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Abstract

We present a randomized strategy for maintaining balance in dynamically changing search
trees that has optimal expected behavior
 In particular	 in the expected case a search or an
update takes logarithmic time	 with the update requiring fewer than two rotations
 Moreover	
the update time remains logarithmic	 even if the cost of a rotation is taken to be proportional
to the size of the rotated subtree
 Finger searches and splits and joins can be performed in
optimal expected time also
 We show that these results continue to hold even if very little true
randomness is available	 i
e
 if only a logarithmic number of truely random bits are available

Our approach generalizes naturally to weighted trees	 where the expected time bounds for
accesses and updates again match the worst case time bounds of the best deterministic methods


We also discuss ways of implementing our randomized strategy so that no explicit balance
information is maintained
 Our balancing strategy and our algorithms are exceedingly simple
and should be fast in practice


This paper is dedicated to the memory of Gene Lawler �

� Introduction

Storing sets of items so as to allow for fast access to an item given its key is a ubiquitous problem
in computer science� When the keys are drawn from a large totally ordered set the method of
choice for storing the items is usually some sort of search tree� The simplest form of such a tree
is a binary search tree� Here a set X of n items is stored at the nodes of a rooted binary tree as
follows� some item y � X is chosen to be stored at the root of the tree� and the left and right
children of the root are binary search trees for the sets X� � fx � X j x�key � y�keyg and

�Supported by NSF Presidential Young Investigator award CCR��������� Email� seidel�cs�uni�sb�de
ySupported by an AT�T graduate fellowship

�



X� � fx � X j y�key � x�keyg� respectively� The time necessary to access some item in such a
tree is then essentially determined by the depth of the node at which the item is stored� Thus it
is desirable that all nodes in the tree have small depth� This can easily be achieved if the set X
is known in advance and the search tree can be constructed o��line� One only needs to �balance	
the tree by enforcing that X� and X� di�er in size by at most one� This ensures that no node has
depth exceeding log�
n� ���
When the set of items changes with time and items can be inserted and deleted unpredictably�

ensuring small depth of all the nodes in the changing search tree is less straightforward� Nonethe�
less� a fair number of strategies have been developed for maintaining approximate balance in such
changing search trees� Examples are AVL�trees ��� 
a� b��trees ��� BB
���trees ���� red�black
trees ���� and many others� All these classes of trees guarantee that accesses and updates can be
performed in O
logn� worst case time� Some sort of balance information stored with the nodes is
used for the restructuring during updates� All these trees can be implemented so that the restruc�
turing can be done via small local changes known as �rotations	 
see Fig� ��� Moreover� with the
appropriate choice of parameters 
a� b��trees and BB
���trees guarantee that the average number
of rotations per update is constant� where the average is taken over a sequence of m updates� It can
even be shown that �most	 rotations occur �close	 to the leaves� roughly speaking� for BB
���trees
this means that the number of times that some subtree of size s is rotated is O
m�s� 
see �����
This fact is important for the parallel use of these search trees� and also for applications in compu�
tational geometry where the nodes of a primary tree have secondary search structures associated
with them that have to be completely recomputed upon rotation in the primary tree 
e�g� range
trees and segment trees� see �����
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Sometimes it is desirable that some items can be accessed more easily than others� For instance�
if the access frequencies for the di�erent items are known in advance� then these items should be
stored in a search tree so that items with high access frequency are close to the root� For the
static case an �optimal	 tree of this kind can be constructed o��line by a dynamic programming
technique� For the dynamic case strategies are known� such as biased ��� trees �� and D�trees
���� that allow accessing an item of �weight	 w in worst case time O
log
W�w��� which is basically
optimal� 
Here W is the sum of the weights of all the items in the tree�� Updates can be performed
in time O
log
W�minfw�� w� w�g�� where w� and w� are the weights of the items that precede
and succeed the inserted�deleted item 
whose weight is w��
All the strategies discussed so far involve reasonably complex restructuring algorithms that re�

quire some balance information to be stored with the tree nodes� However� Brown �� has pointed
out that some of the unweighted schemes can be implemented without storing any balance infor�



mation explicitly� This is best illustrated with schemes such as AVL�trees or red�black trees� which
require only one bit to be stored with every node� this bit can be implicitly encoded by the order
in which the two children pointers are stored� Since the identities of the children can be recovered
from their keys in constant time� this leads to only constant overhead to the search and update
times� which thus remain logarithmic�
There are methods that require absolutely no balance information to be maintained� A partiu�

carly attractive one was proposed by Sleator and Tarjan ���� Their �splay trees	 use an extremely
simple restructuring strategy and still achieve all the access and update time bounds mentioned
above both for the unweighted and for the weighted case 
where the weights do not even need to
be known to the algorithm�� However� the time bounds are not to be taken as worst case bounds
for individual operations� but as amortized bounds� i�e� bounds averaged over a 
su�ciently long�
sequence of operations� Since in many applications one performs long sequences of access and
update operations� such amortized bounds are often satisfactory�
In spite of their elegant simplicity and their frugality in the use of storage space� splay trees do

have some drawbacks� In particular� they require a substantial amount of restructuring not only
during updates� but also during accesses� This makes them unusable for structures such as range
trees and segment trees in which rotations are expensive� Moreover� this is undesirable in a caching
or paging environment where the writes involved in the restructuring will dirty memory locations
or pages that might otherwise stay clean�
Recently Galperin and Rivest ��� proposed a new scheme called �scapegoat trees�	 which also

needs basically no balance information at all and achieves logarithmic search time even in the worst
case� However logarithmic update time is achieved only in the amortized sense� Scapegoat trees
also do not seem to lend themselves to applications such as range trees or segment trees�
In this paper we present a strategy for balancing unweighted or weighted search trees that is

based on randomization� We achieve expected case bounds that are comparable to the deterministic
worst case or amortized bounds mentioned above� Here the expectation is taken over all possible
sequences of �coin �ips	 in the update algorithms� Thus our bounds do not rely on any assump�
tions about the input� Our strategy and algorithms are exceedingly simple and should be fast in
practice� For unweighted trees our strategy can be implemented without storage space for balance
information�
Randomized search trees are not the only randomized data structure for storing dynamic or�

dered sets� Bill Pugh ��� has proposed and popularized another randomized scheme called skip

lists� Although the two schemes are quite di�erent they have almost identical expected performace
characteristics� We o�er a brief comparison in the last section�
Section � of the paper describes treaps� the basic structure underlying randomized search trees�

In section � unweighted and weighted randomized search trees are de�ned and all our main results
about them are tabulated� Section � contains the analysis of various expected quantities in ran�
domized search trees� such as expected depth of a node or expected subtree size� These results
are then used in section �� where the various operations on randomized search trees are described
and their running times are analyzed� Section � discusses how randomized search trees can be
implemented using only very few truly random bits� In section � we show how one can implement
randomized search trees without maintaining explicit balance information� In section � we o�er a
short comparison of randomized search trees and skip lists�
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� Treaps

Let X be a set of n items each of which has associated with it a key and a priority� The keys are
drawn from some totally ordered universe� and so are the priorities� The two ordered universes need
not be the same� A treap for X is a rooted binary tree with node set X that is arranged in in�order
with respect to the keys and in heap�order with respect to the priorities�� �In�order	 means that
for any node x in the tree y�key � x�key for all y in the left subtree of x and x�key � y�key for
y in the right subtree of x� �Heap�order	 means that for any node x with parent z the relation
x�priority � z�priority holds� It is easy to see that for any set X such a treap exists� With the
assumption that all the priorities and all the keys of the items in X are distinct � a reasonable
assumption for the purposes of this paper � the treap for X is unique� the item with largest
priority becomes the root� and the allotment of the remaining items to the left and right subtree
is then determined by their keys� Put di�erently� the treap for an item set X is exactly the binary
search tree that results from successively inserting the items of X in order of decreasing priority
into an initially empty tree using the usual leaf insertion algorithm for binary search trees�
Let T be the treap storing set X� Given the key of some item x � X the item can easily be

located in T via the usual search tree algorithm� The time necessary to perform this access will be
proportional to the depth of x in the tree T � How about updates� The insertion of a new item z
into T can be achieved as follows� At �rst� using the key of z� attach z to T in the appropriate leaf
position� At this point the keys of all the nodes in the modi�ed tree are in in�order� However� the
heap�order condition might not be satis�ed� i�e� z�s parent might have a smaller priority than z� To
reestablish heap�order simply rotate z up as long as it has a parent with smaller priority 
or until
it becomes the root�� Deletion of an item x from T can be achieved by �inverting	 the insertion
operation� First locate x� then rotate it down until it becomes a leaf 
where the decision to rotate
left or right is dictated by the relative order of the priorites of the children of x�� and �nally clip
away the leaf 
see Figure ���
At times it is desirable to be able to split a set X of items into the set X� � fx � X j x�key � ag

and the set X� � fx � X j x�key � ag� where a is some given element of the key universe� Con�
versely� one might want to join two sets X� and X� into one� where it is assumed that the keys of
the items in X� are smaller than the keys from X�� With treap representations of the sets these
operations can be performed easily via the insertion and deletion operations� In order to split a
treap storing X according to some a� simply insert an item with key a and �in�nite	 priority� By
the heap�order property the newly inserted item will be at the root of the new treap� By the
in�order property the left subtree of the root will be a treap for X� and the right subtree will be a
treap for X�� In order to join the treaps of two sets X� and X� as above� simply create a dummy
root whose left subtree is a treap for X� and whose right subtree is a treap for X�� and perform a
delete operation on the dummy root�
Recursive pseudocode implementations� of these elementary treap update algorithms are shown

in Figure ��
Sometimes �handles	 or ��ngers	 are available that point to certain nodes in a treap� Such

handles permit accelerated operations on treaps� For instance� if a handle on a node x is available�
then deleting x reduces just to rotating it down into leaf position and clipping it� no search is

	Herbert Edelsbrunner pointed out to us that Jean Vuillemin introduced the same data structure in 	��� and
called it 
Cartesian tree� �V� The term 
treap� was �rst used for a di�erent data structure by Ed McCreight� who
later abandoned it in favor of the more mundane 
priority search tree� �Mc�

