() (d)

Fig. C.1. (a) a polyhedron @Q; difference polyhedra obtained by offsetting left face
plane (b), bottom face plane (c¢), and back face plane (d).

other oppositely directed and embedded on plane X', and for each edge e of
face f, a four-sided face embedded on the plane of the other face incident to

e. See figure C.1(a)-(b).

The desired set N of polyhedra is obtained by starting with P, and for each
face f of P in turn, adding to the set the difference polyhedra obtained by
offsetting II(f) to I'(f). See figure C.1(c)-(d). A polyhedron in N is either
P itself, a face offset with two copies of a face of P, an edge offset with four
copies of an edge of P, or a vertex offset with eight copies of a vertex of P.

To prove the lemma, suppose w(p, P)#w(p, P'). Since we have w(p, P')=w(p, N),
there must be some polyhedron @ distinct from P in N with w(p, Q)#0. We
assume () is a face offset of some face f; other cases are similar.

@ has a face g that is a copy of f lying in II'(f), and a face ¢’ with support
identical to the support of f. Using some elementary geometry and the defini-
tion of condition number, it is possible to show that any vertex of ¢ lies within
k1 ROx of the corresponding vertex of ¢’ and within kyRé of 1I(f), for some
constants k1, k. Let p’ be the orthogonal projection of p onto plane II(f);
segment pp’ has length at most k3 Ré. Either segment pp’ meets no face of @),
and p’ lies in the support of face ¢, or segment pp’ meets a four-sided face of
(), and there is a path of length at most k1 Réy along the four-sided face to an
edge of ¢’ . Hence p lies within kRéx of the support of ¢, for some constant
k. O

B.4 Reindexing

Suppose e is an edge on face ¢ also incident to face f. As a consequence of
simplifying f, e may have been replaced with a sequence of edges eg, €1, ...,
€2k, where the even-numbered edges are now incident to faces in N(f) (see
figure B.4). We must ensure that this replacement introduces no new improper
edge intersections on face g, since ¢ may already have been simplified. This
follows if the indices assigned to faces in N(f) have the same order relation
with other face indices as f does. This can be accomplished easily with a
global reindexing of all faces, though other strategies are possible.

Because of the change in indices, the winding number of nonreal points need
not be preserved by simplification.

B.5 Face-face intersection

Face-face intersection ensures that all intersections between faces are proper.
The implementation of this step is reasonably standard [13] (it would not be
standard if faces were not simple). A detail is that even if faces f and ¢ are
already adjacent, face-face intersection is necessary to discover all possible
common edges.

C The rounding bound

The bound on polyhedral rounding claimed earlier is a consequence of the
following lemma.

Lemma 3 Let P=(C,11) and P'=(C,1I') be polyhedra, where for each face
I, I(f) is a S-approximation of 1I(f) at f. Then for any point pe R**, if
w(p, P)£w(p, P"), then p lies within kéx R of some point of the boundary of
P, where £ is a constant, x<1/(26) is the mazimum condition number of any
vertex of P, and R>1 bounds the radius of any face of P.

Proof sketch: We decompose P’ into a set N of polyhedra, one of which is
P. For simplicity, assume that all face planes of P and P’ are distinct and
none are parallel.

Let @) be a polyhedron with face f lying on plane A, and let ()" be the polyhe-
dron obtained by embedding f on plane X" instead. The difference polyhedron
D obtained by offsetting A to X satisfies w(q, D) 4+ w(q, Q) = w(q, Q") for all
q € R*; explicitly D has two copies of face f, one embedded on plane A, the

L

() (d)

Fig. B.3. Overlapping but oppositely directed edges on the same face (a) can be
eliminated easily (b). In (c), overlapping and similarly directed edges have been
conceptually perturbed; the intersection is removed as in (d).

1A T

= ot
ok

Fig. B.4. Edges e and ¢’ cross on face f (top left). The transformation to eliminate
crossing is shown on right, for face f and adjacent faces g and ¢'.

result of perturbation, there are essentially two cases of improper intersection.

The first case is an improper intersection between an edge e incident to a face ¢
and another edge e” adjacent to an edge €’ also incident to ¢. See figure B.3(c).
Edge e can be split at the intersection point and face f locally transformed as
shown in figure B.3(d); the subpieces of a split edge retain the original index.
Notice that face ¢ is unchanged (except that one of its edges is split by a
degree-two vertex).

The second case is that edges e and €’ intersect improperly at a point interior
to both edges. Let ¢ and ¢’ be the other faces incident to e and €', respectively.
The improper intersection is eliminated by the transformation illustrated in
figure B.4. This transformation splits edges e, €/, sym(e) and sym(¢e’) using
two new vertices a and b. Vertices ¢ and b will end up on different faces in
N(f); to guarantee that the result of face simplification is a combinatorially
valid polyhedron, it is necessary to add an edge between ¢ and b on both faces
g and ¢'.

() (d)

Fig. B.1. (a) box; (b) self-intersecting box; (c) result of face simplification; (d) result
of face-face intersection.

(a) (b)

(c)

Fig. B.2. The polyhedron in (b) has the same combinatorial structure as the notched
polyhedron in (a). Edges e and €’ overlap, and both are incident to the same faces.
The two polyhedra in (c) are the result of simplification, shown side-by-side for
clarity.

The first step is complicated by the possibility of edge overlap. In figure B.2(Db),
edges e and €’ overlap; notice they must be incident to the same face ¢g. (If e
and ¢’ were incident to distinct faces, then perturbation guarantees that they
are nonoverlapping).

First notice that if e and e’ overlap but are oppositely directed, then sym(e)
and sym(e’) also overlap, and the local transformation in figure B.3(a)-(b)
applied to both faces eliminates the overlap. Hence we can assume that any
two overlapping edges are similarly directed.

To eliminate overlap, each edge on face f is assigned a distinct index for the
duration of face simplification. Each edge is conceptually perturbed orthogonal
to its direction by an infinitesimal amount proportional to its index. The
conceptual perturbation is used to determined whether edges intersect. As a

by merging P and P’, simplifying, and extracting points of winding number
at least 1, or exactly 2, respectively.

