
Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 1

Episode 10: OS IssuesEpisode 10: OS Issues

Hannes Frey and Peter Sturm
University of Trier

Operating Systems Operating Systems ……

• OS mediates between hardware
and applications

• Goals
– High-level abstractions
– Efficiency
– Utilization

• Sometimes performance
penalties tolerated for good
abstractions

• Different in embedded systems
and ubiquitous computing?

Hardware

Operating System

Middleware

Applications

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 2

RequirementsRequirements

• Memory
– Minimal memory footprint at runtime
– Virtual memory sometimes not possible
– Configurability of OS
– Portability

• Execution
– Soft real-time and sometimes hard real-time capabilities
– Easy to implement device drivers
– Synchronization and communication primitives

• Licensing

Candidate SystemsCandidate Systems

• Embedded Operating Systems
– TinyOS
– Symbian OS (mobile phones)

• True OS
– Linux / Embedded Linux
– Windows CE
– Windows XP (?)

• Middleware
– Various research systems
– GecGo ☺ (see episode 8)
– Jini

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 3

10.1 TinyOS10.1 TinyOS

Based on slides by
Arvind Easwaran

Tiny OSTiny OS

• Not really an operating system
– No kernel
– No process management
– No virtual memory
– Single shared stack

• Interrupt- and Event-driven architecture
– Clock, Radio, and other hardware interrupts
– Lower layer sends events to higher layer

• 2-level FIFO scheduler
– Events and tasks

• Applications consist of interacting components
– Software acting on and issuing of events

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 4

TinyOS TinyOS -- ArchitectureArchitecture

Hardware

Components

Events
Commands

Sc
he

du
le

r

Command
Handlers

Event
Handlers

Frame
(State)

Set of
Tasks

Component InterfaceComponent Interface

• <CompName>.comp:
TOS_MODULE <CompName>;

ACCEPTS {
// Command signatures

};

HANDLES {
// Event signatures

};

USES … // Commands

SIGNALS … // Events

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 5

Component ImplementationComponent Implementation

<CompName>.c
#define TOS_FRAME_TYPE

TOS_FRAME_BEGIN (<CompName>_frame) {
// state declaration

}

TOS_FRAME_END (<CompName>_frame);

char TOS_COMMAND (<command_name>) () {
// command implementation

}

char TOS_EVENT (<event_name>) () {
// event implementation

}

Component DescriptionComponent Description

• <CompName>.desc
INCLUDE {

MAIN;
<CompName>;
<Comp_I>;
<Comp_J>;
…

};

// Wiring

<CompName>.<command> <Comp_I>.<command>
…

<CompName>.<event> <Comp_J>.<event>
…

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 6

DiscussionDiscussion

• No memory protection
– Easy to corrupt and crash the system

• Heavy use of macros

TinyOS TinyOS -- SchedulingScheduling

• 2-Level scheduler for events and tasks

• No real-time guarantess

• FIFO scheduling
– Queue of size 7

• Tasks
– Preemptable by events
– Not preemted by other tasks
– May call commands and events
– Has assigned priority

• Lowest priority task dropped if queue full

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 7

10.2 Symbian OS10.2 Symbian OS

10.3 Linux10.3 Linux

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 8

10.4 Windows XP10.4 Windows XP

Windows Windows ……

• What about Windows XP Home Edition
or Professional Edition?

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 9

Embedded XPEmbedded XP

• Configurable Windows XP version
– Separate GUI
– Configuration support

• Tools
– Target Analyzer (identify the required OS for a given hardware)
– Target Designer (customize OS image)

10.5 Windows CE10.5 Windows CE

Slides by
John Eldrige and Mike Thomson (Microsoft)

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 10

Windows CEWindows CE

• Commercial operating system for embedded devices

• OS Customization
– Platform Builder (OS customization)

• Application development
– Embedded Visual C++
– Embedded Visual Basic (not supported anymore)
– .NET Compact Framework
– All three variants available within MSDN AA

Platform BuilderPlatform Builder

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 11

BoardBoard Support Support Packages (BSP)Packages (BSP)

• Improve out-of-the-box experience
– Evaluation & Learning
– Prototype & Demonstration

• Shorten time to booting prototype
– Sample drivers based on integrated peripherals
– Many source examples available

• Decouple high-level app development from hardware
and driver development

• At least one BSP per supported kernel included in PB,
additional on the web

• Additional BSPs available on the web and included in
reference hardware products

