranes andheuristis, usual over a long period of testing and use in pratie. However, these systems are notprovably orret. There are essentially four theoretially sound approahes to inluding roundinginto geometri algorithms. These approahes are generally alled \robust geometry."Data Normalization [32, 24℄: Carry out omputations using rounded oating point arithmeti.Alter the geometry and ombinatorial struture to eliminate ill-onditioned omputations. Forexample, if vertex  is too lose to edge ab to determine on whih side it lies, then \rak" ab intoa and b. Advantages: Uses hardware oating point and generates expliit geometri strutures.Disadvantages: Requires modi�ation of geometri algorithms and has unbounded geometrialand ombinatorial error.Consistent (Stable) Computation [24, 28, 22, 1, 4, 9, 10, 12, 20, 22, 38℄: Use hardware oat-ing point and make onsistent symboli deisions in the ase of an ambiguous numerial tests.Advantages: uses hardware oating point and sometimes has better bounds on error than datanormalization. Disadvantages: Deisions have impliit rather than expliit realizations whihmakes geometri reasoning diÆult. Only works with spei� algorithms, and sometimes requiressubtle hanges. Proving existene of onsistent, numerial aurate, realizations is tedious anddiÆult.Combinatoris-Preserving Geometri Rounding: Use exat arithmeti with any algorithm.Round output geometri struture to lower preision without hanging ombinatorial struture. Inthe example with ab and , round a, b, and  in suh a way that ab and  move apart. Advantages:an use any algorithm and has no ombinatorial error. Disadvantages: no one knows how to doit. Might have large geometri error. Some versions are known to be NP-hard [31℄.Geometri Rounding [16, 25, 26, 27, 35, 18℄: Use exat arithmeti with any algorithm. Roundoutput to lower preision, hanging ombinatorial struture if neessary. For example, if  rounds tothe other side of ab, spit ab into a and b. Advantages: works with any algorithm on roundableobjets and has bounded error. Disadvantages: hanges ombinatorial struture.3



1.2.2 Geometri RoundingThere are urrently �ve tehniques for geometri rounding.Green-Yao [16℄: This was the earliest geometri rounding tehnique, and it rounds line segmentsto the integer lattie. Treat the line segment ab as a exible elasti string. Pull a and b to thenearest lattie points �(a) and �(b). For every other vertex v, if the segment v�(v) intersetsab, pull the segment to �(v). Do not allow the rest of string to move past any integer lattiepoint. Advantages: bounded error, good for graphis appliations, might be generalizable toother latties. Disadvantages: introdues 
(n log jabj) \exess" lattie points onto the segment,where n is the number of verties to whih the segment it pulled.Snap Rounding [15, 19℄: Various researhers have disovered this tehnique for rounding linesegments to the integer grid.2 Eah vertex rounds to the nearest lattie point. To round ab,determine rounding ells of rounded verties that interset ab. Replae ab by the polygonal urvethat visits the lattie points of these rounding ells. Advantages: very simple, bounded error,does not introdue any extra lattie points. Disadvantages: does not appear to generalize toother latties. Introdues more verties on polygonal urve than neessary.Shortest Path Rounding [26, 25, 35℄: This tehnique replaes ab by the shortest path that keepsall other rounded verties to the \orret" side. This paper desribes a somewhat more generalversion than we have previously desribed in onferene papers (Setion 4.5) and used in pratie.Advantages: an handle any lattie with onneted rounding ells (Setion 3.1). Introduesminimum geometri and ombinatorial error. Simple to use in pratie. Disadvantages: not learhow to generalize to three dimensions.CSG Rounding [37℄: Given a CSG (onstrutive solid geometry) representation of an objet,round CSG primitives and then reonstrut the tree. Advantages: works in three dimensions.Disadvantages: suitable for set operations and transformations, not deompositions, onvex hull,or Minkowski sum. Topology might be unpleasantly altered.Manifold Rounding [11℄: Given a manifold representation of a polyhedral solid, round equationsof faes. If rounded solid is self-interseting, retain only the \unburied" portion of the bound-ary. Advantages: three dimensional, intuitive topology hange, bounded error. Disadvantages:suitable for set operations and transformations, not deomposition, onvex hull, or Minkowski sum.1.3 OutlineSetion 2 desribes di�erent possible numerial representations, algorithms for exat arithmeti,and latties inluding the oating point lattie and the homogeneous oordinate lattie. These areperhaps more useful in pratie than the integer lattie. Setion 3 gives a rigorous de�nition ofgeometri rounding in general and shortest path rounding in partiular. Setion 4 gives three algo-rithms for shortest path rounding, inluding the speialized version we use most often in pratie.Setion 5 proves the orretness of shortest path rounding and the algorithms for onstruting it.Setion 6 disusses our experienes in pratie. It skethes an algorithm for layout of polygonswhih has unbounded asading, and it shows how geometri rounding has made it possible for us2At the 1989 Canadian Conferene on Computational Geometry, this author disussed it as a alternative toshortest path rounding (on the integer grid) whih introdued more verties but was somewhat simpler to implement(although this disussion did not appear in the abstrat [26℄). In the software we developed in 1992 for set operationson polygons, we put in a ompiler diretive to swith to snap rounding to hek to see if there was a signi�antdi�erene in running time. There is no signi�ant di�erene.4



to reate and liense to industry a working implementation of this algorithm. Finally, Setion 7shows that shortest path rounding introdues less ombinatorial and geometri error than otherrounding methods on integer latties, and it disusses why it is useful2 Numerial Issues in Computational GeometryThis setion disusses numerial issues in omputational geometry. Setion 2.1 disusses represen-tations for single or multiple preision integer, rational, and oating point numbers and tehniquesfor performing exat arithmeti in these domains. Setion 2.2 desribes several ommon repre-sentations for geometri points. Setion 2.3 shows how geometri primitives an be redued topolynomial expressions on the point oordinates. Finally, Setion 2.4 puts these tehniques to-gether to implement geometri algorithms. These implementations 1) perform arithmeti almostas fast as using hardware oating point for all operations, 2) alulate the orret ombinatorialstruture orresponding to exat arithmeti on the input oordinates, and 3) generate aurate out-put oordinates rounded to oating point, to lower preision integers, or to lower preision rationalnumbers.3 Shortest path rounding, as desribed in subsequent setions, then \sensibly" alters thegeometry and ombinatorial struture to make it onsistent with these rounded oordinates.2.1 Numerial RepresentationsComputer arithmeti is disrete, and essentially the only type of number whih an be representedon a omputer is an integer. All modern omputers also support a oating point representationwith an integer mantissa and exponent. Most omputers have hardware devoted for oating pointoperations whih make oating point operations faster than integer operations.The most ommon hardware integer type is 31 bits plus a sign bit4, and the most ommon oatingpoint (\double preision") has a 53-bit mantissa and 10-bit exponent plus sign bits for eah. It isoften onvenient to use the oating point data type to store integers with up to 53 bits.A rational number an be represented as an ordered pair of integers. There are a number of repre-sentations for integers or rational numbers with a more than 53 bits. Traditionally, a \BIGNUM"is a list of integers. Fortune and van Wyk [13℄ survey some of these representation. Shewhuk [36℄has more reently presented a simple, elegant multiple preision oating point representation. Eahnumber is represented as a list of hardware double preision values whose sum is the number beingrepresented. This representation an handle any number with 1023 bits both to the right and tothe left of the \binary point".Both Fortune and van Wyk and Shewhuk show that geometri primitives of bounded depth, suhas the irulation test (Setion 2.3) an be arried out to arbitrary preision in pratie using only alittle more time than that required for 53 bits of preision. The trik is that they quikly alulatethe �rst 53 signi�ant bits and only alulate more bits if neessary. In pratial appliations,alulation of primitives rarely require multiple preision. In other words, it rarely happens that avertex  is so lose to an edge ab that more than 53 bits of preision are required to determine onwhih side of ab it lies.3In order for the implementation to be almost as fast a native oating point, the output oordinates lose as muhauray as predited by numerial analysis. Greater auray has greater omputational ost but still modest ifShewhuk's tehniques are used (see below).4The atual representation is 2's omplement, but this does hange the available preision.5