B.1 Data structures

A data structure that represents a combinatorial polyhedron can be obtained
directly from the definition: for example, each edge is represented by a node
with pointers for sym, next, vertex, and face (and probably the inverse of
next). The node for a face f; stores coefficients a;, b;, ¢;, d;, a perturbation
direction ¢;= 4+ 1, and an index z; this represents the plane with coefficients

(ai, bi, G, dZ —|— qﬁzél)

B.2 The simplification algorithm

The simplification algorithm at a high level is similar to the shell-based algo-
rithm for boolean operations on polyhedra[l3].

The simplification algorithm has three steps. First, each nonsimple face f
is replaced with a properly nesting set of faces N(f) (defined similarly to a
properly nesting set of polyhedra). Fach face in N(f) is assigned a distinct
index. Hence subsequent steps treat the faces of N(f) as lying on distinct
parallel planes. The second step is face-face intersection, which ensures that
every intersection between faces is proper. The result of face-face intersection
is a nesting set of shells; the final step is to restructure the shells into a properly
nesting set of polyhedra.

For an example, consider the self-intersecting box in figure B.1(b); it has the
same combinatorial structure as the ordinary box in figure B.1(a). Face sim-
plification splits both the top face and the bottom face into two, and perturbs
the pieces with respect to each other (figure B.1(c)). Face-face intersection
discovers the improper intersection between the two side faces, and the result
is shown in figure B.1(d). No restructuring is needed in this example. Figure
B.2 shows another example of simplification.

B.3 Face simplification

A face f is first replaced with a nesting set of simple cycles; to do so it suffices
to ensure that the intersection between any pair of edges is proper. Then the
cycles are restructured into a properly nesting set of faces N(f); this second
step is not discussed further.

A A

Yy

Fig. A.1. Polyhedral nesting (schematic); indices give winding number of any point
in the region.

A.5 Nesting

Simple polyhedra @), Q)" are disjoint if there is no point with nonzero winding
number with respect to both. @ nests inside @)’ if for all p € R*3, w(p, Q)#0
implies w(p, Q')#£0; Q properly nests inside Q" if w(p, Q)#£0 implies w(p, Q') =
w(p, Q). In figure A.1, shells B, C', and D nest inside A, but only B nests
properly inside. A set N of simple polyhedra is a nesting set if for every pair
Q,Q" € N, either () and)’ are disjoint,) nests inside)’ or)" nests inside
Q); N is a properly nesting set if furthermore every nesting pair is a properly
nesting pair. We define w(p, N) = Y gen w(p, @)-

A nesting set N of shells can always be restructured into a properly nest-
ing set M of polyhedra, so that the winding number of any point is pre-
served. To see this, for integer ¢>0, notice that some subset of N bounds
{peR*® : w(p, N)>i} (as long as this set is not empty); let (); be the poly-
hedron obtained by merging these shells. Similarly, for :<0, let ¢); bound the
set {peR*® : w(p, N)<i}. Then the desired set M is {Q;}. In figure A.1, the
polyhedron with shells B and C nests properly inside the polyhedron with
shells A and D. The computation of M from N is straightforward given a
data structure that represents the nesting structure of N; details are omitted.

B Simplification

The simplification problem for a polyhedron P is to compute a properly nest-
ing set N(P) of simple polyhedra so that for any real point p, w(p, P) =
w(p, N(P)). Clearly, given the set N(P) and an integer k, it is easy to extract
a simple polyhedron bounding points of winding number exactly k, or at least
k, etc.

Simplification is a slight generalization of usual Boolean operations [11]. For
example, if P and P’ are simple polyhedra, PU P’ and PN P’ can be obtained

A.3 Winding number

We write w(p, ¢) for the (planar) winding number of p with respect to closed
curve ¢ (or set of closed curves); the winding number is defined only if p is not
on c. The definition extends to three dimensions if p and ¢ lie on a common
plane; to determine sign, a viewpoint not on the plane must be specified. If
p € H(f), w(p, f) is the winding number of p with respect to edges(f), as
directed by following next.

Let P = (C,1II) be a polyhedron and p a point R**. For r a ray in R*® with
endpoint p, the winding number of p with respect to P using r is

> w(rnII(f). f)

!

where the the viewpoint is p and the sum runs over all faces f of P with r
intersecting the plane II(f).

Lemma 1 The winding number of any real point is defined for any real ray
and does not depend upon choice of ray.

Henceforth we write w(p, P) for the winding number of p with respect to P.

A4 Simplicity

Let f be a face of polyhedron P = (C,II). Face f is simple if {w(p, f) :
p € I(f)} is {0,1} or {0,—1}. The support of a face is the closure of the
set of points of nonzero winding number. A face is connected if its support is
connected. The intersection of two edges is proper if the intersection is at a
vertex incident to both edges.

A polyhedron P is simple if {w(p,f) : p € R} is {0,1} or {0,—1}. The
support of a polyhedron is the closure of the set of points of nonzero winding
number. A polyhedron is connected if its support is connected. The boundary
of a polyhedron is the union of the supports of its faces; a polyhedron is a shell
if its boundary is connected. The intersection of two simple faces is proper if

the intersection of their supports is m(A), where A is the set of edges incident
to both.

Lemma 2 A shell is simple if every face is simple and every intersection
between faces is proper.

of real plane ;. It is easy to see that the four perturbed planes cannot meet
at a common point, and that no three perturbed planes meet in a common
line.

A.2 Combinatorial polyhedra

A combinatorial polyhedron C = (V, F, F') consists of finite sets V of vertices,
E of edges, I of faces, together with functions next:F — E, sym:K — F,
face:F — [’ and vertex:[) — V satisfying

(i) next is one-one

(ii) face(e) = face(next(e))

(iii) vertex(e) = vertex(sym(next(e))).
(iv) sym(sym(e)) = ¢

v) face(sym(e)) # face(e)

(vi) vertex(e) # vertex(sym/(e)).

(For a similar definition, see [10]). F' is indexed with distinct positive integers;
if we write f; € F', then ¢ is its index.

