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Abstract

We study the problem of robustly rounding a

set S of n line segments in R2 using the snap

rounding paradigm. In this paradigm each pixel

containing an endpoint or intersection point is

called “hot,” and all segments intersecting a hot

pixel are re-routed to pass through its center.

We show that a snap-rounded approximation to

the arrangement defined by S can be built in

an output-sensitive fashion, and that this can be

done without first determining all the intersect-

ing pairs of segments in S. Specifically, we give

a deterministic plan~sweep algorithm running in

time O(n bgn -F&H Ihl10g ~), where ~ is the
set of hot pixela and \hl is the number of seg-

ments intersecting a hot pixel h E H. We also

give a simple randomized incremental construc-

tion whose expected running time matches that

of our deterministic algorithm. The complexity

of these algorithms is optimal up to polylogar-

ithmic factors.
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We also show how to extend the snap round-

ing paradigm to a collection S of line segments in

R3 by defining hot voxels in terms of “close en-

counters” between segments in S, and we give an

output-sensitive (though probably sub-optimal)

method for finding all close encounters determ-

ined by the segments in S.

Key words. Robustness, finite precision,
geometric rounding, line segments, arrange-

ments.

1 Introduction

Geometric objects typically live in a continuous

geometric space such ss R2 or R3. Yet com-

puter representations of such objects are neces-
sarily discrete, both because of the digital nature

of computers themselves, and of the raster nature

of the computer displays currently in use. Thus
the need arises to represent geometric objects in

a finite, prespecified resolution. Even if vsriable

resolution is allowed, repeated geometric opera-

tions can rapidly increase the required precision.

These considerations give rise to the fundamental

problem of rounding geometric objects to a pre-

specified resolution. Though individually round-

ing the numerical attributes of the representa-

tion of a geometric object is usually straightfor-

ward, such rounding may violate various struc-

tural properties which the geometric object is

supposed to satisfy, such as convexity, simplicity,
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etc. In this paper we are interested in rounding

collect ions of line segments so as to guarantee cer-

tain topological consistency properties between

the ideal collect ion and its rounded counterpart.

Failure to guarantee this consistency can lead to

erroneous results and algorithmic failures in fur-

ther processing. We are interested in roundings

that perturb and fragment the original input as

little as possible, ancl which can be computed ef-

ficiently.

1.1 Some Approaches to Rounding

The problem of dealing with finite precision

and robustness in geometric algorithms is fun-

damental, and there has been considerable work

done on developing good approaches to this prob-

lem (e.g., see [2, 8, !1, 10, 11, 13, 15, 16, 17, 19,

22, 23]). Of particular relevance to this paper

is the previous work done on producing rounded

versions of arrangements of line segments. At a

high level, of course, the goal of such a method

is to round the given set of line segments so that

each rounded version of a segment is “close” to

the original segment and the important topolo-

gical properties of the original configuration are

preserved as much as possible. It is of prime im-

portance in performing such a computation that

the rounding be done efficiently, both in terms of

the combinatorial size of the representation and

in terms of the running time of the algorithm

that performs this rounding.

Greene and Yao [10] introduced the frame

work of rounding line segments to a pixel grid.

They gave a method that preserves the topo-

logy of a segment arrangement sufficiently, but

at the expense of converting each individual line

segment into a polygonal chain containing many

subsegments. In addition, the running time of

their method depends on both the combinator-

ial complexity of the output (the number of sub-

segments needed to represent rounded segments)

and also on the number of actual intersections

among the original segments. Subsequent to this
early work on segment rounding, there have been

several papers that have examined the arithmetic

complexity (in terms of bits of accuracy) needed

to construct arrangements [9, 16, 19]. The gen-

eral framework of these approaches still involves

the computation of all segment intersections, al-

though possibly at a reduced bit complexity than

a naive method might use.

