
(a) (b)(c) (d)Fig. C.1. (a) a polyhedron Q; di�erence polyhedra obtained by o�setting left faceplane (b), bottom face plane (c), and back face plane (d).other oppositely directed and embedded on plane �0, and for each edge e offace f , a four-sided face embedded on the plane of the other face incident toe. See �gure C.1(a)-(b).The desired set N of polyhedra is obtained by starting with P , and for eachface f of P in turn, adding to the set the di�erence polyhedra obtained byo�setting �(f) to �0(f). See �gure C.1(c)-(d). A polyhedron in N is eitherP itself, a face o�set with two copies of a face of P , an edge o�set with fourcopies of an edge of P , or a vertex o�set with eight copies of a vertex of P .To prove the lemma, suppose w(p; P ) 6=w(p; P 0). Since we havew(p; P 0)=w(p;N),there must be some polyhedron Q distinct from P in N with w(p;Q) 6=0. Weassume Q is a face o�set of some face f ; other cases are similar.Q has a face g that is a copy of f lying in �0(f), and a face g0 with supportidentical to the support of f . Using some elementary geometry and the de�ni-tion of condition number, it is possible to show that any vertex of g lies within�1R�� of the corresponding vertex of g0 and within �2R� of �(f), for someconstants �1; �2. Let p0 be the orthogonal projection of p onto plane �(f);segment pp0 has length at most �2R�. Either segment pp0 meets no face of Q,and p0 lies in the support of face g, or segment pp0 meets a four-sided face ofQ, and there is a path of length at most �1R�� along the four-sided face to anedge of g0 . Hence p lies within �R�� of the support of g0, for some constant�. 2



B.4 ReindexingSuppose e is an edge on face g also incident to face f . As a consequence ofsimplifying f , e may have been replaced with a sequence of edges e0, e1, : : :,e2k, where the even-numbered edges are now incident to faces in N(f) (see�gure B.4). We must ensure that this replacement introduces no new improperedge intersections on face g, since g may already have been simpli�ed. Thisfollows if the indices assigned to faces in N(f) have the same order relationwith other face indices as f does. This can be accomplished easily with aglobal reindexing of all faces, though other strategies are possible.Because of the change in indices, the winding number of nonreal points neednot be preserved by simpli�cation.B.5 Face-face intersectionFace-face intersection ensures that all intersections between faces are proper.The implementation of this step is reasonably standard [13] (it would not bestandard if faces were not simple). A detail is that even if faces f and g arealready adjacent, face-face intersection is necessary to discover all possiblecommon edges.C The rounding boundThe bound on polyhedral rounding claimed earlier is a consequence of thefollowing lemma.Lemma 3 Let P=(C;�) and P 0=(C;�0) be polyhedra, where for each facef , �0(f) is a �-approximation of �(f) at f . Then for any point p2R�3, ifw(p; P ) 6=w(p; P 0), then p lies within ���R of some point of the boundary ofP , where � is a constant, �<1=(2�) is the maximum condition number of anyvertex of P , and R�1 bounds the radius of any face of P .Proof sketch: We decompose P 0 into a set N of polyhedra, one of which isP . For simplicity, assume that all face planes of P and P 0 are distinct andnone are parallel.Let Q be a polyhedron with face f lying on plane �, and let Q0 be the polyhe-dron obtained by embedding f on plane �0 instead. The di�erence polyhedronD obtained by o�setting � to �0 satis�es w(q;D) + w(q;Q) = w(q;Q0) for allq 2 R�3; explicitly D has two copies of face f , one embedded on plane �, the



e e0(a) (b)e e0 e00(c) (d)Fig. B.3. Overlapping but oppositely directed edges on the same face (a) can beeliminated easily (b). In (c), overlapping and similarly directed edges have beenconceptually perturbed; the intersection is removed as in (d).ee0f absym(e)g basym(e0)g0 abFig. B.4. Edges e and e0 cross on face f (top left). The transformation to eliminatecrossing is shown on right, for face f and adjacent faces g and g0.result of perturbation, there are essentially two cases of improper intersection.The �rst case is an improper intersection between an edge e incident to a face gand another edge e00 adjacent to an edge e0 also incident to g. See �gure B.3(c).Edge e can be split at the intersection point and face f locally transformed asshown in �gure B.3(d); the subpieces of a split edge retain the original index.Notice that face g is unchanged (except that one of its edges is split by adegree-two vertex).The second case is that edges e and e0 intersect improperly at a point interiorto both edges. Let g and g0 be the other faces incident to e and e0, respectively.The improper intersection is eliminated by the transformation illustrated in�gure B.4. This transformation splits edges e, e0, sym(e) and sym(e0) usingtwo new vertices a and b. Vertices a and b will end up on di�erent faces inN(f); to guarantee that the result of face simpli�cation is a combinatoriallyvalid polyhedron, it is necessary to add an edge between a and b on both facesg and g0.