Informally an edge is directed, with face giving the face to its left, vertex the
vertex at its head, and sym the oppositely directed edge. Edges form cycles
under next so that each cycle has constant value of face; a single such cycle
is a face cycle. Similarly edges form verter cycles under next o sym.

Face f and edge e are incident if f = face(e) or f = face(sym(e)); similarly
vertex v and edge e are incident if v = vertex(e) or v = vertex(sym(e));
finally vertex v and face f are incident if there is an edge to which they are
both incident. Faces f, f" are adjacent if there is an edge e with face(e) = f
and face(symi(e)) = f'. We let edges(f) denotes the set {e : face(e) = f}.

Henceforth we assume that every combinatorial polyhedron is trihedral, that
is, there are exactly three faces incident to each vertex.

Let C be a combinatorial polyhedron. A map II from faces to planes in R*®
is an embedding if (1) for each face f;, TI(f;) is an ¢ perturbation of some
real plane, and (2) adjacent faces are assigned nonparallel planes. We extend
II to vertices and edges: for vertex v, II(v) is the point of intersection of the
three planes incident to v, and for edge e, II(e) is the line segment connecting
the embedded endpoints of e. Clearly 1I(edges(f)) is a set of closed cycles
of line segments, one for each face cycle of f, all lying on the common plane
II(f). Henceforth we use “edge” or “vertex” to refer also to an embedded edge
or vertex. The pair (C,1II) is an embedded combinatorial polyhedron or simply
polyhedron.

[25] J. Stolfi, Oriented projective geometry: a framework for geometric
computations. Academic Press, 1991. See also, J. Stolfi, Oriented projective
geometry, Proc. 3rd Ann. Symp. Comp. Geom., pp. 76-85, 1987.

[26] K. Sugihara, M. Iri, Construction of the Voronoi diagram for one million
generators in single precision arithmetic, First Canadian Conference on
Computational Geometry, Montreal, Canada, 1989.

[27] K. Sugihara, M. Iri, A solid modeling system free from topological inconsistency,
J. Inf. Proc., Inf. Proc. Soc. of Japan 12(4): 380-393, 1989.

[28] C. Yap, T. Dubé, The exact computation paradigm, 452-492, Computing in
FPuclidean geometry, D.7. Du, F. Hwang, eds, World Scientific, 1995, second
edition.

[29] J. Yu, Exact arithmetic solid modeling, Ph.D. Thesis, Purdue University, 1991.
CSD-TR 92-037.

A Appendix: polyhedra

This technical appendix describes the generalization of polyhedra in more
detail. Some proofs are omitted, though no proof is hard.

A.1 Nonstandard analysis

In order to define perturbation cleanly, we use nonstandard analysis [23]. Let
R* be the nonstandard reals. R* contains infinitesimals, whose magnitude
is smaller than any positive real, and infinite numbers, whose magnitude is
larger than any real. For our purposes, it suffices to choose a distinguished
infinitesimal € > 0 and use the elements of R* formed by real polynomials in
e. Notice that € > €2 > ¢ > ... > 0 (and all are infinitesimals), and that
e > re? for any real r > 0.

Concepts of geometry, such as points, lines, and planes, can be interpreted in
(R*)® = R* just as in R®. For example, a plane in R** is the set of points
{(x,y,2) € R : ax + by + cz + d = 0}, for some a, b, ¢, d € R* with a,b,c
not all zero. We view R® as embedded in R**; a real point, plane, etc., has
coordinates chosen from R.

Let 7 be a real plane and j an integer. A plane 7’ in B*®is an €/ perturbation of
7 if it is a translation of # by an amount re’ in either direction orthogonal to
7, where r is a real number (in other words, if 7 has real coordinates (a, b, ¢, d),
then 7' has coordinates (a, b, c,d + re') for some real 7.). No real point lies on
7. Fori=1,...,4 and distinct integers ji, ..., js, let 7! be an ¢/ perturbation

[8] S. Fortune, C. Van Wyk, Efficient exact arithmetic for computational geometry,
Proc. Ninth Ann. Symp. Comp. Geom, pp. 163172, 1993.

[9] S. Fortune, C. Van Wyk, Static analysis yields efficient exact integer arithmetic
for computational geometry, submitted.

[10] L.J. Guibas, J. Stolfi, Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams, ACM Trans. Graphics 4(2):74-123,
1985.

[11] J. Heisserman, R. Woodbury, Unary shape operations, Geometric and product
modeling, P. Wilson, M. Wozny, M. Pratt, ed., North-Holland, Amsterdam,
1993.

[12] M. Higashi, F. Torihara, N. Takeuchi, T. Sata, T. Saitoh, M. Hosaka, Face-
based data structure and its application to robust geometric modeling, Proc.
Third Symp. Solid Modeling Appl., 235-246, 1995.

[13] C. Hoffmann, Geometric and Solid Modeling: an Introduction, Morgan
Kauffmann, 1989.

[14] C. Hoffmann, The problems of accuracy and robustness in geometric
computation. Computer 22:31-42 (1989).

[15] C. Hoffmann, J. Hopcroft, M. Karasick, Robust set operations on polyhedral
solids, IEEE Comp. Graph. Appl. 9(6):50-59, 1989.

[16] P. Jaillon, Proposition d’une arithmétique rationnelle paresseuse et d'un outil
d’aide a la saisie d’objets en synthese d’images, These, FEcole Nationale
Superieure des Mines de Saint-Ftienne, 1993.

[17] M. Karasick, D. Lieber, L. Nackman, Efficient Delaunay triangulation using
rational arithmetic, ACM Trans. Graphics 10(1):71-91, 1990.

[18] L. Lovasz, An Algorithmic Theory of Numbers, Graphs, and Convezity, STAM,
1986.

[19] M. Méntylla, An introduction to solid modeling, Computer Science Press, 1988.

[20] V. Milenkovic, Verifiable implementations of geometric algorithms using finite
precision arithmetic. Artificial Intelligence, 37:377-401, 1988.

[21] V. Milenkovic, L. Nackman, Finding compact coordinate representations for
polygons and polyhedra, IBM J. Res. Dev. 34(5):752-768,1990. A version also
appeared in Proc. Sizth Ann. Symp. Comp. Geom., 244-252, 1990.

