
An On-Line Edge-Deletion Problem 

SHIMON EVEN 

University of California, Berkeley, California 

AND 

YOSSI SHILOACH 

Stanford University, Stanford, California 

ABSTRACT. There is given an undirected graph G -- (V, E) from which edges are deleted one at a time 
and about which questions of the type, "Are the vertices u and v in the same connected component?" have 
to be answered "on-line." There is presented an algorithm which maintains a data structure in which each 
question is answered in constant time and for which the total time involved in answering q questions and 
maintaining the data structure is O(q + I VI" lED. 

~ v  WORDS ANt> eHRASES: algorithm, connectivity checks, edge deletion, on line 

cR CATEGORIES: 5.25, 5.32 

1. Introduction 

Suppose  we are g iven  an  und i rec ted  finite g r a p h  G(V, E )  f rom which  edges  m a y  be 
deleted,  one at a t ime,  and  abou t  which  ques t ions  o f  the type,  "Are  vert ices  u and  v 
in the same connec ted  c o m p o n e n t ? "  m a y  have  to be answered  at  any  po in t  in t ime.  
I f  the whole  sequence  o f  edge de le t ions  and  connec t iv i ty  ques t ions  is known,  then  we 
can use the set un ion  a lgor i thm [1, 4] on the reversed  sequence,  by  s tar t ing with  the  
final g raph  G'(V, E'), f inding its connec ted  c ompone n t s  in O(E" + V) t ime, and  
adding  the edges one  by  one unt i l  we reach  G(V, E) .  In  this case q ques t ions  can  be 
answered in O(ma(m, n)) t ime (see [4]), where  m = I E - E ' ]  + q a n d  n = ] V] - 1, 
namely,  in t ime a lmos t  l inear  in the length  o f  the  sequence.  

However ,  i f  we have  to answer  the ques t ions  in an  "on - l i ne"  fashion,  the p r o b l e m  
seems to be much  more  t ime consuming.  T h e  na ive  a lgo r i thm which  checks the 
connect ivi ty  for each  quest ion sepa ra te ly  takes  t ime O(q. I E]). 

This on- l ine  p r o b l e m  was tackled  by  Ches ton  [2, Ch. 5]. He  in t roduced  and  
compared  the pe r fo rmance  o f  four  a lgor i thms  (exc luding  the na ive  one,  which  he 
called the "s tar t  over"  a lgor i thm)  for u p d a t i n g  the connec t iv i ty  i n fo rma t ion  af ter  

Permission to copy without fee all or part of this material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is giver/that copying is by permission of the Association for Computing 
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 
The work of the first author was supported by the National Science Foundation under Grant 21492. The 
work of the second author was supported in part by a Chaim Weizmann Postdoctoral Fellowship and in 
part by ONR Contract N00014-76-C-0688. 
This work was performed while the first author was on leave from the Technion, Haifa, Israel. 
Authors" present addresses: S. Even, Computer Science Department, Technion, Haifa, Israel; Y. Shiloach, 
IBM Israel Scientific Center, Technion City, Haifa, Israel. 
© 1981 ACM 0004-5411/81/0100-0001 $00.75 

Journal of the A~(~.'i~tion for Computing MachineD,. Vol. 28, No, I. Janua~' 1981. pp. I-4 



S. EVEN A N D  Y. S H I L O A C H  

edge deletions. All four algorithms maintain data structures which enable one to 
answer a connectivity question in constant time. However, the time required for 
updating this connectivity information is O(I El)  per edge deletion in the first two 
algorithms and less efficient in the latter two. Thus, the best time bound his algorithms 
achieve is O(q + [E I~). 

In Section 2 we show how the problem can be solved in O(q + I VI log I VI) if  G is 
a tree or a forest. The  solution for trees is included primarily as a warm-up and 
because it is similar to a part of  the solution for general graphs. In Section 3 we 
demonstrate a solution for general graphs in time O(q + I EI" I Vl). Clearly, this is 
better than the naive algorithm mentioned above if q >> ] V I and better than the 
algorithms of  Cheston. By using a fast average-time algorithm for computing 
connected components, Karp [3] solved the corresponding problem for random 
graphs by an O(q + [ VlZlog'l VI) average-time algorithm. 