Shipping Shipping BSPsBSPs in 4.2in 4.2

Geode

CEPC

Keywest

Aspen

SG2_VR5500

DBAu1500
Eagle

XSC1BD

Samsung_2410
ARMIntegrator

N/A

BSP

x86

x86

SH3

SH4

MIPSII
MIPSII_FP
MIPSIV
MIPSIV_FP

MIPSII

ARMV4
ARMV4I

ARMV4I

ARMV4

Kernel

National Pompano Platform
Any Geode based platformGeode GX1 series

Generic CE/PC machineX86 (Intel, AMD, Via, SiS…)

x86

Hitachi US7729 HARP SDB (“Keywest”) SH3

Hitachi US7750 HARP SDB (“Aspen”) SH4

SHx

NEC Solution Gear SeriesMIPS IV flavors (NEC
Vr5432)

Alchemy DBAu1500 SDB (web release)
NEC DDB-Vr4122 (Eagle) SDB MIPS II flavors

MIPS

Intel Lubbock Platform (DBPXA250)Intel XScale

Samsung SMDK-2410 SDB
ARM Integrator AP Dev Kit

Samsung S3C2410
ARM920

Ship CSP for SA11x1Intel SA1110

ARM

SDB NameCPUFamily

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 12

Windows CE 4.2Windows CE 4.2

• 32-Bit operating system

• Supports hard real-time applications

• Implements common Win32 API with some extensions

Virtual Memory BasicsVirtual Memory Basics

• Windows CE has a single flat 32-bit virtual address
space that is shared by the entire system.

• “Virtual Addresses” refer to any address referenced by
the CPU while the Memory Management Unit (MMU) is
active.

• Every valid virtual address must map to some real
physical address that can be used to identify a physical
resource such as ROM, RAM, Flash, CPU registers,
SoC components, bus-mapped components, etc.

• “Physical Addresses” are not directly addressable by the
CPU except during initialization before the kernel has
enabled the MMU.

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 13

Virtual Memory TerminologyVirtual Memory Terminology

• Statically Mapped Virtual Address
– A virtual address with a virtual-to-physical mapping that never

changes
– Can be used by kernel-mode code

• Dynamically Mapped Virtual Address
– A virtual address with a virtual-to-physical mapping that can

change (although it is not required to change)
– Can be used by user-mode and kernel-mode code
– Most addresses in lower 2 GB are dynamically mapped, A few

addresses in upper 2 GB are dynamically mapped.

3232--bit Virtual Address Spacebit Virtual Address Space

• The shared virtual address
space keep be considered as
two parts, kernel and user
address spaces, each 2 GB.

• Kernel space is only
accessible by threads with
privileged access, called
KMode.

• User space is accessible by all
threads but is limited by
process space protection.

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 14

Kernel Address SpaceKernel Address Space

• Kernel Address Space
contains statically mapped
virtual addresses, NK.EXE
pseudo-slot, and other kernel
mappings.

• Up to 512 MB of physical
resources can be mapped in
the main statically mapped
areas.

• Static Mapping under OEM
control for ARM and x86
(OEMAddressTable).

• Static Mapping under CPU
control for SHx and MIPS.

0x8000 0000

Statically Mapped Virtual
Addresses : CACHED

Statically Mapped Virtual
Addresses : UNCACHED

Unused

Statically Mapped Virtual
Addresses : OEM Additional

Kernel Addresses : KPAGE,
Trap Area, others

0xA000 0000

0xC000 0000

0xC200 0000

0xC400 0000

Slot 97 : NK.EXE

0xE000 0000

0xFFFF FFFF

User Address SpaceUser Address Space

• User address space is divided
into 64 “slots”

• Each slot is 32 MB

• A slot is a basic unit for virtual
memory maintenance within
the Windows CE kernel

• First 33 slots are used for
processes

• Remaining slots for object
store, memory mapped files
and resource mappings

0x0000 0000
Slot 0

Slot 1

Slot 2

Slot 62

Slot 63

0x01FF FFFF

0x03FF FFFF

0x0200 0000

0x0400 0000

0x05FF FFFF

0x7C00 0000

0x7DFF FFFF

0x7E00 0000

0x7FFF FFFF

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 15

Slot Usage GroupingSlot Usage Grouping

• Slot 0 is an alias to the currently running process’s slot.

• A maximum of 32 processes can be running at one time.

• Threads may only access
addresses within slots in which
they have permissions.

• Object store is protected from all
access outside of the filesystem.

