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tExa
t implementations of algorithms of 
omputational geometry are subje
t to exponentialgrowth in running time and spa
e. In parti
ular, 
oordinate bit-
omplexity 
an grow expo-nentially when algorithms are 
as
aded: the output of one algorithm be
omes the input to thenext. Cas
ading is a signi�
ant problem in pra
ti
e. We propose a geometri
 rounding te
h-nique: shortest path rounding. Shortest path rounding trades a

ura
y for spa
e and time andeliminates the exponential 
ost introdu
ed by 
as
ading. It 
an be applied to all algorithmswhi
h operate on planar polygonal regions, for example, set operations, transformations, 
onvexhull, triangulation, and Minkowski sum. Unlike other geometri
 rounding te
hniques, shortestpath rounding 
an round verti
es to arbitrary latti
es, even in polar 
oordinates, as long as therounding 
ells are 
onne
ted. (Other rounding te
hniques 
an only round to the integer grid.)On the integer grid, shortest path rounding introdu
es less 
ombinatorial 
hange and geometri
error than the other rounding methods. Three algorithms are given for shortest path round-ing, one of whi
h we have used in industrial appli
ation software sin
e 1992. In 
ombinationwith re
ent advan
es in exa
t 
oating point evaluation of numeri
al primitives, shortest pathgeometri
 rounding yields a pra
ti
al solution to numeri
al issues in 
omputational geometry.Geometri
 algorithms 
an be implemented exa
tly on 
oating point input 
oordinates; the exa
toutput 
oordinates 
an be rounded to a

urate 
oating point approximations; and the 
ost ofea
h arithmeti
 operation is only a little more than if it were implemented as a single hardware
oating point operation.Keywords: Computational geometry, Robust Geometry, Numeri
al Analysis, Numeri
alIssues, Rounding.
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1 Introdu
tionA number of very useful algorithms on planar polygonal obje
ts have been des
ribed in the 
om-putational geometry literature. Among these are union, interse
tion, 
omplement, Minkowski sum,
onvex hull, and triangulation (or other de
omposition) of polygonal regions in the plane. Givenan initial set of points and lines or line segments, these algorithms use only a few binary 
onstru
-tive geometri
 primitives: 1) join two points to 
reate a new line or line segment, 2) interse
t twolines or line segments to generate a new point, and 3) add two points (
oordinate-wise) togetherto generate a new point. Symboli
ally, ea
h point or line (segment) that an algorithm outputs liesat the root of a binary \
onstru
tion tree" whose leaves are the input points or lines and whosenodes are 
onstru
tive primitives. For most algorithms, these trees have 
onstant depth. However,when CAD systems and other software systems apply these algorithms, they do not apply them inisolation. Usually, the algorithms are 
as
aded: the output from one algorithm be
omes the inputto another. Also, these systems might 
onstru
t new points and lines by translating, rotating, s
al-ing, or applying other transformations to geometri
 obje
ts. From an algorithmi
 point of view,transformations are trivial, yet they also add to the numeri
al \history" of points and lines. Inpra
ti
e, the height of the 
onstru
tion tree for a point or line 
an grow without bound.This paper argues that no matter whi
h exa
t numeri
al representation one 
hooses, the spa
erequired to represent a point or line (segment) grows exponentially with the height of its 
onstru
-tion tree. As a 
onsequen
e, the running time of geometri
 algorithms also grows exponentially.To avoid exponential 
ost, a geometri
 system must employ rounding. Rounding trades a

ura
yfor 
ost. Of 
ourse, rounding is not a new idea: for more than 30 years, 
omputers have hadhardware-supported rounded 
oating point arithmeti
. An entire mature �eld of dis
ipline, nu-meri
al analysis, addresses the problems arising from implementing numeri
al algorithms usingrounded arithmeti
. Unfortunately, geometri
 algorithms are subtly and exquisitely sensitive torounding in ways not addressed by numeri
al analysis. For many years, su
h numeri
al problemswere thought to be \bugs," but it is now well understood that one 
annot naively (or even not sonaively) implement geometri
 algorithms using rounded 
oating point arithmeti
 in pla
e of exa
treal arithmeti
.This paper presents a te
hnique 
alled shortest path geometri
 rounding for rounding sets of pointsand line segments. Green and Yao �rst introdu
ed the idea of rounding an arrangement of linesegments to an integer grid [16℄. Ea
h line segment is repla
ed by a polygonal 
urve in a way that(in some sense) preserves the topology of the arrangement. Geometri
 rounding has the advantagethat it is applied to geometri
 obje
ts after they have been generated by a geometri
 algorithm,and therefore it solves the problem of exponential 
ost (albeit at the pri
e of redu
ing a

ura
y)without any modi�
ation of existing geometri
 algorithms. Unlike Green and Yao's algorithmand snap rounding [15, 19℄ (see also [18℄), shortest path geometri
 rounding 1) introdu
es theminimum possible geometri
 error, 2) introdu
es the minimum 
ombinatorial 
hange, and 3) 
anround verti
es to any rounding latti
e with 
onne
ted rounding 
ells. The other methods 
an onlyround to the integer latti
e. We argue that statisti
ally, shortest path rounding 
auses 1=6 to 1=4the 
ombinatorial damage and introdu
es about 1=3 the ex
ess geometri
 error introdu
ed by snaprounding. Shortest path rounding is also easy to use in pra
ti
e, we have used it for industriallayout algorithms sin
e 1992. As we des
ribe later in the paper, these layout algorithms use avariety of geometri
 algorithms and have arbitrary 
as
ading, even for a single layout problem.The following se
tion argues that exa
t methods are likely to have exponential 
ost no matter howone implements them. Se
tion 1.2 
ompares shortest path rounding to other geometri
 rounding1



algorithms and other te
hniques for implementing geometri
 algorithms using rounded arithmeti
.Se
tion 1.3 gives an outline for the rest of the paper.1.1 The Cost of Cas
adingThis se
tion examines the 
ost of 
as
ading geometri
 algorithms without rounding. The basi
problem is that the number of bits in ea
h output 
oordinate 
an be two or more times the numberof bits in ea
h input 
oordinate. Cas
ading 
auses this bit-
omplexity to grow exponentially withthe number of operations. One might think that this worst 
ase is diÆ
ult to attain or that there issome spe
ial way to represent derived 
oordinates that avoids exponential growth. Unfortunately,these are vain hopes. This se
tion shows that any exa
t arithmeti
 
al
ulation 
an be en
oded as
as
aded geometry, and it is easy to give an example of exa
t arithmeti
 with exponential growth inbit 
omplexity. In short, eliminating rounding from the �eld of 
omputational geometry is equivalentto eliminating rounding from the �eld of numeri
al analysis.To simplify the analysis, we 
onsider only straight-edge 
onstru
tions: 1) join two points to generatea line and 2) interse
t two lines to generate a point.1 As previously stated, these are not the onlyway to generate new points; however, almost every geometri
 algorithm uses these two. Goodri
h,Polla
k, and Sturmfels [14℄ des
ribe arrangements of points and lines whose realizations on theinteger grid must have exponential bit-
omplexity. Their te
hnique uses a geometri
 implementationof repeated squaring. In fa
t any arithmeti
 operation 
an be implemented given a straight-edgeand a �nite 
olle
tion of referen
e points [2℄:Lemma 1.1 Given the integer grid points (x; y), jxj; jyj 2 f0; 1g, the following transformations
an be done using O(1) straight-edge 
onstru
tions:(a; b) ! (a; 0); (b; 0); (1)(a; 0); (b; 0) ! (a+ b; 0); (a � b; 0); (a � b; 0); (a=b; 0); (a; b): (2)Lemma 1.1 implies that an exa
t geometri
 system with 
as
ading 
an perform any exa
t 
al
ulationon integers or exa
t rational numbers. The following lemma shows that exa
t arithmeti
 ne
essarilyhas exponential growth in bit-
omplexity.Lemma 1.2 Given the set f1g and the operations + and �, the set of all integers in the range from1 to 22k 
an be 
onstru
ted in 2k generations, for all k > 0.Proof: Clearly 1 = 1, 2 = 1+ 1, 3 = (1 + 1) + 1, 4 = (1 + 1) � (1 + 1), and so the lemma holds fork = 1. Assume the lemma holds for k = l� 1. Any number in the range 1 to 22l 
an be written as,�22l�1 �m�+ n;where m and n are in the range 1 to 22l�1 . By the assumption, ea
h number in this expressionis in generation 2(l � 1). Performing the multipli
ation and addition only adds two generations,and therefore the number is in generation 2l. This proves the lemma for k = l and �nishes theindu
tion.1These are 
lassi
al straight-edge and 
ompass 
onstru
tions{but without the 
ompass!2



Keep in mind that 2k is the height of the 
onstru
tion tree, not the number of nodes, and thereforethe number of operations might be mu
h larger than the number of generations. However, repeatedsquaring 
an generate large numbers using very few operations. In parti
ular, repeated squaring
an generate 22k in k+ 1 generations and k+ 1 operations. Every realization of the 
orrespondinggeometri
 stru
ture (Lemma 1.1) in the integer grid requires bit-
omplexity at least lg 22k = 2k.This is essential the result of Goodri
h et al. This se
tion has shown that this result is not anisolated 
ase. Any large number that 
an arise in a non-geometri
 
al
ulation 
an also arise in ageometri
 
al
ulation.1.2 Related WorkThe previous se
tion establishes that rounding is unavoidable in general. This se
tion dis
ussesmethods for implementing algorithms of 
omputational geometry in the presen
e of rounding.Se
tion 1.2.1 dis
usses four approa
hes, in
luding geometri
 rounding. Se
tion 1.2.2 dis
usses te
h-niques for geometri
 rounding.1.2.1 Robust GeometryMany geometri
 systems a
hieve a high level of robustness though the appli
ation of toleran
es andheuristi
s, usual over a long period of testing and use in pra
ti
e. However, these systems are notprovably 
orre
t. There are essentially four theoreti
ally sound approa
hes to in
luding roundinginto geometri
 algorithms. These approa
hes are generally 
alled \robust geometry."Data Normalization [32, 24℄: Carry out 
omputations using rounded 
oating point arithmeti
.Alter the geometry and 
ombinatorial stru
ture to eliminate ill-
onditioned 
omputations. Forexample, if vertex 
 is too 
lose to edge ab to determine on whi
h side it lies, then \
ra
k" ab intoa
 and 
b. Advantages: Uses hardware 
oating point and generates expli
it geometri
 stru
tures.Disadvantages: Requires modi�
ation of geometri
 algorithms and has unbounded geometri
aland 
ombinatorial error.Consistent (Stable) Computation [24, 28, 22, 1, 4, 9, 10, 12, 20, 22, 38℄: Use hardware 
oat-ing point and make 
onsistent symboli
 de
isions in the 
ase of an ambiguous numeri
al tests.Advantages: uses hardware 
oating point and sometimes has better bounds on error than datanormalization. Disadvantages: De
isions have impli
it rather than expli
it realizations whi
hmakes geometri
 reasoning diÆ
ult. Only works with spe
i�
 algorithms, and sometimes requiressubtle 
hanges. Proving existen
e of 
onsistent, numeri
al a