One approach to the segment rounding prob-

lem that has been shown to be very promising,

from the standpoint of the combinatorial com-

plexity of the rounded representation, is the snap

rounding paradigm int reduced by Greene and

Hobby [15] and studied in more detail by Guibas

and Marimont [11]. Given a set S of n line seg-

ments in the plane and a regular pixel grid Q,

this approach involves defining pixels in g as be-
ing “hot” if they contain segment endpoints or

segment intersection points (the point features

oft he arrangement). Guibas and Marimont show

that if one “snap rounds” each segment passing
through a hot pixel to the center of that pixel,

then one is guaranteed not to introduce any new

crossings (alt bough one may, of course, introduce

new incidence). (See Figure 1.) This has the

benefit of being combinatorially efficient, gener-

ating a minimal fragmentation of the input seg-

ments consistent with topological consistency. In

addition, the size of the rounded arrangement

will be almost always smaller than that of the

ideal arrangement (though counterexamples are

possible), and much more so with coarse pixel

sizes.

In addition, Guibas and Marimont give an

algorithm for constructing such a snap-rounded

arrangement of S, including its vertical decom-

position (i.e., its trapezoidal decomposition), in
expected time O(nlogn + A •1-~h~H lh[ 10g lhl +

Z~EW IwI), where A is the total number of pairs
of intersecting segments in S, H is the set of

hot pixels, Ihl denotes the number segments in-

tersecting a hot pixel h E H, W is the set

of all pixels containing a vertical attachment

(defined in the vertical decomposition), and Iwl

is the number of segments intersecting a pixel

WEW. Their algorithm is dynamic, allow-

ing also for efficient segment insertions and dele-
tions. Alternatively, Hobby [15] describes a de-

terministic batch algorithm that first constructs

the actual segment arrangement and then snap

rounds it, resulting in an algorithm that runs

in O((n + A) log n + ~~~H Ihl) time. ldeallY,
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Figure 1: Left, an arrangement of 50 segments; right, the snap-rounded form of the arrangement.

however, one would desire an algorithm whose

running time does not depend so heavily on A,

reflect ing the total number of intersecting pairs

of segments in the ideal arrangement. In addi-

tion, one would like to eliminate any dependence

upon other factors that do not contribute to the

output size, such as the term ~Wc ~ Iwl. A more

desirable time bound would, for example, just

depend upon n and the complexities of the hot

pixels in H. This would give a method for round-

ing line segments that is efficient in terms of both

its combinatorial and computational complexity.