(a) (b)(c) (d)Fig. B.1. (a) box; (b) self-intersecting box; (c) result of face simpli�cation; (d) resultof face-face intersection. (a) e e0(b)(c)Fig. B.2. The polyhedron in (b) has the same combinatorial structure as the notchedpolyhedron in (a). Edges e and e0 overlap, and both are incident to the same faces.The two polyhedra in (c) are the result of simpli�cation, shown side-by-side forclarity.The �rst step is complicated by the possibility of edge overlap. In �gure B.2(b),edges e and e0 overlap; notice they must be incident to the same face g. (If eand e0 were incident to distinct faces, then perturbation guarantees that theyare nonoverlapping).First notice that if e and e0 overlap but are oppositely directed, then sym(e)and sym(e0) also overlap, and the local transformation in �gure B.3(a)-(b)applied to both faces eliminates the overlap. Hence we can assume that anytwo overlapping edges are similarly directed.To eliminate overlap, each edge on face f is assigned a distinct index for theduration of face simpli�cation. Each edge is conceptually perturbed orthogonalto its direction by an in�nitesimal amount proportional to its index. Theconceptual perturbation is used to determined whether edges intersect. As a



by merging P and P 0, simplifying, and extracting points of winding numberat least 1, or exactly 2, respectively.B.1 Data structuresA data structure that represents a combinatorial polyhedron can be obtaineddirectly from the de�nition: for example, each edge is represented by a nodewith pointers for sym, next, vertex, and face (and probably the inverse ofnext). The node for a face fi stores coe�cients ai, bi, ci, di, a perturbationdirection �i= � 1, and an index i; this represents the plane with coe�cients(ai; bi; ci; di + �i�i).B.2 The simpli�cation algorithmThe simpli�cation algorithm at a high level is similar to the shell-based algo-rithm for boolean operations on polyhedra[13].The simpli�cation algorithm has three steps. First, each nonsimple face fis replaced with a properly nesting set of faces N(f) (de�ned similarly to aproperly nesting set of polyhedra). Each face in N(f) is assigned a distinctindex. Hence subsequent steps treat the faces of N(f) as lying on distinctparallel planes. The second step is face-face intersection, which ensures thatevery intersection between faces is proper. The result of face-face intersectionis a nesting set of shells; the �nal step is to restructure the shells into a properlynesting set of polyhedra.For an example, consider the self-intersecting box in �gure B.1(b); it has thesame combinatorial structure as the ordinary box in �gure B.1(a). Face sim-pli�cation splits both the top face and the bottom face into two, and perturbsthe pieces with respect to each other (�gure B.1(c)). Face-face intersectiondiscovers the improper intersection between the two side faces, and the resultis shown in �gure B.1(d). No restructuring is needed in this example. FigureB.2 shows another example of simpli�cation.B.3 Face simpli�cationA face f is �rst replaced with a nesting set of simple cycles; to do so it su�cesto ensure that the intersection between any pair of edges is proper. Then thecycles are restructured into a properly nesting set of faces N(f); this secondstep is not discussed further.



A B C D 0 1 2 1 0Fig. A.1. Polyhedral nesting (schematic); indices give winding number of any pointin the region.A.5 NestingSimple polyhedra Q, Q0 are disjoint if there is no point with nonzero windingnumber with respect to both. Q nests inside Q0 if for all p 2 R�3, w(p;Q) 6=0implies w(p;Q0) 6=0; Q properly nests inside Q0 if w(p;Q) 6=0 implies w(p;Q0) =w(p;Q). In �gure A.1, shells B, C, and D nest inside A, but only B nestsproperly inside. A set N of simple polyhedra is a nesting set if for every pairQ;Q0 2 N , either Q and Q0 are disjoint, Q nests inside Q0 or Q0 nests insideQ; N is a properly nesting set if furthermore every nesting pair is a properlynesting pair. We de�ne w(p;N) =PQ2N w(p;Q).A nesting set N of shells can always be restructured into a properly nest-ing set M of polyhedra, so that the winding number of any point is pre-served. To see this, for integer i>0, notice that some subset of N boundsfp2R�3 : w(p;N)�ig (as long as this set is not empty); let Qi be the poly-hedron obtained by merging these shells. Similarly, for i<0, let Qi bound theset fp2R�3 : w(p;N)�ig. Then the desired set M is fQig. In �gure A.1, thepolyhedron with shells B and C nests properly inside the polyhedron withshells A and D. The computation of M from N is straightforward given adata structure that represents the nesting structure of N ; details are omitted.B Simpli�cationThe simpli�cation problem for a polyhedron P is to compute a properly nest-ing set N(P ) of simple polyhedra so that for any real point p, w(p; P ) =w(p;N(P )). Clearly, given the set N(P ) and an integer k, it is easy to extracta simple polyhedron bounding points of winding number exactly k, or at leastk, etc.Simpli�cation is a slight generalization of usual Boolean operations [11]. Forexample, if P and P 0 are simple polyhedra, P [P 0 and P \P 0 can be obtained



A.3 Winding numberWe write w(p; c) for the (planar) winding number of p with respect to closedcurve c (or set of closed curves); the winding number is de�ned only if p is noton c. The de�nition extends to three dimensions if p and c lie on a commonplane; to determine sign, a viewpoint not on the plane must be speci�ed. Ifp 2 �(f), w(p; f) is the winding number of p with respect to edges(f), asdirected by following next.Let P = (C;�) be a polyhedron and p a point R�3. For r a ray in R�3 withendpoint p, the winding number of p with respect to P using r isXf w(r \�(f); f)where the the viewpoint is p and the sum runs over all faces f of P with rintersecting the plane �(f).Lemma 1 The winding number of any real point is de�ned for any real rayand does not depend upon choice of ray.Henceforth we write w(p; P ) for the winding number of p with respect to P .A.4 SimplicityLet f be a face of polyhedron P = (C;�). Face f is simple if fw(p; f) :p 2 �(f)g is f0; 1g or f0;�1g. The support of a face is the closure of theset of points of nonzero winding number. A face is connected if its support isconnected. The intersection of two edges is proper if the intersection is at avertex incident to both edges.A polyhedron P is simple if fw(p; f) : p 2 R�3g is f0; 1g or f0;�1g. Thesupport of a polyhedron is the closure of the set of points of nonzero windingnumber. A polyhedron is connected if its support is connected. The boundaryof a polyhedron is the union of the supports of its faces; a polyhedron is a shellif its boundary is connected. The intersection of two simple faces is proper ifthe intersection of their supports is �(A), where A is the set of edges incidentto both.Lemma 2 A shell is simple if every face is simple and every intersectionbetween faces is proper.