urate, realizations is tedious anddiÆ
ult.Combinatori
s-Preserving Geometri
 Rounding: Use exa
t arithmeti
 with any algorithm.Round output geometri
 stru
ture to lower pre
ision without 
hanging 
ombinatorial stru
ture. Inthe example with ab and 
, round a, b, and 
 in su
h a way that ab and 
 move apart. Advantages:
an use any algorithm and has no 
ombinatorial error. Disadvantages: no one knows how to doit. Might have large geometri
 error. Some versions are known to be NP-hard [31℄.Geometri
 Rounding [16, 25, 26, 27, 35, 18℄: Use exa
t arithmeti
 with any algorithm. Roundoutput to lower pre
ision, 
hanging 
ombinatorial stru
ture if ne
essary. For example, if 
 rounds tothe other side of ab, spit ab into a
 and 
b. Advantages: works with any algorithm on roundableobje
ts and has bounded error. Disadvantages: 
hanges 
ombinatorial stru
ture.3



1.2.2 Geometri
 RoundingThere are 
urrently �ve te
hniques for geometri
 rounding.Green-Yao [16℄: This was the earliest geometri
 rounding te
hnique, and it rounds line segmentsto the integer latti
e. Treat the line segment ab as a 
exible elasti
 string. Pull a and b to thenearest latti
e points �(a) and �(b). For every other vertex v, if the segment v�(v) interse
tsab, pull the segment to �(v). Do not allow the rest of string to move past any integer latti
epoint. Advantages: bounded error, good for graphi
s appli
ations, might be generalizable toother latti
es. Disadvantages: introdu
es 
(n log jabj) \ex
ess" latti
e points onto the segment,where n is the number of verti
es to whi
h the segment it pulled.Snap Rounding [15, 19℄: Various resear
hers have dis
overed this te
hnique for rounding linesegments to the integer grid.2 Ea
h vertex rounds to the nearest latti
e point. To round ab,determine rounding 
ells of rounded verti
es that interse
t ab. Repla
e ab by the polygonal 
urvethat visits the latti
e points of these rounding 
ells. Advantages: very simple, bounded error,does not introdu
e any extra latti
e points. Disadvantages: does not appear to generalize toother latti
es. Introdu
es more verti
es on polygonal 
urve than ne
essary.Shortest Path Rounding [26, 25, 35℄: This te
hnique repla
es ab by the shortest path that keepsall other rounded verti
es to the \
orre
t" side. This paper des
ribes a somewhat more generalversion than we have previously des
ribed in 
onferen
e papers (Se
tion 4.5) and used in pra
ti
e.Advantages: 
an handle any latti
e with 
onne
ted rounding 
ells (Se
tion 3.1). Introdu
esminimum geometri
 and 
ombinatorial error. Simple to use in pra
ti
e. Disadvantages: not 
learhow to generalize to three dimensions.CSG Rounding [37℄: Given a CSG (
onstru
tive solid geometry) representation of an obje
t,round CSG primitives and then re
onstru
t the tree. Advantages: works in three dimensions.Disadvantages: suitable for set operations and transformations, not de
ompositions, 
onvex hull,or Minkowski sum. Topology might be unpleasantly altered.Manifold Rounding [11℄: Given a manifold representation of a polyhedral solid, round equationsof fa
es. If rounded solid is self-interse
ting, retain only the \unburied" portion of the bound-ary. Advantages: three dimensional, intuitive topology 
hange, bounded error. Disadvantages:suitable for set operations and transformations, not de
omposition, 
onvex hull, or Minkowski sum.1.3 OutlineSe
tion 2 des
ribes di�erent possible numeri
al representations, algorithms for exa
t arithmeti
,and latti
es in
luding the 
oating point latti
e and the homogeneous 
oordinate latti
e. These areperhaps more useful in pra
ti
e than the integer latti
e. Se
tion 3 gives a rigorous de�nition ofgeometri
 rounding in general and shortest path rounding in parti
ular. Se
tion 4 gives three algo-rithms for shortest path rounding, in
luding the spe
ialized version we use most often in pra
ti
e.Se
tion 5 proves the 
orre
tness of shortest path rounding and the algorithms for 
onstru
ting it.Se
tion 6 dis
usses our experien
es in pra
ti
e. It sket
hes an algorithm for layout of polygonswhi
h has unbounded 
as
ading, and it shows how geometri
 rounding has made it possible for us2At the 1989 Canadian Conferen
e on Computational Geometry, this author dis
ussed it as a alternative toshortest path rounding (on the integer grid) whi
h introdu
ed more verti
es but was somewhat simpler to implement(although this dis
ussion did not appear in the abstra
t [26℄). In the software we developed in 1992 for set operationson polygons, we put in a 
ompiler dire
tive to swit
h to snap rounding to 
he
k to see if there was a signi�
antdi�eren
e in running time. There is no signi�
ant di�eren
e.4



to 
reate and li
ense to industry a working implementation of this algorithm. Finally, Se
tion 7shows that shortest path rounding introdu
es less 
ombinatorial and geometri
 error than otherrounding methods on integer latti
es, and it dis
usses why it is useful2 Numeri
al Issues in Computational GeometryThis se
tion dis
usses numeri
al issues in 
omputational geometry. Se
tion 2.1 dis
usses represen-tations for single or multiple pre
ision integer, rational, and 
oating point numbers and te
hniquesfor performing exa
t arithmeti
 in these domains. Se
tion 2.2 des
ribes several 
ommon repre-sentations for geometri
 points. Se
tion 2.3 shows how geometri
 primitives 
an be redu
ed topolynomial expressions on the point 
oordinates. Finally, Se
tion 2.4 puts these te
hniques to-gether to implement geometri
 algorithms. These implementations 1) perform arithmeti
 almostas fast as using hardware 
oating point for all operations, 2) 
al
ulate the 
orre
t 
ombinatorialstru
ture 
orresponding to exa
t arithmeti
 on the input 
oordinates, and 3) generate a

urate out-put 
oordinates rounded to 
oating point, to lower pre
ision integers, or to lower pre
ision rationalnumbers.3 Shortest path rounding, as des
ribed in subsequent se
tions, then \sensibly" alters thegeometry and 
ombinatorial stru
ture to make it 
onsistent with these rounded 
oordinates.2.1 Numeri
al RepresentationsComputer arithmeti
 is dis
rete, and essentially the only type of number whi
h 
an be representedon a 
omputer is an integer. All modern 
omputers also support a 
oating point representationwith an integer mantissa and exponent. Most 
omputers have hardware devoted for 
oating pointoperations whi
h make 
oating point operations faster than integer operations.The most 
ommon hardware integer type is 31 bits plus a sign bit4, and the most 
ommon 
oatingpoint (\double pre
ision") has a 53-bit mantissa and 10-bit exponent plus sign bits for ea
h. It isoften 
onvenient to use the 
oating point data type to store integers with up to 53 bits.A rational number 
an be represented as an ordered pair of integers. There are a number of repre-sentations for integers or rational numbers with a more than 53 bits. Traditionally, a \BIGNUM"is a list of integers. Fortune and van Wyk [13℄ survey some of these representation. Shew
huk [36℄has more re
ently presented a simple, elegant multiple pre
ision 
oating point representation. Ea
hnumber is represented as a list of hardware double pre
ision values whose sum is the number beingrepresented. This representation 
an handle any number with 1023 bits both to the right and tothe left of the \binary point".Both Fortune and van Wyk and Shew
huk show that geometri
 primitives of bounded depth, su
has the 
ir
ulation test (Se
tion 2.3) 
an be 
arried out to arbitrary pre
ision in pra
ti
e using only alittle more time than that required for 53 bits of pre
ision. The tri
k is that they qui
kly 
al
ulatethe �rst 53 signi�
ant bits and only 
al
ulate more bits if ne
essary. In pra
ti
al appli
ations,
al
ulation of primitives rarely require multiple pre
ision. In other words, it rarely happens that avertex 
 is so 
lose to an edge ab that more than 53 bits of pre
ision are required to determine onwhi
h side of ab it lies.3In order for the implementation to be almost as fast a native 
oating point, the output 
oordinates lose as mu
ha

ura
y as predi
ted by numeri
al analysis. Greater a

ura
y has greater 
omputational 
ost but still modest ifShew
huk's te
hniques are used (see below).4The a
tual representation is 2's 
omplement, but this does 
hange the available pre
ision.5