• All memory mapped files are
accessible by all threads.

• DLL Resources are accessible
by all threads.

Process SlotProcess Slot

• 32MB Process slot is shared
by DLL, process, and all of its
virtual allocations.

• All virtual allocations are 64kB-
aligned.

• Pages may be committed
within a virtual allocation on a
page granularity (4kB).

• DLL allocations in a slot start
at the high addresses and
grow down.

• Process and general
allocations start at the low
addresses and grow up.

0x0000 0000
Guard Section (64k) + UserKInfo

Process Code + Data
0x0001 0000

0x01FF FFFF

General Virtual Memory Allocations

DLL Virtual Memory Allocations

Thread Stack

Process Heap

Thread Stack

Process VirtualAlloc() calls

ROM DLLs : R/W Data

RAM DLL + Overflow ROM DLL : Code +
Data

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 16

Mapped Virtual Address (Dynamic)Mapped Virtual Address (Dynamic)

• VirtualCopy
– Maps process specific static virtual memory
– Usable by the process that performed the mapping
– Extends the OS memory support beyond 512MB
– Specifies the physical to virtual mapping
– Must first allocate virtual space with VirtualAlloc
– Physical memory is mapped to the

VirtualAlloc’d area
– Used for mapping

• Device I/O
• Device specific memory

Physically Contiguous AllocationsPhysically Contiguous Allocations

• Contiguous physical memory
– AllocPhysMem
– Guaranteed to be contiguous if successful
– Succeeds only if the allocation size exists
– No reshuffling of virtual to physical mappings
– Useful for DMA, sharing to external devices

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 17

System API CallsSystem API Calls

• Many Win32 calls are calls to EXEs and not DLLs
• COREDLL provide a way to link a system API call to an

system EXE
• Every system call causes an exception that is caught by

the Kernel
– Undefined address exception or CPU trap

• The Kernel then determines which EXE can fulfill
the request

• During the whole process the user mode thread is the
same thread that executes in the system EXE’s process
space

• As a thread migrates its access rights change to reflect
what process it is operating in

System API CallsSystem API Calls

COREDLL.DLLCOREDLL.DLL

MyApp.ExeMyApp.Exe NK.ExeNK.Exe GWES.EXEGWES.EXE

GetDC()GetDC()
Kernel Kernel
TrapTrap

Kernel Kernel
CallCall

GetDC()GetDC()

Jump to Jump to
GWESGWES

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 18

Thread MigrationThread Migration

• The shared address space design partners tightly with the
mechanism for system API calls (thread migration).

Process Pointer MappingProcess Pointer Mapping

• Kernel maps all parameters explicitly typed to be
pointers between user process and system process
– Does not map pointers embedded in structures
– Mapping should only need to occur for drivers in Device

Managers/Services space or in the OAL

• Memory buffer provided to a driver under Device
Manager does not have direct access to the memory
– The memory is owned by the calling process

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 19

Process Pointer MappingProcess Pointer Mapping

• You must map the memory into the Device Manager
Space
– Use MapPtrToProcess

• Need to know calling process
• Maps a slot 0 based address to the caller address space

• To find out the calling process
– Use GetCallerProcess

ISR Versus ISTISR Versus IST

• ISR
– Interrupt Service Routine
– Kernel mode service
– Two types

• Static
• Installable

• IST
– Interrupt Service Thread
– User mode thread

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 20

Static ISRStatic ISR

• Built into the Kernel
– X86 and ARM can use C code
– SHx and MIPS must use ASM

• Limited register availability

• Communication path is from ISR to IST only
– Single return value that can trigger an event
– A buffer can be shared between the ISR and IST but the location

must be predefined

• Nested ISR support
– Based on the CPU
– Based on the OEM’s initialization

• Stack is provided by the Kernel
– Limited size based on CPU

Installable ISRInstallable ISR

• Can be loaded into the Kernel dynamically
– LoadIntChainHandler

• Called from the IST or application
– Several ISRs can service the same IRQ

• Loads a C DLL
– DLL must be self contained

• Not reference any other DLLs

• IOControl path
– Communication path from IST to ISR

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 21

Installable ISRInstallable ISR

• Shared memory
– Can be allocated dynamically when ISR is installed using an

user defined kernel IOCTL

• OEM determining what IRQs can be serviced
– Calls NKCallIntChain to pass the IRQ to installed ISRs

• ISRs are processed in order they were installed
– First ISR to service the IRQ returns a SYSINTR_* value