of real plane �i. It is easy to see that the four perturbed planes cannot meetat a common point, and that no three perturbed planes meet in a commonline.A.2 Combinatorial polyhedraA combinatorial polyhedron C = (V;E; F ) consists of �nite sets V of vertices,E of edges, F of faces, together with functions next :E ! E, sym :E ! E,face :E ! F and vertex :E ! V satisfying(i) next is one-one(ii) face(e) = face(next(e))(iii) vertex(e) = vertex(sym(next(e))).(iv) sym(sym(e)) = e(v) face(sym(e)) 6= face(e)(vi) vertex(e) 6= vertex(sym(e)).(For a similar de�nition, see [10]). F is indexed with distinct positive integers;if we write fi 2 F , then i is its index.Informally an edge is directed, with face giving the face to its left, vertex thevertex at its head, and sym the oppositely directed edge. Edges form cyclesunder next so that each cycle has constant value of face; a single such cycleis a face cycle. Similarly edges form vertex cycles under next� sym.Face f and edge e are incident if f = face(e) or f = face(sym(e)); similarlyvertex v and edge e are incident if v = vertex(e) or v = vertex(sym(e));�nally vertex v and face f are incident if there is an edge to which they areboth incident. Faces f; f 0 are adjacent if there is an edge e with face(e) = fand face(sym(e)) = f 0. We let edges(f) denotes the set fe : face(e) = fg.Henceforth we assume that every combinatorial polyhedron is trihedral, thatis, there are exactly three faces incident to each vertex.Let C be a combinatorial polyhedron. A map � from faces to planes in R�3is an embedding if (1) for each face fi, �(fi) is an �i perturbation of somereal plane, and (2) adjacent faces are assigned nonparallel planes. We extend� to vertices and edges: for vertex v, �(v) is the point of intersection of thethree planes incident to v, and for edge e, �(e) is the line segment connectingthe embedded endpoints of e. Clearly �(edges(f)) is a set of closed cyclesof line segments, one for each face cycle of f , all lying on the common plane�(f). Henceforth we use \edge" or \vertex" to refer also to an embedded edgeor vertex. The pair (C;�) is an embedded combinatorial polyhedron or simplypolyhedron.
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covers many algorithms involving linear objects in two and three dimensions.The exact implementation of geometric predicates on algebraic curves andsurfaces appears to require computation on algebraic numbers; it is currentlyvery unclear whether such computation can be made fast enough to be prac-tical. Standard techniques can reduce algebraic number computation to com-putation with integer polynomials, but estimates of the required arithmeticbit-length can be dauntingly high. Yu [29] analyzes an analogue of the orienta-tion test for conic surfaces implemented using Sturm sequences. He estimatesthat the intermediate arithmetic bit-length required for the computation isroughly 250,000 times the input bit-length, certainly unthinkable.It is possible that such bit-length estimates are excessively pessimistic, eitherbecause there are better predicate evaluation methods or because instancesrequiring long bit-length are infrequent. As an example, Burnikel et al[2] con-sider the incircle predicate on points and line segments. Direct applicationof classical root separation bounds gives a bit-length estimate of about 9000times input bit-length; a special-purpose argument reduces the bound to 48times input bit-length; empirically, 6 to 9 times input bit-length appears to besu�cient. Perhaps exact arithmetic can be made to be practical for a restrictedclass of surfaces, e.g. quadrics, even if not for general algebraic surfaces.References[1] M. O. Benouamer, D. Michelucci, B. Peroche, Error-free boundary evaluationbased on a lazy rational arithmetic: a detailed implementation, Computer-AidedDesign 26(6):403{416.[2] C. Burnikel, K. Mehlhorn, S. Schirra, How to compute the Voronoi diagram ofline segments: theoretical and experimental results. Proc. 2nd Eur. Symp. Alg.(ESA 94), 1994.[3] H. Edelsbrunner, E. M�ucke, Simulation of simplicity: a technique to cope withdegenerate cases in geometric algorithms,ACM Trans. Graphics 9:66{104, 1990.[4] S. Fang, B. Bruderlin, X. Zhu, Robustness in solid modeling { a tolerance-based,intuitionistic approach, CAD, 25(9), 1993.[5] S. Fortune, Progress in computational geometry, in Directions in GeometricComputing, Ch. 3, pp. 81{128, R. Martin, ed. Information Geometers Ltd, 1993.[6] S. Fortune, Numerical stability of algorithms for 2D Delaunay triangulations,IJCGA, 5(1&2):193{213, 1995.[7] S. Fortune, Polyhedral modeling with exact arithmetic, Proc. Third Symp. SolidModeling Appl. 225{234, 1995.