2.2 Coordinate RepresentationsA geometri system an use either points or lines as primitive elements. In this paper, we willonsider only representations of points. Geometri points an be represented using an ordered pair(x; y) in Cartesian oordinates, using homogeneous oordinates (W;X; Y ), or using polar oordinates(r; �), where x = XW = r os � and y = YW = r sin �:In the ase of polar oordinates, one an avoid the transendental funtions sin and os by using arational parameterization of the unit irle,!(t) =  1� t21 + t2 ; 2t1 + t2! :For �1 < t < 1, !(t) nearly uniformly (j!0(t)j � 2) overs the unit irle to the right of the y-axis. The left half is parameterized by reetion. Canny, Donald, and Ressler [3℄ desribe how togenerate a dense set of rational values for t to uniformly over the unit irle to any desired degreeof preision.Di�erent numerial representations an be used with the geometri representations. The oor-dinates of (x; y) an be integers, rationals (ordered pairs of integers), or oating points. Theoordinates of (W;X; Y ) an be integers or oating points. Rationals are not neessary sine onean always \lear the denominators" of the homogeneous oordinates. In the rational parameter-ization of polar oordinates, r an be integer, rational, or oating point, and t an rational oroating point.2.3 Geometri PrimitivesOnly three numerial geometri primitives are required to implement most algorithms on points,lines, and line segments: irulation, point sum, and segment intersetion. It is most onvenientto use homogeneous oordinates beause these allow the primitives to be expressed using onlyaddition, subtration, and multipliation of integers or oating point numbers. These operationsan be arried out exatly and quikly using the tehniques ited in Setion 2.1.Converting Cartesian oordinates to homogeneous is trivial (x; y) ! (1; x; y). If x and y arerational, then one an lear the denominator,�xnxd ; ynyd�! (xdyd; xnyd; ynxd):Assuming, r and t have rational values, polar oordinates an also be easily onverted to homoge-neous oordinates, �rnrd ; tntd�! (rd(t2d + t2n); rn(t2d � t2n); 2rntdtn):All division, rounding, and onverting bak to Cartesian or polar oordinates an be postponeduntil after the algorithm has exeuted. This is disussed in the next setion.Cirulation: We assume all negativeW oordinates are made positive: (W;X; Y )! (�W;�X;�Y )if W < 0. The irulation [a; b; ℄ of points a, b, and  is a 3x3 determinant,[a; b; ℄ = ������� aW aX aYbW bX bYW X Y ������� :6



Triangle ab winds ounterlokwise if [a; b; ℄ > 0 and winds lokwise if [a; b; ℄ < 0. If [a; b; ℄ = 0,then the three points are ollinear.Point Sum: Adding two homogeneous points by oordinate,a+ b = (aW + bW ; aX + bX ; aY + bY );yields a point on the line ab, but it is not the same as the sum in Cartesian oordinates. Inhomogeneous oordinates, we denote the Cartesian sum by �,a� b = � aXaW ; aYaW �+ � bXbW ; bYbW � = (aW bW ; aXbW + aW bX ; aY bW + aW bY ):Line Intersetion: In homogeneous oordinates, the intersetion point of lines ab and d is[b; ; d℄a � [a; ; d℄b;where salar multipliation and vetor addition (subtration) is arried out in the usual fashion.This intersetion point lies on both edges ab and d if and only if ad and bd have oppositeirulation and ab and dab have opposite irulation.Other primitives an be alulated from these three. For example, if [a; b; ℄ = 0, then the threepoints are ollinear. To determine if b is between a and , selet a point d not on the line andhek if abd and bd have opposite irulations. For most geometri algorithms, the depth of thealulation is bounded. For example, omputing an arrangement of line segments requires thefollowing primitive: what is the irulation [h; e; f ℄ where h is the intersetion of ab and d? Thisprimitive is a onatenation of the line intersetion and irulation primitive,[h; e; f ℄ = [a; e; f ℄[b; ; d℄ � [a; ; d℄[b; e; f ℄:Note that any primitive an be redued to a polynomial expression on the input oordinates.2.4 Rounding Coordinate RepresentationsIn fat, in order to have an eÆient numerial implementation of a geometri algorithm, all prim-itives must be redued to polynomial expressions on the inputs. In this way, as Fortune and vanWyk and Shewhuk have demonstrated, it is possible to ompute the orret ombinatorial stru-ture of the output without expliitly omputing the oordinates of its points and lines. Shewhuk'smethod allows one to ompute the value of oordinates to any degree of auray.Hene, using Shewhuk's numerial methods and the onversions and primitives de�ned above, itis possible to 1) start with oating point (or integer) input oordinates, 2) ompute the exat om-binatorial output of any geometri algorithm on those inputs 3) alulate the nearest oating pointapproximations to the output oordinates. Applying shortest path rounding yields a ombinatorialstruture onsistent with these approximations.There are also methods for �nding good integer approximations, if that is desired. As previouslymentioned, Canny et al. [3℄ give a method for �nding aurate, low preision rational oordinateson the unit irle. Part of their method involves using ontinued frations to �nd good rationalapproximations to real numbers. Hene, their tehniques an be used to round to exat rationalpolar oordinates or exat rational Cartesian oordinates. In other work [34℄, we have shown howto use basis redution to �nd good rational orthonormal (rotation) matries in three dimensions.Part of this work involves �nding good integer approximations to homogeneous oordinates in threedimensions. The same tehnique also works in two dimensions to generate aurate lower preisioninteger approximations to homogeneous oordinates.7
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Figure 1: Shortest Path Geometri Rounding3 De�nition of Shortest Path RoundingThis setion gives a mathematial de�nition for shortest path rounding. It will help the reader tokeep in mind a simple example shown in Figure 1. Verties b and  round to lattie points b0 and0, and all other verties are already at lattie points. Verties b and  are not at lattie points,perhaps beause they have arisen from the intersetion of two line segments. This an happen ifpolygon abd resulted from the intersetion of two other polygonal regions. As b and  are roundedto lattie points, they must not \ross into" triangle efg. Under shortest path rounding, edge efbeomes a polygonal urve e0b0f .To give a rigorous mathematial de�nition of what is happening in this �gure, this setion �rstde�nes latties (sets of rounding sites), then straight line embeddings (the thing that is rounded),geometri rounding, and shortest path geometri rounding. It states the theorem that shortestpath roundings are geometri roundings, but the proof is postponed until Setion 5. An illustra-tion is given of a bizarre ase whih might arise when rounding in polar oordinates. This asedemonstrates the neessity of the areful de�nitions and proofs.3.1 LattiesGeometri rounding rounds verties to a \lower preision lattie". Preisely speaking, there is a setof sites S in the plane and a ell CELL(s) assoiated with eah site s 2 S suh that eah point p inthe plane lies in exatly one ell. The rounding funtion � takes p to the unique site s = �(p) 2 Ssuh that p 2 CELL(s).Shortest path rounding demands only that the ells be onneted. However, if the rounding ellCELL(�(v)) of some vertex v is not simply onneted, then there are topologially distint pathsalong whih one an round v to �(v). For example, v an travel to the left or to the right of a\hole" in CELL(�(v)) on the way to �(v) and even perhaps wind several times around the hole.This path an be represented as a rounding urve v that takes a point v to its rounding site �(v):v(0) = v, v(1) = �(v), and v(t) 2 CELL(�(v)), 0 � t � 1. It will be proved that the outputof shortest path rounding depends only on the topologial family of the urve: two urves belong8



