Algorithmica, 27 (1) (2000), pp. 57-86.

Shortest Path Geometric Rounding

Victor J. Milenkovic *
Department of Mathematics and Computer Science
University of Miami, Coral Gables, FL. 33124
vjm@cs.miami.edu, http://www.cs.miami.edu/vjm

July 27, 2000

Abstract

Exact implementations of algorithms of computational geometry are subject to exponential
growth in running time and space. In particular, coordinate bit-complexity can grow expo-
nentially when algorithms are cascaded: the output of one algorithm becomes the input to the
next. Cascading is a significant problem in practice. We propose a geometric rounding tech-
nique: shortest path rounding. Shortest path rounding trades accuracy for space and time and
eliminates the exponential cost introduced by cascading. It can be applied to all algorithms
which operate on planar polygonal regions, for example, set operations, transformations, convex
hull, triangulation, and Minkowski sum. Unlike other geometric rounding techniques, shortest
path rounding can round vertices to arbitrary lattices, even in polar coordinates, as long as the
rounding cells are connected. (Other rounding techniques can only round to the integer grid.)
On the integer grid, shortest path rounding introduces less combinatorial change and geometric
error than the other rounding methods. Three algorithms are given for shortest path round-
ing, one of which we have used in industrial application software since 1992. In combination
with recent advances in exact floating point evaluation of numerical primitives, shortest path
geometric rounding yields a practical solution to numerical issues in computational geometry.
Geometric algorithms can be implemented exactly on floating point input coordinates; the exact
output coordinates can be rounded to accurate floating point approximations; and the cost of
each arithmetic operation is only a little more than if it were implemented as a single hardware
floating point operation.

Keywords: Computational geometry, Robust Geometry, Numerical Analysis, Numerical
Issues, Rounding.

*This research was funded by NSF grants CCR-91-157993 and 97-12401 and by the Alfred P. Sloan Foundation.

1 Introduction

A number of very useful algorithms on planar polygonal objects have been described in the com-
putational geometry literature. Among these are union, intersection, complement, Minkowski sum,
convex hull, and triangulation (or other decomposition) of polygonal regions in the plane. Given
an initial set of points and lines or line segments, these algorithms use only a few binary construc-
tive geometric primitives: 1) join two points to create a new line or line segment, 2) intersect two
lines or line segments to generate a new point, and 3) add two points (coordinate-wise) together
to generate a new point. Symbolically, each point or line (segment) that an algorithm outputs lies
at the root of a binary “construction tree” whose leaves are the input points or lines and whose
nodes are constructive primitives. For most algorithms, these trees have constant depth. However,
when CAD systems and other software systems apply these algorithms, they do not apply them in
isolation. Usually, the algorithms are cascaded: the output from one algorithm becomes the input
to another. Also, these systems might construct new points and lines by translating, rotating, scal-
ing, or applying other transformations to geometric objects. From an algorithmic point of view,
transformations are trivial, yet they also add to the numerical “history” of points and lines. In
practice, the height of the construction tree for a point or line can grow without bound.

This paper argues that no matter which exact numerical representation one chooses, the space
required to represent a point or line (segment) grows ezponentially with the height of its construc-
tion tree. As a consequence, the running time of geometric algorithms also grows exponentially.
To avoid exponential cost, a geometric system must employ rounding. Rounding trades accuracy
for cost. Of course, rounding is not a new idea: for more than 30 years, computers have had
hardware-supported rounded floating point arithmetic. An entire mature field of discipline, nu-
merical analysis, addresses the problems arising from implementing numerical algorithms using
rounded arithmetic. Unfortunately, geometric algorithms are subtly and exquisitely sensitive to
rounding in ways not addressed by numerical analysis. For many years, such numerical problems
were thought to be “bugs,” but it is now well understood that one cannot naively (or even not so
naively) implement geometric algorithms using rounded floating point arithmetic in place of exact
real arithmetic.

This paper presents a technique called shortest path geometric rounding for rounding sets of points
and line segments. Green and Yao first introduced the idea of rounding an arrangement of line
segments to an integer grid [16]. Each line segment is replaced by a polygonal curve in a way that
(in some sense) preserves the topology of the arrangement. Geometric rounding has the advantage
that it is applied to geometric objects after they have been generated by a geometric algorithmn,
and therefore it solves the problem of exponential cost (albeit at the price of reducing accuracy)
without any modification of existing geometric algorithms. Unlike Green and Yao’s algorithm
and snap rounding [15, 19] (see also [18]), shortest path geometric rounding 1) introduces the
minimum possible geometric error, 2) introduces the minimum combinatorial change, and 3) can
round vertices to any rounding lattice with connected rounding cells. The other methods can only
round to the integer lattice. We argue that statistically, shortest path rounding causes 1/6 to 1/4
the combinatorial damage and introduces about 1/3 the excess geometric error introduced by snap
rounding. Shortest path rounding is also easy to use in practice, we have used it for industrial
layout algorithms since 1992. As we describe later in the paper, these layout algorithms use a
variety of geometric algorithms and have arbitrary cascading, even for a single layout problem.

The following section argues that exact methods are likely to have exponential cost no matter how
one implements them. Section 1.2 compares shortest path rounding to other geometric rounding

algorithms and other techniques for implementing geometric algorithms using rounded arithmetic.
Section 1.3 gives an outline for the rest of the paper.

1.1 The Cost of Cascading

This section examines the cost of cascading geometric algorithms without rounding. The basic
problem is that the number of bits in each output coordinate can be two or more times the number
of bits in each input coordinate. Cascading causes this bit-complezity to grow exponentially with
the number of operations. One might think that this worst case is difficult to attain or that there is
some special way to represent derived coordinates that avoids exponential growth. Unfortunately,
these are vain hopes. This section shows that any exact arithmetic calculation can be encoded as
cascaded geometry, and it is easy to give an example of exact arithmetic with exponential growth in
bit complexity. In short, eliminating rounding from the field of computational geometry is equivalent
to eliminating rounding from the field of numerical analysis.

To simplify the analysis, we consider only straight-edge constructions: 1) join two points to generate
a line and 2) intersect two lines to generate a point.! As previously stated, these are not the only
way to generate new points; however, almost every geometric algorithm uses these two. Goodrich,
Pollack, and Sturmfels [14] describe arrangements of points and lines whose realizations on the
integer grid must have exponential bit-complexity. Their technique uses a geometric implementation
of repeated squaring. In fact any arithmetic operation can be implemented given a straight-edge
and a finite collection of reference points [2]:

Lemma 1.1 Given the integer grid points (z,vy), |z|,|y| € {0,1}, the following transformations
can be done using O(1) straight-edge constructions:

(a,0) — (a,0),(b,0); (1)

(a70)7(b70) — (a’_l_b?O)?(a’_b?O)?(a.b70)7(a/b70)7(a’7b)' (2)
Lemma 1.1 implies that an exact geometric system with cascading can perform any exact calculation
on integers or exact rational numbers. The following lemma shows that exact arithmetic necessarily
has exponential growth in bit-complexity.

Lemma 1.2 Given the set {1} and the operations + and -, the set of all integers in the range from
1 to 22" can be constructed in 2k generations, for all k> 0.

Proof: Clearly 1 =1,2=1+1,3=(1+1)+1,4=(1+1)-(1+1), and so the lemma holds for
k = 1. Assume the lemma holds for k¥ =1 — 1. Any number in the range 1 to 22' can be written as,

(22#1 m) +n,

where m and n are in the range 1 to 227", By the assumption, each number in this expression
is in generation 2(! — 1). Performing the multiplication and addition only adds two generations,
and therefore the number is in generation 2[. This proves the lemma for £ = [and finishes the
induction. [

!These are classical straight-edge and compass constructions—but without the compass!

Keep in mind that 2k is the height of the construction tree, not the number of nodes, and therefore
the number of operations might be much larger than the number of generations. However, repeated
squaring can generate large numbers using very few operations. In particular, repeated squaring
can generate 22" ink+1 generations and k + 1 operations. Every realization of the corresponding
geometric structure (Lemma 1.1) in the integer grid requires bit-complexity at least lg 22" = ok,
This is essential the result of Goodrich et al. This section has shown that this result is not an
isolated case. Any large number that can arise in a non-geometric calculation can also arise in a
geometric calculation.

1.2 Related Work

The previous section establishes that rounding is unavoidable in general. This section discusses
methods for implementing algorithms of computational geometry in the presence of rounding.
Section 1.2.1 discusses four approaches, including geometric rounding. Section 1.2.2 discusses tech-
niques for geometric rounding.

1.2.1 Robust Geometry

Many geometric systems achieve a high level of robustness though the application of tolerances and
heuristics, usual over a long period of testing and use in practice. However, these systems are not
provably correct. There are essentially four theoretically sound approaches to including rounding
into geometric algorithms. These approaches are generally called “robust geometry.”

Data Normalization [32, 24]: Carry out computations using rounded floating point arithmetic.
Alter the geometry and combinatorial structure to eliminate ill-conditioned computations. For
example, if vertex c is too close to edge ab to determine on which side it lies, then “crack” ab into
ac and cb. Advantages: Uses hardware floating point and generates explicit geometric structures.
Disadvantages: Requires modification of geometric algorithms and has unbounded geometrical
and combinatorial error.

Consistent (Stable) Computation [24, 28, 22, 1, 4, 9, 10, 12, 20, 22, 38]: Use hardware float-
ing point and make consistent symbolic decisions in the case of an ambiguous numerical tests.
Advantages: uses hardware floating point and sometimes has better bounds on error than data
normalization. Disadvantages: Decisions have implicit rather than explicit realizations which
makes geometric reasoning difficult. Only works with specific algorithms, and sometimes requires
subtle changes. Proving existence of consistent, numerical accurate, realizations is tedious and

difficult.