the intersection of 20 cubes took about 20 seconds with pure oating-pointarithmetic, about 167 seconds using `lazy' arithmetic, and about 98000 secondsusing rational arithmetic with no interval-arithmetic �lter. (This is with amodeling accuracy of 10�9.) The modeler in this paper took about 4 secondsfor a similar experiment (on the 40 Mhz SGI); no predicate evaluation requiredexact arithmetic. Benouamer et al do not report timings on nearly-degenerateproblem instances. It is plausible that such instances are quite expensive, sincethey likely require many uses of exact arithmetic.5 DiscussionSerious use of a modeler such as this one would require attention to var-ious engineering issues. For example, typical input data, e.g. from anothermodeler, is likely to have oating-point coordinates and hence minor numericinconsistencies. The inconsistencies would be preserved with straightforwardtranslation to integer coordinates. As long as the combinatorial representationis consistent, simpli�cation can be used to obtain a numerically consistent (i.e.simple) polyhedron from a numerically inconsistent (i.e not simple) polyhe-dron; of course, the combinatorial structure may change.A polyhedron might not be trihedral; for example, polyhedral models aris-ing in graphics often have triangular faces and hence high-degree vertices.Consider the faces incident to a high-degree vertex. If integer-coordinate faceplanes are independently obtained from oating-point vertex data, there is noguarantee that all face planes will meet at a common point; even if they areall coincident, symbolic perturbation will remove the coincidence. The sim-pli�cation algorithm can be used to obtain a simple polyhedron where eachhigh-degree vertex is replaced with a tree of closely spaced degree-three ver-tices. This replacement is unexpected, and while it causes no problems for theexact-arithmetic modeler, it might for subsequent processing steps.The rounding algorithm can change combinatorial structure. Usually, thechange a�ects only very small features; for example, rounding may alter thetree of degree-three vertices replacing a high-degree vertex. In consequence, anapplication cannot assume that all features are preserved by transformations.5.1 Exact arithmetic for other algorithms.The use of software exact arithmetic is an easy way to obtain numericallyreliable implementations of geometric algorithms. It is appropriate if geometricprimitives have small degree and hence minimal bit-length requirements; this



��������10�8 10�6 10�4 0.01024681012Fig. 9. Percentage required exact dot-products as a function of rotation angle.exact evaluation was required. The total running time increased from about 8seconds at a rotation angle of 10�2 to about 10 seconds at 10�9. The percentageof running time devoted strictly to arithmetic increased from about 30% to45% over the same range.We do not know a natural example where the oating-point �lter is signif-icantly less e�ective. To test hypothetical worst-case behavior, the oating-point �lter was removed. Then the intersection takes about 20 seconds, in-dependent of angle. (This time would be larger with a less e�cient integerarithmetic package.)4.3 Other workBenouamer et al [1,16] report on a polyhedral modeler implemented with exactrational arithmetic. Like the modeler described here, their modeler is free ofthe possibility of numerical error. However, they made di�erent design choices,and it is interesting to compare the results.Benouamer et al use vertex coordinates as the primary geometric represen-tation of a polyhedral solid. This leads to slightly larger growth in the bit-length of coordinate data; they estimate that a computed intersection vertexhas about seven times the bit-length of an input vertex. Their implementationuses `lazy' exact arithmetic, similar in philosophy to the two-level evaluationstrategy strategy outlined above. `Lazy' arithmetic uses oating-point intervalarithmetic as a �lter, resorting to exact rational arithmetic only when neces-sary, for example, when a sign-evaluation is required but the oating-pointinterval contains zero. Their implementation of lazy arithmetic overloads theC++ arithmetic operators. This provides a convenient programming interfacebut imposes overhead on each arithmetic operation, for the accumulation oferror bounds and state-saving [9,16].An experiment performed by Benouamer et al is to intersect randomly-orientedcubes centered at the origin. On an HP/Apollo 33 Mhz 68040, computing



Primitive approx (20,10) (31,22)dot product 7 20 120plane orientation 46 230 670point fromthree planes 38 260 670Fig. 8. Floating-point operation counts. First column is standard oating-point;second and third columns are exact evaluation at indicated bit-length (operationcounts are approximate).LN uses double-precision oating-point arithmetic for multiprecision integerarithmetic, since double-precision oating-point arithmetic has longer bit-length and is faster than native integer arithmetic on many current work-stations. Figure 8 gives typical operation counts for various primitives, bothfor approximate and exact evaluation.The error bound on the initial oating-point evaluation is determined usingthe structure of the expression, the bit-length bounds on variables, and theerror bound on oating-point arithmetic.A two-step error bound gives the bestperformance. First, a constant error bound is used, determined statically usingthe worst-case estimates of variable magnitude; the runtime cost of this errorbound check is two comparisons per predicate evaluation. If the magnitude ofthe computed value is less than the constant error bound, a tighter error boundis computed, using the actual magnitude of variables. Typically, the cost ofcomputing this error bound is about the same as the cost of computing theoriginal expression. (LN currently only provides the �rst bound automatically;the second bound was added manually.)The two-level evaluation strategy is not used for geometric constructors, suchas the computation of the coordinates of a vertex from three planes. The LN-generated code evaluates vertex coordinates exactly. However, a subsequentpredicate on the coordinates is evaluated �rst in oating-point, with exactcoordinates rounded to oating-point, and only if necessary is the predicateevaluated exactly.4.2 Experimental results.We chose a convex polyhedron with about 250 sides (obtained by intersectingrandomly rotated unit cubes). The polyhedron was rotated by an angle inthe range 10�2 radians to 10�9 radians and then intersected with itself. Dot-products were monitored during the calculation. Figure 9 plots the percentageof dot-products where the oating-point �lter could not resolve sign, and hence