to the same family if one is a topologial deformation of the other. If the rounding ell is simplyonneted, the family and hene the output of shortest path rounding is unique. If the roundingell is onneted but not simply onneted, one way to ensure a unique topologial family of urvesis to introdue uts in the rounding ell to eliminate holes.Consider, for example, rounding in polar oordinates. One might hoose to round all oordinates(r; �) with 0:5 < r < 1:5 and �180 < � � 180 to the point (1; 0). The region 0:5 < r < 1:5 is \ut"at � = �180 = 180. For 0 < � � 180, � is rounded downward to zero, and for �180 < � < 0, � isrounded upwards to zero.53.2 EmbeddingsAs Figure 1 illustrates, we are not merely rounding points to a lattie. We are also rounding linesegments. Preisely speaking, geometri rounding rounds a straight line embedding of a planargraph G = hV;Ei. In the �gure, graph G has verties V = fa; b; ; d; e; f; gg and edges E =fab; b; d; da; ef; fg; geg.In an embedding, the verties are distint and the edges meet only at their endpoints. In a straightline embedding, the edges must be line segments. In a general planar embedding, they an beurves. Edges in a straight line embedding an meet in a \V", but not a \T" or an \X", and theyannot share a ommon subsegment.The graph G has undireted edges. To represent some geometri objets, it may be neessary tohave direted edges and even multiple opies of edges. This level of ombinatorial detail an bebuilt \on top" of the undireted graph G. For example, one might hoose to assign a diretionto eah edge of the unrounded polygon in Figure 1 so that the boundary of eah polygon windsaround ounterlokwise. If the rounded polygon is thought of as a straight line embedding, thenedge b00 is undireted and appears only one. If the �gure is thought of as two abutting polygonsab00d and e0b0fg, then b00 appears twie with opposite orientation.3.3 Geometri RoundingAs Figure 1 illustrates, geometri rounding does not preserve straight lines. It does not preservethe graph either! However, it does yield a new straight line embedding whose verties lie at sites inS. The best way to de�ne geometri rounding is as a limit of topologially equivalent embeddings.Imagine moving b and  towards b0 = �(b) and 0 = �(). At the same time, line segment ef deformsinto e0b0f . Imagine further that the deforming segment always stays a little bit ahead of the twomoving verties until the very last \moment". Until the �nal \lik", the deforming embedding re-mains topologially equivalent to the original embedding. The limit is not topologially equivalent,but it is arbitrarily lose to embeddings whih are equivalent.The limit must have the property that all verties are at lattie sites and all edges beome polygonalurves with verties at the lattie sites of verties. Eah vertex v stays within its rounding ell as itmoves to �(v). We believe that this de�nition aptures the intuitive notion of a \good rounding".Here it is more formally.5An alternative to introduing uts into a rounding ell with holes is to expliitly speify a topologial family �vto whih v must belong. One might (bizarrely) insist that the rounding path for (r; �) winds around the origin �vetimes before reahing (1; 0). Shortest path rounding an handle this hoie, although one would probably not wantto do this in pratie! 9



De�nition 3.1 A deformation of the Eulidean plane is a ontinuous funtion,� : [0; 1℄ �E2 ! E2;suh that for any �xed t 2 [0; 1), �t(p) = �(t; p) is a bijetion.Note that �(1; p) is not a bijetion: verties may ollide and edges may ome in ontat at the\very last moment" (t = 1). However, the shape of the plane at t = 1 is learly the limit of a seriesof bijetions.De�nition 3.2 A geometri rounding of a straight line embedding G = hV;Ei to a lattie S isa deformation � of the plane with the following properties:1. for eah v 2 V , �(t; v) 2 CELL(�(v)) for t 2 [0; 1℄;2. for eah uv 2 E, �(1; �) deforms the segment uv into a polygonal path whih has verties onlyat lattie points of verties in V .3.4 Shortest Path RoundingIntuitively, the urve e0b0f is the shortest path from e to f that does not have b0 = �(b) and0 = �() to the \wrong side." Unfortunately, line segments do not truly divide the plane into twosides, and so this intuitive de�nition is not mathematially sound. However, now that we have aproper mathematial de�nition of geometri rounding, it is possible to �nally de�ne shortest pathrounding.De�nition 3.3 A shortest path rounding of an edge uv 2 E is a geometri rounding, withrespet to the subgraph Guv = hV; fuvgi of G, whih results in a shortest possible polygonal path(under �(1; �)) for segment uv.In other words, just round eah edge as if there are no other edges to worry about. The entraltheorem of shortest path rounding is that there exists a valid geometri rounding for G whih takeseah uv to the same shortest path. Also, the paths are proved to be unique. Sine the paths arethe only result one expliitly \sees" (� is impliit), the resulting rounding is therefore alled theshortest path rounding of G.Theorem 3.11. The path resulting from a shortest path rounding of an edge uv is independent of the hoie ofrounding urve w � CELL(�(w)) for eah w 2 V .62. The union of shortest path roundings of the individual edges of a straight line embedding of agraph G is a geometri rounding of G.The proof of Theorem 3.1 is postponed until Setion 5. Setion 4 �rst gives several algorithms foromputing shortest path roundings. These algorithms atually failitate the proof beause one ofthem learly satis�es Part 1 and the other learly satis�es Part 2. Proving the orretness of thetheorem and the algorithms is simply a matter of showing that the algorithms generate the sameoutput!6Assuming CELL(�(w)) is simply onneted or some way is hosen to ontrain the rounding urves to a singletopologial family (see Setion 3.1). 10
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(a) (b)Figure 2: Shortest Path Geometri Rounding: di�erent rounding ell for b0 = �(b). (Others remainthe same.)3.5 An IllustrationBefore seeing the algorithms, it might help the reader to examine how the shortest path roundingdepends on the shape of the rounding ell CELL(�(v)), even if v and �(v) are not hanged.Figure 2(a) illustrates a resent-shaped rounding ell for b0 and a path from b to b0 within this ell.If we use this path, the shortest path rounding is as shown in Figure 2(b). Edge ef beomes e0f ,fg beomes fb0g, ab beomes afb0, and b beomes b0f.Why is this rounding so di�erent? The rounding in Figure 1 uses a rounding ell that inludesthe straight line segment bb0. Most rounding methods have onvex rounding ells, and thereforeCELL(b0) would ontain this segment. Assuming f does not round to b0, it follows that f 62CELL(b0). A simply onneted rounding ell ould not ontain both bb0 and the urve from b tob0 depited Figure 2(a). If the ell ontained both urves, it would have had a hole, and we wouldhave ut it (Setion 3.1). Examples suh as this one an arise when one rounds in polar oordinates.Of ourse, the illustration greatly exaggerates the e�et, but the priniple is the same.4 Algorithms for Shortest Path RoundingThis setion presents three algorithms for shortest path rounding. For reasons that will beomeapparent later, we refer to these as the loally shortest path (loal path) algorithm, the globallyshortest path (global path) algorithm, and the monotone shortest path (monotone path) algorithm.The loal and global path algorithms an handle arbitrary latties. The monotone path algorithmis a speial ase of the global path algorithm, and it an only handle latties S = Sx�Sy whih arethe Cartesian produt of two one-dimensional latties. Rounding in x and y are done independently.11



The monotone path algorithm is very simple to implement, works for many useful latties, and itis the one we have been using in pratie for industrial appliations sine 1992.4.1 Loally Shortest Path AlgorithmThe loally shortest path (loal path) algorithm is best desribed using a physial analogy. Imaginethe edges of the embedding to be elasti and exible yet impenetrable. Verties b and move towardsedge ef , and when they meet it, the edge starts to deet and streth without letting them through.When b and  reah b0 and 0, edge ef has beome the path e0b0f .4.1.1 RepresentationThe representation of a deformed edge is simply the list of verties whih it touhes. Edge ef startsout as e; f . When b hits it (assume b hits it before ), it beomes e; b; f . When  hits it, it beomese; ; b; f . An additional tag is added to eah vertex to indiate whether it is \pushing on the edge"from the right or from the left.4.1.2 Speial TimesFor eah vertex v 2 V , the algorithm selets a rounding urve (Setion 3.1) v(t), 0 � t � 1. Sinethe rounding urve, by de�nition, must stay within the rounding ell, the output of the algorithmwill depend on the rounding ell, as is appropriate (see Figures 1 and 2). The state of the systemorresponds to a value of t plus the list of verties for eah deformed edge. Only ertain \speial"values of t need to be examined, and the algorithm visits these in inreasing order.A speial time of t ours whenever u(t), v(t), and w(t) are ollinear, for some u; v; w 2 V .Changes in the representation of the deformed edges an only our at speial times. A speialtime is a root of the equation, [u(t); v(t); w(t)℄ = 0; (3)where [u; v; w℄ is the irulation (Setion 2.3),[u; v; w℄ = ������� 1 ux uy1 vx vy1 wx wy ������� :For onvex rounding ells, v(t) = (1 � t)v + t�(v), v 2 V , and Equation 3 is quadrati in t.For rounding in polar oordinates, one might hoose to round r for 0 < t < 0:5 and round � for0:5 < t < 1. For t < 0:5, the rounding urves are line segments as in the onvex ase. For t > 0:5,the rounding urves are irular ars. Assuming the algorithm uses the rational parameterizationof a irle, the resulting equation is of degree six. In general, if v(t) is polygonal (pieewise linear),then the values of t at whih v(t) bends must also be added to the set of speial times. Pieewisepolygonal or pieewise rational urves an be handled similarly. This overs the types of urveswhih might be used in any imaginable appliation.4.1.3 Updating the Deformed EdgeAt eah speial time ti, the representation of an edge an hange. There are four ases to onsider,but there is really only one ase, and the other three result from reversing time, swithing left and12