1.2 Our Results

In this paper we give two output-sensitive al-

gorithms for efficiently performing snap rounding

of line segments in the plane. The first method

is deterministic and runs in time O(n log n +

~~~~ [hl log n). It is based upon a plane-sweep
strategy; it avoids computing the full arrange-

ment of S by erasing segments of S inside hot

pixels. We also give a simple randomized in-

cremental method whose expected running time

matches that of our deterministic method.

In addition to providing efficient methods for

2-dimensional snap rounding, we also develop a
framework for 3-dimensional snap rounding. In

this context the n line segments in S are em-

bedded in R3 and we wish to round them to a

regular 3-dimensional voxel grid. Unlike the 2-

dimensional case, however, these segments will

typically not intersect at all. Thus, we charac-

terize of the combinatorial complexity of a 3-

dimensional set of segments in terms of n and

the number of close encounters (or “near mis-

ses” ) between pairs of segments in S. We then

propose a “hot” voxels definition in terms of

those voxels containing segment endpoints and

close encounters, and we propose a 3-dimensional

rounded set of segments to be defined by taking

all segments that intersect a hot voxel and snap-

rounding them to the center of each such voxel.

This retains the proximity of snap-rounded seg-

ments with original segments, but can be rep-

resented in the finite representation imposed by
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an integer-grid discretization of space. We also

describe an output-sensitive method for finding

all close encounters between the segments in S,

which can then be used immediately to identify

all the hot voxels determined by the segments in

s.
We outline the main ideas behind our results

in the sections that follow.

2 2-Dimensional Snap Round-
ing

Let S be a collection of n line segments in the

plane, and let there be a regular grid g defining

pixels in R2. In this section we describe two ef-

ficient methods for performing two-dimensional

snap rounding of S, one deterministic and the

other randomized. Both of these methods pro-

duce a vertical trapezoidal decomposition S of

the snap-rounded arrangement of the segments in

S, based upon the same strategy: first intersect

segments with hot pixels and then collapse hot

pixels to single points. This contrasts with the

method of Guibas and Marimont [11], which is

based upon a randomized incremental construc-

tion of S directly.

We say that a point in R2 is critical if it is

the endpoint of a segment in S, or is the inter-

section point of two segments in S; we say that

a pixel in ~ is hot if it contains a critical point.

To snap round a segment s in S, then, we con-

vert s into a polygonal chain (or polylirze) that

connects the centers of all the hot pixels that s

intersects (in order oft heir intersection along s).

Let H denote the set of all hot pixels, and let ‘H

denote the regions in R2 covered by hot pixels

in Il. In addition, let int (H) denote the interiors

of all the hot pixels in H and let d(%) denote

the set of all line segments that bound hot pixels

in H (so that, when viewed as sets of points,

% = int (H) U d(%)). For each segment s in S,
define the eztenzal fragments ofs to be the set of

segments in s\int (M). That is, the fragments of
s are determined by “slicing” away all the por-

tions of s that intersect hot pixel interiors. If a

segment s in S has a non-empty fragment, then

we form the polyline for s by moving the two en-

dpoints of each fragment ~ ofs to the centers of
the two hot pixels that ~ is incident upon (if a

fragment consists of just a single point, then we

expand this to the segment joining the centers

of the two abutting hot pixels upon which this

point is simultaneously incident).

Let S denote the set of external fragments

for the segments in S. The method we use to

implement the above strategy is to construct a

representation of S’, the vertical decomposition

of S U 6(W) (using, say, the quad-edge data struc-

ture of Guibas and Stolfi [14]). We call S’ the

pixel-clipped arrangement of the segments in S.

Note that none of segments in ~ U 8(W) cross

(although there will be intersections defined by

fragment endpoints and hot pixel boundaries).

Moreover, the combinatorial complexity of S’ is

proportional to the snap-rounded representation

S of the arrangement of the segments in S. Since

converting S’ to S is a. straightforward linear-

time computation, we concentrate on the prob-

lem of constructing the pixel-clipped arrange-

ment S’ from the set of segments S.

2.1 Deterministic Snap Rounding

We present a deterministic plane-sweep method
for constructing S’, as described above. In what

follows we refer to the original, unrounded seg-

ments as ursegrnents, to distinguish them from

other segments used by the algorithm.

Our approach is based on the plane sweeping

algorithm of Bentley and Ottmann [3] for con-

struct ing (unrounded) segment arrangements.

We sweep over the ursegments from left to right,