Choose integers a, b, c of bit-length B so that (a; b; c)=pa2+b2+c2 approxi-mates the unit normal vector of �. Straightforward rounding guarantees anerror bound in the normal of a constant times 2�B. Choose d so that the centerpoint of f is as close to the plane �0 = (a; b; c; d) as possible; the separationis a constant times 2�B as we can assume one of jaj, jbj, or jcj is at least2B�1. Then the distance of any point of f to �0 is at most a constant times2�B + r2�B .Lattice basis reduction [18] can often reduce the error in the normal to about2�4B=3.4 ImplementationA bare-bones modeler was constructed in C++ using the approach as de-scribed. The experiments below were performed on an SGI R3000 running at40Mhz. The bit-length was (31,22), i.e. 31 bits for each of a; b; c and 53 bitsfor d in the plane coe�cients (a; b; c; d); this yields a `universe' of diameterabout 106. Vertex coordinates, except for the �nal `weight' coordinate, hadbit-length 120 bits; the weight coordinate had bit-length about 98 bits.4.1 Multiprecision integer arithmeticAll geometric primitives were implemented using LN [8,9], which providesextended-precision integer arithmetic in a form specially tuned for geometricalgorithms. LN is a preprocessor: its input is the speci�cation of an integerpolynomial and the bit-lengths of the variables; its output is C++ code thate�ciently evaluates the polynomial.The orientation test and the dot-product evaluation are predicates, where thesign of a polynomial determines control ow. The C++ code generated byLN uses a two-level evaluation strategy. First, the polynomial is evaluated inoating-point arithmetic. If the magnitude of the resulting value is larger thanan error bound, the sign of the value is correct and is returned. If not, then thepolynomial is evaluated exactly using extended-precision integer arithmetic todetermine its sign.LN assists with both steps. For exact evaluation, LN uses the structure of theexpression and bit-length information to generate e�cient code. For example,LN estimates the size of intermediate values; this allows temporary storage tobe allocated statically, rather than dynamically. Similarly, operations speci�cto arithmetic, such as carry propagation, can be simpli�ed.



F1F2F3 F4F5a F1F2F3 F4F5bc dFig. 7. (a) Wireframe of polyhedron P ; (b) face cycles; (c) perturbed polyhedronP 0; (d) set N(P 0).bit-length (B;D), so that if P 00 is the resulting core polyhedron, then anypoint p in the symmetric di�erence P�P 00 lies within a constant timesr�2�Bof some face of P , where r � 1 upper bounds the radius 1 of any face and� is the maximum condition number of any vertex. To achieve this bound, arounded face plane must closely approximate the original face, in a mannernow described. (See the appendix for a proof of the bound.)3.2 Face plane roundingLet � be the plane of face f . A plane �0 �-approximates � at f if the unitnormals of � and �0 di�er by � and if any point of f lies within �(r+1) of�0, where r is the radius of f . As long as all points of f are within 2D ofthe origin, the following strategy �nds a plane �0 of bit-length (B;D) that�-approximates �, for � a constant times 2�B.1 The center point of f is the point of f that minimizes the maximum distance toany other point of f ; the radius of f is the maximum such distance. The conditionnumber of a vertex is 1=�, where � is the minimum solid angle formed by the threeplanes de�ning the vertex.



for example, face F2 is the cycle (F1 F4 F5 F3). The geometric embeddingis determined by assigning a plane equation to each symbolic face; edge andvertex location are inferred from the plane equations. P 0 in 7(c) results fromperturbing the face planes of F1 and F5, without changing combinatorialstructure. P is simple, i.e. has no self-intersections, while P 0 is not.The winding number of a point q with respect to a polyhedron Q is the sum ofthe oriented intersections of a ray leaving q with the faces of Q. The orientedintersection of the ray with a face f is the winding number of r with respectto f , where r is the intersection point of the ray and the face plane of f . Theendpoint q of the ray is used as a viewpoint, to determine the orientation ofcycles on the face plane of f . Every interior point of P in in �gure 7(a) haswinding number +1; an interior point of the \tail" of P 0 has winding number�1.Simpli�cation replaces a possibly self-intersecting polyhedron Q with a setN(Q) of nesting simple shells so that for any point q, w(q;N(Q)) = w(q;Q) (Ashell is a polyhedron with connected boundary.). Simpli�cation �rst requiresthat every face be simpli�ed, as described for polygons above. Then for eachpair of intersecting faces, the edges induced by intersection with the other facemust be determined. This step is identical to face-face intersection required forboolean operations. In �gure 7(c), faces F1 and F5 self-intersect; simpli�cationreplaces each by a 4-sided face and a 3-sided face. Faces F2 and F4 intersect;face-face intersection splits both into a 4-sided face and a 3-sided face. Theresulting faces are reassembled into the set N(P 0) depicted in �gure 7(d). The�ve-faced polyhedron on the left bounds a region of winding number +1 andthe tetrahedron on the right bounds a region of winding number �1. See also�gures B.1 and B.2.As with polygons, the polyhedron bounding the core of Q consists of the shellsin N(Q) that separate a region of winding number 0 from a region of windingnumber +1. In �gure 7(d), the �ve-faced polyhedron P 00 on the left boundsthe core of N(P 0).Analysis of rounding. What can be said about rounding a polyhedron?As is clear from �gures 5 and 7, the combinatorial structure of the polyhedroncan change arbitrarily (indeed Milenkovic and Nackmann[21] show the NP-hardness of one version of the problem of rounding while preserving structure).Furthermore, a vertex can be ill-conditioned, i.e. its coordinates can changequickly when a de�ning plane is perturbed.Nonetheless, it is possible to give a metric bound on the e�ect of perturbation.Suppose P is an arbitrary (high-precision) simple polyhedron lying within thebounding sphere of radius 2D. Then the face planes of P can be rounded to