[22] V. Milenkovic, Practical methods for set operations on polygons using exact
arithmetic, Proc. Canadian Comp. Geom. Conf., 1995.

[23] A. Robinson, Non-standard analysis, North-Holland, 1966.

[24] R. Seidel, The nature and meaning of perturbations in geometric computing,
manuscript, 1993.

covers many algorithms involving linear objects in two and three dimensions.

The exact implementation of geometric predicates on algebraic curves and
surfaces appears to require computation on algebraic numbers; it is currently
very unclear whether such computation can be made fast enough to be prac-
tical. Standard techniques can reduce algebraic number computation to com-
putation with integer polynomials, but estimates of the required arithmetic
bit-length can be dauntingly high. Yu [29] analyzes an analogue of the orienta-
tion test for conic surfaces implemented using Sturm sequences. He estimates
that the intermediate arithmetic bit-length required for the computation is
roughly 250,000 times the input bit-length, certainly unthinkable.

It is possible that such bit-length estimates are excessively pessimistic, either
because there are better predicate evaluation methods or because instances
requiring long bit-length are infrequent. As an example, Burnikel et a[2] con-
sider the incircle predicate on points and line segments. Direct application
of classical root separation bounds gives a bit-length estimate of about 9000
times input bit-length; a special-purpose argument reduces the bound to 48
times input bit-length; empirically, 6 to 9 times input bit-length appears to be
sufficient. Perhaps exact arithmetic can be made to be practical for a restricted
class of surfaces, e.g. quadrics, even if not for general algebraic surfaces.

References

[1] M. O. Benouamer, D. Michelucci, B. Peroche, Error-free boundary evaluation

based on a lazy rational arithmetic: a detailed implementation, Computer-Aided
Design 26(6):403-416.

[2] C. Burnikel, K. Mehlhorn, S. Schirra, How to compute the Voronoi diagram of
line segments: theoretical and experimental results. Proc. 2nd Fur. Symp. Alg.

(ESA 94), 1994.

[3] H. Edelsbrunner, E. Miicke, Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms, ACM Trans. Graphics 9:66-104, 1990.

[4] S. Fang, B. Bruderlin, X. Zhu, Robustness in solid modeling — a tolerance-based,
intuitionistic approach, CAD, 25(9), 1993.

[5] S. Fortune, Progress in computational geometry, in Directions in Geometric
Computing, Ch. 3, pp. 81-128, R. Martin, ed. Information Geometers Ltd, 1993.

[6] S. Fortune, Numerical stability of algorithms for 2D Delaunay triangulations,

LJCGA, 5(1&2):193-213, 1995.

[7] S. Fortune, Polyhedral modeling with exact arithmetic, Proc. Third Symp. Solid
Modeling Appl. 225-234, 1995.

the intersection of 20 cubes took about 20 seconds with pure floating-point
arithmetic, about 167 seconds using ‘lazy’ arithmetic, and about 98000 seconds
using rational arithmetic with no interval-arithmetic filter. (This is with a
modeling accuracy of 1072.) The modeler in this paper took about 4 seconds
for a similar experiment (on the 40 Mhz SGI); no predicate evaluation required
exact arithmetic. Benouamer et al do not report timings on nearly-degenerate
problem instances. It is plausible that such instances are quite expensive, since
they likely require many uses of exact arithmetic.

5 Discussion

Serious use of a modeler such as this one would require attention to var-
ious engineering issues. For example, typical input data, e.g. from another
modeler, is likely to have floating-point coordinates and hence minor numeric
inconsistencies. The inconsistencies would be preserved with straightforward
translation to integer coordinates. As long as the combinatorial representation
is consistent, simplification can be used to obtain a numerically consistent (i.e.
simple) polyhedron from a numerically inconsistent (i.e not simple) polyhe-
dron; of course, the combinatorial structure may change.

A polyhedron might not be trihedral; for example, polyhedral models aris-
ing in graphics often have triangular faces and hence high-degree vertices.
Consider the faces incident to a high-degree vertex. If integer-coordinate face
planes are independently obtained from floating-point vertex data, there is no
guarantee that all face planes will meet at a common point; even if they are
all coincident, symbolic perturbation will remove the coincidence. The sim-
plification algorithm can be used to obtain a simple polyhedron where each
high-degree vertex is replaced with a tree of closely spaced degree-three ver-
tices. This replacement is unexpected, and while it causes no problems for the
exact-arithmetic modeler, it might for subsequent processing steps.

The rounding algorithm can change combinatorial structure. Usually, the
change affects only very small features; for example, rounding may alter the
tree of degree-three vertices replacing a high-degree vertex. In consequence, an
application cannot assume that all features are preserved by transformations.

5.1 Ezact arithmetic for other algorithms.

The use of software exact arithmetic is an easy way to obtain numerically
reliable implementations of geometric algorithms. It is appropriate if geometric
primitives have small degree and hence minimal bit-length requirements; this

2 — °

N N N N
10-% 10=¢ 1071 0.01

Fig. 9. Percentage required exact dot-products as a function of rotation angle.

exact evaluation was required. The total running time increased from about 8
seconds at a rotation angle of 1072 to about 10 seconds at 107%. The percentage
of running time devoted strictly to arithmetic increased from about 30% to
45% over the same range.

We do not know a natural example where the floating-point filter is signif-
icantly less effective. To test hypothetical worst-case behavior, the floating-
point filter was removed. Then the intersection takes about 20 seconds, in-
dependent of angle. (This time would be larger with a less efficient integer
arithmetic package.)

4.8 Other work

Benouamer et al [1,16] report on a polyhedral modeler implemented with exact
rational arithmetic. Like the modeler described here, their modeler is free of
the possibility of numerical error. However, they made different design choices,
and it 1s interesting to compare the results.