right, or both. The two \forward time" ases have the following onditions:� u, v, and w are ollinear at time ti and v lies between u and w;� u and w are onseutive elements of the list of edge ab;� the irulation [u; v; w℄ (Equation 3) is inreasing (dereasing) in some neighborhood for t > ti.In these forward time ases, the algorithm adds v to the list between u and w and tags v as \tothe left" (\to the right") of edge ab. The two reverse time ases are the reverse of these. If v lieson uw and if v is tagged \left" (\right") and if the irulation is dereasing (inreasing) in someneighborhood t > ti, then v is removed from the list of ab and its tag is also removed.The loal path algorithm visits eah speial time in inreasing order and makes the appropriateupdate to the deformed edges at eah speial time. When it reahes t = 1, the deformed edges willbe the shortest path rounding. We postpone the proof of orretness until Setion 5.4.2 Globally Shortest Path AlgorithmThe globally shortest path (global path) algorithm determines the topology that a path should haveand then diretly omputes it. Before the embedding of G is rounded, eah edge uv 2 E is a straightline segment. After the verties of G are rounded to sites in S, the path orresponding to edge uvmust \go past" the rounded verties of G aording to the same topology. Two urves from �(u)to �(v) have the same topology (with respet to V ) if one an be ontinuously deformed into theother without passing through another rounded vertex �(w), w 2 V . The global path algorithmomputes the orret topology for an edge path and then onstruts the shortest path with thattopology. Atually, the shortest path is allowed to \touh" lattie points, and so it might have adi�erent topology, but it is a limit of urves with the orret topology. For example, the path e0b0fdoes not have the same topology as ef beause to \touhes" b0 and 0, but it is arbitrarily lose topaths whih do have the same topology as ef .The following three setions desribe how the global path algorithm 1) represents topologies, 2) al-ulates the topology of a path, and 3) onstruts the shortest path whih \satis�es" the topology(whih is the limit of paths with the orret topology).4.2.1 RepresentationThe standard method to represent a topology is through the use of simpliial omplies. In thisase, the simpliial omplex an be any triangulation of the set f�(v) j v 2 V g of rounded verties.However, if more than one vertex in V rounds to the same site, then that site must be repliateda like number of times. The luster of repliated sites is assigned a degenerate triangulation.To represent the topology of a path from site �(u) to site �(v) is to list the triangles through whihthe path passes. If two di�erent paths have the same list of triangles, then it is lear they have thesame topology. Unfortunately, two paths with the same topology may pass through a di�erent listof triangles. However, all topologially equivalent paths an be redued to a unique minimal listpath through the appliation of the following rules:Rule 1 � � � TiTjTi � � � ! � � � Ti � � � ;Rule 2 TjTi � � � ! Ti � � � ; where Ti and Tj have �(u) as a vertex,Rule 3 � � � TiTj ! � � � Ti; where Ti and Tj have �(v) as a vertex.13
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(b)Figure 3: Computing topology for path from a0 = �(a) to b0 = �(b).Rule 1 applies if the urve loops into triangle Tj from Ti and immediately out again. This loop anbe pulled out of Tj. Rule 2 applies if the urve leaves �(u) and passes through several trianglesneighboring �(u). All but one of these an be removed. Rule 3 is analogous to Rule 2.This notion of a anonial (minimal list) representation of a topologial path is a standard tehnique.It is lear that the anonial list an be generated from any list in linear time.4.3 Computing TopologiesSuppose that a rounds to a0 = �(a) and b rounds to b0 = �(b) where a; b 2 V and a0; b0 2 S. Thissetion shows how the global path algorithm omputes the topology of the path from a0 to b0. Theidea is to generate at least one path with the orret topology, alulate its list of triangles, andthen minimize that list using the rules of the previous setion.As usual, we assume that for eah v 2 V , we have hosen a rounding urve v(t) � CELL(�(v))that v follows to �(v). Given these urves, here is how the algorithm onstruts a path from a tob. It starts at a0, travels bak along the urve a to a and starts along the line segment ab. Everytime it hits a rounding urve v, it detours around it in the most \lazy" manner: it follows v to�(v), winds around �(v), and then travels bak along the other side of v bak to the line segmentab. It ontinues to follow ab and, if neessary, detour around rounding urves. When it reahes b,it follows b to b0 = �(b). Figure 3(a) illustrates a vertex v whose rounding path rosses ab twiebefore reahing v0 = �(v). Figure 3(b) illustrates the resulting path from a0 to b0.The global path algorithm must ompute intersetions between line segments and rounding urvesand must be able to ompute the triangle lists for these rounding urves. Setion 5 proves thatthe topology is independent of the hoie of v(t) � CELL(�(v)), and therefore one an hoose theurves that makes the omputations most onvenient. If the rounding ells are onvex, as theyare for most ommonly used latties, then one an hoose the urve v(t) = (1 � t)v + t�(v). Theglobal path algorithm need only ompute intersetions of line segments. For rounding in polaroordinates, one an hoose a urve onsisting of a line segment plus a irular ar. In this ase,the algorithm has to interset line segments with line segments or ars, requiring the solution of aquadrati equation.Note that the loal path algorithm involved roots of equations of higher degree{degree six in thease of rounding in polar oordinates{than the global path algorithm. Even though the global14



path algorithm is more ompliated, this di�erene in degree might make it easier to implement inpratie than the loal path algorithm.4.4 Computing Shortest PathsThe algorithm has omputed a triangulation on the rounding sites of V , and it has omputed a listof triangles for eah edge path. For a given edge uv 2 E, the path must start at �(u), pass throughtriangles T1; T2; T3; : : : ; Tm, and end at �(v). The path must be the shortest whih does so.Fortunately, there already exists an algorithm in the literature. Guibas et al. [17℄ give an algorithmfor omputing the shortest path from one vertex to another inside a simple polygon. Given atriangulation of the polygon, the algorithm runs in linear time. This algorithm works perfetly �neon a list of neighboring triangles.It should be emphasized that we are slightly extending the grasp of the existing shortest pathalgorithm. The polygon in Figure 4 does not appear to be a simple polygon. However, supposewe wish to ompute the shortest path from u to v whih passes through the list of triangles2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15. The algorithm an handle this task. As far as it is onerned,the seond appearanes of triangles 3 and 4 as triangles 13 and 14 are di�erent instantiations thanthe �rst appearanes. The input is a simple polygon that happens to be drawn on a spiral stairase,and we are looking at it from above. The reason that the algorithm an handle this ase is that itonly looks at the loal interations of the triangles.The list of triangles should almost always be a simple polygon anyway, but strange ases like thisan arise when rounding in polar oordinates. The path joining �(a) to �(b) annot interset itself,but it an enter the same triangle more than one.4.5 Monotone Shortest Path AlgorithmThis setion gives a omplete global path algorithm for the ase in whih S = Sx � Sy is theCartesian produt of two one-dimensional latties and in whih rounding is done independently foreah oordinate: �(v) = (�x(vx); �y(vy)), where �x and �y are the rounding funtions for the one-dimensional latties. For reasons given below, this is alled the monotone shortest path (monotonepath) algorithm. This algorithm is very simple and easy to implement. We have used it for industrialappliation software sine 1992.It is easy to see that a one-dimensional lattie has onneted rounding ells if and only if therounding funtion is monotone: if x1 < x2, then �x(x1) � �x(x2). This is one reason for thename of the algorithm. The other reason is that the output paths are always monotone in x andy. Spei�ally, let �(t) be the ar-length parameterization of the rounded path onneting tworounded verties �(u) and �(v), u; v 2 V . It follows that the x and y oordinates of �(t) are botheither non-inreasing or non-dereasing funtions of t.7 The path is also monotone with respet tothe segment �(u)�(v): eah point on the path has a unique perpendiular projetion onto �(u)�(v).4.5.1 High Level AlgorithmThe next setion gives an algorithm for7An equivalent de�nition is that every horizontal or vertial line intersets the path in either the empty set, asingle point, or a single line segment. 15