2. An Algorithm for Circuit-Free Graphs 

I f  G(II, E)  is circuit-free, then it is either a tree or a forest, and the deletion of  any 
edge breaks the graph into a forest with one more tree. We use a table for the vertices 
in which the name o f  the component to which a vertex belongs is specified. Thus the 
question, "Is a connected to b?" can always be answered in constant time. Therefore, 
answering q questions takes O(q) time. It remains to be shown that updating the 
table takes at most O(1 V I log [ V D time. 

The number of  edges IEI in G is bounded by [ V[ - 1. Each time an edge e is 
deleted from a tree T, we scan T from both endpoints of  e in parallel, t attempting to 
explore each component  of  T fully. When one of  these scans terminates, we stop 
scanning, and a new name of a component is assigned to all the vertices on the part 
for which the scan terminated. Since the number of  vertices (edges) in the renamed 
component does not exceed the number of  vertices (edges) of  its mate, each vertex 
can belong to a renamed component at most Llog [ VII times. Let us "charge" a vertex, 
whose component name is changed, for the scanning of  the edge through which it is 
reached and for the edge scanned, in parallel, in the mate component. Thus each 
vertex is "charged" at most Llogl VII times, yielding time complexity of  O(I V[ log I VI) 
for the whole process of  updating the vertex tables. 

3. An Algorithm for General Graphs 

As in the algorithm of  Section 2, we keep a vertex table which contains for each 
vertex the name of  the component to which it belongs. Thus each question of  whether 
two vertices belong to the same component can be answered by comparing the 
component names. The method for updating the component names is as follows. 

Our scheme uses two processes which run in parallel. Process A checks whether 
the edge deletion breaks a component, and if it does, both processes halt. Process B 
checks whether the edge deletion does not break the component to which it belongs, 
and if it does not, again both processes halt. We bound the total time spent on runs 
which are halted by process A by O(IEIloglEI) and the total time spent on runs 
which are halted by process B by O( I V I • I EI), yielding an overall time complexity 
O(I v l .  lED. 

J The meaning of parallel is not that of parallel processing. We simply mean that if algorithms ,4 and B 
have to be executed and they are represented by two sequences of operations (a~. ae . . . .  ) 
and ([~. fie . . . .  ). respectively, then we carry them out alternatively by executing the sequence 
(,~,./~,. ,~./t~ . . . .  ). 



An On-Line Edge-Deletion Problem 3 

Process A, whose task is to detect early the cases in which the edge deletion breaks 
a component,  may detect that the component  does not break, but this is of  no 
importance. In this case we ignore its conclusion and continue with process B until 
it reaches the already known fact. The reason for this is that the breadth-first search 
structure, used in process B and to be described shortly, must be maintained. Thus 
we need only discuss the complexity of  process A in case the edge deletion breaks a 
component.  

In process A we use some method of  scanning, say depth-first search [1], and the 
process is similar to that of  the previous section. We start scanning, in parallel, from 
both endpoints, a and b, of  the deleted edge e. Once one of  the scans terminates in 
failure, that is without reaching the other endpoint of  e although all its edges have 
been examined, the other scan is terminated too. The original component  is now 
broken into two components: The vertices of  the smaller component  (the one in 
which the scan terminated first) get a new component name. By an argument  
analogous to the one used in Section 2, in which the edges are "charged," instead of  
the vertices, the time complexity of  process A is O([ EI log I E [). 

Process B uses a breadth-first structure (BFS), and therefore an initialization is 
required to create the first BFS structure. This is done as follows. A vertex r is chosen 
and the BFS starts from it. The only vertex in level L0 is r. All the vertices of  distance 
i from r are in level Li. I f  G is not connected, a new scan is started at some unscanned 
vertex v, v is put in Lx, and an artificial edge connects r with v; all vertices of  distance 
i from v are now in level Li+l, etc. Artificial edges are introduced in order to keep all 
the connected components in one BFS structure and are used only for this purpose. 
Maintaining a unified BFS structure will simplify the evaluation of  the complexity 
later. Clearly, the artificial edges are used only in process B. 

The structure has the following properties. A vertex v in level Li, i > 0, has at least 
one edge connecting it to some vertex in Li-h and if there is only one such edge, it 
may be artificial, but if there are more, then none of  them is artificial; v may  have 
any number  of  edges connecting it with other vertices in L~ and with vertices in Lg+l, 
but no edges connect it with vertices of  levels other than Li-l, L~, and L~+I. Let a(v), 
/~(v), and V(v) be the sets of  edges which connect it with L~_~, L~, and Li+l, respectively. 