Combinatorics-Preserving Geometric Rounding: Use exact arithmetic with any algorithm.
Round output geometric structure to lower precision without changing combinatorial structure. In
the example with ab and ¢, round a, b, and c in such a way that ab and ¢ move apart. Advantages:
can use any algorithm and has no combinatorial error. Disadvantages: no one knows how to do
it. Might have large geometric error. Some versions are known to be NP-hard [31].

Geometric Rounding [16, 25, 26, 27, 35, 18]: Use exact arithmetic with any algorithm. Round
output to lower precision, changing combinatorial structure if necessary. For example, if ¢ rounds to
the other side of ab, spit ab into ac and cb. Advantages: works with any algorithm on roundable
objects and has bounded error. Disadvantages: changes combinatorial structure.

1.2.2 Geometric Rounding

There are currently five techniques for geometric rounding.

Green-Yao [16]: This was the earliest geometric rounding technique, and it rounds line segments
to the integer lattice. Treat the line segment ab as a flexible elastic string. Pull ¢ and b to the
nearest lattice points p(a) and p(b). For every other vertex v, if the segment vp(v) intersects
ab, pull the segment to p(v). Do not allow the rest of string to move past any integer lattice
point. Advantages: bounded error, good for graphics applications, might be generalizable to
other lattices. Disadvantages: introduces Q(n log |ab|) “excess” lattice points onto the segment,
where 7 is the number of vertices to which the segment it pulled.

Snap Rounding [15, 19]: Various researchers have discovered this technique for rounding line
segments to the integer grid.? Each vertex rounds to the nearest lattice point. To round ab,
determine rounding cells of rounded vertices that intersect ab. Replace ab by the polygonal curve
that visits the lattice points of these rounding cells. Advantages: very simple, bounded error,
does not introduce any extra lattice points. Disadvantages: does not appear to generalize to
other lattices. Introduces more vertices on polygonal curve than necessary.

Shortest Path Rounding [26, 25, 35]: This technique replaces ab by the shortest path that keeps
all other rounded vertices to the “correct” side. This paper describes a somewhat more general
version than we have previously described in conference papers (Section 4.5) and used in practice.
Advantages: can handle any lattice with connected rounding cells (Section 3.1). Introduces
minimum geometric and combinatorial error. Simple to use in practice. Disadvantages: not clear
how to generalize to three dimensions.

CSG Rounding [37]: Given a CSG (constructive solid geometry) representation of an object,
round CSG primitives and then reconstruct the tree. Advantages: works in three dimensions.
Disadvantages: suitable for set operations and transformations, not decompositions, convex hull,
or Minkowski sum. Topology might be unpleasantly altered.

Manifold Rounding [11]: Given a manifold representation of a polyhedral solid, round equations
of faces. If rounded solid is self-intersecting, retain only the “unburied” portion of the bound-
ary. Advantages: three dimensional, intuitive topology change, bounded error. Disadvantages:
suitable for set operations and transformations, not decomposition, convex hull, or Minkowski sum.

1.3 Outline

Section 2 describes different possible numerical representations, algorithms for exact arithmetic,
and lattices including the floating point lattice and the homogeneous coordinate lattice. These are
perhaps more useful in practice than the integer lattice. Section 3 gives a rigorous definition of
geometric rounding in general and shortest path rounding in particular. Section 4 gives three algo-
rithms for shortest path rounding, including the specialized version we use most often in practice.
Section 5 proves the correctness of shortest path rounding and the algorithms for constructing it.
Section 6 discusses our experiences in practice. It sketches an algorithm for layout of polygons
which has unbounded cascading, and it shows how geometric rounding has made it possible for us

2At the 1989 Canadian Conference on Computational Geometry, this author discussed it as a alternative to
shortest path rounding (on the integer grid) which introduced more vertices but was somewhat simpler to implement
(although this discussion did not appear in the abstract [26]). In the software we developed in 1992 for set operations
on polygons, we put in a compiler directive to switch to snap rounding to check to see if there was a significant
difference in running time. There is no significant difference.

to create and license to industry a working implementation of this algorithm. Finally, Section 7
shows that shortest path rounding introduces less combinatorial and geometric error than other
rounding methods on integer lattices, and it discusses why it is useful

2 Numerical Issues in Computational Geometry

This section discusses numerical issues in computational geometry. Section 2.1 discusses represen-
tations for single or multiple precision integer, rational, and floating point numbers and techniques
for performing exact arithmetic in these domains. Section 2.2 describes several common repre-
sentations for geometric points. Section 2.3 shows how geometric primitives can be reduced to
polynomial expressions on the point coordinates. Finally, Section 2.4 puts these techniques to-
gether to implement geometric algorithms. These implementations 1) perform arithmetic almost
as fast as using hardware floating point for all operations, 2) calculate the correct combinatorial
structure corresponding to exact arithmetic on the input coordinates, and 3) generate accurate out-
put coordinates rounded to floating point, to lower precision integers, or to lower precision rational
numbers.? Shortest path rounding, as described in subsequent sections, then “sensibly” alters the
geometry and combinatorial structure to make it consistent with these rounded coordinates.

2.1 Numerical Representations

Computer arithmetic is discrete, and essentially the only type of number which can be represented
on a computer is an integer. All modern computers also support a floating point representation
with an integer mantissa and exponent. Most computers have hardware devoted for floating point
operations which make floating point operations faster than integer operations.

The most common hardware integer type is 31 bits plus a sign bit*, and the most common floating
point (“double precision”) has a 53-bit mantissa and 10-bit exponent plus sign bits for each. It is
often convenient to use the floating point data type to store integers with up to 53 bits.

A rational number can be represented as an ordered pair of integers. There are a number of repre-
sentations for integers or rational numbers with a more than 53 bits. Traditionally, a “BIGNUM?”
is a list of integers. Fortune and van Wyk [13] survey some of these representation. Shewchuk [36]
has more recently presented a simple, elegant multiple precision floating point representation. Each
number is represented as a list of hardware double precision values whose sum is the number being
represented. This representation can handle any number with 1023 bits both to the right and to
the left of the “binary point”.

Both Fortune and van Wyk and Shewchuk show that geometric primitives of bounded depth, such
as the circulation test (Section 2.3) can be carried out to arbitrary precision in practice using only a
little more time than that required for 53 bits of precision. The trick is that they quickly calculate
the first 53 significant bits and only calculate more bits if necessary. In practical applications,
calculation of primitives rarely require multiple precision. In other words, it rarely happens that a
vertex c is so close to an edge ab that more than 53 bits of precision are required to determine on
which side of ab it lies.

3In order for the implementation to be almost as fast a native floating point, the output coordinates lose as much
accuracy as predicted by numerical analysis. Greater accuracy has greater computational cost but still modest if
Shewchuk’s techniques are used (see below).

“The actual representation is 2’s complement, but this does change the available precision.

2.2 Coordinate Representations

A geometric system can use either points or lines as primitive elements. In this paper, we will
consider only representations of points. Geometric points can be represented using an ordered pair
(z,y) in Cartesian coordinates, using homogeneous coordinates (W, X,Y'), or using polar coordinates
(r,0), where

T =— =rcosf and y = — =rsin6.

In the case of polar coordinates, one can avoid the transcendental functions sin and cos by using a
rational parameterization of the unit circle,

0 1—t* 2t
wt)=|——,—= |-
1+t271+¢2
For —1 < ¢ < 1, w(t) nearly uniformly (|w'(¢)] < 2) covers the unit circle to the right of the y-
axis. The left half is parameterized by reflection. Canny, Donald, and Ressler [3] describe how to

generate a dense set of rational values for ¢ to uniformly cover the unit circle to any desired degree
of precision.

Different numerical representations can be used with the geometric representations. The coor-
dinates of (x,y) can be integers, rationals (ordered pairs of integers), or floating points. The
coordinates of (W, X,Y) can be integers or floating points. Rationals are not necessary since one
can always “clear the denominators” of the homogeneous coordinates. In the rational parameter-
ization of polar coordinates, r can be integer, rational, or floating point, and ¢ can rational or
floating point.

2.3 Geometric Primitives

Only three numerical geometric primitives are required to implement most algorithms on points,
lines, and line segments: circulation, point sum, and segment intersection. It is most convenient
to use homogeneous coordinates because these allow the primitives to be expressed using only
addition, subtraction, and multiplication of integers or floating point numbers. These operations
can be carried out exactly and quickly using the techniques cited in Section 2.1.

Converting Cartesian coordinates to homogeneous is trivial (z,y) — (1,z,y). If z and y are
rational, then one can clear the denominator,

Ty Y
<—", —") = (ZaYd> TnYd, YnTa)-
Td Yd

Assuming, r and ¢ have rational values, polar coordinates can also be easily converted to homoge-
neous coordinates,
(T—”, t—”) S (ra(t2 + £2), (12 — £2), 2rntatn).
rq td
All division, rounding, and converting back to Cartesian or polar coordinates can be postponed
until after the algorithm has executed. This is discussed in the next section.

Circulation: We assume all negative W coordinates are made positive: (W, X,Y) — (=W, —-X,-Y)
if W < 0. The circulation [a, b, ¢] of points a, b, and c is a 3x3 determinant,

aw ax ay
[a7 b7 C] = bW bX bY
Cw Cx Cy

Triangle abc winds counterclockwise if [a, b, ¢] > 0 and winds clockwise if [a, b, c] < 0. If [a,b,c] = 0,
then the three points are collinear.