a b
c dFig. 5. (a) original polygon P ; (b) polygon P 0 obtained by perturbing edges; (c)decomposition N(P 0) into nested simple cycles; (d) the core P 00, i.e. the polygonbounding points of positive winding number.a bFig. 6. Intersecting edges (a) are removed by splitting each edge and redirectingcycles (b).the larger diamond-shaped cycle; these form the polygon P 00 bounding thecore of P 0.Polyhedra. Simpli�cation-based rounding is similar for polyhedra, thoughtechnically more involved. The approach is sketched informally here; the ap-pendix contains more details.The de�nition of a polyhedron requires a careful separation of combinatorialincidence structure from geometric embedding. Combinatorially, a polyhedronis a set of symbolic faces. Each symbolic face is a set of face cycles, where eachface cycle is a cyclic list of symbolic faces. The polyhedron P shown as awireframe in �gure 7(a) has the face cycles shown in �gure 7(b); explicitly,



3.1 Generalized polyhedraA di�erent approach eliminates the need for a CSG de�nition of solids. Thede�nition of polyhedra is extended to allow a polyhedron to self-intersect. Apolyhedron P can then be rounded to another polyhedron P 00 in two steps.First, the face planes of P are rounded to short bit-length; this results in aconsistent but possibly self-intersecting polyhedron P 0. Then P 00 is de�ned asthe polyhedron bounding the core of P 0; the core of P 0 is the set of all pointsof positive winding number with respect to P 0. The core computation requiressimpli�cation, described below. P 00 does not intersect itself, has short bit-length plane coe�cients, and approximates P . For illustration, the approachis described �rst for polygons in two dimensions, and then for polyhedra inthree dimensions.Polygons. A polygon of a set of edge cycles, each with an associated traversaldirection. Figure 5(a) depicts a polygon P , with traversal direction shownby the arrow. Perturbing the edges of P might result in the self-intersectingpolygon P 0 in �gure 5(b).Recall that the winding number w(q;Q) of point q with respect to polygonQ is the sum of the number of oriented intersections of a ray leaving q withthe edges of Q. A ray-edge intersection counts +1 if the traversal directioncrosses the ray from right to left, and �1 if left to right. A polygon is simpleif it has no self-intersections; the winding number of any point in the interiorof a simple edge cycle is +1 or �1 as the cycle is oriented counterclockwiseor clockwise. Polygon P in �gure 5(a) is simple and every interior point haswinding number +1. Polygon P 0 in �gure 5(b) has a \tail" bounding a regionof winding number �1 and overlapping \teeth" bounding a region of windingnumber +2.Simpli�cation replaces a possibly self-intersecting polygon Q with a set N(Q)of nesting simple edge cycles so that for any point q, w(q;N(Q)) = w(q;Q).(The winding number with respect to a set is just the sum of the windingnumbers with respect to the elements of the set; a set of polygons is nestingif each pair of polygons either have disjoint interiors or the interior of oneis contained in the interior of the other.) Figure 5(c) depicts the set N(P 0).Simpli�cation is accomplished by the application of the transformation in�gure 6 to every pair of intersecting edges; the transformation splits each edgein two and then locally redirects edge cycles as shown.The polygon bounding the core of Q consists of just the polygonal cycles inN(Q) that separate a region of winding number 0 from a region of windingnumber +1. In �gure 5(c), the two such cycles are the big V -shaped cycle and



f g l = �f \ �gvFig. 4. Face-face intersection. Vertex v may already exist as a result of a previousface-face intersection between f and a face h incident to g.the sort of all edge/plane intersection points is straightforward.To determine the edges of f that intersect �g, each face cycle of f is traversed inorder. A dot-product can be used to classify each vertex of the face cycle withrespect to plane �g; if the endpoints of an edge have di�erent classi�cations,then the edge crosses �g.The classi�cation of a vertex v of f with respect to plane �g is more complex.As long as �g is not one of planes de�ning v, symbolic perturbation guaranteesthat v is never reported as on �g. However, a previous face-face intersectionbetween f and a face h incident to g might have left an edge on f with endpointv de�ned by �g (see �gure 4). This \symbolic degeneracy" must be treated asa special case: the code that records edges on faces must discover vertex v, asit might be the endpoint of an edge to be added.3 Polyhedral roundingAn a�ne transformation on a polyhedral solid is e�ected by multiplying allface plane coe�cients by a 4� 4 transformation matrix. Since coe�cients areintegers, the transformation matrix must have integer entries, and the bit-length of plane coe�cients increases by about the bit-length of matrix entries.To preserve the (B;D) bound, plane coe�cients must be rounded. Roundingslightly perturbs face planes, and hence may invalidate combinatorial incidenceinformation.Sugihara and Iri [27] suggest that every polyhedral solid be de�ned by a se-quence of constructive solid geometry (CSG) operations on primitive solids.Each primitive should be \well-conditioned" in the sense that its combinato-rial information should not be a�ected by small perturbation of face planes.To round a polyhedral solid that is the result of a transformation, Sugiharaand Iri suggest applying the transformation to the primitive solids, roundingthem, and then reapplying the CSG operations. The resulting solid is guaran-teed to have consistent combinatorial information, since CSG operations arealways valid.