�In practice it will be preferable to approach these operations the other way round� Joins and splits of treaps
can be implemented as iterative top�down procedures� insertions and deletions can then be implemented as accesses
followed by splits or joins� These implementations are operationally equivalent to the ones given here�



function Empty�Treap�� � treap

tnull�priority�lchild�rchild � � ���tnull�tnull �
return� tnull �

procedure Treap�Insert� �k�p� � item� T � treap �
if T � tnull then T � newnode��

T�key�priority�lchild�rchild � � k�p�tnull�tnull �
else if k �T�key then Treap�Insert� �k�p� �T�lchild �

if T�lchild �priority �T�priority then Rotate�Right�T �
else if k �T�key then Treap�Insert� �k�p� �T�rchild �

if T�rchild �priority �T�priority then Rotate�Left�T �
else �� key k already in treap T ��

procedure Treap�Delete � k � key� T � treap �
tnull�key � k

Rec�Treap�Delete� k�T �
procedure Rec�Treap�Delete � k � key� T � treap �

if k � T�key then Rec�Treap�Delete� k�T�lchild �
else if k � T�key then Rec�Treap�Delete� k�T�rchild �
else Root�Delete�T �

procedure Root�Delete� T � treap �
if Is�Leaf�or�Null�T � then T� tnull

else if T�lchild�priority �T�rchild�priority then Rotate�Right�T �
Root�Delete�T�rchild �

else Rotate�Left�T �
Root�Delete�T�lchild �

procedure Treap�Split� T � treap� k � key� T�� T� � treap �
Treap�Insert� �k���� T �
T��T�� � T�lchild�rchild �

procedure Treap�Join� T��T�� T � treap �
T � Newnode��
T�lchild�rchild� � T��T� �
Root�Delete�T �

procedure Rotate�Left� T � treap �
T�T�rchild�T�rchild�lchild � � T�rchild�T�rchild�lchild�T �

procedure Rotate�Right� T � treap �
T�T�lchild�T�lchild�rchild � � T�lchild�T�lchild�rchild�T �

function Is�Leaf�or�Null� T � treap � � Boolean

return�T�lchild � T�rchild �

Figure �� Simple routines for the elementary treap operations of creation� insertion� deletion�
splitting� and joining� We assume call�by�reference semantics� A treap node has �elds key� priority�
lchild� rchild� The global variable tnull points to a sentinel node whose existence is assumed�
� � ��� � � �� denotes parallel assignment�



necessary� Similarly the insertion of an item x into a treap can be accelerated if a handle to the
successor 
or predecessor� s of x in the resulting treap is known� start the search for the correct
leaf position of x at node s instead of at the root of the treap� So�called ��nger searches	 are
also possible where one is to locate a node y in a treap but the search starts at some 
hopefully
�nearby	� node x that has a handle pointing to it� essentially one only needs to traverse the unique
path between x and y� Also� splits and joins of treaps can be performed faster if handles to the
minimum and maximum key items in the treaps are available� These operations are discussed in
detail in sections ��� and ����
Some applications such as so�called Jordan sorting ��� require the e�cient excision of a sub�

sequence� i�e� splitting a set of X of items into Y � fx � X j a � x�key � bg and Z � fx � X j
x�key � a or x�key � bg� Such an excision can of couse be achieved via splits and joins� However
treaps also permit a faster implementation of excisions� which is discussed in section ����

� Randomized Search Trees

Let X be a set of items� each of which is uniquely identi�ed by a key that is drawn from a totally
ordered set� We de�ne a randomized search tree for X to be a treap for X where the priorities of
the items are independent� identically distributed continuous random variables�

Theorem ��� A randomized search tree storing n items has the expected performance character�

istics listed in the table below�

Performance measure Bound on
expectation

access time O
logn�

insertion time O
logn�

�insertion time for element with handle on predecessor or successor O
��

deletion time O
logn�

�deletion time for element with handle O
��

number of rotations per update �

ytime for �nger search over distance d O
log d�

ytime for fast �nger search over distance d O
logminfd� n� dg�

time for joining two trees of size m and n O
logmaxfm�ng�

time for splitting a tree into trees of size m and n O
logmaxfm�ng�

ztime for fast joining or fast splitting O
logminfm�ng�

ytime for excising a tree of size d O
logminfd� n� dg�

update time if cost of rotating a subtree of size s is O
s� O
logn�

update time if cost of rotating a subtree of size s is O
s logk s�� k � � O
logk�� n�

update time if cost of rotating a subtree of size s is O
sa� with a � � O
na���

update time if rotation cost is f
s�� with f
s� non�negative O
�
f�n�
n �

P
��i�n

f�i�
i�

�
�requires parent pointers
yrequires parent pointers and some additional information	 see section �
�
zrequires some parent pointers	 see section �
� and �
�

Now let X be a set of items identi�able by keys drawn from a totally ordered universe� More�
over� assume that every item x � X has associated with it an integer weight w
x� � �� We de�ne
the weighted randomized search tree for X as a treap for X where the priorities are independent



continuous random variables de�ned as follows� Let F be a �xed continuous probability distribu�
tion� The priority of element x is the maximum of w
x� independent random variables� each with
distribution F �

Theorem ��� Let T be a weighted randomized search tree for a set X of weighted items� The

following table lists the expected performance characteristics of T � Here W denotes the sum of the

weights of the items in X� for an item x� the predecessor and the successor �by key rank� in X are

denoted by x� and x�� respectively� Tmin and Tmax denote the items of minimal and maximal

key rank in X�

Performance measure Bound on
expectation

time to acces item x O
� � log W
w�x��

time to insert item x O
�
� � log W�w�x�

minfw�x���w�x��w�x
�g

�

time to delete item x O
�
� � log W

minfw�x���w�x��w�x
�g

�

�insertion time for item x with handle on predecessor O
�
� � log
� � w�x�

w�x�� �
w�x�
w�x
� �

w�x��
w�x
� �

�
�time to delete item x with handle O

�
� � log
� � w�x�

w�x�� �
w�x�
w�x
� �

�
number of rotations per update on item x O

�
� � log
� � w�x�

w�x�� �
w�x�
w�x
� �

�
ytime for �nger search between x and y� where V is
total weight of items between and including x and y

O
�
log V

minfw�x��w�y�g

�

time to join trees T� and T� of weight W� and W�

time to split T into trees T�� T� of weight W�� W�
O
�
� � log W	

w�T	max� � log
W�

w�T�min�

�

ztime for fast joining or fast splitting O
�
� � logminf W	

w�T	max� �
W�

w�T�min�g
�

�time for increasing the weight of item x by  O
�
� � log w�x���

w�x�

�
�time for decreasing the weight of itme x by  O

�
� � log w�x�

w�x���

�
�requires parent pointers
yrequires parent pointers and some additional information	 see section �
�
zrequires some parent pointers	 see section �
� and �
�

Several remarks are in order� First of all� note that no assumptions are made about the key
distribution in X� All expectations are with respect to randomness that is �controlled	 by the
update algorithms� For the time being we assume that the priorities are kept hidden from the
�user�	 This is necessary to ensure that a randomized search tree is transformed into a randomized
search tree by any update� If the user knew the actual priorities it would a simple matter to create
a very �non�random	 and unbalanced tree by a polynomial number of updates�
The requirement that the random variables used as priorities be continuous is not really neces�

sary� We make this requirement only to ensure that with probability � all priorities are distinct�
Our results continue to hold for i�i�d� random variables for which the probability that too many
of them are equal is su�ciently small� This means that in practice using integer random num�
bers drawn uniformly from a su�ciently large range 
such as � to ���� will be adequate for most
applications�
Comparing with other balanced tree schemes some of which require only one bit of balance

information per node� it might seem disappointing that randomized search trees require to store
such �extensive	 balance information at each node� However� it is possible to avoid this� In



section � we discuss various strategies of maintaining randomized search trees that obviate the
explicit storage of the random priorities�
Next note that weighted randomized search trees can be made to adapt naturally to observed

access frequencies� Consider the following strategy� whenever an item x is accessed a new random
number r is generated 
according to distribution F �� if r is bigger than the current priority of x�
then make r the new priority of x� and� if necessary� rotate x up in the tree to reestablish the heap�
property� After x has been accessed k times its priority will be the maximum of k i�i�d� random
variables� Thus the expected depth of x in the tree will be O
log
��p��� where p is the access
frequency of x� i�e� p � k�A� with A being the total number of accesses to the tree�
How would one insert an item x into a weighted randomized search tree with �xed weight k�

This can most easily be done if the distribution function F is the identity� i�e� we start with random
variables uniformly distributed in the interval �� ��� The distribution function Gk for the maximum
of k such random variables has the form Gk
z� � zk� From this it follows that x should be inserted
into the tree with priority r��k� where r is a random number chosen uniformly from the interval
�� ��� Since the only operations involving priorities are comparisons and the logarithm function
is monotonic� one can also store 
log r��k instead� Adapting the tree to changing weights is also
possible� see section ���� �
Finally there is the question of how much �randomness	 is required for our method� How many

random bits does one need to implement randomized search trees� There is a rather simple minded
strategy that shows that an expected constant number of random bits per update can su�ce in the
unweighted case� This can be achieved as follows� Let the priorities be real random numbers drawn
uniformly from the interval �� ��� Such numbers can be generated piece�meal by adding more and
more random bits as digits to their binary representations� The idea is� of course� to generate
only as much of the binary representation as needed� The only priority operation in the update
algorithms are comparisons between priorities� In many cases the outcome of such a comparison
will already be determined by the existing partial binary representations� When this is not the case�
i�e� one representation happens to be a pre�x of the other� one simply re�nes the representations by
appending random bits in the obvious way� It is easy to see that the expected number of additional
random bits needed to resolve the comparison is not greater than �� Since in our update algorithms
priority comparisons happen only in connection with rotations� and since the expected number of
rotations per update is less than �� it follows that the expected number of random bits needed is
less than �� for insertions and less than � for deletions�
Surprisingly� one can do much better than that� Only O
logn� truly random bits su�ce overall�

This can be achieved by letting a pseudo random number generator supply the priorities� where
this generator needs O
log n� truly random seed bits� One possible such generator works as follows�
Let U � n� be a prime number� Randomly choose � integers in the range between � and U � �
and make them the coe�cients of a degree�� polynomial q 
this requires the O
log n� random bits��
As i�th priority produce q
i� mod U � Other generators are possible� The essential property they
need to have is that they produce �random	 numbers that are ��wise independent� 
Actually a
somewhat weaker property su�ces� see section ���

Theorem ��� All the results of Theorem ��� continue to hold� up to constant factors� if the pri�
orities are 	�wise independent random variables from a su
ciently large range� as for instance

produced by the pseudo random number generator outlined above�

In order to achieve logarithmic expected access� insertion� and deletion time� ��wise indepen�

dence su
ces�



� Analysis of Randomized Search Trees

In this section we analyze a number of interesting quanitities in randomized search trees and derive
their expected values� These quantities are�

D
x�� the depth of node x in a tree� in other words the number of nodes on the path from x to the
root�

S
x�� the size of the subtree rooted at node x� i�e� the number of nodes contained in that subtree�

P 
x� y�� the length of the unique path between nodes x and y in the tree� i�e� the number of nodes
on that path�

SL
x� and SR
x�� the length of the right Spine of the Left subtree of x and the length of the left
Spine of the Right subtree of x� by left spine of a tree we mean the root together with the
left spine of the root�s left subtree� the right spine is de�ned analogously�

Throughout this section we will deal with the treap T for a set X � fxi � 
ki� pi�j� � i � ng
of n items� numbered by increasing key rank� i�e� ki � ki�� for � � i � n� The priorities pi will be
random variables� Since for a �xed set of keys ki the shape of the treap T for X depends on the
priorities� the quantities of our interest will be random variables also� for which it makes sense to
analyze expectations� distributions� etc�
Our analysis is greatly simpli�ed by the fact that each of our quantities can be represented

readily by two types of indicator random variables�
Ai�j is � if xi is an ancestor of xj in T and � otherwise
Ci���m is � if xi is a common ancestor of x� and xm in T and � otherwise

We consider each node an ancestor of itself� In particular we have�

Theorem ��� Let � � ��m � n� and let � � m�

�i� D
x�� �
P

��i�nAi��

�ii� S
x�� �
P

��j�nA��j

�iii� P 
x�� xm� � � �
P

��i�m
Ai�� � Ci���m� �
P

��i�n
Ai�m �Ci���m�

�iv� SL
x�� �
P

��i��
Ai���� � Ci�������

SR
x�� �
P

��i�n
Ai���� � Ci�������

Proof� 
i� and 
ii� are clear� since the depth of a node is nothing but the number of its ancestors�
and the size of its subtree is nothing but the number of nodes for which it is ancestor�
For 
iii� note that the path from x� to xm is divided by their lowest common ancestor v into

two parts� The part from x� to v� which consists exactly of the ancestors of x� minus the common
ancestors of x� and xm� is accounted for by the �rst sum� 
This would be clear if the index range of
that sum were between � and n� The smaller index range is justifed by the fact that for � � m � i
the node xi is an ancestor of x� i� it is a common ancestor of x� and xm� i�e� Ai�� � Ci���m in that
range�� Similarly the second sum accounts for the path between xm and v� Since v is not counted
in either of those two parts� the �� correction factor is needed�
For 
iv� it su�ces to consider SL
x��� by symmetry� If x� has a left subtree� then the lowest

node on its right spine must be x���� It is clear that in that case the spine consists exactly of the
ancestors of x��� minus the ancestors of x�� but the latter are the common ancestor of x��� and
x�� Also� no xi with i � � can lie on that spine�



If x� has no left subtree� then either � � �� in which case the formula correctly evaluates to ��
or x��� is an ancestor of x�� in which case every ancestor of x��� is a common ancestor of x��� and
x�� and the formula also correctly evaluates to ��

If we let ai�j � ExAi�j� and ci���m � ExCi���m�� then by the linearity of expectations we imme�
diately get the following�

Corollary ��� Let � � ��m � n� and let � � m�

�i� ExD
x��� �
P

��i�n ai��

�ii� ExS
x��� �
P

��j�n a��j

�iii� ExP 
x�� xm�� � � �
P

��i�m
ai�� � ci���m� �
P

��i�n
ai�m � ci���m�

�iv� ExSL
x��� �
P

��i��
ai���� � ci�������

ExSR
x��� �
P

��i�n
ai���� � ci�������

In essence our whole analysis has now been reduced to determining the expectations ai�j and
ci���m� Note that since since we are dealing with indicator ��� random variables� we have

ai�j � ExAi�j � � PrAi�j � �� � Prxi is ancestor of xj�� and

ci���m � ExCi���m� � PrCi���m � �� � Prxi is common ancestor of x� and xm� �

Determining the probabilities and hence the expectations is made possible by the following ancestor
lemma� which completely characterizes the ancestor relation in treaps�

Lemma ��� Let T be the treap for X� and let � � i� j � n�

Then� assuming that all priorities are distinct� xi is an ancestor of xj in T i� among all xh� with
h between and including i and j� the item xi has the largest priority�

Proof� Let xm be the item with the largest priority in T � and let X � � fx� j� � � � mg and
X �� � fx�jm � � � ng� By the de�nition of a treap� xm will be the root of T and its left and right
subtrees will be treaps for X � and X �� respectively�
Clearly our ancestor characterization is correct for all pairs of nodes involving the root xm� It

is also correct for all pairs x� � X � and x� � X ��� they lie in di�erent subtrees� and hence are not
ancestor�related� But indeed the largest priority in the range between � and � is realized by xm
and not by x� or x��
Finally� by induction 
or recursion� if you will� the characterization is correct for all pairs of

nodes in the treap for X � and for all pairs of nodes in the treap for X ���

As an immediate consequence of this ancestor lemma we obtain an analogous common ancestor

lemma�

Lemma ��� Let T be the treap for X� and let � � ��m� i � n with � � m� Let p� denote the
priority of item x��

Then� assuming that all priorities are distinct� xi is a common ancestor of x� and xm in T i�

pi � maxfp� ji � � � mg if � � i � �
pi � maxfp� j� � � � mg if � � i � m
pi � maxfp� j� � � � ig if m � i � n�

which can be summarized as

pi � max
n
p� j minfi� ��mg � � � maxfi� ��mg

o
�



Now we have all tools ready to analyze our quantities of interest� We will deal with the case of
unweighted and weighted randomized search trees separately�

��� The unweighted case

The last two lemmas make it easy to derive the ancestor probabilities ai�j and ci���m�

Corollary ��� In an �unweighted� randomized search tree xi is an ancestor of xj with probability

��
ji � jj� ��� in other word we have

ai�j � ��
ji � jj� �� �

Proof� According to the ancestor lemma we need the priority of xi to be the largest among the
priorities of the ji� jj�� items between xi and xj � Since in an unweighted randomized search tree
these priorities are independent identically distributed continuous random variables this happens
with probability ��
ji � jj� ���

Corollary ��� Let � � � � m � n�

In the case of unweighted randomized search trees the expectation for common ancestorship is given

by

ci���m �

���
��
��
m � i� �� if � � i � �
��
m � �� �� if � � i � m
��
i � �� �� if m � i � n�

which can be summarized as

ci���m � ��
maxfi� ��mg �minfi� ��mg � �� �

Proof� Analogous to the previous proof�

Now we can put everything together to obtain exact expressions and closed form upper bounds
for the expectations of the quantities of interest� The expressions involve harmonic numbers� de�ned
as Hn �

P
��i�n ��i� Note the standard bounds lnn � Hn � � � lnn for n � ��

Theorem ��� Let � � ��m � n� and let � � m� In an unweighted randomized search tree of n
nodes the following expectations hold�

�i� ExD
x��� � H� �Hn���� � �

� � � � � lnn

�ii� ExS
x��� � H� �Hn���� � �

� � � � � lnn

�iii� ExP 
x�� xm�� � �Hm���� � 
Hm �H��� 
Hn���� �Hn���m�� �

� � � � � ln
m� �� ��

�iv� ExSL
x��� � �� ���

ExSR
x��� � �� ��
n� �� ��



Proof� Just use Corollary ��� and plug in the values from Corollaries ��� and ����

It is striking that in an unweighted randomized search tree the expected number of ancestors
of a node x exactly equals the expected number of its descendants� However� it is reminiscent�
although apparently unrelated� to the following easily provable fact� in any rooted binary tree T
the average node depth equals the average size of a subtree�
We want to point out a major di�erence between the random variables D
x�� and S
x��� Al�

though both have the same expectation� they have very di�erent distributions� D
x�� is very tightly
concentrated around its expectation� whereas S
x�� is not� For instance� one can easily see that
in an n�node tree PrD
x�� � n� � ��n!� whereas PrS
x�� � n� � ��n� Using the ancestor lemma
it is not too hard to derive the exact distribution of S
x��� one gets PrS
x�� � n� � ��n and
PrS
x�� � s� � O
��s�� for � � s � n� We leave the details as an exercise to the reader� Here we
brie�y prove a concentration result for D
x���

Lemma ��� In an unweighed randomized search tree with n � � nodes we have for index � � � � n
and any c � �

PrD
x�� � � � �c lnn� � �
n�e�
�c ln�c�e� �

Proof� Recall that D
x�� �
P

��i�nAi��� where Ai�� indicates whether xi is an ancestor of x��
Let L �

P
��i��Ai�� count the �left ancestors	 of x� and let R �

P
��i�nAi�� count the �right

ancestors�	 Since D
x�� � � � L � R� in order for D
x�� to exceed � � �c lnn at least one of L
and R has to exceed c lnn� It now su�ces to prove that the probability of either of those events is
bounded by 
n�e��c ln�c�e�� We will just consider the case of R� The other case is symmetric�
The crucial observation is that for i � � the ��� random variables Ai�� are independent and

one can therefore apply so�called Cherno� bounds ��� �� which� in one form� state that if random
variable Z is the sum of independent ��� variables� then PrZ � c � ExZ�� � e�c ln�c�e�Ex	Z
�
In order to make the bound independent of � we consider random variable R� �

P
��i���nAi���

where we use additional independent ��� variables Ai�� for i � n� with ExAi��� � ��
i � � � ���
Obviously for any k � � we have PrR � k� � PrR� � k�� Using ExR�� � Hn � �� and using
lnn� � � Hn � � � lnn and applying the Cherno� bound we get the desired