processing events, some of which are critical

points. However, we dynamically modify the set

of segments so that the sweepline processes only

the leftmost critical point in each hot pixel. The

sweepline is also used to detect all intersections

between ursegments and hot pixel boundaries.

The key idea is the following: when we detect

a critical point in a pixel, we erase all the urseg-

ment portions that intersect the (now known to
be hot) pixel’s interior. Simultaneously, we intro-

duce the pixel’s top/bottom boundaries into the

sweep structure as horizontal line segments. This

eliminates all ursegment intersections inside the
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pixel except the leftmost, and ad,ds some urseg-

ment/pixel boundary intersection events.

Our algorithm uses three data structures,

which we describe in a syntax “based loosely on

C. First is a Bentley-Ottmann sweepline, which

consists of a current z position xpos, a search-
able list 1 storing the segments that intersect the

vertical line z = xpos in their y order, and an

x-ordered priority queue of segment insertions,

deletions, and intersections to the right of xpos—

intersection events in the priority queue involve

only adjacent segments on the sweepline [3, 4].

We denote the sweepline by SL. Second, each hot

pixel pix with a critical point left of xpos has two

searchable z-ordered lists of the ursegments that

intersect its top and bottom left of xpos; these

lists are pix.toplist and pix.botlist. Third is

a searchable y-ordered list of the hot pixels that

intersect z = xpos and have a critical point left

of xpos—call this list Hcur.

The output of the algorithm is an z-ordered

list of hot pixels H, arid for each hot pixel pix a

set of ursegments pi.x. segs that intersect pix.

The pseudocode be;low uses two subroutines:

pixel (point p) rounds point p to its contain-

ing pixel, and heat (Pixel pix) makes pix hot.

In particular, heat (pix) finds all the ursegments

that intersect pix left of the current xpos, erases

the portion of these segments inside pix, initial-

izes pix.t oplist and pix.bot list, and intr~

duces horizontal segments into SL at the top and

bottom boundaries of pix. Whenever heat (pix)

is called, there: are no critical points between

xpos and the heft side of pix.

The algorithm processes five different kinds

of events:

1.

2.

3.

Ursegrnent endpoints. N.B. Right end-

points sort before left endpoints at the

same z.

Ursegment intersections.

Ursegrnent /pixel boundary intersections.

1A searchable list is any data structure that stores an
ordered list and supports logarithmic-time insertions, de-
letions, and searches, and constant (amortized) time suc-
ceesor/predecessor queries. Balanced binary trees and
skip lists are standard examples.

4.

5.

Ursegment re-insertions. (These occur

when an ursegment exits a hot pixel.)

Right ends of hot pixel boundaries. N.B.

Type (5) events sort before type (4) events
at the same Z.

The algorithm begins by initializing the

sweepline SL with events of types (1) and (2).

No events of types (3), (4), and (5) exist yet. We

process events in left-to-right order, w follows:

1. Urseg-endpt (Point p, Urseg u)

if (pixel (p) @ Hcur) heat (pixel (p)).

if (p is the left end of u)

Insert u into SL.

Proceed as in case (3), beginning at (*).

else

Remove u from SL.

2. Urseg.intersection( Point p)

heat (pixel(p)).

3. Urseg.pixbdy_intersect ion(Point p,
Pixel pix, Urseg u)

if (p is on the top of pix)

append u to pix.toplist;

else

append u to pix.botlist.

(*) Add u to pix.segs, if not already there.

4.

Remove u from SL, as if u ended at p.
if (u intersects the boundary of

pix right of p at pp)

Insert the event

UrsegJeinsert ion(pp, pix, u)

into the priority queue.

UrsegXeinsertion (Point p, Pixel pix,

Urseg u)

Insert u into SL at p.

if (p is on the top of pix)

append u to pix.toplist;

else if (p is on the bottom of pix)

append u to pix.botlist.

Let ppix be the pixel adjacent to pix with
p on their common boundary.

if (ppix E Hcur)
Process an event

Urseg-pixbdy-intersect ion(p, ppix, u).
(A careful implementation—making pixel

boundaries lie infinitesimally inside their
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pixels—could avoid this test.)

5. Pixbdy-end(Pixbdy bdy, point p]

Remove bdy from SL at p.

Append all pixels in Hcur to H, leaving Hcur

empty.

The implementation of pixel (Point p) is

trivial, so we focus on heat (Pixel pix). We

need the following lemma.

Lemma 1: Given a pixel pix @ Hcur that in-
tersects x = xpos, let pixup and pixdoun be

the pixels in Hcur above and below it, if any. Let

rect be the (possibly infinite) rectangle bounded

by pixup, pixdown, xpos, and the x coordin-

ate of the left side of pix. All the ursegments

that intersect rect belong to pixup.bot list,

pixdoun.toplist, or the g-ordered list of seg-

ments on the sweepline SL. In each of these

lists, the segments that intersect pix form a

contiguous subsequence, which can be found in

O(log n + k) time, where k is the length of the

subsequence.