Benouamer et al use vertex coordinates as the primary geometric represen-
tation of a polyhedral solid. This leads to slightly larger growth in the bit-
length of coordinate data; they estimate that a computed intersection vertex
has about seven times the bit-length of an input vertex. Their implementation
uses ‘lazy’ exact arithmetic, similar in philosophy to the two-level evaluation
strategy strategy outlined above. ‘Lazy’ arithmetic uses floating-point interval
arithmetic as a filter, resorting to exact rational arithmetic only when neces-
sary, for example, when a sign-evaluation is required but the floating-point
interval contains zero. Their implementation of lazy arithmetic overloads the
C++ arithmetic operators. This provides a convenient programming interface
but imposes overhead on each arithmetic operation, for the accumulation of
error bounds and state-saving [9,16].

An experiment performed by Benouamer et alis to intersect randomly-oriented
cubes centered at the origin. On an HP/Apollo 33 Mhz 68040, computing

Primitive approx | (20,10) | (31,22)
dot product 7 20 120

plane orientation 46 230 670

point from

three planes 38 260 670

Fig. 8. Floating-point operation counts. First column is standard floating-point;
second and third columns are exact evaluation at indicated bit-length (operation
counts are approximate).

LN uses double-precision floating-point arithmetic for multiprecision integer
arithmetic, since double-precision floating-point arithmetic has longer bit-
length and is faster than native integer arithmetic on many current work-
stations. Figure 8 gives typical operation counts for various primitives, both
for approximate and exact evaluation.

The error bound on the initial floating-point evaluation is determined using
the structure of the expression, the bit-length bounds on variables, and the
error bound on floating-point arithmetic. A two-step error bound gives the best
performance. First, a constant error bound is used, determined statically using
the worst-case estimates of variable magnitude; the runtime cost of this error
bound check is two comparisons per predicate evaluation. If the magnitude of
the computed value is less than the constant error bound, a tighter error bound
is computed, using the actual magnitude of variables. Typically, the cost of
computing this error bound is about the same as the cost of computing the
original expression. (LN currently only provides the first bound automatically;
the second bound was added manually.)

The two-level evaluation strategy is not used for geometric constructors, such
as the computation of the coordinates of a vertex from three planes. The LN-
generated code evaluates vertex coordinates exactly. However, a subsequent
predicate on the coordinates is evaluated first in floating-point, with exact
coordinates rounded to floating-point, and only if necessary is the predicate
evaluated exactly.

4.2 Fzrperimental results.

We chose a convex polyhedron with about 250 sides (obtained by intersecting
randomly rotated unit cubes). The polyhedron was rotated by an angle in
the range 1072 radians to 1077 radians and then intersected with itself. Dot-
products were monitored during the calculation. Figure 9 plots the percentage
of dot-products where the floating-point filter could not resolve sign, and hence

Choose integers a, b, ¢ of bit-length B so that (a,b,¢)/va?+b*+c? approxi-
mates the unit normal vector of 7. Straightforward rounding guarantees an
error bound in the normal of a constant times 272, Choose d so that the center
point of f is as close to the plane 7' = (a,b,c,d) as possible; the separation
is a constant times 27 as we can assume one of |al, |b], or |c| is at least

2B=1 Then the distance of any point of f to 7’ is at most a constant times
278 4 r27B,

Lattice basis reduction [18] can often reduce the error in the normal to about
2—4B/3‘

4 Implementation

A bare-bones modeler was constructed in C++ using the approach as de-
scribed. The experiments below were performed on an SGI R3000 running at
40Mhz. The bit-length was (31,22), i.e. 31 bits for each of a,b,c and 53 bits
for d in the plane coefficients (a, b, ¢, d); this yields a ‘universe’ of diameter
about 10°. Vertex coordinates, except for the final ‘weight’ coordinate, had
bit-length 120 bits; the weight coordinate had bit-length about 98 bits.

4.1 Multiprecision integer arithmetic

All geometric primitives were implemented using LN [8,9], which provides
extended-precision integer arithmetic in a form specially tuned for geometric
algorithms. LN is a preprocessor: its input is the specification of an integer
polynomial and the bit-lengths of the variables; its output is C+4 code that
efficiently evaluates the polynomial.

The orientation test and the dot-product evaluation are predicates, where the
sign of a polynomial determines control flow. The C+4 code generated by
LN uses a two-level evaluation strategy. First, the polynomial is evaluated in
floating-point arithmetic. If the magnitude of the resulting value is larger than
an error bound, the sign of the value is correct and is returned. If not, then the
polynomial is evaluated exactly using extended-precision integer arithmetic to
determine its sign.

LN assists with both steps. For exact evaluation, LN uses the structure of the
expression and bit-length information to generate efficient code. For example,
LN estimates the size of intermediate values; this allows temporary storage to
be allocated statically, rather than dynamically. Similarly, operations specific
to arithmetic, such as carry propagation, can be simplified.

[

\F

F4
‘
—
(_\i
F3
F5

b

-

d

) >
. . vWE

Fig. 7. (a) Wireframe of polyhedron P; (b) face cycles; (¢) perturbed polyhedron
P’; (d) set N(P').

bit-length (B, D), so that if P” is the resulting core polyhedron, then any
point p in the symmetric difference PE&P” lies within a constant times

rx2_B

of some face of P, where r > 1 upper bounds the radius® of any face and
Y is the maximum condition number of any vertex. To achieve this bound, a
rounded face plane must closely approximate the original face, in a manner
now described. (See the appendix for a proof of the bound.)

3.2 Face plane rounding

Let 7 be the plane of face f. A plane 7’ é-approximates © at f if the unit
normals of 7 and #" differ by 6 and if any point of f lies within é6(r+1) of
7', where r is the radius of f. As long as all points of f are within 2P of
the origin, the following strategy finds a plane =" of bit-length (B, D) that
S-approximates 7, for § a constant times 275,

L' The center point of f is the point of f that minimizes the maximum distance to
any other point of f; the radius of f is the maximum such distance. The condition
number of a vertex is 1/¢, where ¢ is the minimum solid angle formed by the three
planes defining the vertex.

for example, face F'2 is the cycle (F'1 F4 F5 F3). The geometric embedding
is determined by assigning a plane equation to each symbolic face; edge and
vertex location are inferred from the plane equations. P’ in 7(c) results from
perturbing the face planes of F'1 and F'5, without changing combinatorial
structure. P is simple, i.e. has no self-intersections, while P’ is not.