�i�i ����������� aj bj cjak bk ckal bl cl ������������ �j�j ����������� ai bi ciak bk ckal bl cl �����������+�k�k ����������� ai bi ciaj bj cjal bl cl ������������ �l�l ����������� ai bi ciaj bj cjak bk ck �����������Fig. 3. �-terms in perturbed orientation determinant.not necessary. The precondition of the orientation test, that three of the fourplanes meet in a unique point, is always satis�ed by high-level algorithmicproperties of the modeler. For example, the classi�cation of a vertex withrespect to a plane is only relevant if the vertex is the unique intersection ofthree planes.The polyhedral modeler does not require the geometric primitive that com-pares vertex coordinates. Such a comparison would require cross multipli-cation, since coordinates are homogeneous, and hence arithmetic bit-lengthabout 6B+D, more than the orientation primitive. The extension of symbolicperturbation to the comparison primitive would also be more complex.2.4 Face-face intersectionFace-face intersection is a fundamental subproblem in the implementationof boolean operations [13]; it illustrates the use of the orientation test andsymbolic perturbation. Given two faces f and g, the edges on each face inducedby intersection with the other face must be determined. This requires �ndingeach edge of face f that intersects the face plane �g of g, and symmetricallyfor g. Each plane/edge intersection de�nes a point along the line l = �f \ �g.The new edges on faces f and g can be deduced by traversing these points insorted order along l. In �gure 4, there are two edges of f that cross �g andtwo edges of g that cross �f ; each such edge de�nes a point on l. Edge e liesin the common interior of faces f and g and is added to both faces.To sort edge/plane intersection points, observe that each such point is theintersection of l = �f \ �g and a plane of another face incident to f or g.Ordering two such points along l can be expressed as an orientation test onfour planes. Symbolic perturbation guarantees that any two such intersectionpoints are distinct. Thus the absence of \geometric degeneracies" implies that



The orientation of four planes �i, �j, �k, �l is sign(M), whereM = �������������� ai bi ci diaj bj cj djak bk ck dkal bl cl dl ��������������(sign has value �1, 0, or 1). Suppose �i, �j, �k meet at a unique point p. Inhomogeneous coordinates,p = (�M1;M2;�M3;M4)sign(M4)where Mi is the determinant of the 3 � 3 matrix obtained by deleting thelast row and ith column of the matrix above. Here we are requiring that the�nal `weight' coordinate of p be positive; this implies that the sign of the dot-product �l � p determines whether p is in the positive halfspace, on, or in thenegative halfspace of �l. Notice that�l � p = Msign(M4)so the dot-product is just an alternate form of the orientation test.If all planes have bit-length (B;D), then each coordinate of the �rst threecolumns of M has bit-length B, and the last column has bit-length B+D.Hence the coordinates of p have bit-length about 3B+D except for the last,which has bit-length about 3B. Both M and the dot-product �l � p have bit-length about 4B+D.The orientation test for symbolically perturbed planes requires substitution ofperturbed plane coe�cients into the orientation determinant. The result whenexpanded is the original determinant plus a polynomial in � (see �gure 3). Thesign of the result is determined by the sign of the �rst nonzero coe�cient, withcoe�cients taken in order of increasing power of �. Thus evaluating a sym-bolically perturbed determinant requires the evaluation of the unperturbeddeterminant, and if it is zero, up to four 3 � 3 subdeterminants. A nonzerovalue for the sign is obtained as long as one of the 3 � 3 subdeterminantsis nonzero, equivalently, as long as three of the four planes meet in a uniquepoint. If all subdeterminants are zero, then the result is still zero, and thedegeneracy is unresolved.The symbolic perturbation scheme does not resolve all geometric degeneracies.An extended scheme might resolve all degeneracies, but such an extension is



Fig. 2. Manifold representation of rectangle in 3d.2.2 Symbolic perturbationSuppose that face plane �i has coe�cients (ai; bi; ci; di). The computation pro-ceeds as if the plane had coe�cients(ai; bi; ci; di + �i�i)where the perturbation direction �i is 1 or �1, the exponent i is di�erent foreach face, and �>0 can be viewed informally as an arbitrarily small real orformally as an in�nitesimal [23] (see the appendix). Clearly the perturbationtranslates the plane parallel to itself. This perturbation prevents four planesfrom meeting at a unique point and three planes from meeting at a commonline (though other degeneracies, e.g. four planes all parallel to a common line,are still possible). As a consequence, the modeler can assume that all solidsare trihedral, that is, exactly three faces are incident to each vertex.An advantage of symbolic perturbation is that an arbitrary polyhedral solidcan be represented with a simple manifold data structure. By convention, theperturbation direction is chosen so that face planes are perturbed outwards,i.e. to the exterior of the solid. For example, the nonmanifold solid in �gure1(a) has the manifold representation in �gure 1(b); the point of contact be-tween cube and tetrahedron has the combinatorial representation of a triangle.A two-dimensional rectangle sitting in three dimensions could have the com-binatorial representation of a cube; in �gure 2, the top and bottom faces havethe same plane equation but are symbolically perturbed in opposite directions.A line segment or point could be obtained in a similar fashion. Outward per-turbation yields closed polyhedral sets; open polyhedral sets could be obtainedby perturbing face planes inward.2.3 Geometric primitivesThe orientation test on planes, together with a few simpler tests, su�ce forthe implementation of the polyhedral modeler. Stol� [25] discusses plane ori-entation in the context of oriented projective geometry.