Proof: By the definition of Hcur, no ursegment

intersections or endpoints lie in rect. Any urseg-

ment that intersects pix also intersects rect,

and must intersect its top, bottom, or right side.

Each of the three lists stores ursegments that in-

tersect a particular line segment. If two urseg-

ments s, s’ in the list for a segment e intersect

pix, then there is a line segment e’ inside pix
joining them. The four segments s, s’, e, and

e’ form a quadrilateral. Any ursegment between

s and s’ in the list intersects e and enters the

quadrilateral; it does not intersect s or s’, so it

must intersect e’, and hence pix. We can find

the subsequence of each list that intersects pix

by searching in the list: for each segment s in

the list that does not intersect pix, we can tell

in constant time whether the portion of the list

that intersects pix lies before or after s. ❑

We are now ready to present the implement-

ation of heat (pix).

heat(Pixel pix)

Insert pix into Hcur.

Find the ursegments that intersect

pix left of xpos, using Lemma 1.

For each ursegment u that intersects

pix left of xpos

Add u to pix.segs.

if (u intersects pix right of xpos)

Remove u from SL.

if (u intersects the boundary of pix

right of xpos at a point p)

Schedule an event

Ursegxeinsertion (p, pix, u).
Build pix.toplist and pix.botlist

by sorting pix.segs.

Insert horizontal segments into SL at

the top and bottom boundaries of

pix, extending from xpos to the right

end of pix. For each pixel boundary

bdy inserted, with right endpoint p,

schedule an event Pixbdy_end(bdy,

p).

Theorem 2: Given a set S of n Jine segments

in the pkme and a regular pixel grid G, one

can snap-round the segments in S to G in time

O(nlogn + &H lhl logn), where II is the set
of hot pixels and Ih[ is the number of segments

intersecting a hot pixel h E H.

Proofi A pixel is hot iff it contains an ursegment

endpoint or intersection. The algorithm detects

these events in cases (1) and (2). Ursegments are

erased from SL only inside pixels already known

to be hot, so all hot pixels are detected.

Ursegment /hot pixel incidence are found in

case (3) and in heat (pix) (called horn cases (1)

and (2) ). This finds all the incidence, because

any ursegment that intersects a pixel pix without

starting or ending there must intersect either the

top of pix, the bottom of pix, or all vertical

segments connecting top and bottom. The sub-

rout ine heat (pix) finds all incidence with the

top and bottom of pix left of xpos, as well as

all incidence with the vertical segment spanning

pix at xpos. Case (3) finds all incidence with

top and bottom to the right of the xpos where

heat (pix) was called.

Let m = ~h~~ [h\. It is not hard to see

that the running time of heat (pix) is O(k log n),

where k is the number of segments added to

pix.segs. This sums to O(rn log n) over all in-

vocations of heat ( ). The rest of the algorithm
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requires only O(log n) time per event. The num-

ber of events of type (1) is 2n = O(m); the num-

ber of events of types (2) and (5) is O(h), where

h is the number of hot pixels, which is O(m);

and the number of events of types (3) and (4) is

O(m).
Once all the ursegment/hot pixel incidence

are known, the order in which the segments in-

tersect the pixel boundary can be obtained in

O(m log n) time by sorting. (The order is already

known for the intersections on the top and bot-

tom of each hot pixel.) Given this information, it

is straightforward to compute the snap-rounded

arrangement S. ❑

In the next subsection we describe a simple

randomized algorithm whose expected running

time matches this bound.

2.2 Randomized Snap Rounding in R2

In this section we give a randomized incre-

mental construction (RIC) for building the pixel-

clipped arrangement S’ of the segments in S.
The basic approach is similar to that of previ-

ous RIC’s for constructing segment arrangements

(e.g., see [5, 6, 18, 20, 21]). We again maintain

a trapezoidal decomposition of S’, except that

here we dynamically “clip” the current subdivi-

sion each time we discover a new hot pixel.

In the usual RIC of line segment arrange-

ments, two different operations need to be ad-

dressed. One is the point location of (typically

the left ) endpoint of a new segment s in the ver-

t ical trapezoidal decomposition of the arrange-

ment of the segments inserted so far. The other

is the propagation of s through the trapezoidal

decomposition, in order to discover the intersec-

tions of s with existing segments, and to up-

date the trapezoidal decomposition in the pro-

cess. The point location step is normally handled

by maintaining a conflict graph between (unin-

serted) segments and trapezoids [5], or by the

“history-dag” technique of [12].

Like these methods, we also build the

trapezoidal decomposition of the pixel-clipped

arrangement S’ in an incremental manner, by

inserting all the segments in S into this arrange-

ment one after the other, in a random sequence.

But we differ from these schemes for ideal line