The winding number of a point ¢ with respect to a polyhedron () is the sum of
the oriented intersections of a ray leaving ¢ with the faces of (). The oriented
intersection of the ray with a face f is the winding number of r with respect
to f, where r is the intersection point of the ray and the face plane of f. The
endpoint ¢ of the ray is used as a viewpoint, to determine the orientation of
cycles on the face plane of f. Every interior point of P in in figure 7(a) has
winding number +1; an interior point of the “tail” of P’ has winding number
—1.

Simplification replaces a possibly self-intersecting polyhedron) with a set
N(Q) of nesting simple shells so that for any point ¢, w(gq, N(Q)) = w(q, Q) (A
shell is a polyhedron with connected boundary.). Simplification first requires
that every face be simplified, as described for polygons above. Then for each
pair of intersecting faces, the edges induced by intersection with the other face
must be determined. This step is identical to face-face intersection required for
boolean operations. In figure 7(c), faces F'1 and F'5 self-intersect; simplification
replaces each by a 4-sided face and a 3-sided face. Faces F'2 and F'4 intersect;
face-face intersection splits both into a 4-sided face and a 3-sided face. The
resulting faces are reassembled into the set N(P’) depicted in figure 7(d). The
five-faced polyhedron on the left bounds a region of winding number +1 and
the tetrahedron on the right bounds a region of winding number —1. See also

figures B.1 and B.2.

As with polygons, the polyhedron bounding the core of) consists of the shells
in N(Q) that separate a region of winding number 0 from a region of winding
number +1. In figure 7(d), the five-faced polyhedron P” on the left bounds
the core of N(P').

Analysis of rounding. What can be said about rounding a polyhedron?
As is clear from figures 5 and 7, the combinatorial structure of the polyhedron
can change arbitrarily (indeed Milenkovic and Nackmann[21] show the NP-
hardness of one version of the problem of rounding while preserving structure).
Furthermore, a vertex can be ill-conditioned, i.e. its coordinates can change
quickly when a defining plane is perturbed.

Nonetheless, it is possible to give a metric bound on the effect of perturbation.
Suppose P is an arbitrary (high-precision) simple polyhedron lying within the
bounding sphere of radius 2”. Then the face planes of P can be rounded to

A%

¢ d

Fig. 5. (a) original polygon P; (b) polygon P’ obtained by perturbing edges; (c)
decomposition N(P’) into nested simple cycles; (d) the core P”, i.e. the polygon
bounding points of positive winding number.

% X

Fig. 6. Intersecting edges (a) are removed by splitting each edge and redirecting
cycles (b).

the larger diamond-shaped cycle; these form the polygon P” bounding the
core of P’

Polyhedra. Simplification-based rounding is similar for polyhedra, though
technically more involved. The approach is sketched informally here; the ap-
pendix contains more details.

The definition of a polyhedron requires a careful separation of combinatorial
incidence structure from geometric embedding. Combinatorially, a polyhedron
is a set of symbolic faces. Each symbolic face is a set of face cycles, where each
face cycle is a cyclic list of symbolic faces. The polyhedron P shown as a
wireframe in figure 7(a) has the face cycles shown in figure 7(b); explicitly,

3.1 Generalized polyhedra

A different approach eliminates the need for a CSG definition of solids. The
definition of polyhedra is extended to allow a polyhedron to self-intersect. A
polyhedron P can then be rounded to another polyhedron P” in two steps.
First, the face planes of P are rounded to short bit-length; this results in a
consistent but possibly self-intersecting polyhedron P’. Then P” is defined as
the polyhedron bounding the core of P’; the core of P’ is the set of all points
of positive winding number with respect to P’. The core computation requires
simplification, described below. P” does not intersect itself, has short bit-
length plane coefficients, and approximates P. For illustration, the approach
is described first for polygons in two dimensions, and then for polyhedra in
three dimensions.

Polygons. A polygon of a set of edge cycles, each with an associated traversal
direction. Figure 5(a) depicts a polygon P, with traversal direction shown
by the arrow. Perturbing the edges of P might result in the self-intersecting
polygon P’ in figure 5(b).

Recall that the winding number w(q, Q) of point ¢ with respect to polygon
() is the sum of the number of oriented intersections of a ray leaving ¢ with
the edges of (). A ray-edge intersection counts +1 if the traversal direction
crosses the ray from right to left, and —1 if left to right. A polygon is simple
if it has no self-intersections; the winding number of any point in the interior
of a simple edge cycle is +1 or —1 as the cycle is oriented counterclockwise
or clockwise. Polygon P in figure 5(a) is simple and every interior point has
winding number +1. Polygon P’ in figure 5(b) has a “tail” bounding a region
of winding number —1 and overlapping “teeth” bounding a region of winding
number +2.

Simplification replaces a possibly self-intersecting polygon @ with a set N(Q)
of nesting simple edge cycles so that for any point ¢, w(q, N(Q)) = w(q, Q).
(The winding number with respect to a set is just the sum of the winding
numbers with respect to the elements of the set; a set of polygons is nesting
if each pair of polygons either have disjoint interiors or the interior of one
is contained in the interior of the other.) Figure 5(c) depicts the set N(P’).
Simplification is accomplished by the application of the transformation in
figure 6 to every pair of intersecting edges; the transformation splits each edge
in two and then locally redirects edge cycles as shown.

The polygon bounding the core of () consists of just the polygonal cycles in
N(Q) that separate a region of winding number 0 from a region of winding
number +1. In figure 5(c), the two such cycles are the big V-shaped cycle and

Fig. 4. Face-face intersection. Vertex v may already exist as a result of a previous
face-face intersection between f and a face h incident to g.

the sort of all edge/plane intersection points is straightforward.

To determine the edges of f that intersect 7,, each face cycleof fis traversed in
order. A dot-product can be used to classify each vertex of the face cycle with
respect to plane m,; if the endpoints of an edge have different classifications,
then the edge crosses 7.