Point Sum: Adding two homogeneous points by coordinate,
a+b=(aw +bw,ax + bx,ay + by),

yields a point on the line ab, but it is not the same as the sum in Cartesian coordinates. In
homogeneous coordinates, we denote the Cartesian sum by @,

b b
a®b= <—aX ; o) + <—X ,—) = (awbw,axbw + awbx,aybw + awby).
aw aw bw " bw

Line Intersection: In homogeneous coordinates, the intersection point of lines ab and cd is
[b,c,d]a — [a,c,d]b,

where scalar multiplication and vector addition (subtraction) is carried out in the usual fashion.
This intersection point lies on both edges ab and cd if and only if acd and bed have opposite
circulation and cab and dab have opposite circulation.

Other primitives can be calculated from these three. For example, if [a,b,c] = 0, then the three
points are collinear. To determine if b is between a and ¢, select a point d not on the line and
check if abd and cbd have opposite circulations. For most geometric algorithms, the depth of the
calculation is bounded. For example, computing an arrangement of line segments requires the
following primitive: what is the circulation [h, e, f] where h is the intersection of ab and c¢d? This
primitive is a concatenation of the line intersection and circulation primitive,

[h,e, f] = [a, e, f][b,c,d] — [a,c,d][b,e, f].

Note that any primitive can be reduced to a polynomial expression on the input coordinates.

2.4 Rounding Coordinate Representations

In fact, in order to have an efficient numerical implementation of a geometric algorithm, all prim-
itives must be reduced to polynomial expressions on the inputs. In this way, as Fortune and van
Wyk and Shewchuk have demonstrated, it is possible to compute the correct combinatorial struc-
ture of the output without explicitly computing the coordinates of its points and lines. Shewchuk’s
method allows one to compute the value of coordinates to any degree of accuracy.

Hence, using Shewchuk’s numerical methods and the conversions and primitives defined above, it
is possible to 1) start with floating point (or integer) input coordinates, 2) compute the exact com-
binatorial output of any geometric algorithm on those inputs 3) calculate the nearest floating point
approximations to the output coordinates. Applying shortest path rounding yields a combinatorial
structure consistent with these approximations.

There are also methods for finding good integer approximations, if that is desired. As previously
mentioned, Canny et al. [3] give a method for finding accurate, low precision rational coordinates
on the unit circle. Part of their method involves using continued fractions to find good rational
approximations to real numbers. Hence, their techniques can be used to round to exact rational
polar coordinates or exact rational Cartesian coordinates. In other work [34], we have shown how
to use basis reduction to find good rational orthonormal (rotation) matrices in three dimensions.
Part of this work involves finding good integer approximations to homogeneous coordinates in three
dimensions. The same technique also works in two dimensions to generate accurate lower precision
integer approximations to homogeneous coordinates.

Figure 1: Shortest Path Geometric Rounding

3 Definition of Shortest Path Rounding

This section gives a mathematical definition for shortest path rounding. It will help the reader to
keep in mind a simple example shown in Figure 1. Vertices b and ¢ round to lattice points b’ and
d’, and all other vertices are already at lattice points. Vertices b and ¢ are not at lattice points,
perhaps because they have arisen from the intersection of two line segments. This can happen if
polygon abed resulted from the intersection of two other polygonal regions. As b and ¢ are rounded
to lattice points, they must not “cross into” triangle efg. Under shortest path rounding, edge ef
becomes a polygonal curve ec'd’f.

To give a rigorous mathematical definition of what is happening in this figure, this section first
defines lattices (sets of rounding sites), then straight line embeddings (the thing that is rounded),
geometric rounding, and shortest path geometric rounding. It states the theorem that shortest
path roundings are geometric roundings, but the proof is postponed until Section 5. An illustra-
tion is given of a bizarre case which might arise when rounding in polar coordinates. This case
demonstrates the necessity of the careful definitions and proofs.

3.1 Lattices

Geometric rounding rounds vertices to a “lower precision lattice”. Precisely speaking, there is a set
of sites S in the plane and a cell CELL(s) associated with each site s € S such that each point p in
the plane lies in exactly one cell. The rounding function p takes p to the unique site s = p(p) € S
such that p € CELL(s).

Shortest path rounding demands only that the cells be connected. However, if the rounding cell
CELL(p(v)) of some vertex v is not simply connected, then there are topologically distinct paths
along which one can round v to p(v). For example, v can travel to the left or to the right of a
“hole” in CELL(p(v)) on the way to p(v) and even perhaps wind several times around the hole.
This path can be represented as a rounding curve -y, that takes a point v to its rounding site p(v):
Y (0) = v, v (1) = p(v), and 7,(t) € CELL(p(v)), 0 < t < 1. It will be proved that the output
of shortest path rounding depends only on the topological family of the curve: two curves belong

to the same family if one is a topological deformation of the other. If the rounding cell is simply
connected, the family and hence the output of shortest path rounding is unique. If the rounding
cell is connected but not simply connected, one way to ensure a unique topological family of curves
is to introduce cuts in the rounding cell to eliminate holes.

Consider, for example, rounding in polar coordinates. One might choose to round all coordinates
(r,0) with 0.5 < r < 1.5 and —180 < # < 180 to the point (1,0). The region 0.5 < r < 1.5 is “cut”
at € = —180 = 180. For 0 < 0 < 180, € is rounded downward to zero, and for —180 < # < 0, @ is
rounded upwards to zero.’

3.2 Embeddings

As Figure 1 illustrates, we are not merely rounding points to a lattice. We are also rounding line
segments. Precisely speaking, geometric rounding rounds a straight line embedding of a planar
graph G = (V,E). In the figure, graph G has vertices V = {a,b,c,d,e, f,g} and edges £ =
{ab,be, cd, da,ef, fg,ge}.

In an embedding, the vertices are distinct and the edges meet only at their endpoints. In a straight
line embedding, the edges must be line segments. In a general planar embedding, they can be
curves. Edges in a straight line embedding can meet in a “V”, but not a “T” or an “X”, and they
cannot share a common subsegment.

The graph G has undirected edges. To represent some geometric objects, it may be necessary to
have directed edges and even multiple copies of edges. This level of combinatorial detail can be
built “on top” of the undirected graph G. For example, one might choose to assign a direction
to each edge of the unrounded polygon in Figure 1 so that the boundary of each polygon winds
around counterclockwise. If the rounded polygon is thought of as a straight line embedding, then
edge b/’ is undirected and appears only once. If the figure is thought of as two abutting polygons
ab'c'd and ec'b' fg, then b'c’ appears twice with opposite orientation.

3.3 Geometric Rounding

As Figure 1 illustrates, geometric rounding does not preserve straight lines. It does not preserve
the graph either! However, it does yield a new straight line embedding whose vertices lie at sites in
S. The best way to define geometric rounding is as a limit of topologically equivalent embeddings.

Imagine moving b and ¢ towards b’ = p(b) and ¢’ = p(c). At the same time, line segment ef deforms
into ec'd’ f. Imagine further that the deforming segment always stays a little bit ahead of the two
moving vertices until the very last “moment”. Until the final “click”, the deforming embedding re-
mains topologically equivalent to the original embedding. The limit is not topologically equivalent,
but it is arbitrarily close to embeddings which are equivalent.

The limit must have the property that all vertices are at lattice sites and all edges become polygonal
curves with vertices at the lattice sites of vertices. Each vertex v stays within its rounding cell as it
moves to p(v). We believe that this definition captures the intuitive notion of a “good rounding”.
Here it is more formally.

®An alternative to introducing cuts into a rounding cell with holes is to explicitly specify a topological family ¢,
to which 7, must belong. One might (bizarrely) insist that the rounding path for (r,6) winds around the origin five
times before reaching (1,0). Shortest path rounding can handle this choice, although one would probably not want
to do this in practice!

Definition 3.1 A deformation of the Euclidean plane is a continuous function,
7:[0,1] x B —» E%

such that for any fized t € [0,1), m(p) = w(t,p) is a bijection.

Note that 7(1,p) is not a bijection: vertices may collide and edges may come in contact at the
“very last moment” (¢ = 1). However, the shape of the plane at ¢ = 1 is clearly the limit of a series
of bijections.

Definition 3.2 A geometric rounding of a straight line embedding G = (V, E) to a lattice S is
a deformation w of the plane with the following properties:

1. for each v € V, w(t,v) € CELL(p(v)) for t € [0, 1];

2. for each uwv € E, ©(1,-) deforms the segment uv into a polygonal path which has vertices only
at lattice points of vertices in V.

3.4 Shortest Path Rounding

Intuitively, the curve ec'd’f is the shortest path from e to f that does not have b = p(b) and
¢ = p(c) to the “wrong side.” Unfortunately, line segments do not truly divide the plane into two
sides, and so this intuitive definition is not mathematically sound. However, now that we have a
proper mathematical definition of geometric rounding, it is possible to finally define shortest path
rounding.

Definition 3.3 A shortest path rounding of an edge wv € E is a geometric rounding, with
respect to the subgraph G, = (V,{uv}) of G, which results in a shortest possible polygonal path
(under w(1,-)) for segment uv.

In other words, just round each edge as if there are no other edges to worry about. The central
theorem of shortest path rounding is that there exists a valid geometric rounding for G which takes
each uv to the same shortest path. Also, the paths are proved to be unique. Since the paths are
the only result one explicitly “sees” (w is implicit), the resulting rounding is therefore called the
shortest path rounding of G.

Theorem 3.1

1. The path resulting from a shortest path rounding of an edge uv is independent of the choice of
rounding curve v, C CELL(p(w)) for each w € V.5

2. The union of shortest path roundings of the individual edges of a straight line embedding of a
graph G is a geometric rounding of G.