segments in several important ways. Fist of all,

because we are dealing with a fixed pixel grid,

we can completely finesse the point location is-

sue. We simply initialize our vertical decompos-
ition of the pixel-clipped arrangement to be the

vertical decomposition of all the hot pixels con-

taining segment endpoints. We can easily com-

pute this decomposition by a line sweep in time

O(n log n). We also initialize each of these hot

pixels wit h a dynamic “by-pass” structure that

allows us to trace other segments though them ef-

ficiently. Secondly, during the propagation stage

in the insertion of a new segment s, we may dis-

cover new intersections between s and other ex-

isting segments that lie outside of the currently

known hot pixels. Whenever that happens, we

need to create a new hot pixel h corresponding

to the new intersection, clip out from S’ the por-

tion corresponding to h, and initialize a new by-

pass structure for h containing all the current

segments intersecting h.

Let us now be more precise about these oper-

ations; call s the next segment in S to be added.

We locate the (existing) hot pixel h containing

the left endpoint of s through a simple indexing

operation. This can be done in time O(log n) by

keeping on the side a binary tree of all the pixel

grid columns containing hot pixels (due to en-

dpoints) in the initial S, and for each node of

that tree another binary tree of all the hot pixels

in that column. In practice, of course, we would

simply index into the pixel array using the en-

dpoint coordinates. Starting now from where s

exits the boundary of h, we trace s into the pixel-

clipped decomposition S’. The segment s may

have to be propagated through a trapezoid of the

decomposition or through an existing hot pixel,
and in the process it may cross a vertical attach-

ment, another segment, or a hot pixel boundary.

For every hot pixel h, we will maintain an

ordered list of the intersections of the boundary

of h by the current segment as a dynamic binary

search tree (such as a red-black tree). By tra-

versing this tree we are able to propagate a new

segment, such as s, through h in O(log n) time;

we can also update the representation to include
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s in O(logn) time. ‘Thus the traversal by s of

a standard trapezoid in S’ takes as usual con-

stant time, while the traversal of a hot pixel uses

the above by-pass structure. Ifs exits a standard

trapezoid by crossing avert ical attachment, then

that attachment has to be shortened to end at s.
The most interesting situation arises when s

exits a standard trapezoid by crossing an existing

segment r at a point P. In this case we have dis-

covered a new hot pixel h, and there is more work

to do. In order to clip out from S’ the part corres-

ponding to h, we walk in S’ from P to the (say)

north-east corner of h (in a straight-line fash-

ion), and then counterclockwise around the entire

boundary of h. In this process we will discover

all the current segments crossing h (each at most

two or three times) 2. Notice that in this traversal

of S’ we will not encounter any other hot pixels

(obviously), and that the number of vertical at-

tachments we can meet is at most four. Thus

the work involved is proportional to the num-

ber of segments currently intersecting h. We can

now excise h from S and replace it by a by-pass

structure reflecting the segment crossings with its

boundary. We also add any necessary new ver-

tical attachments emanating from the corners of

h in O(1) time.

This finishes the description of our RIC al-

gorithm for the pixel-clipped arrangement. The

analysis is very straightforward. Clearly the

point-location cost is O(log n) per segment. Also,

the cost of detecting the new hot pixels, of form-

ing the hot pixel by-pass structures, and of tra-

cing segments through them and then adding

these segment to the by-pass structure is all

accounted for by the term O(~h~H Ihl log n)).

Note also that these are both worst-case bounds.

The remaining cost of our algorithm is that

of propagating segments through trapezoids by

crossing vertical attachments. Each such step

“clips,” or shortens, such an attachment. Be-

cause the segments are added in a random se-

quence, any specific vertical attachment will be

clipped in this way an expected O(log n) times

(this is just the left-to-right minima in a ran-

2Some tiny segments may be entirely inside h, but
these contract to a point after snap-rounding.

dom permutation problem). Note that a vertical
attachment can also be clipped by the creation

of a new hot pixel, but we can charge this clip-

ping to the hot pixel responsible for it. This

additional clipping can only help the expected

O(log n) bound above. Thus we have:

Theorem 3: Given a set S of n line segments
in the plane and a regular pixel grid G, one can
snap-round the segments in S to G in expected

time O(n log n + &H lhl log n) by a randomized

incremental construction.

3 3-Dimensional Snap Round-
ing

Let us now consider the problem of snap round-