• Stops further processing

• Limited stack size base on CPU

Windows CE 4.x InterruptsWindows CE 4.x Interrupts

H
W

O
A

L
K

ernel
Thread

Set EventSet Event

ISTIST
ProcessingProcessing

Enable IDEnable IDISHISH

All HigherAll Higher
EnabledEnabled

All All Enabled Enabled
Except IDExcept ID

All All
EnabledEnabled

I-ISRISRISR ISRISR

ISRISR ISRISR
IDID

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 22

Kernel SchedulerKernel Scheduler

• Preemptive multi-tasking
– Thread runs until quantum completes
– Thread runs until higher priority thread is ready to run

• Round-robin at a priority level

• Quantum is defined by the OEM and the Application

• Priority boosting only to correct priority inversion

Where Latency OccursWhere Latency Occurs

• For an ISR
– The amount of time that interrupts are turned off
– Time required for the kernel to vector to the ISR handler

• Saving register, etc.

• For an IST
– Time spent in an ISR and processing for an ISR
– Time spent in a KCall
– Time to schedule a thread

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 23

Worst Case IST LatencyWorst Case IST Latency

• General case
– In the thread scheduler KCall and take an IRQ that will trigger a

different IST
– Software assisted TLB/cache miss on the IST thread

Improvements To LatencyImprovements To Latency

• Non-preemptable code reduced
– Large Kcalls split apart and state saved to resume correctly
– Reduces the latency for an IST

• Kernel data structures moved to statically mapped virtual
address
– This avoids any TLB misses associated with accessing

its data

• Special-cased ISTs
– An event registering for an IST can only be used in a

WaitForSingleObject

• New priority inversion model reduces the
upper bounds
– Was a large KCall

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 24

Nested InterruptsNested Interrupts

• Based on support by the CPU and/or additional
hardware

• X86
– Single CPU interrupt with a PIC
– PIC sets up priority nesting
– PIC will mask appropriate IRQs
– Interrupt is enabled before the ISR is entered

• ARM
– Single CPU interrupt with an Interrupt register

• No built in concept of priority IRQ
– Except FIQ

– Interrupts are not turned on before entering ISR
• OEM can re-enable CPU interrupt

Nested InterruptsNested Interrupts

• SHx
– IntrPrio array

• Defines the priority of each IRQ
– Kernel masks all lower and current IRQs

• MIPS
– IntPriority array

• Defines the priority of IRQ
– IntrMask

• Defines what IRQs are masked when an
IRQ fires

• 0x3f turns off nesting

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 25

Thread PrioritiesThread Priorities

• 256 total priorities
– Old 8 priorities are now the lowest priorities
– Old priority APIs access the bottom 8 priorities

• Set(Get)ThreadPriority
– APIs to access full priority range

• Ce(Set/Get)ThreadPriority
– Top 248 can be protected by the OEM

• Priority THREAD_PRIORITY_TIME_CRITICAL and
priority 0 are not run-to-completion
by default

Thread SchedulingThread Scheduling

• Highest priority runnable thread is always scheduled

• Run for complete quantum or until blocked
or preempted

• Preempted only by higher or same priority threads

• Run-to-completion threads are only preempted by higher
priority threads

• Priorities are only boosted to correct
priority inversion

• Nested inversion special cased
– Single level support when all threads are unable to run

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 26

Thread QuantumThread Quantum

• Per thread quantum

• Default set by the OEM in the OAL
– dwDefaultThreadQuantum

• APIs to set Quantum
– Ce(Set/Get)ThreadQuantum

• Quantum of 0 sets thread to
run-to-completion
– At any priority
– Preempted only by higher priority threads

System TickSystem Tick

• 1 ms timer tick in normal mode

• Tick interrupt does not necessarily causes a reschedule
– Check to determine if a reschedule is required

• Sleep(N) will generally wake up in N to N + 1 ms

• In Idle mode system tick is reset to next scheduled event
– On system tick check for reschedule

or nop

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 27

Full Kernel ModeFull Kernel Mode

• All threads are running in kernel mode

• No need to call SetKMode

• Entire system is open to all processes
– All statically mapped virtual addresses

• Virtual protection is still in place

• Optimizations for high traffic functions

MiscellaneousMiscellaneous

• Periodic timers
– Win32 multimedia timers
– Max resolution is 1ms
– Uses Sleep and SleepToTick

Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 28

ResourcesResources

• Windows Operating Systems
– Embedded DevCon 2003 Resource CD