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FindShortest(A, B, P1, P2, : : :, Pn)whih �nds the shortest path from A to B whih stays to the orret side of Pi, i = 1; 2; 3; : : : ; n.FindShortest requires that the Pi's projet onto segment AB in monotone order:A �AB < P1 � AB � P2 �AB � P3 �AB � � � � � Pn � AB < B � AB;where � is the standard dot projet and whereAB = B�A, the vetor fromA to B. Eah Pi is taggedLEFT or RIGHT. Points Pi and Pj annot projet to the same point on AB (Pi � AB = Pj � AB)unless TAG(Pi) 6= TAG(Pj).Given a straight line embedding of a graph G = hV;Ei, the monotone shortest path geometrirounding algorithm rounds an edge ab 2 E as follows. It sets A = �(a) and B = �(b). It takesthe rounded verties �(v), v 2 V , whih projet onto AB (A � AB < �(v) � AB < B � AB) andsorts them in order of projetion position �(v) � AB. If two verties u; v 2 V on the left of lineab ([a; b; u℄; [a; b; v℄ > 0) projet to the same point (�(u) � AB = �(v) � AB), it disards the fartherone: �(u) is farther from AB than �(v) if j[A;B; �(u)℄j > j[A;B; �(v)℄j. The algorithm similarly�lters verties on the right. It sets P1; P2; P3; : : : ; Pn equal to the sorted lattie sites (roundedverties) and tags them LEFT or RIGHT aording to the status before rounding. Finally, it allsFindShortest. The output is the shortest path rounding of edge ab.Beause rounding in eah oordinate is monotoni, the monotone path algorithm only needs toonsider verties v 2 V inside the bounding box of edge ab: min(ax; bx) < vx < max(ax; bx)min(ay; by) < vy < max(ay; by). If v lies in the bounding box, then �(v) will projet onto �(a)�(b).Also, it an eliminate verties whih lie farther than �ab from ab, where �ab is the maximum widthor height of a lattie rounding ell interseting the bounding box of ab. It is usually not diÆult toalulate �ab or a good upper bound on it for a given hoie of lattie. For example, if Sx and Syare both the lattie of representable oating point numbers, then �ab = 2�� max(jaxj; jayj; jbxj; jbyj),where � is the number of bits in the mantissa (53 on most omputers).Remember that that the purpose of geometri rounding is to deal the oasional near-singular asesthat rash naively implemented geometri algorithms. In most irumstanes, few if any verties liewithin �ab of any given edge ab. Furthermore, the ost of �nding these verties is modest and roughlyproportional to the rate they our. Usually, one has already onstruted a trapezoidalization orsome other searh struture on the arrangement of line segments. Finding verties whih satisfythe epsilon test is simply a matter of deteting \at" or \pinhed" trapezoids.4.5.2 Shortest Path AlgorithmThis setion gives an algorithm for FindShortest desribed in the previous setion. This algorithmis a speial ase of Guibas et al. algorithm for shortest path in a simple polygon. The algorithmfor FindShortest uses two subroutines, AddLeft and AddRight, whih are de�ned �rst.In the following, Path, Left, and Right are double-ended staks. PushHead, PopHead, PushTail,and PopTail do the obvious things. Path.Head[0℄ is the urrent \head" of the stak. Path.Head[1℄is the element one away from the \head" end of the stak. After FindShortest is exeuted, Pathontains the desired shortest path. While the algorithm is exeuting, Left is the path that satis�esthe onstraints seen so far and \veers left" as muh as possible. Similarly, Right is the path that\veers right" as muh as possible. Whenever it is determined that Left and Right have a ommonpre�x, that part is added to the end of Path. 17



AddLeft (P , Path, Left, Right)while Left:Size > 1A Left:Head[1℄B  Left:Head[0℄if [A;B; P ℄ � 0Left.PopHeadelse breakLeft.PushHead (P )if Left:Size = 2 and Right:Size > 1while Right:Size > 1A Right:Tail[0℄B  Right:Tail[1℄if [A;B; P ℄ � 0Right.PopTailLeft.PopTailLeft.PushTail (Right.Tail[0℄)Path.PushHead (Right.Tail[0℄)else breakRight.PushHead (P )end AddLeft
AddRight (P , Path, Right, Left) is analogous to \AddLeft" with the roles of Right and Left swithed.
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FindShortest (A, B, P1, P2, : : :, Pn)Path.PushHead(A)Left.PushHead(A)Right.PushHead(A)for i 1 to nif TAG(Pi) = LEFTAddLeft (Pi, Path, Left, Right)else AddRight (Pi, Path, Left, Right)AddLeft (B)AddRight (B)return Pathend FindShortest5 ProofsThe loal path algorithm and the global path algorithm are two ways of omputing shortest pathroundings. They also provide two halves of the proof of Theorem 3.1, the entral theorem of shortestpath rounding. This setion proves the orretness of these algorithms and proves the entraltheorem in three steps. First, it de�nes a loally shortest path rounding for an edge and proves thatit is unique and equal to the shortest path rounding (De�nition 3.3). Next it proves that the globalpath algorithm generates a shortest path rounding that satis�es Part 1 of of Theorem 3.1. Finally,it proves that the loal path algorithm generates a loally shortest path rounding that satis�esPart 2 of Theorem 3.1. Taken together, these results prove the theorem.5.1 Loally Shortest Path RoundingGiven a straight line embedding of a graph G = hV;Ei, let us suppose that we have a path from �(a)to �(b), ab 2 E, that avoids all other rounded verties �(v), v 2 V . Suppose we have triangulatedthe rounded verties (Setion 4.2.1), and the path passes through the (minimal) list of trianglesT1; T2; T3; : : : ; Tn. It is possible to parameterize the path �(t) so that �(0) = �(a), �(n+1) = �(b),and �(t) 2 Ti, i� 1 � t � i. For t = i, �(t) 2 Ti \ Ti+1, whih means that urve rosses the edgeommon to Ti and Ti+1. Note that under this parameterization, �(t) might stay �xed for t in someintervals [i� 1; i℄.To deal with the ase that � passes through �(v), let us onsider � to be a urve,(t; �(t)) � [0; n� 1℄�E2:This allows us to arti�ially \tag" portions of the urve as being \in" di�erent triangles, even if�(t) is not varying. Spei�ally, for i � 1 < t < i, (t; �(t)) is \in" Ti and no other triangle, eventhough �(t), t 2 [i�1; i℄ might be �xed at �(v) of Ti and therefore an element of all triangles whihmeet at this vertex. Similarly, for t = i, (t; �(t)) is passing through the edge ommon to Ti andTi+1, and no other.Let Ti = �(u)�(v)�(w) where [�(u); �(v); �(w)℄ > 0. (If Ti is degenerate, then Ti must be the limitof triangles with positive irulation.) Suppose (t; �(t)) passes through �(u)�(v) for t = i � 1 and19
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vFigure 5: Curve (dashed) making a right turn at u0 = �(u) whih is to its left. This urve an bemade shorter without hanging topology.through �(u)�(w) for t = i, then for i � 2 < t < i + 1, �(u) lies \to the left" of �. \To the right"is de�ned similarly. Sine the list of triangles is minimal, � annot enter a triangle and then leavethrough the same edge. Therefore \to the left" and \to the right" are well-de�ned. Furthermore,for any sublist of triangles Ti; : : : ; Tj whih share a ommon vertex �(v), the de�nition is onsistentover the sublist.Let t 2 [i; j℄ be a maximal interval on whih �(t) = �(v) for some v 2 V . The path �(t) \turnsleft" at �(v) for t = i if the sublist Ti; : : : ; Tj winds around �(v) at least one ounterlokwise orit makes a left turn in the onventional sense (and the sublist does not wind around �(v) at leastone lokwise). \Turns right" is de�ned analogously.De�nition 5.1 A loally shortest path geometri rounding of an edge ab in an embeddingof G = hV;Ei is a geometri rounding of ab that only turns left at �(u), u 2 V , to its left and thatonly turns right at �(v), v 2 V , to its right.Figure 5 depits a urve that \turns right" at a vertex \to its left." This urve an be made shorterloally by taking a shortut near the vertex.Lemma 5.1 The loally shortest path geometri rounding of an edge is unique.Proof: Suppose we have two loally shortest paths �(t) and �(t) from �(a) to �(b). Suppose thatthey are not equal. This means that there is some value t0 of t at whih they diverge. Without lossof generality, �(t) is to the right of �(t) in a neighborhood of t > t0: the angle between the tangentvetors �0(t0) and � 0(t0) is positive (ounterlokwise). The urves � and � annot rejoin unlesseither � makes a left turn or � makes a right turn. However, the urves an only turn as they rosssome edge �(u)�(v) of the triangulation. (They must ross the same edges in the same order atthe idential values of t.) Curve � annot pass through �(u) beause � intersets �(u)�(v) loser to�(u), and similarly, urve � annot pass through �(v). But � an only make a right turn at �(v) and� an only make a left turn at �(u) (see Figure 6). If � makes a right turn or � makes a left turn,then the angle of divergene beomes larger, never smaller. (Note: the angle annot grow greater20