The proof of Theorem 3.1 is postponed until Section 5. Section 4 first gives several algorithms for
computing shortest path roundings. These algorithms actually facilitate the proof because one of
them clearly satisfies Part 1 and the other clearly satisfies Part 2. Proving the correctness of the
theorem and the algorithms is simply a matter of showing that the algorithms generate the same
output!

® Assuming CELL(p(w)) is simply connected or some way is chosen to contrain the rounding curves to a single
topological family (see Section 3.1).

10

Figure 2: Shortest Path Geometric Rounding: different rounding cell for &' = p(b). (Others remain
the same.)

3.5 An Illustration

Before seeing the algorithms, it might help the reader to examine how the shortest path rounding
depends on the shape of the rounding cell CELL(p(v)), even if v and p(v) are not changed.

Figure 2(a) illustrates a crescent-shaped rounding cell for &’ and a path from b to b’ within this cell.
If we use this path, the shortest path rounding is as shown in Figure 2(b). Edge ef becomes ec' f,
fg becomes fb'g, ab becomes afb’, and bc becomes V' fc.

Why is this rounding so different? The rounding in Figure 1 uses a rounding cell that includes
the straight line segment bb’. Most rounding methods have convex rounding cells, and therefore
CELL(Y') would contain this segment. Assuming f does not round to ¥, it follows that f &
CELL(bY'). A simply connected rounding cell could not contain both b6’ and the curve from b to
b' depicted Figure 2(a). If the cell contained both curves, it would have had a hole, and we would
have cut it (Section 3.1). Examples such as this one can arise when one rounds in polar coordinates.
Of course, the illustration greatly exaggerates the effect, but the principle is the same.

4 Algorithms for Shortest Path Rounding

This section presents three algorithms for shortest path rounding. For reasons that will become
apparent later, we refer to these as the locally shortest path (local path) algorithm, the globally
shortest path (global path) algorithm, and the monotone shortest path (monotone path) algorithm.
The local and global path algorithms can handle arbitrary lattices. The monotone path algorithm
is a special case of the global path algorithm, and it can only handle lattices S = S, x S, which are
the Cartesian product of two one-dimensional lattices. Rounding in x and y are done independently.

11

The monotone path algorithm is very simple to implement, works for many useful lattices, and it
is the one we have been using in practice for industrial applications since 1992.

4.1 Locally Shortest Path Algorithm

The locally shortest path (local path) algorithm is best described using a physical analogy. Imagine
the edges of the embedding to be elastic and flexible yet impenetrable. Vertices b and ¢ move towards
edge ef, and when they meet it, the edge starts to deflect and stretch without letting them through.
When b and ¢ reach b’ and ¢/, edge ef has become the path ecd' f.

4.1.1 Representation

The representation of a deformed edge is simply the list of vertices which it touches. Edge ef starts
out as e, f. When b hits it (assume b hits it before ¢), it becomes e, b, f. When ¢ hits it, it becomes
e,c,b, f. An additional tag is added to each vertex to indicate whether it is “pushing on the edge”
from the right or from the left.

4.1.2 Special Times

For each vertex v € V, the algorithm selects a rounding curve (Section 3.1) 7,(¢), 0 <t < 1. Since
the rounding curve, by definition, must stay within the rounding cell, the output of the algorithm
will depend on the rounding cell, as is appropriate (see Figures 1 and 2). The state of the system
corresponds to a value of ¢ plus the list of vertices for each deformed edge. Only certain “special”
values of ¢ need to be examined, and the algorithm visits these in increasing order.

A special time of ¢ occurs whenever 7, (t), v, (t), and 7,(t) are collinear, for some u,v,w € V.
Changes in the representation of the deformed edges can only occur at special times. A special
time is a root of the equation,

[Yu(t), Y0 (t), 7w ()] = O, (3)
where [u, v, w] is the circulation (Section 2.3),
I ug uy
[u,v,w] = 1 vy wy
1wy wy

For convex rounding cells, v,(t) = (1 — t)v + tp(v), v € V, and Equation 3 is quadratic in t.
For rounding in polar coordinates, one might choose to round r for 0 < ¢ < 0.5 and round @ for
0.5 <t < 1. For t < 0.5, the rounding curves are line segments as in the convex case. For ¢t > 0.5,
the rounding curves are circular arcs. Assuming the algorithm uses the rational parameterization
of a circle, the resulting equation is of degree six. In general, if v, (t) is polygonal (piecewise linear),
then the values of ¢ at which 7, (¢) bends must also be added to the set of special times. Piecewise
polygonal or piecewise rational curves can be handled similarly. This covers the types of curves
which might be used in any imaginable application.

4.1.3 Updating the Deformed Edge

At each special time t;, the representation of an edge can change. There are four cases to consider,
but there is really only one case, and the other three result from reversing time, switching left and

12

right, or both. The two “forward time” cases have the following conditions:

e u, v, and w are collinear at time ¢; and v lies between v and w;
e u and w are consecutive elements of the list of edge ab;

e the circulation [u, v, w| (Equation 3) is increasing (decreasing) in some neighborhood for ¢ > ¢;.

In these forward time cases, the algorithm adds v to the list between v and w and tags v as “to
the left” (“to the right”) of edge ab. The two reverse time cases are the reverse of these. If v lies
on yw and if v is tagged “left” (“right”) and if the circulation is decreasing (increasing) in some
neighborhood ¢ > ¢;, then v is removed from the list of ab and its tag is also removed.

The local path algorithm visits each special time in increasing order and makes the appropriate
update to the deformed edges at each special time. When it reaches ¢ = 1, the deformed edges will
be the shortest path rounding. We postpone the proof of correctness until Section 5.

4.2 Globally Shortest Path Algorithm

The globally shortest path (global path) algorithm determines the topology that a path should have
and then directly computes it. Before the embedding of G is rounded, each edge uv € E is a straight
line segment. After the vertices of G are rounded to sites in S, the path corresponding to edge uv
must “go past” the rounded vertices of G according to the same topology. Two curves from p(u)
to p(v) have the same topology (with respect to V') if one can be continuously deformed into the
other without passing through another rounded vertex p(w), w € V. The global path algorithm
computes the correct topology for an edge path and then constructs the shortest path with that
topology. Actually, the shortest path is allowed to “touch” lattice points, and so it might have a
different topology, but it is a limit of curves with the correct topology. For example, the path ec't f
does not have the same topology as ef because to “touches” b’ and ¢/, but it is arbitrarily close to
paths which do have the same topology as ef.

The following three sections describe how the global path algorithm 1) represents topologies, 2) cal-
culates the topology of a path, and 3) constructs the shortest path which “satisfies” the topology
(which is the limit of paths with the correct topology).

4.2.1 Representation

The standard method to represent a topology is through the use of simplicial complices. In this
case, the simplicial complex can be any triangulation of the set {p(v) |v € V'} of rounded vertices.
However, if more than one vertex in V' rounds to the same site, then that site must be replicated
a like number of times. The cluster of replicated sites is assigned a degenerate triangulation.

To represent the topology of a path from site p(u) to site p(v) is to list the triangles through which
the path passes. If two different paths have the same list of triangles, then it is clear they have the
same topology. Unfortunately, two paths with the same topology may pass through a different list
of triangles. However, all topologically equivalent paths can be reduced to a unique minimal list
path through the application of the following rules:

Rulel - TI;T;--- — T,
Rule 2 T — Tp---, where T; and T; have p(u) as a vertex,
Rule 3 T, = T where T; and T; have p(v) as a vertex.

13

(b)

Figure 3: Computing topology for path from o’ = p(a) to b’ = p(b).

Rule 1 applies if the curve loops into triangle T} from T; and immediately out again. This loop can
be pulled out of T;. Rule 2 applies if the curve leaves p(u) and passes through several triangles
neighboring p(u). All but one of these can be removed. Rule 3 is analogous to Rule 2.

This notion of a canonical (minimal list) representation of a topological path is a standard technique.
It is clear that the canonical list can be generated from any list in linear time.

4.3 Computing Topologies

Suppose that a rounds to a’ = p(a) and b rounds to b’ = p(b) where a,b € V and do’,b’ € S. This
section shows how the global path algorithm computes the topology of the path from a’ to b’. The
idea is to generate at least one path with the correct topology, calculate its list of triangles, and
then minimize that list using the rules of the previous section.

As usual, we assume that for each v € V', we have chosen a rounding curve ~,(t) C CELL(p(v))
that v follows to p(v). Given these curves, here is how the algorithm constructs a path from a to
b. It starts at o/, travels back along the curve 7, to a and starts along the line segment ab. Every
time it hits a rounding curve -y,, it detours around it in the most “lazy” manner: it follows =, to
p(v), winds around p(v), and then travels back along the other side of «, back to the line segment
ab. 1t continues to follow ab and, if necessary, detour around rounding curves. When it reaches b,
it follows 7, to ' = p(b). Figure 3(a) illustrates a vertex v whose rounding path crosses ab twice
before reaching v' = p(v). Figure 3(b) illustrates the resulting path from a’ to b'.

The global path algorithm must compute intersections between line segments and rounding curves
and must be able to compute the triangle lists for these rounding curves. Section 5 proves that
the topology is independent of the choice of 7,(t) C CELL(p(v)), and therefore one can choose the
curves that makes the computations most convenient. If the rounding cells are convex, as they
are for most commonly used lattices, then one can choose the curve 7,(t) = (1 — t)v + tp(v). The
global path algorithm need only compute intersections of line segments. For rounding in polar
coordinates, one can choose a curve consisting of a line segment plus a circular arc. In this case,
the algorithm has to intersect line segments with line segments or arcs, requiring the solution of a
quadratic equation.

Note that the local path algorithm involved roots of equations of higher degree—degree six in the
case of rounding in polar coordinates—than the global path algorithm. Even though the global

14

path algorithm is more complicated, this difference in degree might make it easier to implement in
practice than the local path algorithm.