2.2 Coordinate RepresentationsA geometri
 system 
an use either points or lines as primitive elements. In this paper, we will
onsider only representations of points. Geometri
 points 
an be represented using an ordered pair(x; y) in Cartesian 
oordinates, using homogeneous 
oordinates (W;X; Y ), or using polar 
oordinates(r; �), where x = XW = r 
os � and y = YW = r sin �:In the 
ase of polar 
oordinates, one 
an avoid the trans
endental fun
tions sin and 
os by using arational parameterization of the unit 
ir
le,!(t) =  1� t21 + t2 ; 2t1 + t2! :For �1 < t < 1, !(t) nearly uniformly (j!0(t)j � 2) 
overs the unit 
ir
le to the right of the y-axis. The left half is parameterized by re
e
tion. Canny, Donald, and Ressler [3℄ des
ribe how togenerate a dense set of rational values for t to uniformly 
over the unit 
ir
le to any desired degreeof pre
ision.Di�erent numeri
al representations 
an be used with the geometri
 representations. The 
oor-dinates of (x; y) 
an be integers, rationals (ordered pairs of integers), or 
oating points. The
oordinates of (W;X; Y ) 
an be integers or 
oating points. Rationals are not ne
essary sin
e one
an always \
lear the denominators" of the homogeneous 
oordinates. In the rational parameter-ization of polar 
oordinates, r 
an be integer, rational, or 
oating point, and t 
an rational or
oating point.2.3 Geometri
 PrimitivesOnly three numeri
al geometri
 primitives are required to implement most algorithms on points,lines, and line segments: 
ir
ulation, point sum, and segment interse
tion. It is most 
onvenientto use homogeneous 
oordinates be
ause these allow the primitives to be expressed using onlyaddition, subtra
tion, and multipli
ation of integers or 
oating point numbers. These operations
an be 
arried out exa
tly and qui
kly using the te
hniques 
ited in Se
tion 2.1.Converting Cartesian 
oordinates to homogeneous is trivial (x; y) ! (1; x; y). If x and y arerational, then one 
an 
lear the denominator,�xnxd ; ynyd�! (xdyd; xnyd; ynxd):Assuming, r and t have rational values, polar 
oordinates 
an also be easily 
onverted to homoge-neous 
oordinates, �rnrd ; tntd�! (rd(t2d + t2n); rn(t2d � t2n); 2rntdtn):All division, rounding, and 
onverting ba
k to Cartesian or polar 
oordinates 
an be postponeduntil after the algorithm has exe
uted. This is dis
ussed in the next se
tion.Cir
ulation: We assume all negativeW 
oordinates are made positive: (W;X; Y )! (�W;�X;�Y )if W < 0. The 
ir
ulation [a; b; 
℄ of points a, b, and 
 is a 3x3 determinant,[a; b; 
℄ = ������� aW aX aYbW bX bY
W 
X 
Y ������� :6



Triangle ab
 winds 
ounter
lo
kwise if [a; b; 
℄ > 0 and winds 
lo
kwise if [a; b; 
℄ < 0. If [a; b; 
℄ = 0,then the three points are 
ollinear.Point Sum: Adding two homogeneous points by 
oordinate,a+ b = (aW + bW ; aX + bX ; aY + bY );yields a point on the line ab, but it is not the same as the sum in Cartesian 
oordinates. Inhomogeneous 
oordinates, we denote the Cartesian sum by �,a� b = � aXaW ; aYaW �+ � bXbW ; bYbW � = (aW bW ; aXbW + aW bX ; aY bW + aW bY ):Line Interse
tion: In homogeneous 
oordinates, the interse
tion point of lines ab and 
d is[b; 
; d℄a � [a; 
; d℄b;where s
alar multipli
ation and ve
tor addition (subtra
tion) is 
arried out in the usual fashion.This interse
tion point lies on both edges ab and 
d if and only if a
d and b
d have opposite
ir
ulation and 
ab and dab have opposite 
ir
ulation.Other primitives 
an be 
al
ulated from these three. For example, if [a; b; 
℄ = 0, then the threepoints are 
ollinear. To determine if b is between a and 
, sele
t a point d not on the line and
he
k if abd and 
bd have opposite 
ir
ulations. For most geometri
 algorithms, the depth of the
al
ulation is bounded. For example, 
omputing an arrangement of line segments requires thefollowing primitive: what is the 
ir
ulation [h; e; f ℄ where h is the interse
tion of ab and 
d? Thisprimitive is a 
on
atenation of the line interse
tion and 
ir
ulation primitive,[h; e; f ℄ = [a; e; f ℄[b; 
; d℄ � [a; 
; d℄[b; e; f ℄:Note that any primitive 
an be redu
ed to a polynomial expression on the input 
oordinates.2.4 Rounding Coordinate RepresentationsIn fa
t, in order to have an eÆ
ient numeri
al implementation of a geometri
 algorithm, all prim-itives must be redu
ed to polynomial expressions on the inputs. In this way, as Fortune and vanWyk and Shew
huk have demonstrated, it is possible to 
ompute the 
orre
t 
ombinatorial stru
-ture of the output without expli
itly 
omputing the 
oordinates of its points and lines. Shew
huk'smethod allows one to 
ompute the value of 
oordinates to any degree of a

ura
y.Hen
e, using Shew
huk's numeri
al methods and the 
onversions and primitives de�ned above, itis possible to 1) start with 
oating point (or integer) input 
oordinates, 2) 
ompute the exa
t 
om-binatorial output of any geometri
 algorithm on those inputs 3) 
al
ulate the nearest 
oating pointapproximations to the output 
oordinates. Applying shortest path rounding yields a 
ombinatorialstru
ture 
onsistent with these approximations.There are also methods for �nding good integer approximations, if that is desired. As previouslymentioned, Canny et al. [3℄ give a method for �nding a

urate, low pre
ision rational 
oordinateson the unit 
ir
le. Part of their method involves using 
ontinued fra
tions to �nd good rationalapproximations to real numbers. Hen
e, their te
hniques 
an be used to round to exa
t rationalpolar 
oordinates or exa
t rational Cartesian 
oordinates. In other work [34℄, we have shown howto use basis redu
tion to �nd good rational orthonormal (rotation) matri
es in three dimensions.Part of this work involves �nding good integer approximations to homogeneous 
oordinates in threedimensions. The same te
hnique also works in two dimensions to generate a

urate lower pre
isioninteger approximations to homogeneous 
oordinates.7
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Figure 1: Shortest Path Geometri
 Rounding3 De�nition of Shortest Path RoundingThis se
tion gives a mathemati
al de�nition for shortest path rounding. It will help the reader tokeep in mind a simple example shown in Figure 1. Verti
es b and 
 round to latti
e points b0 and
0, and all other verti
es are already at latti
e points. Verti
es b and 
 are not at latti
e points,perhaps be
ause they have arisen from the interse
tion of two line segments. This 
an happen ifpolygon ab
d resulted from the interse
tion of two other polygonal regions. As b and 
 are roundedto latti
e points, they must not \
ross into" triangle efg. Under shortest path rounding, edge efbe
omes a polygonal 
urve e
0b0f .To give a rigorous mathemati
al de�nition of what is happening in this �gure, this se
tion �rstde�nes latti
es (sets of rounding sites), then straight line embeddings (the thing that is rounded),geometri
 rounding, and shortest path geometri
 rounding. It states the theorem that shortestpath roundings are geometri
 roundings, but the proof is postponed until Se
tion 5. An illustra-tion is given of a bizarre 
ase whi
h might arise when rounding in polar 
oordinates. This 
asedemonstrates the ne
essity of the 
areful de�nitions and proofs.3.1 Latti
esGeometri
 rounding rounds verti
es to a \lower pre
ision latti
e". Pre
isely speaking, there is a setof sites S in the plane and a 
ell CELL(s) asso
iated with ea
h site s 2 S su
h that ea
h point p inthe plane lies in exa
tly one 
ell. The rounding fun
tion � takes p to the unique site s = �(p) 2 Ssu
h that p 2 CELL(s).Shortest path rounding demands only that the 
ells be 
onne
ted. However, if the rounding 
ellCELL(�(v)) of some vertex v is not simply 
onne
ted, then there are topologi
ally distin
t pathsalong whi
h one 
an round v to �(v). For example, v 
an travel to the left or to the right of a\hole" in CELL(�(v)) on the way to �(v) and even perhaps wind several times around the hole.This path 
an be represented as a rounding 
urve 
v that takes a point v to its rounding site �(v):
v(0) = v, 
v(1) = �(v), and 
v(t) 2 CELL(�(v)), 0 � t � 1. It will be proved that the outputof shortest path rounding depends only on the topologi
al family of the 
urve: two 
urves belong8



to the same family if one is a topologi
al deformation of the other. If the rounding 
ell is simply
onne
ted, the family and hen
e the output of shortest path rounding is unique. If the rounding
ell is 
onne
ted but not simply 
onne
ted, one way to ensure a unique topologi
al family of 
urvesis to introdu
e 
uts in the rounding 
ell to eliminate holes.Consider, for example, rounding in polar 
oordinates. One might 
hoose to round all 
oordinates(r; �) with 0:5 < r < 1:5 and �180 < � � 180 to the point (1; 0). The region 0:5 < r < 1:5 is \
ut"at � = �180 = 180. For 0 < � � 180, � is rounded downward to zero, and for �180 < � < 0, � isrounded upwards to zero.53.2 EmbeddingsAs Figure 1 illustrates, we are not merely rounding points to a latti
e. We are also rounding linesegments. Pre
isely speaking, geometri
 rounding rounds a straight line embedding of a planargraph G = hV;Ei. In the �gure, graph G has verti
es V = fa; b; 
; d; e; f; gg and edges E =fab; b
; 
d; da; ef; fg; geg.In an embedding, the verti
es are distin
t and the edges meet only at their endpoints. In a straightline embedding, the edges must be line segments. In a general planar embedding, they 
an be
urves. Edges in a straight line embedding 
an meet in a \V", but not a \T" or an \X", and they
annot share a 
ommon subsegment.The graph G has undire
ted edges. To represent some geometri
 obje
ts, it may be ne
essary tohave dire
ted edges and even multiple 
opies of edges. This level of 
ombinatorial detail 
an bebuilt \on top" of the undire
ted graph G. For example, one might 
hoose to assign a dire
tionto ea
h edge of the unrounded polygon in Figure 1 so that the boundary of ea
h polygon windsaround 
ounter
lo
kwise. If the rounded polygon is thought of as a straight line embedding, thenedge b0
0 is undire
ted and appears only on
e. If the �gure is thought of as two abutting polygonsab0
0d and e
0b0fg, then b0
0 appears twi
e with opposite orientation.3.3 Geometri
 RoundingAs Figure 1 illustrates, geometri
 rounding does not preserve straight lines. It does not preservethe graph either! However, it does yield a new straight line embedding whose verti
es lie at sites inS. The best way to de�ne geometri
 rounding is as a limit of topologi
ally equivalent embeddings.Imagine moving b and 
 towards b0 = �(b) and 
0 = �(
). At the same time, line segment ef deformsinto e
0b0f . Imagine further that the deforming segment always stays a little bit ahead of the twomoving verti
es until the very last \moment". Until the �nal \
li
k", the deforming embedding re-mains topologi
ally equivalent to the original embedding. The limit is not topologi
ally equivalent,but it is arbitrarily 
lose to embeddings whi
h are equivalent.The limit must have the property that all verti
es are at latti
e sites and all edges be
ome polygonal
urves with verti
es at the latti
e sites of verti
es. Ea
h vertex v stays within its rounding 
ell as itmoves to �(v). We believe that this de�nition 
aptures the intuitive notion of a \good rounding".Here it is more formally.5An alternative to introdu
ing 
uts into a rounding 
ell with holes is to expli
itly spe
ify a topologi
al family �vto whi
h 
v must belong. One might (bizarrely) insist that the rounding path for (r; �) winds around the origin �vetimes before rea
hing (1; 0). Shortest path rounding 
an handle this 
hoi
e, although one would probably not wantto do this in pra
ti
e! 9