(a) (b)Fig. 1. (a) nonmanifold; (b) manifold representation.2 Algorithm designA polyhedral modeler provides boolean set operations on polyhedral solids,as well as a�ne transformations such as rotation and translation. The designdescribed here uses many ideas from Sugihara and Iri [27], though the roundingalgorithm is di�erent.The discussion in this section assumes general familiarity with polyhedralmodelers [13,19]; only di�erences resulting from the use of integer arithmeticare highlighted. The discussion is relatively informal; the appendix containstechnical details.2.1 Coordinate dataFace plane coordinates are the primary geometric representation of a polyhe-dral solid. A boolean operation on solids creates no new primary geometricdata, since a boolean operation does not introduce any new face planes[27].Vertices are de�ned as the intersection of three planes.Plane coe�cients have bit-length bound (B;D): for the coe�cient tuple (a; b; c; d),representing the plane f(x; y; z) : ax+by+cz+d=0g, a; b; c are integers of bit-length B (i.e. have magnitude less than 2B) and d has bit-length B+D. Anarbitrary plane � within distance 2D of the origin can be approximated by aplane �0 of bit-length (B;D) so that the unit normal vectors of � and �0 di�erby at most about 2�B, and so that the distances of � and �0 from the origindi�er by at most about 2�B. If � is further from the origin, up to distance2B+D, an approximating plane can still be found, with approximation errorincreasing with distance from the origin.



A principal property of the modeler is a bound on the bit-length of coordinatedata; this implies a �xed, relatively small bound on the bit-length of arithmeticrequired to evaluate geometric predicates. The bit-length bound restricts theclass of representable polyhedra. Boolean operations such as intersection orunion do not increase the bit-length of coordinate information; such operationsare exact. Other operations, such as a�ne transformations, would increasecoordinate bit-length if implemented directly. Instead, coordinates are roundedto the bit-length bound, and the result is only an approximation to the exactanswer. Polyhedral incidence information may have to be reconstructed aftercoordinate rounding; a reasonably simple reconstruction algorithm is describedbelow.The bit-length required to evaluate geometric predicates, while relatively small,exceeds the native hardware bit-length of most computers. The modeler usesa two-level adaptive-precision strategy to evaluate geometric predicates [9].A predicate is determined by the sign of an arithmetic expression. The ex-pression is evaluated �rst in oating-point arithmetic; if the magnitude of theexpression is larger than an error bound, than the sign of the value is cor-rect. If not, the expression is evaluated exactly with specially-tuned softwareextended-precision arithmetic. The error bound can be determined statically,so the error bound check is cheap.Besides guaranteeing numerical reliability, exact integer arithmetic allows theuse of symbolic perturbation [3,24]. We describe a variant scheme that per-turbs polyhedral face planes. This symbolic perturbation scheme simpli�es theimplementation of the modeler by eliminating many special cases. In addition,it allows a simple manifold representation of any polyhedral set, that is, anybounded set that can be obtained from open or closed halfspaces by a �nitenumber of unions and intersections. This includes sets with dangling edges orfaces, open or closed boundaries, etc.Other work. Considerable research e�ort has been directed at improvingthe numerical reliability of geometric algorithms; for surveys see [5,13,14,20].One approach is to analyze the e�ect of rounding errors that result fromoating-point arithmetic [6,26,28]. A second approach is to use software exactarithmetic for the evaluation of geometric predicates; to reduce performancecost, various researchers have suggested adaptive-precision arithmetic [9,16,17].The speci�c problem of constructing a reliable polygonal or polyhedral mod-eler has been considered both in oating-point arithmetic [4,12,15] and exactarithmetic [1,16,22,27]; much of the latter work is discussed in more detailbelow.



Polyhedral modeling with multiprecision integerarithmetic ?Steven FortuneBell Laboratories, Murray Hill, NJ, 07974, USAWe describe a polyhedral modeler that uses software extended-precision integer arithmetic to guarantee numerical reliability. Bycareful design, the performance of the modeler is not much di�er-ent from the performance that a oating-point modeler might have.The modeler performs Boolean set operations exactly; to preventgrowth of coordinate bit-length, a�ne transformations require co-ordinate rounding and hence are approximate. A new algorithm forreconstructing polyhedral incidence information after rounding isgiven.Key words: polyhedral modeling, exact arithmetic,adaptive-precision arithmetic, robustness, geometric algorithms,numerical reliability, winding number1 IntroductionWe describe a three-dimensional boundary-based polyhedral modeler that usesextended-precision software integer arithmetic for geometric predicates. Inte-ger arithmetic guarantees that geometric predicates are reliable and hencethat the modeler will not fail because of numerical error. The additional per-formance overhead of the integer-arithmetic modeler, relative to a modelerimplemented with oating-point arithmetic, is minimal. For a `generic' inter-section, there is essentially no overhead. For a contrived hard intersection, theperformance cost is less than twice what a oating-point modeler might re-quire (though the oating-point modeler might well fail because of numericalerror [15]).? An earlier version of this paper appeared in the Third Symposium on Solid Mod-eling and Applications [7].Preprint submitted to Elsevier Preprint 1 April 1996