4.4 Computing Shortest Paths

The algorithm has computed a triangulation on the rounding sites of V', and it has computed a list
of triangles for each edge path. For a given edge uv € E, the path must start at p(u), pass through
triangles 11,75, Ts, ..., T, and end at p(v). The path must be the shortest which does so.

Fortunately, there already exists an algorithm in the literature. Guibas et al. [17] give an algorithm
for computing the shortest path from one vertex to another inside a simple polygon. Given a
triangulation of the polygon, the algorithm runs in linear time. This algorithm works perfectly fine
on a list of neighboring triangles.

It should be emphasized that we are slightly extending the grasp of the existing shortest path
algorithm. The polygon in Figure 4 does not appear to be a simple polygon. However, suppose
we wish to compute the shortest path from u to v which passes through the list of triangles
2,3,4,5,6,7,8,9,10,11,12,13,14,15. The algorithm can handle this task. As far as it is concerned,
the second appearances of triangles 3 and 4 as triangles 13 and 14 are different instantiations than
the first appearances. The input is a simple polygon that happens to be drawn on a spiral staircase,
and we are looking at it from above. The reason that the algorithm can handle this case is that it
only looks at the local interactions of the triangles.

The list of triangles should almost always be a simple polygon anyway, but strange cases like this
can arise when rounding in polar coordinates. The path joining p(a) to p(b) cannot intersect itself,
but it can enter the same triangle more than once.

4.5 Monotone Shortest Path Algorithm

This section gives a complete global path algorithm for the case in which S = 5, x S, is the
Cartesian product of two one-dimensional lattices and in which rounding is done independently for
each coordinate: p(v) = (pz(vs), py(vy)), where p, and p, are the rounding functions for the one-
dimensional lattices. For reasons given below, this is called the monotone shortest path (monotone
path) algorithm. This algorithm is very simple and easy to implement. We have used it for industrial
application software since 1992.

It is easy to see that a one-dimensional lattice has connected rounding cells if and only if the
rounding function is monotone: if z; < x9, then p,(z1) < py(ze). This is one reason for the
name of the algorithm. The other reason is that the output paths are always monotone in = and
y. Specifically, let o(t) be the arc-length parameterization of the rounded path connecting two
rounded vertices p(u) and p(v), u,v € V. It follows that the = and y coordinates of o(¢) are both
either non-increasing or non-decreasing functions of t.” The path is also monotone with respect to
the segment p(u)p(v): each point on the path has a unique perpendicular projection onto p(u)p(v).

4.5.1 High Level Algorithm

The next section gives an algorithm for

"An equivalent definition is that every horizontal or vertical line intersects the path in either the empty set, a
single point, or a single line segment.

15

10

Figure 4: Shortest path from u to v through triangles 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and
15: dashed line.

16

FindShortest(A, B, Py, Py, ..., P,)

which finds the shortest path from A to B which stays to the correct side of P;, i = 1,2,3,...,n.
FindShortest requires that the P;’s project onto segment AB in monotone order:

A-AB<P,-AB<P,-AB<P;-AB<.--<P,-AB < B- AB,

where - is the standard dot project and where AB = B— A, the vector from A to B. Each P, is tagged
LEFT or RIGHT. Points P; and P; cannot project to the same point on AB (P;- AB = P; - AB)
unless TAG(P;) # TAG(F;).

Given a straight line embedding of a graph G = (V| E), the monotone shortest path geometric
rounding algorithm rounds an edge ab € E as follows. It sets A = p(a) and B = p(b). It takes
the rounded vertices p(v), v € V, which project onto AB (A- AB < p(v) - AB < B - AB) and
sorts them in order of projection position p(v) - AB. If two vertices u,v € V on the left of line
ab ([a,b,u],[a,b,v] > 0) project to the same point (p(u) - AB = p(v) - AB), it discards the farther
one: p(u) is farther from AB than p(v) if |[A4, B, p(u)]| > |[4, B, p(v)]|. The algorithm similarly
filters vertices on the right. It sets Py, P, P3,..., P, equal to the sorted lattice sites (rounded
vertices) and tags them LEFT or RIGHT according to the status before rounding. Finally, it calls
FindShortest. The output is the shortest path rounding of edge ab.

Because rounding in each coordinate is monotonic, the monotone path algorithm only needs to
consider vertices v € V inside the bounding box of edge ab: min(a,,b,) < v, < max(az,by)
min(ay, by) < vy < max(ay,by). If v lies in the bounding box, then p(v) will project onto p(a)p(b).
Also, it can eliminate vertices which lie farther than €., from ab, where €4, is the maximum width
or height of a lattice rounding cell intersecting the bounding box of ab. It is usually not difficult to
calculate €45 or a good upper bound on it for a given choice of lattice. For example, if S, and S,
are both the lattice of representable floating point numbers, then e, = 27% max(|a,|, |ay|, |bs|, [by]),
where 3 is the number of bits in the mantissa (53 on most computers).

Remember that that the purpose of geometric rounding is to deal the occasional near-singular cases
that crash naively implemented geometric algorithms. In most circumstances, few if any vertices lie
within €4, of any given edge ab. Furthermore, the cost of finding these vertices is modest and roughly
proportional to the rate they occur. Usually, one has already constructed a trapezoidalization or
some other search structure on the arrangement of line segments. Finding vertices which satisfy
the epsilon test is simply a matter of detecting “flat” or “pinched” trapezoids.

4.5.2 Shortest Path Algorithm

This section gives an algorithm for FindShortest described in the previous section. This algorithm
is a special case of Guibas et al. algorithm for shortest path in a simple polygon. The algorithm
for FindShortest uses two subroutines, AddLeft and AddRight, which are defined first.

In the following, Path, Left, and Right are double-ended stacks. PushHead, PopHead, PushTail,
and PopTail do the obvious things. Path.Head[0] is the current “head” of the stack. Path.Head[1]
is the element one away from the “head” end of the stack. After FindShortest is executed, Path
contains the desired shortest path. While the algorithm is executing, Left is the path that satisfies
the constraints seen so far and “veers left” as much as possible. Similarly, Right is the path that
“veers right” as much as possible. Whenever it is determined that Left and Right have a common
prefix, that part is added to the end of Path.

17

AddLeft (P, Path, Left, Right)
while Left.Size > 1
A + Left.Head[1]
B + Left.Head[0]
if [A,B,P] <0
Left.PopHead
else
break
Left.PushHead (P)

if Left.Size = 2 and Right.Size > 1
while Right.Size > 1
A < Right.Tail[0]
B <+ Right. Tail[1]
if [A,B,P] <0
Right.PopTail
Left.PopTail
Left.PushTail (Right.Tail[0])
Path.PushHead (Right.Tail[0])
else
break
Right.PushHead (P)
end AddLeft

AddRight (P, Path, Right, Left) is analogous to “AddLeft” with the roles of Right and Left switched.

18

FindShortest (A, B, Py, P», ..., P,)
Path.PushHead(A)
Left.PushHead(A)
Right.PushHead(A)

fori+ 1ton
if TAG(P;) = LEFT
AddLeft (P;, Path, Left, Right)
else
AddRight (P;, Path, Left, Right)
AddLeft (B)
AddRight (B)
return Path
end FindShortest

5 Proofs

The local path algorithm and the global path algorithm are two ways of computing shortest path
roundings. They also provide two halves of the proof of Theorem 3.1, the central theorem of shortest
path rounding. This section proves the correctness of these algorithms and proves the central
theorem in three steps. First, it defines a locally shortest path rounding for an edge and proves that
it is unique and equal to the shortest path rounding (Definition 3.3). Next it proves that the global
path algorithm generates a shortest path rounding that satisfies Part 1 of of Theorem 3.1. Finally,
it proves that the local path algorithm generates a locally shortest path rounding that satisfies
Part 2 of Theorem 3.1. Taken together, these results prove the theorem.

5.1 Locally Shortest Path Rounding

Given a straight line embedding of a graph G = (V, E), let us suppose that we have a path from p(a)
to p(b), ab € E, that avoids all other rounded vertices p(v), v € V. Suppose we have triangulated
the rounded vertices (Section 4.2.1), and the path passes through the (minimal) list of triangles
Ty, T, Ts,...,T,. It is possible to parameterize the path o(t) so that o(0) = p(a), o(n+ 1) = p(b),
and o(t) € T;, i — 1 <t <i. For t =14, o(t) € T; N T;41, which means that curve crosses the edge
common to T; and T; ;. Note that under this parameterization, o(t) might stay fixed for ¢ in some
intervals [i — 1,1].

To deal with the case that o passes through p(v), let us consider o to be a curve,
(t,o(t)) C [0,n — 1] x E2.

This allows us to artificially “tag” portions of the curve as being “in” different triangles, even if
o(t) is not varying. Specifically, for i — 1 < ¢t < i, (t,0(t)) is “in” T; and no other triangle, even
though o(t), t € [i —1,4] might be fixed at p(v) of T; and therefore an element of all triangles which
meet at this vertex. Similarly, for ¢ = 4, (¢,0(t)) is passing through the edge common to 7; and
T;+1, and no other.

Let T; = p(u)p(v)p(w) where [p(u), p(v), p(w)] > 0. (If T; is degenerate, then T; must be the limit
of triangles with positive circulation.) Suppose (¢,0(t)) passes through p(u)p(v) for t =i — 1 and

19

J
Y

Figure 5: Curve (dashed) making a right turn at u’ = p(u) which is to its left. This curve can be
made shorter without changing topology.

through p(u)p(w) for t = ¢, then for i — 2 <t < i+ 1, p(u) lies “to the left” of 0. “To the right”
is defined similarly. Since the list of triangles is minimal, o cannot enter a triangle and then leave
through the same edge. Therefore “to the left” and “to the right” are well-defined. Furthermore,
for any sublist of triangles 7j, ..., T; which share a common vertex p(v), the definition is consistent
over the sublist.