De�nition 3.1 A deformation of the Eu
lidean plane is a 
ontinuous fun
tion,� : [0; 1℄ �E2 ! E2;su
h that for any �xed t 2 [0; 1), �t(p) = �(t; p) is a bije
tion.Note that �(1; p) is not a bije
tion: verti
es may 
ollide and edges may 
ome in 
onta
t at the\very last moment" (t = 1). However, the shape of the plane at t = 1 is 
learly the limit of a seriesof bije
tions.De�nition 3.2 A geometri
 rounding of a straight line embedding G = hV;Ei to a latti
e S isa deformation � of the plane with the following properties:1. for ea
h v 2 V , �(t; v) 2 CELL(�(v)) for t 2 [0; 1℄;2. for ea
h uv 2 E, �(1; �) deforms the segment uv into a polygonal path whi
h has verti
es onlyat latti
e points of verti
es in V .3.4 Shortest Path RoundingIntuitively, the 
urve e
0b0f is the shortest path from e to f that does not have b0 = �(b) and
0 = �(
) to the \wrong side." Unfortunately, line segments do not truly divide the plane into twosides, and so this intuitive de�nition is not mathemati
ally sound. However, now that we have aproper mathemati
al de�nition of geometri
 rounding, it is possible to �nally de�ne shortest pathrounding.De�nition 3.3 A shortest path rounding of an edge uv 2 E is a geometri
 rounding, withrespe
t to the subgraph Guv = hV; fuvgi of G, whi
h results in a shortest possible polygonal path(under �(1; �)) for segment uv.In other words, just round ea
h edge as if there are no other edges to worry about. The 
entraltheorem of shortest path rounding is that there exists a valid geometri
 rounding for G whi
h takesea
h uv to the same shortest path. Also, the paths are proved to be unique. Sin
e the paths arethe only result one expli
itly \sees" (� is impli
it), the resulting rounding is therefore 
alled theshortest path rounding of G.Theorem 3.11. The path resulting from a shortest path rounding of an edge uv is independent of the 
hoi
e ofrounding 
urve 
w � CELL(�(w)) for ea
h w 2 V .62. The union of shortest path roundings of the individual edges of a straight line embedding of agraph G is a geometri
 rounding of G.The proof of Theorem 3.1 is postponed until Se
tion 5. Se
tion 4 �rst gives several algorithms for
omputing shortest path roundings. These algorithms a
tually fa
ilitate the proof be
ause one ofthem 
learly satis�es Part 1 and the other 
learly satis�es Part 2. Proving the 
orre
tness of thetheorem and the algorithms is simply a matter of showing that the algorithms generate the sameoutput!6Assuming CELL(�(w)) is simply 
onne
ted or some way is 
hosen to 
ontrain the rounding 
urves to a singletopologi
al family (see Se
tion 3.1). 10
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(a) (b)Figure 2: Shortest Path Geometri
 Rounding: di�erent rounding 
ell for b0 = �(b). (Others remainthe same.)3.5 An IllustrationBefore seeing the algorithms, it might help the reader to examine how the shortest path roundingdepends on the shape of the rounding 
ell CELL(�(v)), even if v and �(v) are not 
hanged.Figure 2(a) illustrates a 
res
ent-shaped rounding 
ell for b0 and a path from b to b0 within this 
ell.If we use this path, the shortest path rounding is as shown in Figure 2(b). Edge ef be
omes e
0f ,fg be
omes fb0g, ab be
omes afb0, and b
 be
omes b0f
.Why is this rounding so di�erent? The rounding in Figure 1 uses a rounding 
ell that in
ludesthe straight line segment bb0. Most rounding methods have 
onvex rounding 
ells, and thereforeCELL(b0) would 
ontain this segment. Assuming f does not round to b0, it follows that f 62CELL(b0). A simply 
onne
ted rounding 
ell 
ould not 
ontain both bb0 and the 
urve from b tob0 depi
ted Figure 2(a). If the 
ell 
ontained both 
urves, it would have had a hole, and we wouldhave 
ut it (Se
tion 3.1). Examples su
h as this one 
an arise when one rounds in polar 
oordinates.Of 
ourse, the illustration greatly exaggerates the e�e
t, but the prin
iple is the same.4 Algorithms for Shortest Path RoundingThis se
tion presents three algorithms for shortest path rounding. For reasons that will be
omeapparent later, we refer to these as the lo
ally shortest path (lo
al path) algorithm, the globallyshortest path (global path) algorithm, and the monotone shortest path (monotone path) algorithm.The lo
al and global path algorithms 
an handle arbitrary latti
es. The monotone path algorithmis a spe
ial 
ase of the global path algorithm, and it 
an only handle latti
es S = Sx�Sy whi
h arethe Cartesian produ
t of two one-dimensional latti
es. Rounding in x and y are done independently.11



The monotone path algorithm is very simple to implement, works for many useful latti
es, and itis the one we have been using in pra
ti
e for industrial appli
ations sin
e 1992.4.1 Lo
ally Shortest Path AlgorithmThe lo
ally shortest path (lo
al path) algorithm is best des
ribed using a physi
al analogy. Imaginethe edges of the embedding to be elasti
 and 
exible yet impenetrable. Verti
es b and 
move towardsedge ef , and when they meet it, the edge starts to de
e
t and stret
h without letting them through.When b and 
 rea
h b0 and 
0, edge ef has be
ome the path e
0b0f .4.1.1 RepresentationThe representation of a deformed edge is simply the list of verti
es whi
h it tou
hes. Edge ef startsout as e; f . When b hits it (assume b hits it before 
), it be
omes e; b; f . When 
 hits it, it be
omese; 
; b; f . An additional tag is added to ea
h vertex to indi
ate whether it is \pushing on the edge"from the right or from the left.4.1.2 Spe
ial TimesFor ea
h vertex v 2 V , the algorithm sele
ts a rounding 
urve (Se
tion 3.1) 
v(t), 0 � t � 1. Sin
ethe rounding 
urve, by de�nition, must stay within the rounding 
ell, the output of the algorithmwill depend on the rounding 
ell, as is appropriate (see Figures 1 and 2). The state of the system
orresponds to a value of t plus the list of verti
es for ea
h deformed edge. Only 
ertain \spe
ial"values of t need to be examined, and the algorithm visits these in in
reasing order.A spe
ial time of t o

urs whenever 
u(t), 
v(t), and 
w(t) are 
ollinear, for some u; v; w 2 V .Changes in the representation of the deformed edges 
an only o

ur at spe
ial times. A spe
ialtime is a root of the equation, [
u(t); 
v(t); 
w(t)℄ = 0; (3)where [u; v; w℄ is the 
ir
ulation (Se
tion 2.3),[u; v; w℄ = ������� 1 ux uy1 vx vy1 wx wy ������� :For 
onvex rounding 
ells, 
v(t) = (1 � t)v + t�(v), v 2 V , and Equation 3 is quadrati
 in t.For rounding in polar 
oordinates, one might 
hoose to round r for 0 < t < 0:5 and round � for0:5 < t < 1. For t < 0:5, the rounding 
urves are line segments as in the 
onvex 
ase. For t > 0:5,the rounding 
urves are 
ir
ular ar
s. Assuming the algorithm uses the rational parameterizationof a 
ir
le, the resulting equation is of degree six. In general, if 
v(t) is polygonal (pie
ewise linear),then the values of t at whi
h 
v(t) bends must also be added to the set of spe
ial times. Pie
ewisepolygonal or pie
ewise rational 
urves 
an be handled similarly. This 
overs the types of 
urveswhi
h might be used in any imaginable appli
ation.4.1.3 Updating the Deformed EdgeAt ea
h spe
ial time ti, the representation of an edge 
an 
hange. There are four 
ases to 
onsider,but there is really only one 
ase, and the other three result from reversing time, swit
hing left and12



right, or both. The two \forward time" 
ases have the following 
onditions:� u, v, and w are 
ollinear at time ti and v lies between u and w;� u and w are 
onse
utive elements of the list of edge ab;� the 
ir
ulation [u; v; w℄ (Equation 3) is in
reasing (de
reasing) in some neighborhood for t > ti.In these forward time 
ases, the algorithm adds v to the list between u and w and tags v as \tothe left" (\to the right") of edge ab. The two reverse time 
ases are the reverse of these. If v lieson uw and if v is tagged \left" (\right") and if the 
ir
ulation is de
reasing (in
reasing) in someneighborhood t > ti, then v is removed from the list of ab and its tag is also removed.The lo
al path algorithm visits ea
h spe
ial time in in
reasing order and makes the appropriateupdate to the deformed edges at ea
h spe
ial time. When it rea
hes t = 1, the deformed edges willbe the shortest path rounding. We postpone the proof of 
orre
tness until Se
tion 5.4.2 Globally Shortest Path AlgorithmThe globally shortest path (global path) algorithm determines the topology that a path should haveand then dire
tly 
omputes it. Before the embedding of G is rounded, ea
h edge uv 2 E is a straightline segment. After the verti
es of G are rounded to sites in S, the path 
orresponding to edge uvmust \go past" the rounded verti
es of G a