PrR � c lnn� � PrR� � c lnn� � PrR� � c
Hn � ���

� e�c ln�c�e��Hn��� � e�c ln�c�e��ln n��� � 
n�e��c ln�c�e� �

Note that this lemma implies that the probability of least one of the n nodes in an unweighted
randomized search tree having depth greater than �c lnn is bounded by n
n�e��c ln�c�e�� In other
words� the probability that the height of a randomized search tree is more than logarithmic is
exceedingly small� and hence the tree�s expected height is logarithmic also� In contrast to the
random variables studied in this section the random variable hn� the height of an n�node unweighted
randomized search tree� is quite di�cult to analyze exactly� Devroye ���� though� has shown that
hn� lnn� 	 almost surely� as n��� where 	 � ���������� is the unique solution of 	 ln
�e�	� � �
with 	 � ��

��� The weighted case

Recall that in the weighted case every item xi has associated with it a positive integer weight wi�
and the weighted randomized search tree for a set of items uses as priority for xi the maximum of
wi independent continuous random variables� each with the same distribution�



For i � j let wi�j denote
P

i�h�j wh� and for i � j de�ne wi�j � wj�i� Let W � w��n denote the
total weight�

Corollary ��	 In an weighted randomized search tree xi is an ancestor of xj with probability

wi�wi�j� in other word we have
ai�j � wi�wi�j �

Proof� According to the ancestor lemma we need the priority of xi to be the largest among the
priorities of the items between xi and xj � This means one of the wi random variables �drawn	 for
xi has to be the largest of the wi�j random variables �drawn	 for the items between xi and xj� But
since these random variables are identically distributed this happens with the indicated probability�

Corollary ���
 Let � � � � m � n�

In the case of unweighted randomized search trees the expectation for common ancestorship is given

by

ci���m �

���
��

wi�wi�m if � � i � �
wi�w��m if � � i � m
wi�w��i if m � i � n

Proof� Analogous to the previous proof� but based on the common ancestor lemma�

Now we just need to plug our values into Corollary ��� to get the following�

Theorem ���� Let � � ��m � n� and let � � m� In an weighted randomized search tree with n
nodes of total weight W the following expectations hold�

�i� ExD
x��� �
P

��i�nwi�wi��

� � � � � ln
W�w��

�ii� ExS
x��� �
P

��i�nw��wi��

�iii� ExP 
x�� xm�� � � �
P

��i��
wi�wi�� �wi�wi�m�

�
P

��i�m
wi�w��i � wi�wi�m � �wi�w��m�

�
P

m�i�n
wi�wm�i � wi�w��i�

� � � � � ln
w��m�w�� � � � ln
w��m�wm�

�iv� ExSL
x��� �
P

��i��

�
wi�wi���� � wi�wi��

�
� � � ln
� � w��w����

ExSR
x��� �
P

��i�n

�
wi�w����i � wi�w��i

�
� � � ln
� � w��w����

Proof� The exact expressions follow from Corollaries ��� and �����
The quoted upper bounds are consequences of the following two inequalities that can easily be

veri�ed considering the area underneath the curve f
x� � ��x�

��A � lnA� ln
A� �� for � � � � A 
��

��A� ��B � 
lnA� ln
A� ���� 
lnB � ln
B � ��� for � � � � A � B 
��



For instance� to prove 
i� we can apply inequality 
�� and use the principle of telescoping sums to
derive

X
��i��

wi�wi�� �
X

��i��


lnwi�� � lnwi����� � lnw��� � lnw� � ln
w����w�� � ln
W�w��

and analogously
P

��i�nwi�w� � ln
w��n�w�� � ln
W�w��� which� adding in the � stemming from
i � �� yields the stated bound�
Similarly we can use inequality 
�� to derive 
iv�� we just show the case of ExSL
x����

P
��i��

�
wi�wi���� � wi�wi��

�
� � �

P
��i����

�

lnwi���� � lnwi�������� 
lnwi�� � lnwi�����

�

� � � 
lnw����� � lnw��������� 
lnw��� � lnw������

� � � lnw����� � lnw�������

� � � ln
� � w��w����

For proving 
iii� one uses inequality 
�� and telescoping to bound the �rst sum by ln
w��m�w��
and the third sum by ln
w��m�wm�� The middle sum can be broken into three pieces� The third
piece evaluates to ��� and using inequality 
�� the �rst piece is bounded by � � ln
w��m�w�� and
the second piece by � � ln
w��m�wm�� Together this yields the indicated bound�

With su�ciently uneven weight assignments the bounds listed in this theorem can become
arbitrarily bad� in particular they can exceed n� the number of nodes in the tree� which is certainly
an upper bound for every one of the discussed quantities� One can obtain somewhat stronger
bounds by optimizing over all possible weight assignments while leaving the total weight W and
the weight of x� 
and possibly xm� �xed� Although this is possible in principle it seems technically
quite challenging in general� We just illustrate the case D
x���
Which choice of wi maximizes ExD
x��� �

P
��i�nwi�w��i while leaving w� and W � w��n

�xed� Rewrite the sum as

� �
X

��i�n

w��i � w��i��

w��i
� � �

X
��i�n


�� w��i���w��i� � n�
X

��i�n

w��i���w��i �

A little bit of calculus shows that the last sum is minimized when all its summands are the same�
which� using our boundary conditions� implies that each of them is 
w��W �

���n���� Thus it follows
that S � ExD
x��� is bounded by

n� 
n� ��
w��W �
���n��� � � � 
n� ��

�
�� 
w��W �

���n���
�
�

which� however� is not a particularly illuminating expression� except that it is easily seen never to
exceed n�

� Analysis of Operations on Randomized Search Trees

In this section we discuss the various operations on unweighted and weighted randomized search
trees and derive their expected e�ciency� thus proving all bounds claimed in Theorem ��� and
Theorem ����



��� Searches

A succesful search for item x in a treap T commences at the root of T and� using the key of x
traces out the path from the root to x� Clearly the time taken by such a search is proportional to
the length of the path or� in other words� the number of ancestors of x� Thus the expected time
for a search for x is propotional to the expected number of its ancestors� which is O
logn� in the
unweighted and O
� � log
W�w
x��� in the weighted case by Theorems ��� and �����
An unsuccessful search for a key that falls between the keys of successive items x� and x� takes

expected time O
log n� in the unweighted and O
log
W�minfw
x��� w
x��g�� in the weighted case�
since such a search must terminate either at x� or x� 
ignoring the two cases where x� or x� does
not exist��

��� Insertions and Deletions

An item is inserted into a treap by �rst attaching it at the proper leaf position which is located
by an 
unsuccessful� search using the item�s key� then the item is rotated up the treap� as long as
it has a parent with smaller priority� Clearly the number of those rotations can be at most the
length of the search path that was just traversed� Thus the insertion time is proportional to the
time needed for an unsuccessful search� which in expectation is O
log n� in the unweighted and
O
log
W�minfw
x��� w
x��g�� in the weighted case� where x� and x� are the predecessor and
successor of x in the resulting tree�
The deletion operation requires essentially the same time since it basically reverses an insertion

operation� �rst the desired item is located in the tree using its key� then it is rotated down until it
is in leaf position� at which point it is clipped away� during those downward rotations the decision
whether to rotate right or left is dictated by the priorities of the two current children� as the one
with larger priority must be rotated up�
What is still interesting is the expected number of rotations that occur during an update� Since

in terms of rotations a deletion is an exact reversal of an insertion it su�ces to analyze the number
of rotations that occur during a deletion�
So let x be an item in a treap T to be deleted from T � Although we cannot tell just from the tree

structure of T which downwards rotations will be performed� we can tell how many there will be�
their number is the sum of the lengths of the right spine of the left subtree of x and the left spine of
the right subtree of x� The correctness of this fact can be seen by observing that a left�rotation of
x has the e�ect of shortening the left spine of its right subtree by one� a right�rotation of x shortens
the right spine of the left subtree�
Thus we know from Theorems ��� and ���� that in expectation the number of rotations per up�

date is less than � in the unweighted case and less than ��ln
��w
x��w
x����ln
��w
x��w
x��� �

O
�
� � log
� � w
x��w
x�� � w
x��w
x���

�
in the weighted case�

��� Insertion and Deletions using Handles

Having a handle� i�e� a pointer� to a node to be deleted from a treap of course obviates the need
to search for that node� Only the downward rotations to leaf position� and the clipping away
needs to be performed� which results in expected time bound of O
�� in the unweighted and

O
�
� � log
� � w
x��w
x�� � w
x��w
x���

�
in the weighted case�

Similarly� if we know the leaf position at which a new node x is to be inserted 
which is
always either the resulting predecessor x� or successor x� of x�� then� after attaching the new
leaf� only the upward rotations need to be performed� which also results in the expected time



bounds just stated� If just a pointer to x� is available� and x cannot be attached as a leaf to
x� since it has a nonempty right subtree� then the additional cost of locating x� is incurred�
Note that in this case x� is the bottom element of the left spine of that right subtree of x� and
locating it amounts to traversing the spine� The expeced cost for this is therefore O
�� in the

unweighted and O
�
� � log
� �w
x���w
x���

�
� which results in a total expected cost of O
�� and

O
�
� � log
� � w
x��w
x�� � w
x��w
x�� � w
x���w
x���

�
in the respective cases�

Note that in contrast to ordinary insertions� where the sequence of ancestors can be computed
during the search for the leaf position� insertions using handles require that ancestor information
is stored explicitly in the tree� i�e� parent pointers must be available� so that the upward rotations
can be performed� Deletions based on handles also require parent pointers� since when the node x
to be deleted is rotated down one needs to know its parent y so that the appropriate child pointer
of y can be reset�

��� Finger searches

In a �nger search we assume that we have a ��nger	 or �handle	 or �pointer	 on item x in a tree
and using this information we quickly want to locate the item y with given key k� Without loss of
generality we assume that x � x� and y � xm with � � m� The most natural way to perform such
a search is to follow the unique path between x� and xm in the tree� The expected length of this
path is given in Theorems ��� and ���� for weighted and unweighted randomized search trees� which
immediately would yield the bounds of Theorems ��� and ���� However� things are not quite that
easy since it is not clear that one can traverse the path between x� and xm in time proportional
to its length� Such a traversal would� in general� entail going up the tree� starting at x�� until the
lowest common ancestor u of x� and xm is reached� and then going down to xm� But how can one
tell that u has been reached 
For all we know� x� may be u already���
If one reaches during the ascent towards the root a node z whose key is larger than the �search

key	 k� then one has gone too far 
similarly� if one reaches the root of the entire tree via its right
child�� The desired u was the last node on the traversed path that was reached via its left child�
or� if no such node exists� the start node x� This excess path between u and z may be much longer
than the path between x and y and traversing this path may dominate the running time of the
�nger search�
There are several ways of dealing with this excess path problem� One is to try to argue that in

expectation such an excess path has only constant length� However� this turns out to be true for
the unweighted case only� Other methods store extra information in the tree that either allows to
shortcut such excess paths or obviates the need to traverse them�

Extra pointers

Let us �rst discuss a method of adding extra pointers� De�ne the left parent of v is the �rst node
on the path from v to the root whose key is smaller than the key of v� and the right parent of
v is the �rst node on the path with larger key� Put di�erently� a node is the right parent of all
nodes on the right spine of its left subtree and the left parent of all nodes on the left spine of its
right subtree� We store with every node v in the tree besides the two children pointers also two
pointers set to the left parent and right parent of v� respectively� or to nil if such an parent does
not exist� Such parent pointers have been used before in ��� Please note that during a rotation or
when adding or clipping a leaf these parent pointers can be maintained at constant cost� Thus no
signi�cant increase in update times is incurred�



A �nger search now proceeds as follows� starting at x chase right parent pointers until either a
nil pointer is reached or the next node has key larger than k 
using a sentinel with key �� obviates
this case distinction�� At this point one has reached the lowest common ancestor u of x and y� and
using the key k one can �nd the path from u to y following children pointers in the usual fashion�
Note that the number of links traversed is at most one more than the length of the path between
x and y� and that it can be much smaller because of the shortcuts provided by the right parent
pointers�

Extra keys

With every node u in the tree one stores min
u� and max
u�� the smallest and largest key of any
item in the subtree rooted at u� With this information one can tell in constant time whether an
item can possibly be in the subtree rooted at u� its key has to lie in the range between min
u� and
max
u�� The common ancestor of x� and xm is then the �rst node z on the path from x� to the
root with min
z� � k � max
z��
Maintaining this min
��max
� information clearly only takes constant time during rotations�

However� when a leaf is added during an insertion or is clipped away at the end of a deletion the
min
��max
� information needs to be updated on an initial portion of the path toward the root� To
be speci�c� consider the change when leaf x is removed� The nodes for which the min
� information
changes are exactly the nodes on the left spine of the right subtree of the predecessor of x� The
max
� information needs to be adjusted for all nodes on the right spine of the left subtree of the
successor of x� The expected lengths of those spines are given in Theorems ��� and ����� They
need to be added to the expected update times� which asymptotically is irrelevant in the case of
unweighted randomized search trees� but can be the dominant factor in the case of weighted trees�
Finally� to make this argument applicable to the items with smallest and largest keys in the

tree� one needs to maintain treaps with two sentinel nodes that are never removed� one with key
�� and one with key �� 
both with random priorities��

Relying on short excess paths

Finally let us consider the method� suggested to us by Mehlhorn and Raman ���� that traverses
the excess path and relies on the fact that in expectation this path is short� at least for unweighted
trees� 
In the weighted case one can concoct examples where this expectation can become arbitrarily
large�� The advantage of this method is that only the one usual parent pointer needs to be stored
per node� and not two parent pointers� However� as we shall see soon� one also need to store one
additional bit per node�
As before let u be the lowest common ancestor between x � x� and y � xm and let the right

parent of u be z� the endnode of the excess path� Call the nodes on the path between� but not
including u and z the excess nodes� Note that u � x� for some � with � � � � m 
namely the one
with largest priority in that range�� and z � xj for some j with m � j � n� and any excess node
must be some xi with � � i � �� We estimate the expected number of excess nodes by introducing
for each i with � � i � � a ��� random variable Xi indicating whether or not xi is an excess node
and summing the expectations� Now ExXi� is the probability that xi is an excess node� which we
represent as the sum of the probabilities of the disjoint events Eij that xi is an excess node and z
is xj� Now� for Eij to happen xj must be the right parent of xi and of u� or in other words� xi and
u must both be on the right spine of the left subtree of xj � This happens if in the range between
i and j� item xj has the largest priority and xi has the second largest� and if u has the largest
priority in the range from � to j � �� By the de�nition of u this last condition can be reformulated



that the largest priority in the range � to j � � occur in the range � to m� By the assumption that
all priorities are independently� identically distributed� it follows that

PrEij � �
�


j � i� ��
�

�


j � i�
�
m� �� �


j � ��

and the expected number of excess nodes is

X
��i��

ExXi� �
X

��i��

X
m�j�n

PrEij � �
X

��i��

X
m�j�n

�


j � i� ��
�

�


j � i�
�
m� �� �


j � ��
�

Summing �rst over i and applying the bound
P

a�k�b ��k
k � �� � ��a one can see that the double
sum is upper bounded by X

m�j�n

m� �� �


j � ��
j � �� ��
�

which in turn by applying the same bound can be seen to be upper bounded by �� Thus we have
proved that in the case of unweighted trees the expected number of excess nodes is always less than
one�
The above analysis relies on the existence of z� i�e� the lowest common ancestor u must have

a right parent� This need not be the case� u can lie on the right spine of the entire tree� In this
case a naive �nger search would continue going up past u along the spine until the root is reached�
This could be very wasteful� Consider for instance a �nger search from xn�� to xn which with
probability ��� would this way traverse the entire spine� which has O
log n� expected length� To
prevent this we require that every node has stored with it information indicating whether it is on
the right or left spine of the entire tree� With this information a �nger search can stop going up
as soon as the right spine of the entire tree is reached� and thus in e�ect only the path between x
and y is traversed�

��� Fast �nger searches

Now assume we have a ��nger	 or �pointer	 on item x and also one on item z and we want to
quickly locate item y with key k� A natural thing to do is to start �nger searches both at x and at
z that proceed in lockstep in parallel until the �rst search reaches y� If X and Z are the lengths of
the paths from x and z to y� respectively� then by the previous subsection the time necessary for
such a parallel �nger search would be proportional to minfX�Zg� and the expected time would be
proportional to ExminfX�Zg� � minfExX��ExZ�g�
This can be exploited as follows� Always maintain a pointer to Tmin and Tmax� the smallest

and largest key items in the tree� Note that this can be done with constant overhead per update�
If one now wants to perform a �nger search starting at some node x � x� for some node y � xm
and� say� y�s key is larger than the one of x� then start in parallel a �nger search from Tmax � xn�
The expected time for this search is now proportional to the minimum of the expected path lengths
from x and Tmax to y� which by Theorem ��� is O
minflog
m� �� ��� log
n�m� ��g� If we let
d � m� ��� be the key distance between x and y� then this is at most O
minflog d� log
n�d�g� �
O
logminfd� n� dg�� as claimed in Theorem ���� since n�m� � � n� d� ��

��� Joins and splits

Two treaps T� and T� with all keys in T� smaller than all keys in T� can be joined by creating
a new tree T whose root r has as left child T� and right child T�� and then deleting r fromt T �



Creating T takes constant time� Deleting r� as we observed before� takes the time proportional
to the length of the right spine of T� plus the length of the left spine of T�� i�e� the depth of the
largest key item of T� plus the depth of the smallest key item of T�� By Theorem ��� this is in
expectation O
logm � logn� � O
logmaxfm�ng� if T� and T� are unweighted randomized search
trees with m and n items� respectively� In the weighted case Theorem ���� implies an expected
bound of O
� � log W	

w�T	max� � log
W�

w�T�min� �� if we let Wi denote the total weight of Ti�
Splitting a treap T into a treap T� with all keys smaller than k and treap T� with all keys larger

than k is achieved by essentially reversing the join operation� An item x with key k and in�nite
priority is inserted into T � because of its large priority the new item will end up as the root� the left
and right subtrees of the root will be T� and T�� respectively� This insertion works by �rst doing a
search starting at the root to locate the correct leaf position for key k� adding item x as a leaf� and
then rotating x up until it becomes the root� Note that the length of the search path is the same
as the number of rotations performed� which in turn is the sum of the lengths of the right spine
of T� and the left spine of T�� Thus the time necessary to perform this split is proportional to the
sum of the lengths of those two spines� and therefore the same expected time bounds hold as for
joining T� and T��

��� Fast splits

How can one speed up the split operation described and analyzed above� One needs to shorten
the search time for the correct leaf position and one needs to reduce the number of subsequent
rotations� Let us assume the size 
or total weight� of the eventual T� is small� Then it makes sense
to determine the correct leaf position for x in T by a �nger search starting at Tmin� the item in T
with minimum key� Let z be the lowest common ancestor of Tmin and the leaf added for x� Note
that z is part of the path between Tmin and x and that z must be on the left spine of T � Now�
when rotating x up the tree one can stop as soon as x becomes part of the left spine of the current
tree� or� in other words� as soon as z becomes the left child of x� The current left subtree of x will
then contain exactly all items of T with key smaller than the splitting key k and forms the desired
T�� The tree T� is obtained by simply replacing the subtree rooted at x by the right subtree of x�
The time to do all this is proportional to the length L of the path in the original T between

Tmin and the leaf added for x� as argued before� the �nger search takes this much time� and the
number of subsequent rotations is exactly the number of edges on this path between x and z� In
the unweighted case the expected value of L is by Theorem ��� O
logm� where m is the number of
nodes that end up in T�� This is not particularly good if T� is almost all of T � In this case it would
be much better to proceed symmetrically� start the �nger search at Tmax� the item in T with
largest priority� and identify the path form Tmax to x� The expectation of the length R of that
path� and hence of the splitting time would then be O
log n�� where n is the size of T�� Of course
in general one does not know in advance whether T� or T� is smaller� But one can circumvent this
problem by starting both searches in lockstep in parallel� terminating both as soon as one succeeds�
This would take O
minfL�Rg� time� And since ExminfL�Rg� � minfExL��ExR�g� the total
expected time for the fast split would be O
minflogm� log ng� � O
logminfm�ng��
For the weighted case it now would seem to su�ce to observe that by Theorem ���� the expec�

tation of L is O
� � log
W��w
T�min� �W��w
T�max���� where T�max is the item with largest
key in T�� which is of course nothing but x