Process B now proceeds as follows. When an edge u~--v is deleted, we check the 
levels of  u and v. There are two cases: 

Case 1. Both u and v are on the same level. In this case the edge deletion cannot 
change the components.  The edge is simply deleted from fl(u) and fl(v), and process 
B halts (and therefore process A is halted too). We still have a BFS structure, as 
above. 

Case 2. u and v are on different levels. Without loss of  generality we can assume 
that u E L~-I and v ~ Li. We remove e from ),(u) and a(v). 

Case 2.1 I f  the new a(v) is not empty, then the components have not changed, 
and both processes halt. 

Case 2.2 I f  the new a(v) is empty, v has to drop at least one level, and its drop 
may cause a whole avalanche. We use a queue Q on which we put vertices whose 
level must be changed. Vertex v is put on Q and the following procedure is applied: 

(1) I f  Q is empty, the procedure and both processes halt. 
(2) Let w be the first element of  Q. Remove w from Q. 
(3) Remove w from its level (say, Lj), and put it in the next level (L/+I). 
(4) For each w"---'w' in fl(w), remove e '  from/3(w')  and put it in 3,(w'). 



4 S. EVEN AND Y. SHILOACH 

(5) a(w) ,--- #(w). 
(6) For  each w e" w' in y(w), remove e '  from a(w') and put it in fl(w'); if the new 

a(w') is empty, put w' on Q. 
(7) fl(w) ~ y(w), v(w) ~ f~. 
(8) If  a(w) is empty, put w on Q. 
(9) Return to (I). 

If  the deletion of  e does not break any component and we are in case 2.2, then 
eventually the procedure will halt. In this case it is easy to see that the BFS structure 
is maintained correctly. If  its deletion does break a component, then the procedure 
will not halt by itself. However, process A, recognizing the break, will halt, and both 
processes will halt. In this case all the changes made in the BFS structure are ignored, 
and we go back to the BFS structure we had just before the deletion of  e, except that 
e is now replaced by an artificial edge. Clearly, in this case v is now the root of  a tree 
which includes the new component, and perhaps additional components, through 
some other artificial edges. Also, there are no edges connecting the descendants of  v 
with any vertices which are not v's descendants, except the artificial edge u-v. One 
way to realize the return to the structure preceding the deletion of  e without having 
to copy the whole structure is to keep on a stack all the changes that took place in the 
BFS structure since the deletion of  e and undo them one by one. This way the 
processing time is only multiplied by a constant. 

' I t  remains to show that the total time spent on runs which are terminated by 
process B is bounded by O(I V I • lED. For each w taken off  Q the amount of  time 
spent in the procedure is proportional to d(w), the degree of  w, since each "movement" 
of  an edge takes some constant time. However, we can "charge" the edges instead, 
namely, "charge" the cost of  handling an edge e '  to the edge each time it is processed. 
Now observe what whenever e '  is processed in the procedure, one of  its endpoints 
drops by one level. Since the lowest level a vertex can reach in runs which are 
terminated by process B is Llvl_ h an edge can be charged at most 2 .  [ V[. Thus the 
whole cost is bounded by O(I V[. I E[). 

ACKNOWLEDGMENTS. The authors are indebted to Richard M. Karp and to the 
referees for their careful reading of the manuscript and for their valuable suggestions. 

REFERENCES 

!. AHO, A.V., HOPCROFT, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms. 
Addison-Wesley, Reading, Mass., 1974. 

2. C,ESTON, G.A. Incremental algorithms in graph theory. Ph.D. Diss., Dep. o f  Computer Science, 
Univ. of  Toronto, March 1976 (Tech. Rep. No. 91). 

3. KARP, R.M. Private communication. 
4. TAP, JAN, R.E. Efficiency of  a good but not linear set union algorithm. J. A CM 22, 2 (April 1975), 

215-225. 
° 

R E C E I V E D  D E C E M B E R  1977; R E V I S E D  F E B R U A R Y  1980; A C C E P T E D  F E B R U A R Y  1980 

Journal of the Association for Computing Machinery. Vol. 28. No. I. January 1981. 