ording to the same topology. Two 
urves from �(u)to �(v) have the same topology (with respe
t to V ) if one 
an be 
ontinuously deformed into theother without passing through another rounded vertex �(w), w 2 V . The global path algorithm
omputes the 
orre
t topology for an edge path and then 
onstru
ts the shortest path with thattopology. A
tually, the shortest path is allowed to \tou
h" latti
e points, and so it might have adi�erent topology, but it is a limit of 
urves with the 
orre
t topology. For example, the path e
0b0fdoes not have the same topology as ef be
ause to \tou
hes" b0 and 
0, but it is arbitrarily 
lose topaths whi
h do have the same topology as ef .The following three se
tions des
ribe how the global path algorithm 1) represents topologies, 2) 
al-
ulates the topology of a path, and 3) 
onstru
ts the shortest path whi
h \satis�es" the topology(whi
h is the limit of paths with the 
orre
t topology).4.2.1 RepresentationThe standard method to represent a topology is through the use of simpli
ial 
ompli
es. In this
ase, the simpli
ial 
omplex 
an be any triangulation of the set f�(v) j v 2 V g of rounded verti
es.However, if more than one vertex in V rounds to the same site, then that site must be repli
ateda like number of times. The 
luster of repli
ated sites is assigned a degenerate triangulation.To represent the topology of a path from site �(u) to site �(v) is to list the triangles through whi
hthe path passes. If two di�erent paths have the same list of triangles, then it is 
lear they have thesame topology. Unfortunately, two paths with the same topology may pass through a di�erent listof triangles. However, all topologi
ally equivalent paths 
an be redu
ed to a unique minimal listpath through the appli
ation of the following rules:Rule 1 � � � TiTjTi � � � ! � � � Ti � � � ;Rule 2 TjTi � � � ! Ti � � � ; where Ti and Tj have �(u) as a vertex,Rule 3 � � � TiTj ! � � � Ti; where Ti and Tj have �(v) as a vertex.13
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anbe pulled out of Tj. Rule 2 applies if the 
urve leaves �(u) and passes through several trianglesneighboring �(u). All but one of these 
an be removed. Rule 3 is analogous to Rule 2.This notion of a 
anoni
al (minimal list) representation of a topologi
al path is a standard te
hnique.It is 
lear that the 
anoni
al list 
an be generated from any list in linear time.4.3 Computing TopologiesSuppose that a rounds to a0 = �(a) and b rounds to b0 = �(b) where a; b 2 V and a0; b0 2 S. Thisse
tion shows how the global path algorithm 
omputes the topology of the path from a0 to b0. Theidea is to generate at least one path with the 
orre
t topology, 
al
ulate its list of triangles, andthen minimize that list using the rules of the previous se
tion.As usual, we assume that for ea
h v 2 V , we have 
hosen a rounding 
urve 
v(t) � CELL(�(v))that v follows to �(v). Given these 
urves, here is how the algorithm 
onstru
ts a path from a tob. It starts at a0, travels ba
k along the 
urve 
a to a and starts along the line segment ab. Everytime it hits a rounding 
urve 
v, it detours around it in the most \lazy" manner: it follows 
v to�(v), winds around �(v), and then travels ba
k along the other side of 
v ba
k to the line segmentab. It 
ontinues to follow ab and, if ne
essary, detour around rounding 
urves. When it rea
hes b,it follows 
b to b0 = �(b). Figure 3(a) illustrates a vertex v whose rounding path 
rosses ab twi
ebefore rea
hing v0 = �(v). Figure 3(b) illustrates the resulting path from a0 to b0.The global path algorithm must 
ompute interse
tions between line segments and rounding 
urvesand must be able to 
ompute the triangle lists for these rounding 
urves. Se
tion 5 proves thatthe topology is independent of the 
hoi
e of 
v(t) � CELL(�(v)), and therefore one 
an 
hoose the
urves that makes the 
omputations most 
onvenient. If the rounding 
ells are 
onvex, as theyare for most 
ommonly used latti
es, then one 
an 
hoose the 
urve 
v(t) = (1 � t)v + t�(v). Theglobal path algorithm need only 
ompute interse
tions of line segments. For rounding in polar
oordinates, one 
an 
hoose a 
urve 
onsisting of a line segment plus a 
ir
ular ar
. In this 
ase,the algorithm has to interse
t line segments with line segments or ar
s, requiring the solution of aquadrati
 equation.Note that the lo
al path algorithm involved roots of equations of higher degree{degree six in the
ase of rounding in polar 
oordinates{than the global path algorithm. Even though the global14



path algorithm is more 
ompli
ated, this di�eren
e in degree might make it easier to implement inpra
ti
e than the lo
al path algorithm.4.4 Computing Shortest PathsThe algorithm has 
omputed a triangulation on the rounding sites of V , and it has 
omputed a listof triangles for ea
h edge path. For a given edge uv 2 E, the path must start at �(u), pass throughtriangles T1; T2; T3; : : : ; Tm, and end at �(v). The path must be the shortest whi
h does so.Fortunately, there already exists an algorithm in the literature. Guibas et al. [17℄ give an algorithmfor 
omputing the shortest path from one vertex to another inside a simple polygon. Given atriangulation of the polygon, the algorithm runs in linear time. This algorithm works perfe
tly �neon a list of neighboring triangles.It should be emphasized that we are slightly extending the grasp of the existing shortest pathalgorithm. The polygon in Figure 4 does not appear to be a simple polygon. However, supposewe wish to 
ompute the shortest path from u to v whi
h passes through the list of triangles2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15. The algorithm 
an handle this task. As far as it is 
on
erned,the se
ond appearan
es of triangles 3 and 4 as triangles 13 and 14 are di�erent instantiations thanthe �rst appearan
es. The input is a simple polygon that happens to be drawn on a spiral stair
ase,and we are looking at it from above. The reason that the algorithm 
an handle this 
ase is that itonly looks at the lo
al intera
tions of the triangles.The list of triangles should almost always be a simple polygon anyway, but strange 
ases like this
an arise when rounding in polar 
oordinates. The path joining �(a) to �(b) 
annot interse
t itself,but it 
an enter the same triangle more than on
e.4.5 Monotone Shortest Path AlgorithmThis se
tion gives a 
omplete global path algorithm for the 
ase in whi
h S = Sx � Sy is theCartesian produ
t of two one-dimensional latti
es and in whi
h rounding is done independently forea
h 
oordinate: �(v) = (�x(vx); �y(vy)), where �x and �y are the rounding fun
tions for the one-dimensional latti
es. For reasons given below, this is 
alled the monotone shortest path (monotonepath) algorithm. This algorithm is very simple and easy to implement. We have used it for industrialappli
ation software sin
e 1992.It is easy to see that a one-dimensional latti
e has 
onne
ted rounding 
ells if and only if therounding fun
tion is monotone: if x1 < x2, then �x(x1) � �x(x2). This is one reason for thename of the algorithm. The other reason is that the output paths are always monotone in x andy. Spe
i�
ally, let �(t) be the ar
-length parameterization of the rounded path 
onne
ting tworounded verti
es �(u) and �(v), u; v 2 V . It follows that the x and y 
oordinates of �(t) are botheither non-in
reasing or non-de
reasing fun
tions of t.7 The path is also monotone with respe
t tothe segment �(u)�(v): ea
h point on the path has a unique perpendi
ular proje
tion onto �(u)�(v).4.5.1 High Level AlgorithmThe next se
tion gives an algorithm for7An equivalent de�nition is that every horizontal or verti
al line interse
ts the path in either the empty set, asingle point, or a single line segment. 15
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FindShortest(A, B, P1, P2, : : :, Pn)whi
h �nds the shortest path from A to B whi
h stays to the 
orre
t side of Pi, i = 1; 2; 3; : : : ; n.FindShortest requires that the Pi's proje
t onto segment AB in monotone order:A �AB < P1 � AB � P2 �AB � P3 �AB � � � � � Pn � AB < B � AB;where � is the standard dot proje
t and whereAB = B�A, the ve
tor fromA to B. Ea
h Pi is taggedLEFT or RIGHT. Points Pi and Pj 
annot proje
t to the same point on AB (Pi � AB = Pj � AB)unless TAG(Pi) 6= TAG(Pj).Given a straight line embedding of a graph G = hV;Ei, the monotone shortest path geometri
rounding algorithm rounds an edge ab 2 E as follows. It sets A = �(a) and B = �(b). It takesthe rounded verti
es �(v), v 2 V , whi
h proje
t onto AB (A � AB < �(v) � AB < B � AB) andsorts them in order of proje
tion position �(v) � AB. If two verti
es u; v 2 V on the left of lineab ([a; b; u℄; [a; b; v℄ > 0) proje
t to the same point (�(u) � AB = �(v) � AB), it dis
ards the fartherone: �(u) is farther from AB than �(v) if j[A;B; �(u)℄j > j[A;B; �(v)℄j. The algorithm similarly�lters verti
es on the right. It sets P1; P2; P3; : : : ; Pn equal to the sorted latti
e sites (roundedverti
es) and tags them LEFT or RIGHT a

ording to the status before rounding. Finally, it 
allsFindShortest. The output is the shortest path rounding of edge ab.Be
ause rounding in ea
h 
oordinate is monotoni
, the monotone path algorithm only needs to
onsider verti
es v 2 V inside the bounding box of edge ab: min(ax; bx) < vx < max(ax; bx)min(ay; by) < vy < max(ay; by). If v lies in the bounding box, then �(v) will proje
t onto �(a)�(b).Also, it 
an eliminate verti
es whi
h lie farther than �ab from ab, where �ab is the maximum widthor height of a latti
e rounding 
ell interse
ting the bounding box of ab. It is usually not diÆ
ult to
al
ulate �ab or a good upper bound on it for a given 
hoi
e of latti
e. For example, if Sx and Syare both the latti
e of representable 
oating point numbers, then �ab = 2�� max(jaxj; jayj; jbxj; jbyj),where � is the number of bits in the mantissa (53 on most 
omputers).Remember that that the purpose of geometri
 rounding is to deal the o

asional near-singular 
asesthat 
rash naively implemented geometri
 algorithms. In most 
ir
umstan
es, few if any verti
es liewithin �ab of any given edge ab. Furthermore, the 
ost of �nding these verti
es is modest and roughlyproportional to the rate they o

ur. Usually, one has already 
onstru
ted a trapezoidalization orsome other sear
h stru
ture on the arrangement of line segments. Finding verti
es whi
h satisfythe epsilon test is simply a matter of dete
ting \
at" or \pin
hed" trapezoids.4.5.2 Shortest Path AlgorithmThis se
tion gives an algorithm for FindShortest des
ribed in the previous se
tion. This algorithmis a spe
ial 
ase of Guibas et al. algorithm for shortest path in a simple polygon. The algorithmfor FindShortest uses two subroutines, AddLeft and AddRight, whi
h are de�ned �rst.In the following, Path, Left, and Right are double-ended sta
ks. PushHead, PopHead, PushTail,and PopTail do the obvious things. Path.Head[0℄ is the 
urrent \head" of the sta
k. Path.Head[1℄is the element one away from the \head" end of the sta
k. After FindShortest is exe
uted, Path
ontains the desired shortest path. While the algorithm is exe
uting, Left is the path that satis�esthe 
onstraints seen so far and \veers left" as mu
h as possible. Similarly, Right is the path that\veers right" as mu
h as possible. Whenever it is determined that Left and Right have a 
ommonpre�x, that part is added to the end of Path. 17