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Figure 6: Curve � makes a left turn at u0 = �(u) to its left. The divergene between urves � and� inreases.than 180 degrees otherwise � and � ould not both pass through the next edge.) Therefore, if theurves diverge, they an never rejoin. This ontradits the fat that �(n + 1) = �(n + 1) = �(b).Therefore, the urves must be equal.5.2 Global Path LemmaLemma 5.2 The global path algorithm generates a shortest path geometri rounding for eah edgeof the embedding, and that path is independent of the hoie of rounding urves v(t), v 2 V .Proof: The global path algorithm \loosely" threads the edge path from �(a) to �(b) past eahrounded lattie point. To make sure it has the orret topology, it detours around eah roundingurve that the edge from �(a) to �(b) intersets. One it has the orret topology, it \pulls thestring tight," omputing the shortest path for that topology. It is lear that the topology isorret, and we will not give an expliit onstrution of the deformation of the plane that takes theinitial embedding to the \loosely threaded" intermediate embedding. The deformation would besomething like dragging �ngers through frosting, where eah �nger starts at some v 2 V , followsv and stops at �(v).If any v is modi�ed ontinuously without leaving CELL(�(v)), then it annot sweep through anyother rounded vertex �(u), u 2 V , beause �(u) 62 CELL(�(v)). Therefore, the \loosely threaded"path varies ontinuously too, and does not sweep through any rounded vertex. This means thatontinuously modifying v does not hange the �nal topology. Sine the output of the algorithmonly depends on the topology (minimal list of triangles), the output is independent of the roundingurves v, v 2 V .
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5.3 Loal Path LemmaLemma 5.3 The loal path algorithm generates a loally shortest path geometri rounding for eahedge, and the union of these paths is a geometri rounding of the entire straight line embedding.Proof: The loal path algorithm is a physial simulation. It is possible to give a mathematialproof, but a \physial" proof is simpler and more omprehensible.The algorithm simulates the result of moving fritionless partiles (verties) pressing against exible,elasti, impenetrable strings. The strings do not vibrate or \wave about", and therefore the systemremains at (loal) minimum potential energy at all times. For an elasti string, the potential energyis proportional to the length of the string. Therefore, the length of eah path (representing an edgein the original embedding) is always at a loal minimum for the given topology.The shape of eah string path depends only on the evolution of the verties, not on the preseneof other paths. Furthermore, eah path reats appropriately to all moving verties whih impingeon it. Therefore, it is not possible for a moving vertex to push one string \through" another.We ould endow eah vertex and eah edge (string) with a small thikness. Eah vertex would berepresented by its enter, and eah edge would be represented by its medial axis (the portion joiningthe enters of the two vertex endpoints). It is lear that for suÆiently small thikness, the physialmotion an be made arbitrary lose to the ideal zero-thikness ase. The enters and medial axesare a deformation of the original embedding with the same topology: axes/enters annot ome intoontat beause of the \thikness" surrounding them. When eah vertex in the thik model reahesits �nal resting plae, one an shrink the thikness down to zero. At the moment the thiknessreahes zero, the enters and axes beome idential to the output of the loal path algorithm. Thisdemonstrates that there exists a topologial deformation of the original embedding whose limit isthe set of loally shortest paths.This physial argument demonstrates that the loal paths satisfy the de�nition of a geometrirounding. Sine we have shown they have (loal) minimum length, this proves the lemma.5.4 Central Theorem of Shortest Path RoundingThis setion proves Theorem 3.1, the entral theorem of geometri rounding in Setion 3.3 (page 10).Proof: By Lemma 5.3, the loal path algorithm generates a geometri rounding of the entirestraight line embedding. However, sine this is a physial simulation algorithm, the output mightonly be a loal minimum of the path length, and it might depend on the hoie of roundingurves v, v 2 V . However, Lemma 5.2 shows that the topology of the global minimum lengthgeometri rounding for eah individual edge is independent of the hoie of rounding urves. Finally,Lemma 5.3 proves that there is only one loal or global minimum length path for a given topology.Therefore, the loal path algorithm and the global path algorithm generate the same output, andthese are a geometri rounding of the entire embedding.6 AppliationsThis setion illustrates one of the ways we use shortest path rounding in pratie. Sine 1991,we have been developing algorithms for layout in the apparel industry. The basi problem is strip22



paking: given polygons P1; P2; : : : ; Pk and a retangle of �xed width and undetermined length, �ndthe non-overlapping layout of the polygons with minimum length. In apparel appliations, fabrihas a grain, and thus eah polygon has between one and eight valid orientations. The generalstrip paking problem is NP-hard. In pratie, k is 100 or more, and the problem is intratable.However, we have shown that translational algorithms for modest values of k (1 � k � 10), arevery useful in the development of heuristis or approximate algorithms for muh larger values of kwith multiple allowed orientations.One useful algorithm is translational minimum area enlosure: given P1; P2; : : : ; Pk, �nd the layoutunder translation with the minimum area bounding retangle. Aside from its usefulness in pra-tie, this algorithm is an \aid test" for geometri rounding. It asades algorithms for polygondeomposition, Minkowski sum, union, intersetion, omplement, onvex hull, and linear program-ming. These algorithms do not apply transformations to the oordinates, but they use all threeonstrution primitives mentioned in Setion 1: 1) join points to make lines, 2) interset lines tomake points, and 3) add two points. In addition, the linear programming algorithm generates newpoint oordinates by solving a system of linear equations: in this ase, 2(k+1) equations whose o-eÆients are linear or quadrati in the input point oordinates. The depth of omputation (numberof asades) is arbitrary, even for a single problem instane. Furthermore, the minimum enlosurealgorithm \deliberately seeks" degenerate ases.We have desribed most of our layout algorithms in journal and onferene papers and tehnialreports [21, 7, 23, 5, 30, 29, 6, 8, 33℄. We have also liensed the implementations to industry. Thissetion summarizes the minimum enlosure algorithm to give the reader an idea of how the problemof asading an arise in pratie.6.1 Displaement SpaesTo solve the minimum enlosure problem, we solve a set of deision problems: does there exista retangle of area A whih an ontain the polygons? This deision problem is redued to adisplaement equation, tj � ti 2 Uij ; 0 � i < j � k + 1; (4)where t1; t2; : : : ; tk are the translations applied to the polygons and where t0 and tk+1 are thelower-left and upper-right orners of the enlosing retangle.8 Exept for U0;k+1, the Uij regionsare bounded depth onstrutions on P1; P2; : : : ; Pk. (For instane, Uij = Pi ��Pj, 1 � i < j � k,where � is the Minkowski sum.) In theory, U0;k+1 = f(x; y) jx�y�Ag is bounded by a hyperbola.However, we use a polygonal approximation to the hyperbola. As a result, only polygonal operationsare required, but the algorithm generates an enlosure whose area is an approximation to theminimum.The minimum enlosure algorithm uses binary searh to �nd the minimum area. Whenever thedeision problem has a solution, the algorithm applies ompation [21, 23℄ (atually, a slight gen-eralization), whih moves the layout to a loal minimum area. This greatly speeds up the binarysearh. However, sine ompation involves no asading, we will not summarize it here.8We always set t0 = (0; 0), but it is easier to desribe mathematially and implement in this more general form.