The classification of a vertex v of f with respect to plane 7, is more complex.
As long as 7, is not one of planes defining v, symbolic perturbation guarantees
that v is never reported as on 7,. However, a previous face-face intersection
between f and a face h incident to ¢ might have left an edge on f with endpoint
v defined by 7, (see figure 4). This “symbolic degeneracy” must be treated as
a special case: the code that records edges on faces must discover vertex v, as
it might be the endpoint of an edge to be added.

3 Polyhedral rounding

An affine transformation on a polyhedral solid is effected by multiplying all
face plane coefficients by a 4 x 4 transformation matrix. Since coefficients are
integers, the transformation matrix must have integer entries, and the bit-
length of plane coefficients increases by about the bit-length of matrix entries.
To preserve the (B, D) bound, plane coefficients must be rounded. Rounding
slightly perturbs face planes, and hence may invalidate combinatorial incidence
information.

Sugihara and Iri [27] suggest that every polyhedral solid be defined by a se-
quence of constructive solid geometry (CSG) operations on primitive solids.
Each primitive should be “well-conditioned” in the sense that its combinato-
rial information should not be affected by small perturbation of face planes.
To round a polyhedral solid that is the result of a transformation, Sugihara
and Iri suggest applying the transformation to the primitive solids, rounding
them, and then reapplying the CSG operations. The resulting solid is guaran-
teed to have consistent combinatorial information, since CSG operations are
always valid.

a; b]‘ Cj a; bZ C;
oic' | ay by, e | — D€ |ay, by cp |+
a; by ¢ a; b ¢
a; b; ¢ a; b; ¢

k I
¢k6 a; b]‘ | — ¢l€ a; b]‘ C;

a; by ¢ ay by ¢y

Fig. 3. e-terms in perturbed orientation determinant.

not necessary. The precondition of the orientation test, that three of the four
planes meet in a unique point, is always satisfied by high-level algorithmic
properties of the modeler. For example, the classification of a vertex with
respect to a plane is only relevant if the vertex is the unique intersection of
three planes.

The polyhedral modeler does not require the geometric primitive that com-
pares vertex coordinates. Such a comparison would require cross multipli-
cation, since coordinates are homogeneous, and hence arithmetic bit-length
about 6 B+ D, more than the orientation primitive. The extension of symbolic
perturbation to the comparison primitive would also be more complex.

2.4 Face-face intersection

Face-face intersection is a fundamental subproblem in the implementation
of boolean operations [13]; it illustrates the use of the orientation test and
symbolic perturbation. Given two faces f and ¢, the edges on each face induced
by intersection with the other face must be determined. This requires finding
cach edge of face f that intersects the face plane 7, of ¢, and symmetrically
for g. Each plane/edge intersection defines a point along the line [= 7, N 7.
The new edges on faces f and ¢ can be deduced by traversing these points in
sorted order along [. In figure 4, there are two edges of f that cross 7, and
two edges of ¢ that cross my; each such edge defines a point on [. Edge e lies
in the common interior of faces f and ¢ and is added to both faces.

To sort edge/plane intersection points, observe that each such point is the
intersection of [= 7wy N 7, and a plane of another face incident to f or g.
Ordering two such points along [can be expressed as an orientation test on
four planes. Symbolic perturbation guarantees that any two such intersection
points are distinct. Thus the absence of “geometric degeneracies” implies that

The orientation of four planes =;, 7, 7k, 7 is sign(M), where

a; b ¢ d;
aj b ¢ d;
ay by ¢k di

a; by ¢ d

sign has value — or 1). Suppose 7w;, 7;, 7 meet at a unique point p. In
ign has value —1, 0, or 1). Supp) T t at a unique point p. I
homogeneous coordinates,

P = (—Mh My, —Ms, M4)SigH(M4)

where M; is the determinant of the 3 x 3 matrix obtained by deleting the
last row and ¢th column of the matrix above. Here we are requiring that the
final ‘weight’ coordinate of p be positive; this implies that the sign of the dot-
product 7; - p determines whether p is in the positive halfspace, on, or in the
negative halfspace of 7;. Notice that

7 - p = Msign(M,)

so the dot-product is just an alternate form of the orientation test.

If all planes have bit-length (B, D), then each coordinate of the first three
columns of M has bit-length B, and the last column has bit-length B+D.
Hence the coordinates of p have bit-length about 3B+ D except for the last,
which has bit-length about 3B. Both M and the dot-product ;- p have bit-
length about 4B+D.

The orientation test for symbolically perturbed planes requires substitution of
perturbed plane coefficients into the orientation determinant. The result when
expanded is the original determinant plus a polynomial in € (see figure 3). The
sign of the result is determined by the sign of the first nonzero coefficient, with
coefficients taken in order of increasing power of e. Thus evaluating a sym-
bolically perturbed determinant requires the evaluation of the unperturbed
determinant, and if it is zero, up to four 3 x 3 subdeterminants. A nonzero
value for the sign is obtained as long as one of the 3 x 3 subdeterminants
is nonzero, equivalently, as long as three of the four planes meet in a unique
point. If all subdeterminants are zero, then the result is still zero, and the
degeneracy is unresolved.

The symbolic perturbation scheme does not resolve all geometric degeneracies.
An extended scheme might resolve all degeneracies, but such an extension is

=

Fig. 2. Manifold representation of rectangle in 3d.

2.2 Symbolic perturbation

Suppose that face plane 7; has coefficients (a;, b;, ¢;, d;). The computation pro-
ceeds as if the plane had coefficients

(ai, biyciyd; + ¢i€')

where the perturbation direction ¢; is 1 or —1, the exponent ¢ is different for
each face, and €>0 can be viewed informally as an arbitrarily small real or
formally as an infinitesimal [23] (see the appendix). Clearly the perturbation
translates the plane parallel to itself. This perturbation prevents four planes
from meeting at a unique point and three planes from meeting at a common
line (though other degeneracies, e.g. four planes all parallel to a common line,
are still possible). As a consequence, the modeler can assume that all solids
are trihedral, that is, exactly three faces are incident to each vertex.