AddLeft (P , Path, Left, Right)while Left:Size > 1A Left:Head[1℄B  Left:Head[0℄if [A;B; P ℄ � 0Left.PopHeadelse breakLeft.PushHead (P )if Left:Size = 2 and Right:Size > 1while Right:Size > 1A Right:Tail[0℄B  Right:Tail[1℄if [A;B; P ℄ � 0Right.PopTailLeft.PopTailLeft.PushTail (Right.Tail[0℄)Path.PushHead (Right.Tail[0℄)else breakRight.PushHead (P )end AddLeft
AddRight (P , Path, Right, Left) is analogous to \AddLeft" with the roles of Right and Left swit
hed.
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FindShortest (A, B, P1, P2, : : :, Pn)Path.PushHead(A)Left.PushHead(A)Right.PushHead(A)for i 1 to nif TAG(Pi) = LEFTAddLeft (Pi, Path, Left, Right)else AddRight (Pi, Path, Left, Right)AddLeft (B)AddRight (B)return Pathend FindShortest5 ProofsThe lo
al path algorithm and the global path algorithm are two ways of 
omputing shortest pathroundings. They also provide two halves of the proof of Theorem 3.1, the 
entral theorem of shortestpath rounding. This se
tion proves the 
orre
tness of these algorithms and proves the 
entraltheorem in three steps. First, it de�nes a lo
ally shortest path rounding for an edge and proves thatit is unique and equal to the shortest path rounding (De�nition 3.3). Next it proves that the globalpath algorithm generates a shortest path rounding that satis�es Part 1 of of Theorem 3.1. Finally,it proves that the lo
al path algorithm generates a lo
ally shortest path rounding that satis�esPart 2 of Theorem 3.1. Taken together, these results prove the theorem.5.1 Lo
ally Shortest Path RoundingGiven a straight line embedding of a graph G = hV;Ei, let us suppose that we have a path from �(a)to �(b), ab 2 E, that avoids all other rounded verti
es �(v), v 2 V . Suppose we have triangulatedthe rounded verti
es (Se
tion 4.2.1), and the path passes through the (minimal) list of trianglesT1; T2; T3; : : : ; Tn. It is possible to parameterize the path �(t) so that �(0) = �(a), �(n+1) = �(b),and �(t) 2 Ti, i� 1 � t � i. For t = i, �(t) 2 Ti \ Ti+1, whi
h means that 
urve 
rosses the edge
ommon to Ti and Ti+1. Note that under this parameterization, �(t) might stay �xed for t in someintervals [i� 1; i℄.To deal with the 
ase that � passes through �(v), let us 
onsider � to be a 
urve,(t; �(t)) � [0; n� 1℄�E2:This allows us to arti�
ially \tag" portions of the 
urve as being \in" di�erent triangles, even if�(t) is not varying. Spe
i�
ally, for i � 1 < t < i, (t; �(t)) is \in" Ti and no other triangle, eventhough �(t), t 2 [i�1; i℄ might be �xed at �(v) of Ti and therefore an element of all triangles whi
hmeet at this vertex. Similarly, for t = i, (t; �(t)) is passing through the edge 
ommon to Ti andTi+1, and no other.Let Ti = �(u)�(v)�(w) where [�(u); �(v); �(w)℄ > 0. (If Ti is degenerate, then Ti must be the limitof triangles with positive 
ir
ulation.) Suppose (t; �(t)) passes through �(u)�(v) for t = i � 1 and19



w

u

v

w

u

vFigure 5: Curve (dashed) making a right turn at u0 = �(u) whi
h is to its left. This 
urve 
an bemade shorter without 
hanging topology.through �(u)�(w) for t = i, then for i � 2 < t < i + 1, �(u) lies \to the left" of �. \To the right"is de�ned similarly. Sin
e the list of triangles is minimal, � 
annot enter a triangle and then leavethrough the same edge. Therefore \to the left" and \to the right" are well-de�ned. Furthermore,for any sublist of triangles Ti; : : : ; Tj whi
h share a 
ommon vertex �(v), the de�nition is 
onsistentover the sublist.Let t 2 [i; j℄ be a maximal interval on whi
h �(t) = �(v) for some v 2 V . The path �(t) \turnsleft" at �(v) for t = i if the sublist Ti; : : : ; Tj winds around �(v) at least on
e 
ounter
lo
kwise orit makes a left turn in the 
onventional sense (and the sublist does not wind around �(v) at leaston
e 
lo
kwise). \Turns right" is de�ned analogously.De�nition 5.1 A lo
ally shortest path geometri
 rounding of an edge ab in an embeddingof G = hV;Ei is a geometri
 rounding of ab that only turns left at �(u), u 2 V , to its left and thatonly turns right at �(v), v 2 V , to its right.Figure 5 depi
ts a 
urve that \turns right" at a vertex \to its left." This 
urve 
an be made shorterlo
ally by taking a short
ut near the vertex.Lemma 5.1 The lo
ally shortest path geometri
 rounding of an edge is unique.Proof: Suppose we have two lo
ally shortest paths �(t) and �(t) from �(a) to �(b). Suppose thatthey are not equal. This means that there is some value t0 of t at whi
h they diverge. Without lossof generality, �(t) is to the right of �(t) in a neighborhood of t > t0: the angle between the tangentve
tors �0(t0) and � 0(t0) is positive (
ounter
lo
kwise). The 
urves � and � 
annot rejoin unlesseither � makes a left turn or � makes a right turn. However, the 
urves 
an only turn as they 
rosssome edge �(u)�(v) of the triangulation. (They must 
ross the same edges in the same order atthe identi
al values of t.) Curve � 
annot pass through �(u) be
ause � interse
ts �(u)�(v) 
loser to�(u), and similarly, 
urve � 
annot pass through �(v). But � 
an only make a right turn at �(v) and� 
an only make a left turn at �(u) (see Figure 6). If � makes a right turn or � makes a left turn,then the angle of divergen
e be
omes larger, never smaller. (Note: the angle 
annot grow greater20
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Figure 6: Curve � makes a left turn at u0 = �(u) to its left. The divergen
e between 
urves � and� in
reases.than 180 degrees otherwise � and � 
ould not both pass through the next edge.) Therefore, if the
urves diverge, they 
an never rejoin. This 
ontradi
ts the fa
t that �(n + 1) = �(n + 1) = �(b).Therefore, the 
urves must be equal.5.2 Global Path LemmaLemma 5.2 The global path algorithm generates a shortest path geometri
 rounding for ea
h edgeof the embedding, and that path is independent of the 
hoi
e of rounding 
urves 
v(t), v 2 V .Proof: The global path algorithm \loosely" threads the edge path from �(a) to �(b) past ea
hrounded latti
e point. To make sure it has the 
orre
t topology, it detours around ea
h rounding
urve that the edge from �(a) to �(b) interse
ts. On
e it has the 
orre
t topology, it \pulls thestring tight," 
omputing the shortest path for that topology. It is 
lear that the topology is
orre
t, and we will not give an expli
it 
onstru
tion of the deformation of the plane that takes theinitial embedding to the \loosely threaded" intermediate embedding. The deformation would besomething like dragging �ngers through frosting, where ea
h �nger starts at some v 2 V , follows
v and stops at �(v).If any 
v is modi�ed 
ontinuously without leaving CELL(�(v)), then it 
annot sweep through anyother rounded vertex �(u), u 2 V , be
ause �(u) 62 CELL(�(v)). Therefore, the \loosely threaded"path varies 
ontinuously too, and does not sweep through any rounded vertex. This means that
ontinuously modifying 
v does not 
hange the �nal topology. Sin
e the output of the algorithmonly depends on the topology (minimal list of triangles), the output is independent of the rounding
urves 
v, v 2 V .
21



5.3 Lo
al Path LemmaLemma 5.3 The lo
al path algorithm generates a lo
ally shortest path geometri
 rounding for ea
hedge, and the union of these paths is a geometri
 rounding of the entire straight line embedding.Proof: The lo
al path algorithm is a physi
al simulation. It is possible to give a mathemati
alproof, but a \physi
al" proof is simpler and more 
omprehensible.The algorithm simulates the result of moving fri
tionless parti
les (verti
es) pressing against 
exible,elasti
, impenetrable strings. The strings do not vibrate or \wave about", and therefore the systemremains at (lo
al) minimum potential energy at all times. For an elasti
 string, the potential energyis proportional to the length of the string. Therefore, the length of ea
h path (representing an edgein the original embedding) is always at a lo
al minimum for the given topology.The shape of ea
h string path depends only on the evolution of the verti
es, not on the presen
eof other paths. Furthermore, ea
h path rea
ts appropriately to all moving verti
es whi
h impingeon it. Therefore, it is not possible for a moving vertex to push one string \through" another.We 
ould endow ea
h vertex and ea
h edge (string) with a small thi
kness. Ea
h vertex would berepresented by its 
enter, and ea
h edge would be represented by its medial axis (the portion joiningthe 
enters of the two vertex endpoints). It is 
lear that for suÆ
iently small thi
kness, the physi
almotion 
an be made arbitrary 
lose to the ideal zero-thi
kness 
ase. The 
enters and medial axesare a deformation of the original embedding with the same topology: axes/
enters 
annot 
ome into
onta
t be
ause of the \thi
kness" surrounding them. When ea
h vertex in the thi
k model rea
hesits �nal resting pla
e, one 
an shrink the thi
kness down to zero. At the moment the thi
knessrea
hes zero, the 
enters and axes be
ome identi
al to the output of the lo
al path algorithm. Thisdemonstrates that there exists a topologi
al deformation of the original embedding whose limit isthe set of lo
ally shortest paths.This physi
al argument demonstrates that the lo
al paths satisfy the de�nition of a geometri
rounding. Sin
e we have shown they have (lo
al) minimum length, this proves the lemma.5.4 Central Theorem of Shortest Path RoundingThis se
tion proves Theorem 3.1, the 
entral theorem of geometri
 rounding in Se
tion 3.3 (page 10).Proof: By Lemma 5.3, the lo
al path algorithm generates a geometri
 rounding of the entirestraight line embedding. However, sin
e this is a physi
al simulation algorithm, the output mightonly be a lo
al minimum of the path length, and it might depend on the 
hoi
e of rounding
urves 
v, v 2 V . However, Lemma 5.2 shows that the topology of the global minimum lengthgeometri
 rounding for ea
h individual edge is independent of the 
hoi
e of rounding 
urves. Finally,Lemma 5.3 proves that there is only one lo
al or global minimum length path for a given topology.Therefore, the lo
al path algorithm and the global path algorithm generate the same output, andthese are a geometri
 rounding of the entire embedding.6 Appli
ationsThis se
tion illustrates one of the ways we use shortest path rounding in pra
ti
e. Sin
e 1991,we have been developing algorithms for layout in the apparel industry. The basi
 problem is strip22