Let ¢ € [i,7] be a maximal interval on which o(t) = p(v) for some v € V. The path o(t) “turns
left” at p(v) for t = ¢ if the sublist 73,...,7} winds around p(v) at least once counterclockwise or
it makes a left turn in the conventional sense (and the sublist does not wind around p(v) at least
once clockwise). “Turns right” is defined analogously.

Definition 5.1 A locally shortest path geometric rounding of an edge ab in an embedding
of G = (V,E) is a geometric rounding of ab that only turns left at p(u), u € V, to its left and that
only turns right at p(v), v € V, to its right.

Figure 5 depicts a curve that “turns right” at a vertex “to its left.” This curve can be made shorter
locally by taking a shortcut near the vertex.

Lemma 5.1 The locally shortest path geometric rounding of an edge is unique.

Proof: Suppose we have two locally shortest paths o(¢) and 7(¢) from p(a) to p(b). Suppose that
they are not equal. This means that there is some value ty of ¢ at which they diverge. Without loss
of generality, o(t) is to the right of 7(¢) in a neighborhood of ¢ > ty: the angle between the tangent
vectors o' (tg) and 7'(tp) is positive (counterclockwise). The curves o and 7 cannot rejoin unless
either o makes a left turn or 7 makes a right turn. However, the curves can only turn as they cross
some edge p(u)p(v) of the triangulation. (They must cross the same edges in the same order at
the identical values of t.) Curve o cannot pass through p(u) because 7 intersects p(u)p(v) closer to
p(u), and similarly, curve 7 cannot pass through p(v). But o can only make a right turn at p(v) and
7 can only make a left turn at p(u) (see Figure 6). If o makes a right turn or 7 makes a left turn,
then the angle of divergence becomes larger, never smaller. (Note: the angle cannot grow greater

20

v

Figure 6: Curve 7 makes a left turn at u’ = p(u) to its left. The divergence between curves o and
T increases.

than 180 degrees otherwise o and 7 could not both pass through the next edge.) Therefore, if the
curves diverge, they can never rejoin. This contradicts the fact that o(n + 1) = 7(n + 1) = p(b).
Therefore, the curves must be equal. [|

5.2 Global Path Lemma

Lemma 5.2 The global path algorithm generates a shortest path geometric rounding for each edge
of the embedding, and that path is independent of the choice of rounding curves 7,(t), v € V.

Proof: The global path algorithm “loosely” threads the edge path from p(a) to p(b) past each
rounded lattice point. To make sure it has the correct topology, it detours around each rounding
curve that the edge from p(a) to p(b) intersects. Once it has the correct topology, it “pulls the
string tight,” computing the shortest path for that topology. It is clear that the topology is
correct, and we will not give an explicit construction of the deformation of the plane that takes the
initial embedding to the “loosely threaded” intermediate embedding. The deformation would be
something like dragging fingers through frosting, where each finger starts at some v € V, follows
v and stops at p(v).

If any 7, is modified continuously without leaving CELL(p(v)), then it cannot sweep through any
other rounded vertex p(u), u € V, because p(u) ¢ CELL(p(v)). Therefore, the “loosely threaded”
path varies continuously too, and does not sweep through any rounded vertex. This means that
continuously modifying -, does not change the final topology. Since the output of the algorithm
only depends on the topology (minimal list of triangles), the output is independent of the rounding
curves y,, v € V. [|

21

5.3 Local Path Lemma

Lemma 5.3 The local path algorithm generates a locally shortest path geometric rounding for each
edge, and the union of these paths is a geometric rounding of the entire straight line embedding.

Proof: The local path algorithm is a physical simulation. It is possible to give a mathematical
proof, but a “physical” proof is simpler and more comprehensible.

The algorithm simulates the result of moving frictionless particles (vertices) pressing against flexible,
elastic, impenetrable strings. The strings do not vibrate or “wave about”, and therefore the system
remains at (local) minimum potential energy at all times. For an elastic string, the potential energy
is proportional to the length of the string. Therefore, the length of each path (representing an edge
in the original embedding) is always at a local minimum for the given topology.

The shape of each string path depends only on the evolution of the vertices, not on the presence
of other paths. Furthermore, each path reacts appropriately to all moving vertices which impinge
on it. Therefore, it is not possible for a moving vertex to push one string “through” another.

We could endow each vertex and each edge (string) with a small thickness. Each vertex would be
represented by its center, and each edge would be represented by its medial axis (the portion joining
the centers of the two vertex endpoints). It is clear that for sufficiently small thickness, the physical
motion can be made arbitrary close to the ideal zero-thickness case. The centers and medial axes
are a deformation of the original embedding with the same topology: axes/centers cannot come into
contact because of the “thickness” surrounding them. When each vertex in the thick model reaches
its final resting place, one can shrink the thickness down to zero. At the moment the thickness
reaches zero, the centers and axes become identical to the output of the local path algorithm. This
demonstrates that there exists a topological deformation of the original embedding whose limit is
the set of locally shortest paths.

This physical argument demonstrates that the local paths satisfy the definition of a geometric
rounding. Since we have shown they have (local) minimum length, this proves the lemma. [

5.4 Central Theorem of Shortest Path Rounding

This section proves Theorem 3.1, the central theorem of geometric rounding in Section 3.3 (page 10).

Proof: By Lemma 5.3, the local path algorithm generates a geometric rounding of the entire
straight line embedding. However, since this is a physical simulation algorithm, the output might
only be a local minimum of the path length, and it might depend on the choice of rounding
curves v,, v € V. However, Lemma 5.2 shows that the topology of the global minimum length
geometric rounding for each individual edge is independent of the choice of rounding curves. Finally,
Lemma 5.3 proves that there is only one local or global minimum length path for a given topology.
Therefore, the local path algorithm and the global path algorithm generate the same output, and
these are a geometric rounding of the entire embedding. [

6 Applications

This section illustrates one of the ways we use shortest path rounding in practice. Since 1991,
we have been developing algorithms for layout in the apparel industry. The basic problem is strip

22

packing: given polygouns Py, P, ..., P, and a rectangle of fixed width and undetermined length, find
the non-overlapping layout of the polygons with minimum length. In apparel applications, fabric
has a grain, and thus each polygon has between one and eight valid orientations. The general
strip packing problem is NP-hard. In practice, k£ is 100 or more, and the problem is intractable.
However, we have shown that translational algorithms for modest values of k£ (1 < k < 10), are
very useful in the development of heuristics or approximate algorithms for much larger values of &
with multiple allowed orientations.

One useful algorithm is translational minimum area enclosure: given Py, Ps, ..., Py, find the layout
under translation with the minimum area bounding rectangle. Aside from its usefulness in prac-
tice, this algorithm is an “acid test” for geometric rounding. It cascades algorithms for polygon
decomposition, Minkowski sum, union, intersection, complement, convex hull, and linear program-
ming. These algorithms do not apply transformations to the coordinates, but they use all three
construction primitives mentioned in Section 1: 1) join points to make lines, 2) intersect lines to
make points, and 3) add two points. In addition, the linear programming algorithm generates new
point coordinates by solving a system of linear equations: in this case, 2(k+ 1) equations whose co-
efficients are linear or quadratic in the input point coordinates. The depth of computation (number
of cascades) is arbitrary, even for a single problem instance. Furthermore, the minimum enclosure
algorithm “deliberately seeks” degenerate cases.

We have described most of our layout algorithms in journal and conference papers and technical
reports [21, 7, 23, 5, 30, 29, 6, 8, 33]. We have also licensed the implementations to industry. This
section summarizes the minimum enclosure algorithm to give the reader an idea of how the problem
of cascading can arise in practice.

6.1 Displacement Spaces

To solve the minimum enclosure problem, we solve a set of decision problems: does there exist
a rectangle of area A which can contain the polygons? This decision problem is reduced to a
displacement equation,

t; —t; € Uy, 0<i<ji<k+1, (4)

where t1,%9,...,%; are the translations applied to the polygons and where ¢y and #x4; are the
lower-left and upper-right corners of the enclosing rectangle.® Except for Up,k+1, the U;; regions
are bounded depth constructions on Py, P, ..., P;. (For instance, U;j; = P; @ —Pj, 1 <4 < j <k,
where @ is the Minkowski sum.) In theory, Uy y+1 = {(z,y) | z-y<A} is bounded by a hyperbola.
However, we use a polygonal approximation to the hyperbola. As a result, only polygonal operations
are required, but the algorithm generates an enclosure whose area is an approximation to the
minimum.

The minimum enclosure algorithm uses binary search to find the minimum area. Whenever the
decision problem has a solution, the algorithm applies compaction [21, 23] (actually, a slight gen-
eralization), which moves the layout to a local minimum area. This greatly speeds up the binary
search. However, since compaction involves no cascading, we will not summarize it here.

8We always set to = (0,0), but it is easier to describe mathematically and implement in this more general form.

23

6.2 Solving the Displacement Equations

We refer to the list & = (U;; |0 <i < j < k+ 1) of displacement spaces as a hypothesis because
it corresponds to the hypothesis that there exists a layout with that particular area. To solve
Equation 4, the minimum enclosure algorithm applies three operations to a hypothesis: restriction,
evaluation, and subdivision. Restriction replaces one or more U;; by a subset without changing the
truth value of the hypothesis (without throwing away any valid solutions). Evaluation attempts to
find a solution within a given hypothesis. Subdivision selects one pair 7, j and splits U;; into U{; and
Uij- Replacing U;; by either of these generates two sub-hypotheses & and ¢4~. The hypothesis
U is true if and only if YT is true or U~ is true. Evaluation is not constructive. Subdivision only
involves intersection with two half-planes, although the overall depth of subdivision is arbitrary.
Restriction can involve unbounded cascading.