�� the predecessor of x in T � However� this is not quite
true� since the new leaf x is not necessarily a child of x�� but could be a child of x�� the successor
of x� In that case the path in T from x� to x� 
in other words the right spine of the left subtree of
x�� that needs to be traversed additionally after x� has been reached could be quite long� namely
O
� � log
� � w
x���w
x���� This additional traversal and cost can be avoided if one uses more



space and stores with every item in the tree a predecessor and succesor pointer� 
Note that those
additional pointers could be maintained with constant overhead during all update operations��
What kind of information needs to be maintained so that such a split procedure can be im�

plemented� One needs Tmin and Tmax� since the �nger searches start at Tmin and Tmax and
the upward parts of the searches only proceed along the spines of T � one needs to maintain parent
pointers only for spine nodes and not for all nodes�

��	 Fast joins

In a fast join of T� and T� one tries to reverse the operations of a fast split� Starting at T�max and
T�min one traverses the right spine RS of T� and the left spine LS of T� in a merge like fashion
until either a node x of RS is found whose priority is larger than the one of the root of T� or�
symmetrically� a node y of LS is found whose priority exceeds the one of the root of T�� In the
�rst case the subtree Tx of T� rooted at x is replaced by the join of Tx and T�� computed using the
normal join algorithm� and the root of T� becomes the root of the result� In the other case one
proceeds symmetrically and the root of T� becomes the root of the result�
This in e�ect reverses the operation of a fast split� except that no �nger searches had to be

made� Therefore the time required for fast joining T� and T� into T is upper bounded by the time
necessary to fast split T into T� and T��

��
 Excisions

Let x and y be two items in an n�node treap T and assume we have a ��nger	 on at least one of
them� We would like to extract from T the treap T � containing all d items with keys between and
including the keys of x and y� leaving in T all the remaining items� First we show that we can do
this in time proportional to P 
x� y� the length of the path from x to y plus SL
x� and SR
y�� the
lengths of the right spine of the left subtree of x and the left spine of the right subtree of y� By
Theorem ��� the expectation of this would be O
log d��
With a �nger search �rst identify the path connecting x and y� and with this the lowest common

ancestor u of x and y� all in time O
P 
x� y��� Let Tu be the subtree rooted at u� It su�ces to show
how to excise T � from Tu� Let LL be the sequence of nodes on the path from x to u with keys less
than the key of x and let A be the sequence of the remaining nodes on that path� not including u�
Symmetrically� let RR be the sequence of nodes on the path from y to u with keys greater than the
key of y and let B be the sequence of the remaining nodes not including u� Now the desired treap
T � has as its root u� its left subtree is formed by stringing together the nodes in A along with their
right subtrees� its right subtree is formed by stringing together the nodes in B together with their
left subtrees� Clearly T � can thus be formed in time O
P 
x� y���
The remaining pieces of Tu can be put back into a treap as follows� Form a treap L by stringing

together the nodes in LL together with their left subtrees� adding the left subtree of x at the
bottom of the right spine� Symmetrically� form a treap R by stringing together the nodes in RR�
adding the right subtree of y at the bottom of the left spine� The remainder of Tu is constructed
by stringing the members of LL into a tree L and RR into a tree R 
see Figures � and ��� Clearly
L and R can be constructed in time O
P 
x� y��� In section ��� we showed that the time necessary
for the join operation is proportional to sum of the lenghts of the right spine of L and the left spine
of R� But this sum is at most P 
x� y� � SL
x� � SR
y��
The excision of T � from T can also be performed in expected O
log
n � d� time using the

following method� Split T into treaps L and T ��� where L contains all items with key less than the
key of x� split T �� into the desired T � and R� where R contains all items with key greater then the
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one of y� �nally join L and R to form the remainder treap� L and R each contains at most n� d
nodes� Thus using the fast split method of section ��� and the normal join method this can all be
performed in expected O
log
n� d�� time�
Of course usually d is not know in advance� Thus we face the usual dilemma of which method

to choose� This can be resolved as follows� In lockstep in parallel perform a �nger search from x
to y and perform a �nger search from Tmin to x followed by a �nger search from Tmax to y� If
the search from x to y is completed �rst� use the �rst method for the excision� otherwise use the
second method�

���� Expensive rotations

How expensive is it to maintain unweighted randomized search trees under insertions and deletions
when the cost of a rotation is not constant but depends as f
s� on the size s of the subtree that is
being rotated�
Since an insertion operation is just the reverse of a deletion operation it su�ces to analyze

just deletions� Recall that in order to delete a node x it �rst has to be located and then it has
to be rotated down into leaf position� where it is then clipped away� Since the search time and
the clipping away is una�ected by the cost of rotations we only need to analyze the expected cost
Rf 
x� of rotating x into leaf position�
As before let x�� � � � � xn be the items in the treap numbered by increasing key rank� Assume we

want to delete xk�
For i � k � j let Ek�i�j denote the event that at some point during this deletion xk is the root

of a subtree comprising the j � i � � items xi through xj � Then the total expected cost of the
deletion is given by

Rf 
xk� �
X
	�i�k
k�j�n

PrEk�i�j� � f
j � i� �� �

We need to evaluate PrEk�i�j�� We can do this by characterizing those con�gurations of priorities
that cause event Ek�i�j to happen�
We claim that in the generic case � � i � k � j � n this event occurs exactly if among the

j� i�� items xi�� through xj�� the items xi��� xk� xj�� have the largest three priorities 
the order
among those three is irrelevant��
As a consequence of the ancestor lemma xk is root of a subtree comprising xi through xj exactly

if xk has largest priority in that range and xi�� and xj�� each have larger priority than xk� i�e�
xi�� and xj�� have the largest two priorities among xi�� through xj�� and xk has third largest
priority� Now the deletion of xk can be viewed as continuously decreasing its priority and rotating
xk down whenever its priority becomes smaller than the priority of one of its children� thus always
maintaining a legal treap� This means that if xi��� xk� xj�� have the largest three priorities among
xi�� through xj��� at some point during the decrease xk will have third largest priority and thus
will be root of a tree comprising xi through xj as claimed� Similarly� xk can never become the root
of such a tree if xi��� xk� xj�� do not initially have the largest three priorities among xi�� through
xj���
Using the same type of argument it is easy to see that the left�marginal event Ek���j happens

i� xk and xj�� have the largest two priorities among the j � � itmes x� through xj��� The right�
marginal event Ek�i�n happens i� xk and xi�� have the largest two priorities among xj�� through
xn� Finally Ek���n of course occurs exaclty if xk has the largest of all n priorities�
Since in an unweighted randomized search tree the priorities are independent identically dis�



tributed continuous random variables we can conclude from these characterizations that�

PrEk�i�j� �

������
�����

��
j � i� ��� for � � i � k � j � n 
generic case�

��j� for i � � and k � j � n 
left�marginal case�

��
n� i� ��� for � � i � k and j � n 
right�marginal case�
��n for i � � and j � n 
full case��

Substituting these values now yields

Rf 
xk� �
f
n�

n
�

X
k�j�n

�
f
j�

j�
�

X
��i�k

�
f
n� i� ��


n� i� ���
�

X
��i�k

X
k�j�n

�
f
j � i� ��


j � i� ���
�

In this form this expression is not particularaly illuminating� Rewriting it as a linear combination
of f
��� � � � � f
n� yields for k � 
n� ����

Rf 
xk� �
f
n�

n
�
X

��s�k

�


s� ���
f
s��

X
k�s�n�k

�
�
k � ��

s�
�
�

s�

�
f
s��

X
n�k�s�n

�
�
n� ��

s�
�
�

s�

�
f
s�

and for k � 
n � ���� we can exploit symmetry and get Rf 
xk� � Rf 
xn�k���� This is the exact
expectation and applies to any arbitrary real valued function f � For non�negative f it is easy to
see that for any k this expression is upper bounded by

Rf 
xk� � O
�
f
n��n�

X
��s�n

f
s��s�
�
�

From this the bounds of Theorem ��� about expensive rotations follow immediately�
There is a slightly less cumbersome way to arrive at this asymptotic bound� For any k and any

s � n item xk can participate in at most s generic events Ek�i�j with j � i � � � s� each having
a probability of O
��s��� which yields a contribution of O
f
s��s�� to Rf 
xk�� Similarly xk can
participate in at most two marginal events Ek�i�j with j � i � � � s each having a probability of
of O
��s��� which also yields a contribution of O
f
s��s�� to Rf 
xk�� Finally xk participates in
exactly one �full	 event Ek���n� which has probability ��n and gives the f
n��n contribution to
Rf 
xk��

A di�erent rotation cost model

The above analysis hinges on the fact that the probability that a particular three random variables
are the smallest in a set of s independent identically distributed continuous random variables is
O
��s��� In the next section� which deals with limited randomness� we will see that it is advanta�
geous if one only needs to consider two out of s variables� and not three�
In order to achieve this we will slightly change how the cost of a rotation is measured� If node

x is rotated� then the cost will be f
�� � f
r�� where � and r are the sizes of the left and right
subtrees of x� This cost model is asymptotically indistinguishable from the previous one as long as
there exists a constants c� and c� so that c�
f
�� � f
r�� � f
� � r � �� � c�
f
�� � f
r�� for all
�� r � �� This is the case for all non�decreasing functions that satisfy f
n� �� � c � f
n���� which
is true essentially for all increasing functions that grow at most polynomially fast�
We will distribute this cost of a rotation at x to the individual nodes of the subtrees as follows�

a node y that di�ers in key rank from x by j is charged  f
j� � f
j��f
j���� with the convention

�We use the notations xm � x�x� 	� � � � �x�m� 	� and xm � x�x� 	� � � � �x�m� 	��



that f
�� � �� Since the right subtree of x contains the �rst r nodes that succeed x in key rank�
the charge distributed in the right subtree is thus