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6.2 Solving the Displaement EquationsWe refer to the list U = hUij j 0 � i < j � k + 1i of displaement spaes as a hypothesis beauseit orresponds to the hypothesis that there exists a layout with that partiular area. To solveEquation 4, the minimum enlosure algorithm applies three operations to a hypothesis: restrition,evaluation, and subdivision. Restrition replaes one or more Uij by a subset without hanging thetruth value of the hypothesis (without throwing away any valid solutions). Evaluation attempts to�nd a solution within a given hypothesis. Subdivision selets one pair i; j and splits Uij into U+ij andU�ij . Replaing Uij by either of these generates two sub-hypotheses U+ and U�. The hypothesisU is true if and only if U+ is true or U� is true. Evaluation is not onstrutive. Subdivision onlyinvolves intersetion with two half-planes, although the overall depth of subdivision is arbitrary.Restrition an involve unbounded asading.The minimum enlosure algorithm employs two types of restrition: geometri restrition and linearprogramming (LP) restrition. Geometri restrit performs the following substitution,Uij  Uij \ (Uih � Uhj); 0 � i < j � k + 1; 0 � h � k + 1; h 6= i; j;where Uih is de�ned to be �Uhi if h < i. The algorithm applies this restrition repeatedly untila \steady state" is reahed. In pratie, we stop when the derease in area drops below a �xedfration. Geometri restrition arbitrarily asades the operations of intersetion and Minkowskisum.Linear programming restrition shrinks eah Uij in a di�erent way. It �rst onstruts an outeronvex approximation to the displaement equation,tj � ti 2 CH(Uij); 0 � i < j � k + 1;where CH(Uij) is the onvex hull of Uij. Using an adaptation of the simplex method, it onstrutsthe range of th� tg under this onvex approximation. The range is a onvex polygonal region Cgh.The following substitution is a valid restrition,Ugh  Ugh \ Cgh:It applies this substitution for eah pair g; h until a steady state is reahed. Again, the asadingis arbitrary. In addition to straight-edge onstrutions, linear programming generates new pointoordinates by solving 2(k + 1) linear equations in 2(k + 1) variables. The oeÆients of theseequations are linear or quadrati in the oordinate of the verties of the displaement spaes.6.3 ResultsFigure 7 illustrates the minimum enlosure algorithm on �ve input polygons. Thanks to ompation,the algorithm an apply a very \lop-sided" binary searh. Iteration 1 is a square ontainer withompation applied. For iterations 2-5, the algorithm set the target area to be 1% less than theprevious layout after ompation. Iteration 5 was infeasible. The algorithm set the target foriteration 6 to be 0.01% smaller than the area of iteration 4, and similarly, iteration 7 and 8 havetargets 0.01% than the previous layouts after ompation. Iteration 8 was infeasible, and thereforeiteration 7 is within 0.01% of optimum. The polygonal approximation to the hyperbola had 100verties, whih introdues an additional error of at most 0.01%.The running times ranged from 2 minutes for iteration 1 to 45 minutes for iteration 8. Total timeon a DEC Alpha 3000/700 is about 2.5 hours.9 Solving iteration 8 required 318 subdivisions and9This omputer is advaned 1994 tehnology. A 1998 PC (400MHz Pentium II) is about twie as fast.24
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Figure 7: Minimal enlosing retangle of �ve polygons with 55, 61, 66, 65 and 72 verties.
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steady state restritions. Eah of these 318 steady state restritions involves a onsiderable amountof asading, and in addition, the depth of subdivision averaged about 9. Iteration 7 required 246subdivisions and 34 minutes. These iterations braket the tightest possible layout.Without geometry rounding, this type of alulation would simply be impossible. With geometryrounding, we see no numerial problems at all, even for this near-degenerate and highly asadedonstrution.7 Analysis and ConlusionsThe previous setion demonstrates that geometri rounding is an absolute neessity, at least forsome important appliations. However, shortest path rounding is not the only type of geometrirounding. For the integer grid, Setion 1.2.2 disussed Greene-Yao rounding and snap roundingas alternative types of rounding. This setion presents the ways in whih shortest path geometrirounding is a better hoie than these other two rounding tehniques.It should be emphasized that running time is not a ritial issue in the hoie of rounding tehnique.All three rounding tehniques essentially run in time linear in the number of verties added to eahrounding path. As indiated in Setion 4.5.1, the lattie point �(v) for vertex v 2 V an onlyappear on the rounding path for edge ab 2 E if it is very \near" to ab, and this should be a rareourrene.The shortest path algorithm in Setion 4.5.2 performs a number of irulation tests whih is pro-portional to the number of distane alulations required for snap rounding. For programs in whihsnap rounding is appliable, swithing from snap rounding to shortest path rounding only inreasesa small fration of the running time by a small fator. It may not even be possible to measure theoverall di�erene in running time.The more important issue is how muh \damage" rounding inits when it does beome neessary.Setions 7.1 and 7.2 show that on integer grids, shortest path rounding introdues less geometriand ombinatorial error than the other rounding methods. Another issue is the generality of therounding tehnique. Setion 7.3 gives several reasons why it is useful to round on a non-uniformgrid, whih only shortest path rounding an handle.7.1 Rounding on the Integer GridAll three rounding methods replae a line segment ab by a polygonal path from �(a) to �(b). Theverties of the path are at lattie points. If the lattie is the integer grid, then a lattie point p anbe a vertex of the path only if ab intersets CELL(�(p)), in whih ase we say that p is near ab. Ifp is �(v) for some v 2 V , then we say that p is a vertex lattie point. Snap rounding replaes ab bya path joining all near vertex lattie points.Greene-Yao rounding does not neessarily \tie" the path to all near vertex lattie points. It tiesthe path to �(v) only if v�(v) rosses ab. However, it does not permit the path to \sweep past"any lattie point, even non-vertex lattie points, as it is \pulled" to these speial lattie points. Asa result, it ends up adding 
(log jabj) extra non-vertex lattie points to the path for every vertexlattie point on the path. For a grid of pixels, typially about 1000 by 1000 on urrent graphisdisplays, ln jabj is perhaps not too large. Other industrial appliations generally require higherauray. Using a 106 by 106 grid might mean that 10 to 20 non-vertex lattie points are added for26



eah vertex lattie point on the path. For suh appliations, this number of \extra" verties wouldmake Greene-Yao rounding an impratial hoie.Shortest path rounding does not \tie" the path to any verties, exept of ourse �(a) and �(b).Even if v�(v) rosses ab, �(v) might not be a vertex on the rounded path. Vertex v \pushes" onthe path as v rounds to �(v), but other verties might push it past �(v). In partiular, u and w,u;w 2 V might be near to v and on the same side of ab. If v and �(v) lie on the same side ofsegment �(u)�(w), then as u and w push on the path, they will push it \past" �(v), and �(v) willnot lie on the path. Unlike Greene-Yao rounding, shortest path rounding only puts vertex lattiepoints on the path, and these path verties are a subset of the points on the snap rounding path.107.2 Analysis of ErrorSnap rounding and shortest path rounding both add many fewer verties to the rounded pathsthan Greene-Yao rounding, and shortest path rounding adds somewhat fewer verties than snaprounding. Also, the shortest path has the minimum possible deviation from the original linesegment. How signi�ant is the di�erene between snap rounding and shortest path rounding?The di�erene is \merely" a onstant fator. However, asading an multiply these onstants intoexponential