The minimum enclosure algorithm employs two types of restriction: geometric restriction and linear
programming (LP) restriction. Geometric restrict performs the following substitution,

Uij < Uy N (Ui, © Upyj), 0<i<j<k+1, 0<h<Ek+1,h#1,7j,

where Uy, is defined to be —Up; if h < 4. The algorithm applies this restriction repeatedly until
a “steady state” is reached. In practice, we stop when the decrease in area drops below a fixed
fraction. Geometric restriction arbitrarily cascades the operations of intersection and Minkowski
sum.

Linear programming restriction shrinks each U;; in a different way. It first constructs an outer
convex approximation to the displacement equation,

tj—tiECH(Uij), 0<i1<jyj<k+1,

where CH(Uj;;) is the convex hull of U;;. Using an adaptation of the simplex method, it constructs
the range of ¢, — t, under this convex approximation. The range is a convex polygonal region Cyp,.
The following substitution is a valid restriction,

Ugh — Ugh N Cgh.

It applies this substitution for each pair g, h until a steady state is reached. Again, the cascading
is arbitrary. In addition to straight-edge constructions, linear programming generates new point
coordinates by solving 2(k + 1) linear equations in 2(k 4 1) variables. The coefficients of these
equations are linear or quadratic in the coordinate of the vertices of the displacement spaces.

6.3 Results

Figure 7 illustrates the minimum enclosure algorithm on five input polygons. Thanks to compaction,
the algorithm can apply a very “lop-sided” binary search. Iteration 1 is a square container with
compaction applied. For iterations 2-5, the algorithm set the target area to be 1% less than the
previous layout after compaction. Iteration 5 was infeasible. The algorithm set the target for
iteration 6 to be 0.01% smaller than the area of iteration 4, and similarly, iteration 7 and 8 have
targets 0.01% than the previous layouts after compaction. Iteration 8 was infeasible, and therefore
iteration 7 is within 0.01% of optimum. The polygonal approximation to the hyperbola had 100
vertices, which introduces an additional error of at most 0.01%.

The running times ranged from 2 minutes for iteration 1 to 45 minutes for iteration 8. Total time
on a DEC Alpha 3000/700 is about 2.5 hours.® Solving iteration 8 required 318 subdivisions and

®This computer is advanced 1994 technology. A 1998 PC (400MHz Pentium II) is about twice as fast.

24

.

lteration 1 lteration 2 lteration 3

\N

- "~

Ilteration 4 lteration 6 lteration 7

Figure 7: Minimal enclosing rectangle of five polygons with 55, 61, 66, 65 and 72 vertices.

25

steady state restrictions. Each of these 318 steady state restrictions involves a considerable amount
of cascading, and in addition, the depth of subdivision averaged about 9. Iteration 7 required 246
subdivisions and 34 minutes. These iterations bracket the tightest possible layout.

Without geometry rounding, this type of calculation would simply be impossible. With geometry
rounding, we see no numerical problems at all, even for this near-degenerate and highly cascaded
construction.

7 Analysis and Conclusions

The previous section demonstrates that geometric rounding is an absolute necessity, at least for
some important applications. However, shortest path rounding is not the only type of geometric
rounding. For the integer grid, Section 1.2.2 discussed Greene-Yao rounding and snap rounding
as alternative types of rounding. This section presents the ways in which shortest path geometric
rounding is a better choice than these other two rounding techniques.

It should be emphasized that running time is not a critical issue in the choice of rounding technique.
All three rounding techniques essentially run in time linear in the number of vertices added to each
rounding path. As indicated in Section 4.5.1, the lattice point p(v) for vertex v € V can only
appear on the rounding path for edge ab € F if it is very “near” to ab, and this should be a rare
occurrence.

The shortest path algorithm in Section 4.5.2 performs a number of circulation tests which is pro-
portional to the number of distance calculations required for snap rounding. For programs in which
snap rounding is applicable, switching from snap rounding to shortest path rounding only increases
a small fraction of the running time by a small factor. It may not even be possible to measure the
overall difference in running time.

The more important issue is how much “damage” rounding inflicts when it does become necessary.
Sections 7.1 and 7.2 show that on integer grids, shortest path rounding introduces less geometric
and combinatorial error than the other rounding methods. Another issue is the generality of the
rounding technique. Section 7.3 gives several reasons why it is useful to round on a non-uniform
grid, which only shortest path rounding can handle.

7.1 Rounding on the Integer Grid

All three rounding methods replace a line segment ab by a polygonal path from p(a) to p(b). The
vertices of the path are at lattice points. If the lattice is the integer grid, then a lattice point p can
be a vertex of the path only if ab intersects CELL(p(p)), in which case we say that p is near ab. If
p is p(v) for some v € V', then we say that p is a vertex lattice point. Snap rounding replaces ab by
a path joining all near vertex lattice points.

Greene-Yao rounding does not necessarily “tie” the path to all near vertex lattice points. It ties
the path to p(v) only if vp(v) crosses ab. However, it does not permit the path to “sweep past”
any lattice point, even non-vertex lattice points, as it is “pulled” to these special lattice points. As
a result, it ends up adding 2(log |ab|) extra non-vertex lattice points to the path for every vertex
lattice point on the path. For a grid of pixels, typically about 1000 by 1000 on current graphics
displays, In|ab| is perhaps not too large. Other industrial applications generally require higher
accuracy. Using a 10% by 10 grid might mean that 10 to 20 non-vertex lattice points are added for

26

each vertex lattice point on the path. For such applications, this number of “extra” vertices would
make Greene-Yao rounding an impractical choice.

Shortest path rounding does not “tie” the path to any vertices, except of course p(a) and p(b).
Even if vp(v) crosses ab, p(v) might not be a vertex on the rounded path. Vertex v “pushes” on
the path as v rounds to p(v), but other vertices might push it past p(v). In particular, v and w,
u,w € V might be near to v and on the same side of ab. If v and p(v) lie on the same side of
segment p(u)p(w), then as v and w push on the path, they will push it “past” p(v), and p(v) will
not lie on the path. Unlike Greene-Yao rounding, shortest path rounding only puts verter lattice
points on the path, and these path vertices are a subset of the points on the snap rounding path.'®

7.2 Analysis of Error

Snap rounding and shortest path rounding both add many fewer vertices to the rounded paths
than Greene-Yao rounding, and shortest path rounding adds somewhat fewer vertices than snap
rounding. Also, the shortest path has the minimum possible deviation from the original line
segment. How significant is the difference between snap rounding and shortest path rounding?
The difference is “merely” a constant factor. However, cascading can multiply these constants into
exponential differences. This section argues that for each vertex that snap rounding puts on a
rounding path, shortest path rounding will put that vertex on the path with a probability between
1/6 and one-quarter. Shortest path rounding introduces a geometric error with a standard deviation
about 1/3 of the error introduced by snap rounding. The standard deviation of the appropriate
measure of error: cascaded rounding is essentially a random walk, and the result of a random walk
is a Gaussian who standard deviation is proportional to the standard deviation of the rounding
distribution.

7.2.1 Combinatorial Error

We simplify the analysis!! by considering only the case in which exactly one vertex lattice point
p(v) lies near to ab (ab intersects CELL(p(v))). Snap rounding always puts p(v) onto the path.
Shortest path rounding puts p(v) on the path only if v and p(v) lie on opposite side of ab. Assuming
that the distance from p(v) to ab is uniformly distributed and that v is uniformly distributed in
CELL(p(v)), one can show that v lies in the portion of CELL(p(v)) on the side of ab opposite from
p(v) with probability 1/6 if ab has 45 degree slope and with probability one-quarter if ab has 0
degree or 90 degree slope.

7.2.2 Geometric Error

In analyzing the standard deviation, we will consider only the case in which ab either rounds to
p(a)p(b) or p(a)p(v)p(b). The question is, what is the standard deviation of the error introduced
by vertex v? Since we are only concerned with the ratio of standard deviations, we will call the
maximum deviation one “unit”. If ab has 45 degree slope, one unit of error is actually v/2/2. If ab
has 0 or 90 degree slope, one unit of error is 1/2.

If p(v) lies near ab, then snap rounding will always snap to p(v). The deflection along the path
p(a)p(v)p(b) is uniformly distributed from 0 to the distance § from p(v) to p(a)p(b). Therefore

0The subset can be improper: the two paths might be the same.
UFor this reason, we call this section an “argument”, not a “proof”.

27

the distribution of deflection varies according to the following distribution: select § uniformly from
[0,1] and then select € uniformly from [0, §]. The error € has the distribution —Ine. The standard
deviation is 1/3.

If p(v) lies near ab and it is the only vertex which does so, then shortest path rounding will only snap
the path to p(v) if vp(v) intersects ab. For this to happen, v must lie in the portion of CELL(p(v))
that is on the opposite side of ab from p(v). If ab has 45 degree slope, this event has probability
(1 —6)2/2, and if ab has 0 or 90 degree slope, the probability is (1 — §)/2. For the 45 degree case,
the distribution of error along the segment is constructed as follows: select 0 uniformly from [0, 1]
and then select e uniformly from [0,d] with probability (1 — 6)?/2 but set e = 0 with probability
1 —(1—6)?/2. The 0 or 90 degree is analogous. The 45 degree distribution is,

1 1 3
—ZEZ—I—E—Elne— 7
and the 0 or 90 degree distribution is,
1 1) 1
g€~ g ne—o.