pa
king: given polygons P1; P2; : : : ; Pk and a re
tangle of �xed width and undetermined length, �ndthe non-overlapping layout of the polygons with minimum length. In apparel appli
ations, fabri
has a grain, and thus ea
h polygon has between one and eight valid orientations. The generalstrip pa
king problem is NP-hard. In pra
ti
e, k is 100 or more, and the problem is intra
table.However, we have shown that translational algorithms for modest values of k (1 � k � 10), arevery useful in the development of heuristi
s or approximate algorithms for mu
h larger values of kwith multiple allowed orientations.One useful algorithm is translational minimum area en
losure: given P1; P2; : : : ; Pk, �nd the layoutunder translation with the minimum area bounding re
tangle. Aside from its usefulness in pra
-ti
e, this algorithm is an \a
id test" for geometri
 rounding. It 
as
ades algorithms for polygonde
omposition, Minkowski sum, union, interse
tion, 
omplement, 
onvex hull, and linear program-ming. These algorithms do not apply transformations to the 
oordinates, but they use all three
onstru
tion primitives mentioned in Se
tion 1: 1) join points to make lines, 2) interse
t lines tomake points, and 3) add two points. In addition, the linear programming algorithm generates newpoint 
oordinates by solving a system of linear equations: in this 
ase, 2(k+1) equations whose 
o-eÆ
ients are linear or quadrati
 in the input point 
oordinates. The depth of 
omputation (numberof 
as
ades) is arbitrary, even for a single problem instan
e. Furthermore, the minimum en
losurealgorithm \deliberately seeks" degenerate 
ases.We have des
ribed most of our layout algorithms in journal and 
onferen
e papers and te
hni
alreports [21, 7, 23, 5, 30, 29, 6, 8, 33℄. We have also li
ensed the implementations to industry. Thisse
tion summarizes the minimum en
losure algorithm to give the reader an idea of how the problemof 
as
ading 
an arise in pra
ti
e.6.1 Displa
ement Spa
esTo solve the minimum en
losure problem, we solve a set of de
ision problems: does there exista re
tangle of area A whi
h 
an 
ontain the polygons? This de
ision problem is redu
ed to adispla
ement equation, tj � ti 2 Uij ; 0 � i < j � k + 1; (4)where t1; t2; : : : ; tk are the translations applied to the polygons and where t0 and tk+1 are thelower-left and upper-right 
orners of the en
losing re
tangle.8 Ex
ept for U0;k+1, the Uij regionsare bounded depth 
onstru
tions on P1; P2; : : : ; Pk. (For instan
e, Uij = Pi ��Pj, 1 � i < j � k,where � is the Minkowski sum.) In theory, U0;k+1 = f(x; y) jx�y�Ag is bounded by a hyperbola.However, we use a polygonal approximation to the hyperbola. As a result, only polygonal operationsare required, but the algorithm generates an en
losure whose area is an approximation to theminimum.The minimum en
losure algorithm uses binary sear
h to �nd the minimum area. Whenever thede
ision problem has a solution, the algorithm applies 
ompa
tion [21, 23℄ (a
tually, a slight gen-eralization), whi
h moves the layout to a lo
al minimum area. This greatly speeds up the binarysear
h. However, sin
e 
ompa
tion involves no 
as
ading, we will not summarize it here.8We always set t0 = (0; 0), but it is easier to des
ribe mathemati
ally and implement in this more general form.
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6.2 Solving the Displa
ement EquationsWe refer to the list U = hUij j 0 � i < j � k + 1i of displa
ement spa
es as a hypothesis be
auseit 
orresponds to the hypothesis that there exists a layout with that parti
ular area. To solveEquation 4, the minimum en
losure algorithm applies three operations to a hypothesis: restri
tion,evaluation, and subdivision. Restri
tion repla
es one or more Uij by a subset without 
hanging thetruth value of the hypothesis (without throwing away any valid solutions). Evaluation attempts to�nd a solution within a given hypothesis. Subdivision sele
ts one pair i; j and splits Uij into U+ij andU�ij . Repla
ing Uij by either of these generates two sub-hypotheses U+ and U�. The hypothesisU is true if and only if U+ is true or U� is true. Evaluation is not 
onstru
tive. Subdivision onlyinvolves interse
tion with two half-planes, although the overall depth of subdivision is arbitrary.Restri
tion 
an involve unbounded 
as
ading.The minimum en
losure algorithm employs two types of restri
tion: geometri
 restri
tion and linearprogramming (LP) restri
tion. Geometri
 restri
t performs the following substitution,Uij  Uij \ (Uih � Uhj); 0 � i < j � k + 1; 0 � h � k + 1; h 6= i; j;where Uih is de�ned to be �Uhi if h < i. The algorithm applies this restri
tion repeatedly untila \steady state" is rea
hed. In pra
ti
e, we stop when the de
rease in area drops below a �xedfra
tion. Geometri
 restri
tion arbitrarily 
as
ades the operations of interse
tion and Minkowskisum.Linear programming restri
tion shrinks ea
h Uij in a di�erent way. It �rst 
onstru
ts an outer
onvex approximation to the displa
ement equation,tj � ti 2 CH(Uij); 0 � i < j � k + 1;where CH(Uij) is the 
onvex hull of Uij. Using an adaptation of the simplex method, it 
onstru
tsthe range of th� tg under this 
onvex approximation. The range is a 
onvex polygonal region Cgh.The following substitution is a valid restri
tion,Ugh  Ugh \ Cgh:It applies this substitution for ea
h pair g; h until a steady state is rea
hed. Again, the 
as
adingis arbitrary. In addition to straight-edge 
onstru
tions, linear programming generates new point
oordinates by solving 2(k + 1) linear equations in 2(k + 1) variables. The 
oeÆ
ients of theseequations are linear or quadrati
 in the 
oordinate of the verti
es of the displa
ement spa
es.6.3 ResultsFigure 7 illustrates the minimum en
losure algorithm on �ve input polygons. Thanks to 
ompa
tion,the algorithm 
an apply a very \lop-sided" binary sear
h. Iteration 1 is a square 
ontainer with
ompa
tion applied. For iterations 2-5, the algorithm set the target area to be 1% less than theprevious layout after 
ompa
tion. Iteration 5 was infeasible. The algorithm set the target foriteration 6 to be 0.01% smaller than the area of iteration 4, and similarly, iteration 7 and 8 havetargets 0.01% than the previous layouts after 
ompa
tion. Iteration 8 was infeasible, and thereforeiteration 7 is within 0.01% of optimum. The polygonal approximation to the hyperbola had 100verti
es, whi
h introdu
es an additional error of at most 0.01%.The running times ranged from 2 minutes for iteration 1 to 45 minutes for iteration 8. Total timeon a DEC Alpha 3000/700 is about 2.5 hours.9 Solving iteration 8 required 318 subdivisions and9This 
omputer is advan
ed 1994 te
hnology. A 1998 PC (400MHz Pentium II) is about twi
e as fast.24



Iteration 2 Iteration 3

Iteration 6Iteration 4 Iteration 7

Iteration 1

Figure 7: Minimal en
losing re
tangle of �ve polygons with 55, 61, 66, 65 and 72 verti
es.
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steady state restri
tions. Ea
h of these 318 steady state restri
tions involves a 
onsiderable amountof 
as
ading, and in addition, the depth of subdivision averaged about 9. Iteration 7 required 246subdivisions and 34 minutes. These iterations bra
ket the tightest possible layout.Without geometry rounding, this type of 
al
ulation would simply be impossible. With geometryrounding, we see no numeri
al problems at all, even for this near-degenerate and highly 
as
aded
onstru
tion.7 Analysis and Con
lusionsThe previous se
tion demonstrates that geometri
 rounding is an absolute ne
essity, at least forsome important appli
ations. However, shortest path rounding is not the only type of geometri
rounding. For the integer grid, Se
tion 1.2.2 dis
ussed Greene-Yao rounding and snap roundingas alternative types of rounding. This se
tion presents the ways in whi
h shortest path geometri
rounding is a better 
hoi
e than these other two rounding te
hniques.It should be emphasized that running time is not a 
riti
al issue in the 
hoi
e of rounding te
hnique.All three rounding te
hniques essentially run in time linear in the number of verti
es added to ea
hrounding path. As indi
ated in Se
tion 4.5.1, the latti
e point �(v) for vertex v 2 V 
an onlyappear on the rounding path for edge ab 2 E if it is very \near" to ab, and this should be a rareo