P
��j�r f
j� which evaluates to f
r� as desired�

Symmetrically� the total charge in the left subtree adds up to f
���
Now let x � xk be the node to be deleted and let y � xk�j be some other node� The node y

may participate in several rotations during the deletion of x� What are the roots z � xk�i of the

maximal� subtrees that are moved up during those rotations� It is not hard to see that before
the deletion began both y and z must have been descendants of x and after completion of the
deletion y must be a descendant of z� This charaterizes the z�s exactly and corresponds to the
following condition on the priorities� In the index range between the minimum and the maximum
of fk� k � i� k � jg the node x � xk must have the largest priority and z � xk�i must have the
second largest� Note that with uniform and independent random priorities this condition hold with
probability ��s� � ��s
s� �� if the size of the range is s� ��
If Di�j denotes the event that y � xk�j participated in a down rotation of x � xk against

z � xk�i� then the expected cost of the rotations Rf 
xk� incurred when xk is deleted from an
n�node tree using cost function f can be written as

Rf 
xk� �
X

�k�j�n�k
j ���

X
�k�i�n�k

i���

PrDi�j� f
jjj�

Since PrDi�j � � ��
maxfk� i� k� j� kg �minfk� i� k� j� kg��� the inner sum evaluates for a �xed
j � � to X

�k�i��

��
j � i�� �
X

��i�j

��j� �
X

j�i�n�k

��i� �

which using
P

a���b ���
� � ��a� ��b evaluates to

h
��
j � ��� ��
j � k�

i
�
h
��
j � ��

i
�
h
��
j � ��� ��
n� k � ��

i
� ��
j � �� � ��j �

For y � xk�j a symmetric argument shows that the inner sum is also upper bounded by ��j� When
f is non decreasing� i�e�  f is non�negative� we therefore get

Rf 
xk� �
X

��j�k

� f
j�

j
�

X
��j�n���k

� f
j�

j
� �

X
��j�n

 f
j�

j
� �

�f
n�
n
�

X
��j�n

f
j�

j�

�

from which again the bounds on expensive rotations stated in Theorem ��� follow� Note that this
method actually also allows the exact computation of Rf 
xk� for any arbitrary real valued function
f �

���� Changing weights

If the priority p of a single item x in a treap is changed to a new priority p�� then the heap property
of the treap can be reestablished by simply rotating x up or down the treap as is done during the
insertion and deletion operations� The cost of this will be proportional to the number of rotations
performed� which is jD
x��D�
x�j� where D
x� and D�
x� are the depth of x in the old and new
tree� respectively�
Now assume the weight w of an item x in a weighted randomized search tree of total weight

W is changed to w� and after the required change in the random priorities the tree is restructured
as outlined above� In the old tree x had expected depth O
� � log
W�w��� in the new tree it has
expected depth O
� � log
W ��w���� where W � � W � w � w� is the total weight of the new tree�



One is now tempted to claim that the expected depth di�erence and hence the expected number of
rotations to achieve the change is O
j log
W�w� � log
W ��w��j�� which is about O
j log
w��w�j� if
the weight change is small relative to W � There are two problems with such a quick claim� 
a� in
general it is not true that ExjX � Y j� � jExX��ExY �j� 
b� one cannot upper bound a di�erence
A�B using only upper bounds for A and B�
For the sake of de�niteness let us deal with the case of a weight increase� i�e� w� � w� The

case of a decrease can be dealt with analogously� Let us �rst address problem 
a�� In section �
we brie�y outlined how to realize weighted randomized search trees� As priority p for an item x of
weight w use u��w 
or equivalently 
log u��w�� where u is a random number uniformly distributed
in �� ��� This simulates generating the maximum of w random numbers drawn independently and
uniformly from �� ��� If the new weight of x is w� and one chooses as new priority p� � v��w

�
� where

v is a new random number drawn from �� ��� then p� is not necessarily larger than p� This means
that D�
x�� the new depth of x� could be larger than the old depth D
x�� inspite of the weight
increase� which is expected to make the depth of x smaller� Thus� since the relative order of D
x�
and D�
x� is unknown� ExjD
x��D�
x�j� becomes di�cult to evaluate�
This di�culty does not arise if one chooses as new priority p� � u��w

�

or equivalently 
log u��w���

where u is the random number originally drawn from �� ��� Note that although the random variable
p and p� are highly dependent� each has the correct distribution� and this is all that is required�
Since w� � w we have u��w

�
� u��w� i�e� p� � p� Thus we have D
x� � D�
x�� and therefore

ExjD
x��D�
x�j� � ExD
x��D�
x�� � ExD
x��� ExD�
x���
Addressing problem 
b� pointed out above� we can bound the di�erence of those two expecta�

tions using the fact that we know exact expressions for each of them� Assume that x has key rank
�� i�e� x � x�� and let  � w� � w be the weight increase� From Theorem ���� we get 
using the
notation from there�

ExD
x���� ExD
�
x��� �

�
� �

X
	�i�n
i���

wi

wi��

�
�
�
� �

X
	�i�n
i���

wi

wi�� � 

�

�
X

��i��

� wi

wi��
�

wi

wi�� � 

�
�

X
��i�n

� wi

w��i
�

wi

w��i � 

�
�

Applying the methods used in the proof of part 
iv� of Theorem ���� it is easy to show that each
of the last two sums is bounded from above by ln w���

w�
� ln w�

w � From this bound on the expected
di�erence of old and new depth of x it follows that the expected time to adjust the tree after the
weight of x has been increased from w to w� is O
�� log
w��w��� Using the same methods one can
show that decreasing w to w� can be dealt with in time O
� � log
w�w����
When implementing the method outlined here� one needs to store for every item the priority

implicitly in two pieces 
w� u�� where integer w is the weight and u is a random number from �� ���
When two priorities 
w� u� and 
w� u� are to be compared one has to compare u��w with u��w�
Alternatively one could store the pieces 
w� log u� and use 
log u��w for the explicit comparison�
This raises the issue of the cost of arithmetic� We can postulate a model of computation where

the evaluation of an expression like u��w or log u takes constant time and thus dealing with priorities
does not become a signi�cant overhead to the tree operations� We would like to argue that such
a model is not that unrealistic� This seems clear in practice� since there one would de�nitely use
a �oating point implementation� 
This is not to say that weighted trees are necessarily practical��
From the theoretical point of view� the assumption of constant time evaluation of those functions
is not that unrealistic since Brent �� has shown that� when measured in the bit model� evaluating
such functions up to a relative error of ��m is only slightly more costly than multyplying two m
bit numbers�



Thus we assume a word model where each of the four basic arithmetic operations and evaluating
functions such as log u using operands speci�ed by logarithmically many bits costs constant time�
It seems natural to assume here that �logarithmically	 means O
logW �� We now need to deal with
one issue� it is not clear that a word size of O
logW � su�ces to represent our random priorities so
that their relative order can be determined�
Here is a simple argument why O
logW � bits per word should su�ce for our purposes� Following

the de�nition of a weighted randomized search tree the priorities of an n node tree of total weight
W can be viewed as follows� W random numbers are drawn independently and uniformly from
the interval �� �� and certain n of those chosen numbers are selected to be the priorities� Now
basic arguments show that with probability at most ��W k�� the di�erence of any two of the W
chosen numbers is smaller than ��W k� This means that with probability at least � � ��W k�� all
comparisons between priorities can be resolved if the numbers are represented using more than
k log�W bits� i�e� a word size of O
logW � su�ces with high probability�

� Limited Randomness

The analyses of the previous sections crucially relied on the availability of perfect randomness and
on the complete independence of the random priorities� In this section we brie�y discuss how
one can do with much less� thus proving Theorem ���� We will show that for unweighted trees
all the asymptotic results about expectations proved in the previous sections continue to hold� if
the priorities in the tree are integer random variables that are of only limited independence and
are uniformly distributed over a su�ciently large range� In particular we will show that ��wise
independence and range size U � n� su�ce� The standard example of a family of random variables
satisfying these properties is Xi � q
i� mod U for � � i � n� where U � n� is a prime number
and q is a degree � polynomial whose coe�cients are drawn uniformly and independently from
f�� � � � � U � �g� Thus q acts as a pseudo random number generator that needs O
log n� truely
random bits as seeds to specify its eight coe�cients�
It is quite easy to see why one would want U � n�� Ideally all priorites occuring in a randomized

search tree should be distinct� Our algorithms on treaps can easily be made to handle the case of
equal priorities� However for the analysis and for providing guarantees on the expectations it is
preferably that all priorities be distinct� Because of the pairwise independence implied by ��wise
independence� for any two distinct random variables Xi� Xj we have PrXi � Xj � � ��U � Thus the
probability that any two of the n random variables happen to agree is upper bounded by

�n
�

	
�U

and� as the birthday paradox illustrates� not much smaller than that� With U � n� the probability
of some two priorities agreeing thus becomes less than ��n� We can now safely ignore the case of
agreeing priorities since in that event we could even a�ord to rebuild the entire tree which would
incur only O
log n� expected cost�
Why ��wise independence� Let X be a �nite set of random variables and let d be some integer

constant� We say that X has the d�max property i� there is some constant c so that for any
enumeration X�� X�� � � � Xm of the elements of any subset of X we have

PrX� � X� � � � � � Xd � fXd���Xd��� � � � �Xmg� � c�md �

Note that identically distributed independent continous random variables have the d�max property
for any d with a constant c � ��
It turns out that all our results about expected properties of randomized search trees and of their

update operations can be proved by relying only on the ��max property of the random priorities�
Moreover� the ��max property is implied by ��wise independence because of the following remarkable
lemma that is essentially due to Mulmuley ����



Lemma ��� Let X be a set of n random variables� each uniformly distributed over a common
integer range of size at least n�
X has the d�max property if its random variables are 
�d � ���wise independent�

A proof of this lemma 
or rather� of a related version� can be found in Mulmuley�s book ��� section
������
We now need to show that results of section � about unweighted trees continue to hold up

to a constant factor if the random priorities satisfy the ��max property� This is clear for the
central Corollaries ��� and ���� As a consequence of the ancestor and common ancestor lemma they
essentially just give the probability that a certain one in a set of priorities achieves the maximum�
For those two corollaries the ��max property would actually su�ce� From the continued validity of
Corollary ��� the asymptotic versions of points 
i� and 
ii� of Theorem ��� about expected depth
of a node and size of its subtree follow immediately� also relying only on the ��max property� Note
that this means that if one is only interested in a basic version of randomized search trees where
the expected search and update times are logarithmic 
although more than an expected constant
number of rotations may occur per update�� then ��wise independence of the random priorities
provably su�ces�
Points 
iii� and 
iv� of Theroem ��� do not follow immediately� They consider expectations of

random variables that were expressed in Theorem ��� as the sum of di�erences of indicator variables

Ai���Ci���m� and upper bounds for the expectations of 
Ai�� and Ci���m� yield no upper bound for
the expectation of their di�erence� Now 
Ai�� � Ci���m� really indicates the event Ei���m that xi is
an ancestor of x� but not an ancestor of xm� We need to show that if the priorities have the ��max
property� PrEi���m� is essentially the same as if the priorities were completely independent�
Without loss of generality let us assume � � m� In the case i � � the event Ei���m happens

exactly when the following constellation occurs among the priorities� xi has the largest priority
among the items with index between and including i and �� but not the largest priority among the
items with index between i and m� For � � i � m event Ei���m occurs i� xi has the largest priority
among the items with indices in the range between � and i� but not the largest in the range � to
m� 
For the case i � m the event is empty��
Thus in both cases we are dealing with an event EX�Y�Z of the following form� For a set Z

of random variables and X � Y � Z the random variable X is largest among the ones in Y but
not the largest among the ones in Z� In the case of identically distributed� independent random
variables clearly we get PrEX�Y�Z � � ��jYj � ��jZj� The following claim shows that essentially the
same is true if Z has the ��max property�

Claim � If Z has the �max property� then PrEX�Y�Z � � O
��jYj � ��jZj��

Proof� Let a � jYj and b � jZj and let X��X�� � � � �Xb be an enumeration of Z so that X� � X
and Y � fX�� � � � �Xag� For a � i � b let Fi denote the event that Xi is largest among fX�� � � � �Xig
and X� is second largest� Because of the ��max property of Z we have PrFi� � O
��i��� Since
EX�Y�Z �

S
a�i�b Fi we therefore get

PrEX�Y�Z � �
X
a�i�b

PrFi� � O
� X
a�i�b

��i�
�
� O
��a� ��b� �

as desired�

Thus points 
iii� and 
iv� of Theorem ��� hold� up to constant factors� if priorities have the
��max property� This immediately means that all results listed in Theorem ���� except for the ones



on expensive rotations� continue to hold� up to constant factors� if random priorities satisfying the
��max property are used� The results on expensive rotations rely on the ��max property� However�
if one uses the alternate cost model as explained in section ����� then the ��max property again
su�ces� This cost model is equivalent to the �rst one for all rotation cost functions of practical
interest�
The only result for unweighted trees that seems to require something more than the ��max

property is the one on short excess paths for �nger searches in section ���� This is not too serious
since other methods for implementing �nger searches are available� We leave it as an open problem
to determine weak conditions on priorities under which excess paths remain short in expectation�

� Implicit Priorities

In this section we show that it is possible to implement unweighted randomized search trees so that
no priorities are stored explicitly� We o�er three di�erent methods� One uses hash functions to
generate or regenerate priorities on demand� The other stores the nodes of the tree in a random
permutation and uses node addresses as priorities� The last method recomputes priorities from
subtree sizes�

��� Priorities from hash functions

This method is based on an initial idea of Danny Sleator ���� He suggested to choose and associate
with a randomized search tree a hash function h� For every item in the tree the priority is then
declared to be h
k�� where k is the key of the item� This priority need not be stored since it can be
recomputed whenever it is needed� The hope is� of course� that a good hash function is �random
enough	 so that the generated priorities behave like random numbers�
Initially it was not clear what sort of hash function would actually exhibit enough random

behaviour� However� the results of the previous section show that choosing for h the randomly
selected degree�� polynomial q mentioned at the beginning of the previous section does the trick�
If one is only interested in normal search and update times� then a randomly selected degree��
polynomial su�ces� as discussed in the previous section� In order to make this scheme applicable
for any sort of key type we apply q not to the key but to the address of the node where the respective
item is stored�
One may argue that from a practical point of view it is too expensive to evaluate a degree��

polynomial whenever a priority needs to be looked at� Note� however� that priorities are compared
only during updates� and that priority comparisons are coupled with rotations� This means that
the expected number of priorities looked at during a deletion is less than � and during an insertion
it is less than ��
Bob Tarjan ��� pointed out to us that this method also yields a good randomized method for

the so�called unique representation problem where one would like subsets of a �nite universe to
have unique tree representations 
see e�g� �� and �����

��� Locations as priorities

Here we store the nodes of the tree in an array L� in random order� Now the addresses of the nodes
can serve as priorities� i�e� the node Li� has priority i� We will assume here that the underlying
treap has the min�heap property� and not the max�heap property� Thus L�� will the root of the
tree�



How does one insert into or delete from an n�node tree stored in this fashion� Basically one
needs to update a random permutation� In order to insert an item x some i with � � i � n� � is
chosen uniformly at random� If i � n � � then x is stored in location Ln � ��� i�e� it is assigned
priority n � �� and it is then inserted in the treap� If i � n the node stored at Li� is moved to
Ln � ��� i�e� its priority is changed to n � �� This means in the tree it has to be rotated down
into leaf position� The new item x is placed into location Li� and it is inserted in the treap with
priority i�
When item x � Li� is to be removed from the tree� it is �rst deleted in the usual fashion�

Since this vacates location Li� the node stored at Ln� is moved there� This means its priority was
changed from n to i and it has to be rotated up the tree accordingly�
This scheme is relatively simple� but it does have some drawbacks� Per update some extra

node changes location and has to be rotated up or down the tree� This is not a problem timewise
since the expected number of those rotations is constant� However� changing the location of a node
y means that one needs to access its parent so that the relevant child pointer can be reset� For
accessing the parent one either needs to maintain explicit parent pointers� which is costly in space
or one needs to �nd it via a search for y� which is costly in time� Explicit parent pointers de�nitely
are necessary if a family of trees is to be maintained under joins and splits� One can keep the nodes
of all the trees in one array� However� when an extra node is moved during an update� one does
not know which tree it belongs to and hence one cannot �nd its parent via search� Also note the
book keeping problem when the root of a tree is moved�
Finally� there is the question what size the array L� should have� This is no problem if the

maximum size of the tree is known a priori� If this is not the case� one can adjust the size dynamically
by� say� doubling it whenever the array becomes �lled� and halving it whenever it is only ��� full�
With a strategy of this sort the copying cost incurred through the size changes is easy to be seen
constant in the amortized sense�

��� Computing priorities from subtree sizes

This method was suggested by Bent and Driscoll ��� It assumes that for every node x in the tree
the size S
x� of its subtree is known� In a number of applications of search trees this information
is stored with every node in any case�
During the deletion of a node y for every down rotation one needs to decide whether to rotate

left or right� This decision is normally dictated by the priorities of the two children x and z of y�
the one with larger priority is rotated up� The priority of x is the largest of the S
x� priorities
stored in its subtree� The priority of z is the largest of the S
z� priorities in its subtree� Thus the
probability that the priority of x is larger than the priority of z is p � S
x��
S
x� � S
z��� This
means that p should also be the probability that x is rotated up� Thus the decision which way to
rotate x can be probabilistically correctly simulated by �ipping a coin with bias S
x��
S
x��S
z���
It is amusing that one can actually do this without storing the sizes� Before the rotation one could
determine S
x� and S
z� in linear time by traversing the two subtrees� This would make the cost
of the rotation linear in the size of the subtree rotated� and our results about costly rotations imply
that the expected deletion time is still logarithmic�
Unfortunately this trick does not work for insertions� How does one perform them� Note that

when a node x is to be inserted into a a tree rooted at y it becomes the root of the new tree with
probability ��
S
y� � ��� This suggests the following strategy� Flip a coin with bias ��
S
y� � ���
In case of success insert x into the tree by �nding the correct leaf position and rotating it all the
way back up to the root� In case of failure apply this strategy recursively to the appropriate child
of y�



We leave the implementation of joins and splits via this method as an exercise�

� Randomized search trees and Skip lists

Skip lists are a probabilistic search structure that were proposed and popularized by Pugh ����
They can be viewed as a hierarchy of coarser and coarser lists constructed over an initial linked
list� with a coarser list in the hierarchy guiding the search in the next �ner list in the hierarchy�
Which list items are used in the coarses lists is determined via random choice� Alternatively� skip
lists can also be viewed as a randomized version of 
a� b��trees�
The performance characteristics of skip lists are virtually identical to the ones of unweighted

randomized search trees� The bounds listed in Theorem ��� all hold if the notion of rotation is
changed to the notion of pointer change� The only possible exception are the results about costly
rotations� here� it seems� only partial results are known for skip lists 
see ������� section ��������
Just as with randomized search trees it is possible to generalize skip lists to a weighted version

���� This is done by appropriately biasing the random choice that determines how far up the
hierachy a list item is to go� Apparently again the expected performance characteristics of weighted
skip lists match the ones of weighted randomized search trees listed in Theorem ����
No analogue of Theorem ��� about limited randomness for skip lists has appeared in the litera�

ture� However� Kurt Mehlhorn ��� has adapted the approach taken in this paper to apply to skip
lists also� Also Martin Dietzfelbinger ��� apparently has proved results in this direction�
Comparing skip lists and randomized search trees seems a fruitless exercise� They are both

conceptually reasonably simple and both are reasonably simply to implement� Both have been
implemented and are for instance availabe as part of LEDA ��� ���� They seem to be almost
identical in their important performance characteristics� Di�erences such as randomized search
trees can be implemented using only exactly n pointers� whereas this appears to be impossible for
skip lists� are not of particularly great practical signi�cance�
There seems to be ample room for both skip lists and randomized search trees� We would like

to refer the reader to chapter � of Mulmuley�s book ���� where the two structures are used and
discussed as two prototypical randomization strategies�
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