Surprisingly, these both have the same standard deviation: 1/v/72. This is 1/2v/2 ~ 1/3 times the
standard deviation of snap rounding.

7.3 Non-Uniform Grids

The most common non-uniform numerical representation is floating point: mantissa plus exponent.
Obviously floating point would not be as popular as it is if it did not have many technical advantages.
One advantage is that is seamlessly handles changes in scale or unit. We first licensed our layout
software to Microdynamics, Inc., which used a unit of 0.01 inch. Gerber Garment Technologies
(GGT) bought Microdynamics and took over the license. GGT uses a unit of 0.001 inch. Our
software used integer arithmetic and the integer grid. As a consequence, it had some absolute rather
than relative tolerance values. Unfortunately, accommodating GGT was not simply a matter of
changing constants and recompiling: they still had to service the former Microdynamics customers.
We could have avoided all of this inconvenience if we had used floating point computations and
rounded to the floating point grid. Of course, Shewchuk’s work (Section 2.1) was not available at
that point in time.

We emphasize again that it is not necessary to compute the nearest floating point coordinate to
every exact coordinate. Shortest path rounding can round to any lattice set S as long as the
rounding cells are connected. The easiest way to accomplish this is to use a round-to-nearest
strategy: the rounding cells are simply the convex Voronoi cells of S. Since the rounding cells are
convex, the rounding curves can be straight line segments. When a point needs to be rounded, the
system can check to see if it is close enough to an existing vertex lattice point in S. If not, a new
lattice point can be added to S. This approach involves point location and update of a Voronoi
diagram, both very well understood problems. It would use the global path algorithm.

If the rounding needs to be independent of a specific xy coordinate frame, then one would use the
approach in the previous paragraph. Otherwise, it is even simpler to use the local path algorithm.
Maintain a set S, of lattice coordinates and a set S, of y lattice coordinates. These sets can be
built incrementally. To round a point (x,y), round each coordinate to the nearest existing = and y
lattice coordinates in S, and Sy. If the nearest is too far, compute an approximation to = and/or

28

y and add these to S, and/or S,. Maintaining an ordered set of numbers with find-nearest and
insert operations is a very well understood problem. This approach would use the monotone path
algorithm. This is the approach we would recommend in practice.

7.4 Conclusion

Many common, useful, and practical applications of computation geometry have exponential space
and time owing to numerical issues and cascading. Geometric rounding reduces the cost to what
it would be in the absence of cascading. Numerical error is the price paid for this reduced cost,
but this tradeoff is a reasonable and well-understood principle of numerical computing. Geometry
rounding does not require any modification of the geometric algorithm or their exact arithmetic
implementation. The algorithm can even use symbolic perturbation.

Shortest path geometric rounding introduces the minimum geometric deviation of any method that
introduces only vertex lattice points (meaning that the only vertices in the output are rounded
locations of vertices in the input). On the integer grid, it introduces many fewer vertices that
Greene-Yao rounding and fewer vertices and less deflection than snap rounding.

Unlike other rounding methods, shortest path rounding can handle any connected lattice, even
rounding in polar coordinates, but most importantly, the floating point lattice. The global path
algorithm uses standard, easily implemented algorithms of computation geometry: triangulation,
segment intersection, and shortest path in a simple polygon. The monotone path algorithm is even
simpler to implement and use, and a complete implementation is given in this paper.

Shortest path rounding has very low overhead. In combination with numerical techniques for
exact floating point computation, it offers the ideal implementation for any algorithm on polygonal
regions: floating point input, exact computation, cost per arithmetic operation a little more than
hardware floating point, rounded floating point output. Finally, its use is well-established in licensed
industrial application software.

References

[1] C. Bajaj and T. K. Dey. Polygon nesting and robustness. Inform. Process. Lett., 35:23-32,
1990.

[2] Behnke, Bachmann, Fladt, and Kunle. Fundamentals of Mathematics, Volume II: Geometry.
MIT Press, Cambridge, MA, 1974.

[3] J. Canny, B. R. Donald, and E. K. Ressler. A rational rotation method for robust geometric
algorithms. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 251-260, 1992.

[4] Wei Chen, Koichi Wada, and Kimio Kawaguchi. Parallel robust algorithms for constructing
strongly convex hulls. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 133-140,
1996.

[5] K. Daniels. Containment algorithms for nonconvez polygons with applications to layout. Ph.D.
thesis, Harvard University, Cambridge, MA, 1995.

[6] K. Daniels and V. Milenkovic. Column-based strip packing using ordered and compliant
containment. In Proc. 1st ACM Workshop on Appl. Comput. Geom., pages 33-38, 1996.

29

7]

[11]

[12]

[13]

K. Daniels, V. Milenkovic, and Z. Li. Multiple containment methods. Technical Report
12-94, Center for Research in Computing Technology, Division of Applied Sciences, Harvard
University, Cambridge, MA, 1994.

K. Daniels and V. J. Milenkovic. Multiple Translational Containment, Part I: An Approximate
Algorithm. Algorithmica, 19:148-182, 1997.

T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay triangulations in three dimensions with
finite precision arithmetic. Comput. Aided Geom. Design, 9:457-470, 1992.

S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations. Internat. J.
Comput. Geom. Appl., 5(1):193-213, 1995.

S. Fortune. Polyhedral modeling with multiprecision integer arithmetic. Comput. Aided Design,
29(2):123-133, 1997.

S. Fortune and V. Milenkovic. Numerical stability of algorithms for line arrangements. In
Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 334-341, 1991.

S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for computational geometry. In
Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 163-172, 1993.

J. E. Goodman, R. Pollack, and B. Sturmfels. Coordinate representation of order types requires
exponential storage. In Proc. 21st Annu. ACM Sympos. Theory Comput., pages 405-410, 1989.

D. H. Greene. Integer line segment intersection. unpublished manuscript.

D. H. Greene and F. F. Yao. Finite-resolution computational geometry. In Proc. 27th Annu.
IEEE Sympos. Found. Comput. Sci., pages 143-152, 1986.

L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2:209-233, 1987.

Leonidas Guibas and David Marimont. Rounding arrangements dynamically. In Proc. 11th
Annu. ACM Sympos. Comput. Geom., pages 190-199, 1995.

J. D. Hobby. Practical segment intersection with finite precision output. submitted for publi-
cation.

H. Inagaki and K. Sugihara. Numerically robust algorithm for contructing constrained Delau-
nay triangulation. In Proc. 6th Canad. Conf. Comput. Geom., pages 171-176, 1994.

Z. Li. Compaction algorithms for nonconvex polygons and their applications. Ph.D. thesis,
Harvard University, Cambridge, MA, 1994.

Z. Liand V. Milenkovic. Constructing strongly convex hulls using exact or rounded arithmetic.
Algorithmica, 8:345-364, 1992.

Z. Li and V. Milenkovic. Compaction and separation algorithms for nonconvex polygons and
their applications. European Journal of Operations Research, 84:539-561, 1995.

V. Milenkovic. Verifiable Implementations of Geometric Algorithms using Finite Precision
Arithmetic. Phd thesis, Carnegie Mellon University, 1988.

30

[25]

[26]

[27]

[31]

[32]

[33]

[34]

V. Milenkovic. Double precision geometry: a general technique for calculating line and segment
intersections using rounded arithmetic. In Proc. 30th Annu. IEEE Sympos. Found. Comput.
Sci., pages 500-505, 1989.

V. Milenkovic. Rounding face lattices in the plane. In Abstracts 1st Canad. Conf. Comput.
Geom., page 12, 1989.

V. Milenkovic. Rounding face lattices in d dimensions. In Proc. 2nd Canad. Conf. Comput.
Geom., pages 40-45, 1990.

V. Milenkovic. Robust polygon modeling. Comput. Aided Design, 25(9):546-566, 1993. (special
issue on Uncertainties in Geometric Design).

V. Milenkovic. Translational polygon containment and minimal enclosure using linear pro-
gramming based restriction. In Proc. 28th Annu. ACM Sympos. Theory Comput. (STOC 96),
pages 109-118, 1996.

V. Milenkovic and K. Daniels. Translational polygon containment and minimal enclosure
using geometric algorithms and mathematical programming. Technical Report 25-95, Center
for Research in Computing Technology, Division of Applied Sciences, Harvard University,
Cambridge, MA, 1995.

V. Milenkovic and L. R. Nackman. Finding compact coordinate representations for polygons
and polyhedra. IBM J. Res. Develop., 34:753-769, 1990.

V. J. Milenkovic. Verifiable implementations of geometric algorithms using finite precision
arithmetic. Artif. Intell., 37:377-401, 1988.

V. J. Milenkovic. Multiple Translational Containment, Part II: Exact Algorithms. Algorith-
mica, 19:183-218, 1997.

V. J. Milenkovic and V. Milenkovic. Rational orthogonal approximations to orthogonal ma-
trices. Computational Geometry: Theory and Applications, 7:25-35, 1997.

Victor J. Milenkovic. Practical methods for set operations on polygons using exact arithmetic.
In Proc. 7th Canad. Conf. Comput. Geom., pages 55—60, 1995.

Jonathan R. Shewchuk. Robust adaptive floating-point geometric predicates. In Proc. 12th
Annu. ACM Sympos. Comput. Geom., pages 141-150, 1996.

K. Sugihara and M. Iri. A solid modelling system free from topological inconsistency. J.
Inform. Proc., 12(4):380-393, 1989.

Kokichi Sugihara. A robust and counsistent algorithm for intersecting convex polyhedra. Com-
put. Graph. Forum, 13(3):45-54, 1994. Proc. EUROGRAPHICS ’94.

31