ing a set S of n line segments in R3. In this

case we assume a bounding box in R3 contain-

ing S has been partitioned into unit-cube voxels

centered on the points with integer coordinates.

We propse a notion of 3-dimensional snap round-

ing that is defined as follows. For distinct input

segments r and s, consider the dist ante between

them and define their connector to be the seg-

ment rs between their points of closest approach.

We assume that no two input segments are paral-

lel, so these points of closest approach are unique.

A connector will be called short if its length

in the Lw metric is 1 or less. In this case, there

is said to exist a close encounter between the two

input segments. We define a voxel to be hot if it

contains any endpoints either of input segments

or of short connectors.

The rounding process proceeds analogously
to the two-dimensional case described above.

Every input segment s is transformed into a poly-

line o such that the endpoints of u are the centers

of the hot voxels containing the corresponding

endpoints ofs and the bends in a, corresponding

to transits ofs across hot voxels between its end-

points, are the centers of those hot voxels. Let us,

then, address the computational issues involved
with snap-rounding a set of n line segments in

R3 using this notion of rounding.
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3.1 Determining all close encounters

Suppose we are given a set S of n segments in R3.
In this section we describe an efficient output-

sensitive method for determining all pairs (s, -t)

of segments in S that are within an Lm distance

of 1 from each other (which are all segments that

determine a close encounter). From each seg-

ment s let us form the tube ~(s), which is the

Minkowski sum of s with an axis-oriented unit

cube centered at the origin. The following facts

are immediate:

1. each tube T(S ) is a zonotope; it has at most

twelve facets which are parallelograms;

2. segments s and t are within an Lm distance

of 1 from each other if and only if their

tubes -r(s) and ~(t) intersect.

We assume that no two segments are parallel;

symbolic perturbation techniques can be used to

guarantee that this is so [7]. It follows that two

tubes ~(s) and T(t)will intersect if and only if

an edge of one of the tubes pierces (or touches) a

face of the other. Therefore, let us form two sets

from the collection of tubes for all the segments

in S: the set E of all edges of the tubes, and

the set F of all faces of the tubes. Each of these

has clearly size O(n). Note also that any inter-

section or contact between an edge e in E and a

parallelogram ~ in F implies an intersection or
contact between two tubes (except if e and j be-

long to the same tube), and any pairwise tube

intersection will be captured this way.

We now use the range searching techniques

for semi-algebraic varieties of Agarwal and

Matotiek [1] to develop an efficient algorithm for

report ing all the edge/face intersections. Con-

sider a particular edge e and face f; orient the

four edges of ~ consistently around ~. Then the

condition that e intersects ~ can be expressed

by asserting that the line supporting e has posit-

ive orientation with respect to the four lines sup-

porting the edges of f, and that that the plane
supporting ~ separates the endpoints of v. By

using the techniques of [1] we now preprocess

all the faces in F so that, given a query edge

e, we can quickly report all the faces that e in-

tersects. This requires a six-level partition tree:

four levels for the four sides of a face and two

for the two endpoints of the query edge. Assum-

ing that we want to use only linear space, the

dominant query cost of this structure comes horn

the levels of the tree dealing with the line ori-

entation conditions. By using Pliicker coordin-

ates, Agarwal and Matou?iek [1] show how such

a structure can be developed whose query time

will be 0(n/s114 + k), where k is the number

of reported faces intersecting e, using space and

preprocessing of 0(s1+6, for any d > 0. By

querying with all the edges in E and balancing

the preprocessing and query costs, we can ob-

tain all the edge/face intersections in total time

0(n8/5+J + ~) and space 0(n8j5+J), where here

K denotes the number of intersecting tubes. Fur-

ther details will be given in the full paper.

4 Conclusion

We have given output-sensitive methods for two-

dimensional segment snap-rounding, in both de-

terminist ic and randomized settings. In both

cases our methods have a running time that is

sensitive to both the number of input line seg-

ments and also to the number of segments in

a snaprounded representation. We have also

given an extension of the snap-rounding notion to

thre~dimensional segments and we have given an

output-sensitive method for snaprounding seg-

ments in R3 as well. We feel that an interesting

direction for future work is to explore the variety

of topological properties that are preserved by

this notion of three-dimensional snap rounding.
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