di�erenes. This setion argues that for eah vertex that snap rounding puts on arounding path, shortest path rounding will put that vertex on the path with a probability between1=6 and one-quarter. Shortest path rounding introdues a geometri error with a standard deviationabout 1=3 of the error introdued by snap rounding. The standard deviation of the appropriatemeasure of error: asaded rounding is essentially a random walk, and the result of a random walkis a Gaussian who standard deviation is proportional to the standard deviation of the roundingdistribution.7.2.1 Combinatorial ErrorWe simplify the analysis11 by onsidering only the ase in whih exatly one vertex lattie point�(v) lies near to ab (ab intersets CELL(�(v))). Snap rounding always puts �(v) onto the path.Shortest path rounding puts �(v) on the path only if v and �(v) lie on opposite side of ab. Assumingthat the distane from �(v) to ab is uniformly distributed and that v is uniformly distributed inCELL(�(v)), one an show that v lies in the portion of CELL(�(v)) on the side of ab opposite from�(v) with probability 1=6 if ab has 45 degree slope and with probability one-quarter if ab has 0degree or 90 degree slope.7.2.2 Geometri ErrorIn analyzing the standard deviation, we will onsider only the ase in whih ab either rounds to�(a)�(b) or �(a)�(v)�(b). The question is, what is the standard deviation of the error introduedby vertex v? Sine we are only onerned with the ratio of standard deviations, we will all themaximum deviation one \unit". If ab has 45 degree slope, one unit of error is atually p2=2. If abhas 0 or 90 degree slope, one unit of error is 1=2.If �(v) lies near ab, then snap rounding will always snap to �(v). The deetion along the path�(a)�(v)�(b) is uniformly distributed from 0 to the distane Æ from �(v) to �(a)�(b). Therefore10The subset an be improper: the two paths might be the same.11For this reason, we all this setion an \argument", not a \proof".27



the distribution of deetion varies aording to the following distribution: selet Æ uniformly from[0; 1℄ and then selet � uniformly from [0; Æ℄. The error � has the distribution � ln �. The standarddeviation is 1=3.If �(v) lies near ab and it is the only vertex whih does so, then shortest path rounding will only snapthe path to �(v) if v�(v) intersets ab. For this to happen, v must lie in the portion of CELL(�(v))that is on the opposite side of ab from �(v). If ab has 45 degree slope, this event has probability(1� Æ)2=2, and if ab has 0 or 90 degree slope, the probability is (1� Æ)=2. For the 45 degree ase,the distribution of error along the segment is onstruted as follows: selet Æ uniformly from [0; 1℄and then selet � uniformly from [0; Æ℄ with probability (1 � Æ)2=2 but set � = 0 with probability1� (1� Æ)2=2. The 0 or 90 degree is analogous. The 45 degree distribution is,�14�2 + �� 12 ln �� 34 ;and the 0 or 90 degree distribution is, 12�� 12 ln �� 12 :Surprisingly, these both have the same standard deviation: 1=p72. This is 1=2p2 � 1=3 times thestandard deviation of snap rounding.7.3 Non-Uniform GridsThe most ommon non-uniform numerial representation is oating point: mantissa plus exponent.Obviously oating point would not be as popular as it is if it did not have many tehnial advantages.One advantage is that is seamlessly handles hanges in sale or unit. We �rst liensed our layoutsoftware to Mirodynamis, In., whih used a unit of 0.01 inh. Gerber Garment Tehnologies(GGT) bought Mirodynamis and took over the liense. GGT uses a unit of 0.001 inh. Oursoftware used integer arithmeti and the integer grid. As a onsequene, it had some absolute ratherthan relative tolerane values. Unfortunately, aommodating GGT was not simply a matter ofhanging onstants and reompiling: they still had to servie the former Mirodynamis ustomers.We ould have avoided all of this inonveniene if we had used oating point omputations androunded to the oating point grid. Of ourse, Shewhuk's work (Setion 2.1) was not available atthat point in time.We emphasize again that it is not neessary to ompute the nearest oating point oordinate toevery exat oordinate. Shortest path rounding an round to any lattie set S as long as therounding ells are onneted. The easiest way to aomplish this is to use a round-to-neareststrategy: the rounding ells are simply the onvex Voronoi ells of S. Sine the rounding ells areonvex, the rounding urves an be straight line segments. When a point needs to be rounded, thesystem an hek to see if it is lose enough to an existing vertex lattie point in S. If not, a newlattie point an be added to S. This approah involves point loation and update of a Voronoidiagram, both very well understood problems. It would use the global path algorithm.If the rounding needs to be independent of a spei� xy oordinate frame, then one would use theapproah in the previous paragraph. Otherwise, it is even simpler to use the loal path algorithm.Maintain a set Sx of x lattie oordinates and a set Sy of y lattie oordinates. These sets an bebuilt inrementally. To round a point (x; y), round eah oordinate to the nearest existing x and ylattie oordinates in Sx and Sy. If the nearest is too far, ompute an approximation to x and/or28



y and add these to Sx and/or Sy. Maintaining an ordered set of numbers with �nd-nearest andinsert operations is a very well understood problem. This approah would use the monotone pathalgorithm. This is the approah we would reommend in pratie.7.4 ConlusionMany ommon, useful, and pratial appliations of omputation geometry have exponential spaeand time owing to numerial issues and asading. Geometri rounding redues the ost to whatit would be in the absene of asading. Numerial error is the prie paid for this redued ost,but this tradeo� is a reasonable and well-understood priniple of numerial omputing. Geometryrounding does not require any modi�ation of the geometri algorithm or their exat arithmetiimplementation. The algorithm an even use symboli perturbation.Shortest path geometri rounding introdues the minimum geometri deviation of any method thatintrodues only vertex lattie points (meaning that the only verties in the output are roundedloations of verties in the input). On the integer grid, it introdues many fewer verties thatGreene-Yao rounding and fewer verties and less deetion than snap rounding.Unlike other rounding methods, shortest path rounding an handle any onneted lattie, evenrounding in polar oordinates, but most importantly, the oating point lattie. The global pathalgorithm uses standard, easily implemented algorithms of omputation geometry: triangulation,segment intersetion, and shortest path in a simple polygon. The monotone path algorithm is evensimpler to implement and use, and a omplete implementation is given in this paper.Shortest path rounding has very low overhead. In ombination with numerial tehniques forexat oating point omputation, it o�ers the ideal implementation for any algorithm on polygonalregions: oating point input, exat omputation, ost per arithmeti operation a little more thanhardware oating point, rounded oating point output. Finally, its use is well-established in liensedindustrial appliation software.Referenes[1℄ C. Bajaj and T. K. Dey. Polygon nesting and robustness. Inform. Proess. Lett., 35:23{32,1990.[2℄ Behnke, Bahmann, Fladt, and Kunle. Fundamentals of Mathematis, Volume II: Geometry.MIT Press, Cambridge, MA, 1974.[3℄ J. Canny, B. R. Donald, and E. K. Ressler. A rational rotation method for robust geometrialgorithms. In Pro. 8th Annu. ACM Sympos. Comput. Geom., pages 251{260, 1992.[4℄ Wei Chen, Koihi Wada, and Kimio Kawaguhi. Parallel robust algorithms for onstrutingstrongly onvex hulls. In Pro. 12th Annu. ACM Sympos. Comput. Geom., pages 133{140,1996.[5℄ K. Daniels. Containment algorithms for nononvex polygons with appliations to layout. Ph.D.thesis, Harvard University, Cambridge, MA, 1995.[6℄ K. Daniels and V. Milenkovi. Column-based strip paking using ordered and ompliantontainment. In Pro. 1st ACM Workshop on Appl. Comput. Geom., pages 33{38, 1996.29
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