An advantage of symbolic perturbation is that an arbitrary polyhedral solid
can be represented with a simple manifold data structure. By convention, the
perturbation direction is chosen so that face planes are perturbed outwards,
i.e. to the exterior of the solid. For example, the nonmanifold solid in figure
1(a) has the manifold representation in figure 1(b); the point of contact be-
tween cube and tetrahedron has the combinatorial representation of a triangle.
A two-dimensional rectangle sitting in three dimensions could have the com-
binatorial representation of a cube; in figure 2, the top and bottom faces have
the same plane equation but are symbolically perturbed in opposite directions.
A line segment or point could be obtained in a similar fashion. Qutward per-
turbation yields closed polyhedral sets; open polyhedral sets could be obtained
by perturbing face planes inward.

2.3 Geometric primitives

The orientation test on planes, together with a few simpler tests, suffice for
the implementation of the polyhedral modeler. Stolfi [25] discusses plane ori-
entation in the context of oriented projective geometry.

< 2

(a) (b)

Fig. 1. (a) nonmanifold; (b) manifold representation.

2 Algorithm design

A polyhedral modeler provides boolean set operations on polyhedral solids,
as well as affine transformations such as rotation and translation. The design
described here uses many ideas from Sugihara and Iri [27], though the rounding
algorithm is different.

The discussion in this section assumes general familiarity with polyhedral
modelers [13,19]; only differences resulting from the use of integer arithmetic
are highlighted. The discussion is relatively informal; the appendix contains
technical details.

2.1 Coordinate data

Face plane coordinates are the primary geometric representation of a polyhe-
dral solid. A boolean operation on solids creates no new primary geometric
data, since a boolean operation does not introduce any new face planes[27].
Vertices are defined as the intersection of three planes.

Plane coefficients have bit-length bound (B, D): for the coefficient tuple («a, b, ¢, d),
representing the plane {(z,y,2) : ax+by+cz+d=0}, a, b, ¢ are integers of bit-
length B (i.e. have magnitude less than 2P) and d has bit-length B+D. An
arbitrary plane 7 within distance 2 of the origin can be approximated by a
plane 7’ of bit-length (B, D) so that the unit normal vectors of 7 and =’ differ
by at most about 277, and so that the distances of 7 and 7’ from the origin
differ by at most about 278, If 7 is further from the origin, up to distance
2B+D " an approximating plane can still be found, with approximation error
increasing with distance from the origin.

A principal property of the modeler is a bound on the bit-length of coordinate
data; this implies a fixed, relatively small bound on the bit-length of arithmetic
required to evaluate geometric predicates. The bit-length bound restricts the
class of representable polyhedra. Boolean operations such as intersection or
union do not increase the bit-length of coordinate information; such operations
are exact. Other operations, such as affine transformations, would increase
coordinate bit-length if implemented directly. Instead, coordinates are rounded
to the bit-length bound, and the result is only an approximation to the exact
answer. Polyhedral incidence information may have to be reconstructed after
coordinate rounding; a reasonably simple reconstruction algorithm is described
below.

The bit-length required to evaluate geometric predicates, while relatively small,
exceeds the native hardware bit-length of most computers. The modeler uses
a two-level adaptive-precision strategy to evaluate geometric predicates [9].
A predicate is determined by the sign of an arithmetic expression. The ex-
pression is evaluated first in floating-point arithmetic; if the magnitude of the
expression is larger than an error bound, than the sign of the value is cor-
rect. If not, the expression is evaluated exactly with specially-tuned software
extended-precision arithmetic. The error bound can be determined statically,
so the error bound check is cheap.

Besides guaranteeing numerical reliability, exact integer arithmetic allows the
use of symbolic perturbation [3,24]. We describe a variant scheme that per-
turbs polyhedral face planes. This symbolic perturbation scheme simplifies the
implementation of the modeler by eliminating many special cases. In addition,
it allows a simple manifold representation of any polyhedral set, that is, any
bounded set that can be obtained from open or closed halfspaces by a finite
number of unions and intersections. This includes sets with dangling edges or
faces, open or closed boundaries, etc.

Other work. Considerable research effort has been directed at improving
the numerical reliability of geometric algorithms; for surveys see [5,13,14,20].
One approach is to analyze the effect of rounding errors that result from
floating-point arithmetic [6,26,28]. A second approach is to use software exact
arithmetic for the evaluation of geometric predicates; to reduce performance
cost, various researchers have suggested adaptive-precision arithmetic [9,16,17].
The specific problem of constructing a reliable polygonal or polyhedral mod-
eler has been considered both in floating-point arithmetic [4,12,15] and exact
arithmetic [1,16,22,27]; much of the latter work is discussed in more detail
below.

Polyhedral modeling with multiprecision integer
arithmetic *

Steven Fortune

Bell Laboratories, Murray Hill, NJ, 07974, USA

We describe a polyhedral modeler that uses software extended-
precision integer arithmetic to guarantee numerical reliability. By
careful design, the performance of the modeler is not much differ-
ent from the performance that a floating-point modeler might have.
The modeler performs Boolean set operations exactly; to prevent
growth of coordinate bit-length, affine transformations require co-
ordinate rounding and hence are approximate. A new algorithm for
reconstructing polyhedral incidence information after rounding is
given.

Key words: polyhedral modeling, exact arithmetic,
adaptive-precision arithmetic, robustness, geometric algorithms,
numerical reliability, winding number

1 Introduction

We describe a three-dimensional boundary-based polyhedral modeler that uses
extended-precision software integer arithmetic for geometric predicates. Inte-
ger arithmetic guarantees that geometric predicates are reliable and hence
that the modeler will not fail because of numerical error. The additional per-
formance overhead of the integer-arithmetic modeler, relative to a modeler
implemented with floating-point arithmetic, is minimal. For a ‘generic’ inter-
section, there is essentially no overhead. For a contrived hard intersection, the
performance cost is less than twice what a floating-point modeler might re-
quire (though the floating-point modeler might well fail because of numerical

error [15]).

* An earlier version of this paper appeared in the Third Symposium on Solid Mod-
eling and Applications [7].

Preprint submitted to Elsevier Preprint 1 April 1996