urren
e.The shortest path algorithm in Se
tion 4.5.2 performs a number of 
ir
ulation tests whi
h is pro-portional to the number of distan
e 
al
ulations required for snap rounding. For programs in whi
hsnap rounding is appli
able, swit
hing from snap rounding to shortest path rounding only in
reasesa small fra
tion of the running time by a small fa
tor. It may not even be possible to measure theoverall di�eren
e in running time.The more important issue is how mu
h \damage" rounding in
i
ts when it does be
ome ne
essary.Se
tions 7.1 and 7.2 show that on integer grids, shortest path rounding introdu
es less geometri
and 
ombinatorial error than the other rounding methods. Another issue is the generality of therounding te
hnique. Se
tion 7.3 gives several reasons why it is useful to round on a non-uniformgrid, whi
h only shortest path rounding 
an handle.7.1 Rounding on the Integer GridAll three rounding methods repla
e a line segment ab by a polygonal path from �(a) to �(b). Theverti
es of the path are at latti
e points. If the latti
e is the integer grid, then a latti
e point p 
anbe a vertex of the path only if ab interse
ts CELL(�(p)), in whi
h 
ase we say that p is near ab. Ifp is �(v) for some v 2 V , then we say that p is a vertex latti
e point. Snap rounding repla
es ab bya path joining all near vertex latti
e points.Greene-Yao rounding does not ne
essarily \tie" the path to all near vertex latti
e points. It tiesthe path to �(v) only if v�(v) 
rosses ab. However, it does not permit the path to \sweep past"any latti
e point, even non-vertex latti
e points, as it is \pulled" to these spe
ial latti
e points. Asa result, it ends up adding 
(log jabj) extra non-vertex latti
e points to the path for every vertexlatti
e point on the path. For a grid of pixels, typi
ally about 1000 by 1000 on 
urrent graphi
sdisplays, ln jabj is perhaps not too large. Other industrial appli
ations generally require highera

ura
y. Using a 106 by 106 grid might mean that 10 to 20 non-vertex latti
e points are added for26



ea
h vertex latti
e point on the path. For su
h appli
ations, this number of \extra" verti
es wouldmake Greene-Yao rounding an impra
ti
al 
hoi
e.Shortest path rounding does not \tie" the path to any verti
es, ex
ept of 
ourse �(a) and �(b).Even if v�(v) 
rosses ab, �(v) might not be a vertex on the rounded path. Vertex v \pushes" onthe path as v rounds to �(v), but other verti
es might push it past �(v). In parti
ular, u and w,u;w 2 V might be near to v and on the same side of ab. If v and �(v) lie on the same side ofsegment �(u)�(w), then as u and w push on the path, they will push it \past" �(v), and �(v) willnot lie on the path. Unlike Greene-Yao rounding, shortest path rounding only puts vertex latti
epoints on the path, and these path verti
es are a subset of the points on the snap rounding path.107.2 Analysis of ErrorSnap rounding and shortest path rounding both add many fewer verti
es to the rounded pathsthan Greene-Yao rounding, and shortest path rounding adds somewhat fewer verti
es than snaprounding. Also, the shortest path has the minimum possible deviation from the original linesegment. How signi�
ant is the di�eren
e between snap rounding and shortest path rounding?The di�eren
e is \merely" a 
onstant fa
tor. However, 
as
ading 
an multiply these 
onstants intoexponential di�eren
es. This se
tion argues that for ea
h vertex that snap rounding puts on arounding path, shortest path rounding will put that vertex on the path with a probability between1=6 and one-quarter. Shortest path rounding introdu
es a geometri
 error with a standard deviationabout 1=3 of the error introdu
ed by snap rounding. The standard deviation of the appropriatemeasure of error: 
as
aded rounding is essentially a random walk, and the result of a random walkis a Gaussian who standard deviation is proportional to the standard deviation of the roundingdistribution.7.2.1 Combinatorial ErrorWe simplify the analysis11 by 
onsidering only the 
ase in whi
h exa
tly one vertex latti
e point�(v) lies near to ab (ab interse
ts CELL(�(v))). Snap rounding always puts �(v) onto the path.Shortest path rounding puts �(v) on the path only if v and �(v) lie on opposite side of ab. Assumingthat the distan
e from �(v) to ab is uniformly distributed and that v is uniformly distributed inCELL(�(v)), one 
an show that v lies in the portion of CELL(�(v)) on the side of ab opposite from�(v) with probability 1=6 if ab has 45 degree slope and with probability one-quarter if ab has 0degree or 90 degree slope.7.2.2 Geometri
 ErrorIn analyzing the standard deviation, we will 
onsider only the 
ase in whi
h ab either rounds to�(a)�(b) or �(a)�(v)�(b). The question is, what is the standard deviation of the error introdu
edby vertex v? Sin
e we are only 
on
erned with the ratio of standard deviations, we will 
all themaximum deviation one \unit". If ab has 45 degree slope, one unit of error is a
tually p2=2. If abhas 0 or 90 degree slope, one unit of error is 1=2.If �(v) lies near ab, then snap rounding will always snap to �(v). The de
e
tion along the path�(a)�(v)�(b) is uniformly distributed from 0 to the distan
e Æ from �(v) to �(a)�(b). Therefore10The subset 
an be improper: the two paths might be the same.11For this reason, we 
all this se
tion an \argument", not a \proof".27



the distribution of de
e
tion varies a

ording to the following distribution: sele
t Æ uniformly from[0; 1℄ and then sele
t � uniformly from [0; Æ℄. The error � has the distribution � ln �. The standarddeviation is 1=3.If �(v) lies near ab and it is the only vertex whi
h does so, then shortest path rounding will only snapthe path to �(v) if v�(v) interse
ts ab. For this to happen, v must lie in the portion of CELL(�(v))that is on the opposite side of ab from �(v). If ab has 45 degree slope, this event has probability(1� Æ)2=2, and if ab has 0 or 90 degree slope, the probability is (1� Æ)=2. For the 45 degree 
ase,the distribution of error along the segment is 
onstru
ted as follows: sele
t Æ uniformly from [0; 1℄and then sele
t � uniformly from [0; Æ℄ with probability (1 � Æ)2=2 but set � = 0 with probability1� (1� Æ)2=2. The 0 or 90 degree is analogous. The 45 degree distribution is,�14�2 + �� 12 ln �� 34 ;and the 0 or 90 degree distribution is, 12�� 12 ln �� 12 :Surprisingly, these both have the same standard deviation: 1=p72. This is 1=2p2 � 1=3 times thestandard deviation of snap rounding.7.3 Non-Uniform GridsThe most 
ommon non-uniform numeri
al representation is 
oating point: mantissa plus exponent.Obviously 
oating point would not be as popular as it is if it did not have many te
hni
al advantages.One advantage is that is seamlessly handles 
hanges in s
ale or unit. We �rst li
ensed our layoutsoftware to Mi
rodynami
s, In
., whi
h used a unit of 0.01 in
h. Gerber Garment Te
hnologies(GGT) bought Mi
rodynami
s and took over the li
ense. GGT uses a unit of 0.001 in
h. Oursoftware used integer arithmeti
 and the integer grid. As a 
onsequen
e, it had some absolute ratherthan relative toleran
e values. Unfortunately, a

ommodating GGT was not simply a matter of
hanging 
onstants and re
ompiling: they still had to servi
e the former Mi
rodynami
s 
ustomers.We 
ould have avoided all of this in
onvenien
e if we had used 
oating point 
omputations androunded to the 
oating point grid. Of 
ourse, Shew
huk's work (Se
tion 2.1) was not available atthat point in time.We emphasize again that it is not ne
essary to 
ompute the nearest 
oating point 
oordinate toevery exa
t 
oordinate. Shortest path rounding 
an round to any latti
e set S as long as therounding 
ells are 
onne
ted. The easiest way to a

omplish this is to use a round-to-neareststrategy: the rounding 
ells are simply the 
onvex Voronoi 
ells of S. Sin
e the rounding 
ells are
onvex, the rounding 
urves 
an be straight line segments. When a point needs to be rounded, thesystem 
an 
he
k to see if it is 
lose enough to an existing vertex latti
e point in S. If not, a newlatti
e point 
an be added to S. This approa
h involves point lo
ation and update of a Voronoidiagram, both very well understood problems. It would use the global path algorithm.If the rounding needs to be independent of a spe
i�
 xy 
oordinate frame, then one would use theapproa
h in the previous paragraph. Otherwise, it is even simpler to use the lo
al path algorithm.Maintain a set Sx of x latti
e 
oordinates and a set Sy of y latti
e 
oordinates. These sets 
an bebuilt in
rementally. To round a point (x; y), round ea
h 
oordinate to the nearest existing x and ylatti
e 
oordinates in Sx and Sy. If the nearest is too far, 
ompute an approximation to x and/or28



y and add these to Sx and/or Sy. Maintaining an ordered set of numbers with �nd-nearest andinsert operations is a very well understood problem. This approa
h would use the monotone pathalgorithm. This is the approa
h we would re
ommend in pra
ti
e.7.4 Con
lusionMany 
ommon, useful, and pra
ti
al appli
ations of 
omputation geometry have exponential spa
eand time owing to numeri
al issues and 
as
ading. Geometri
 rounding redu
es the 
ost to whatit would be in the absen
e of 
as
ading. Numeri
al error is the pri
e paid for this redu
ed 
ost,but this tradeo� is a reasonable and well-understood prin
iple of numeri
al 
omputing. Geometryrounding does not require any modi�
ation of the geometri
 algorithm or their exa
t arithmeti
implementation. The algorithm 
an even use symboli
 perturbation.Shortest path geometri
 rounding introdu
es the minimum geometri
 deviation of any method thatintrodu
es only vertex latti
e points (meaning that the only verti
es in the output are roundedlo
ations of verti
es in the input). On the integer grid, it introdu
es many fewer verti
es thatGreene-Yao rounding and fewer verti
es and less de
e
tion than snap rounding.Unlike other rounding methods, shortest path rounding 
an handle any 
onne
ted latti
e, evenrounding in polar 
oordinates, but most importantly, the 
oating point latti
e. The global pathalgorithm uses standard, easily implemented algorithms of 
omputation geometry: triangulation,segment interse
tion, and shortest path in a simple polygon. The monotone path algorithm is evensimpler to implement and use, and a 
omplete implementation is given in this paper.Shortest path rounding has very low overhead. In 
ombination with numeri
al te
hniques forexa
t 
oating point 
omputation, it o�ers the ideal implementation for any algorithm on polygonalregions: 
oating point input, exa
t 
omputation, 
ost per arithmeti
 operation a little more thanhardware 
oating point, rounded 
oating point output. Finally, its use is well-established in li
ensedindustrial appli
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