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IntroductionIntroduction

Smart Identification and Smart Identification and UbiCompUbiComp??

• Identify Objects
– Typically: from distance
– Or: in a secure way

• Purpose
– Associate specific actions, attributes etc. with an object
– Authenticate an object, person
– …

• What techniques do we know?



Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm, University of Trier 3

Automatic Identification SystemsAutomatic Identification Systems
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Biometrics
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Components of an RFID SystemComponents of an RFID System

RFID Reader RFID Tag
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Data

Energy
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Application

~ 1m

~3cm

Example: 
smart label
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RFID Systems (1)RFID Systems (1)

• Communication principles
– Full-duplex and half-duplex

• Transponder sends during energy transmission
• Techniques needed to detect weak signals from tag

– Sequential
• Turn off field of the reader; tag sends during reader is idle
• Tag needs a capacitor or battery supply

• Data volume
– From a few bytes to several Kbytes
– Special 1-bit transponders

• Only two states: Transponder in field or not
• Possible applications? → anti-theft system

RFID Systems (2)RFID Systems (2)

• Read/Write and Read-Only transponders
– EEPROM: writing has a high energy consumption, max. 100000 

reads possible
– FRAM: writing consumes only a fraction of energy and is 1000 

times faster compared to EEPROMs, difficult to produce
– SRAM: fast write cycles, needs battery supply

• Control of Read-Write and Authorization
– State Machine: Inflexible to function changes
– Micro processor architecture (smart-card OS)

• Energy Supply
– Passive: Energy supply by the magnetic/electric field of the 

reader
– Active: Battery supply needed
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RFID Systems (3)RFID Systems (3)

• Range
– Close coupling: ~1cm
– Remote coupling: ~1m
– Long-range system: >1m

• Techniques to read data from tag
– Backscatter 1:1
– Load modulation: 1:1
– Subharmonic: 1:n
– Harmonic: n 

Tag Styles (1)Tag Styles (1)

• Disks and coins
– Few millimeter to 10cm

• Glass Transponder
– Identification of animals
– Length: 12-32mm

• Plastic Package Transponder
– Car industry
– Very robust
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Tag Styles (2)Tag Styles (2)

• Tool- and Bottle-identification
– Designed to work even on metallic surfaces
– Mechanic stability, Vibrations, Heat

• Coil-on-Chip
– Smallest tag technology: 3x3mm^2

• Key fob
– Anti-theft device
– Access systems

• Watches, Wristbands

Tag Styles (3)Tag Styles (3)

• ID-1 Cards
– Large coil surface → increased communication 

range
– Sometimes used: micro-wave transponder cards 
→ same dimensions but width sometimes > 
0,8mm

• Smart Labels
– Transponder coil on 0,1mm plastic foil
– Flexible enough to be placed on each item
– Maybe a replacement of barcodes

• New applications possible
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ApplicationsApplications

Common ApplicationsCommon Applications

• Public Transport and Ticketing
• Access Control
• Logistics
• Animal identification
• Anti-theft system
• Real time measurements in sports
• Inventory Control in supermarkets
• Electronic payments
• Waste Collection
• Industry automation
• Medicine
• Future Applications?
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Bridging the Physical and Virtual World (1)Bridging the Physical and Virtual World (1)

• Augmenting Books and 
documents

• Computational device may load 
virtual document
– Related Web Content
– New Versions
– Link to an order form

• Business Cards
– Present users website
– Open empty mail with filled

address field

Bridging the Physical and Virtual World (2)Bridging the Physical and Virtual World (2)

• Extending a documents functionality
– E.g. dictionary invokes language translation 

program on currently selected document 
(context awareness)

– More general office tools invoke electronic 
services upon documents

• User identification
– Apply user preferences to the current context

• Augmenting the environment
– Tags: Computer sensing the location
– Reader: Location sensing the computer
– E.g. display document only in certain

locations, show last document opened
here, …
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Bridging the Physical and Virtual World (3)Bridging the Physical and Virtual World (3)

• Augmenting bookmarks
– Physical bookmark referencing a particular page 
– Write remarks on physical object
– How to store the current link? → additional tag 

for both operations (simple user interface 
mechanism)

• The wristwatch
– Extend functionality of every day objects 

unambiguously
– E.g. Striking the clock on top of the tablet PC 

opens a calendar application

Bridging the Physical and Virtual World (4)Bridging the Physical and Virtual World (4)

• More experimental: The Photo Cube
– 3D augmented object
– Container with six related information sets
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RFID ChefRFID Chef

• Smart Kitchen Appliances

• Distributed Systems Group ETH Zurich

Play Demo (5min)

Communication PrinciplesCommunication Principles
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Communication PrinciplesCommunication Principles

• Communication reader → tag performed easy (enough 
energy at the reader)

• Energy supply and Communication tag → reader?

Inductive Coupling: Energy SupplyInductive Coupling: Energy Supply

• Magnetic field of reader induces voltage in tag coil
– Can be interpreted as transformer

• Capacitor for oscillating circuit can be made of 10µm foil
• Typically 10mW at 1cm (close coupling), 100µW at 10cm

– More powerful processors possible for close coupling (e.g. strong security 
demands)
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Inductive Coupling: CommunicationInductive Coupling: Communication

• Tag coil absorbs energy from the magnetic field
• Resistor at the tag antenna results in changing voltage at reader 

antenna
• Use inductive coupling to modulate data

Backscatter CouplingBackscatter Coupling

• Magnetic field substituted by electromagnetic field at 
~λ/2π (λ wavelength in m)
– Inductive coupling only used within a few meters

• Energy supply degrades significantly if electromagnetic 
coupling is used

• Backscatter systems have their own power supply

• Use received energy to switch power states
– When leaving the electromagnetic field stand-by

• Battery power used for processing only

• Communication via Backscatter modulation
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Backscatter ModulationBackscatter Modulation

• Electro magnetic waves are partly reflected by antenna
• Reflection properties can be changed by a resistor
• Receiver filters received electromagnetic signal received 

from tag
• (Harmonic, subharmonic)

Data Integrity and SecurityData Integrity and Security
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Commonly used Coding and Modulation SchemesCommonly used Coding and Modulation Schemes

• Coding: map sequence of bits 
to a signal which is optimized 
to the characteristics of the 
transmission media in use

• Coding schemes
– Non-return-to-zero (NRZ)
– Manchester
– Unipolar
– Differential bi-phase (DBP)
– Miller
– Differential
– Pulse pause (PP)

• Modulation: modify parameters 
of a high frequency carrier 
signal used to transmit binary 
information

• Modulation Schemes
– Amplitude Shift Keying (ASK)
– Frequency Shift Keying (FSK)
– Phase Shift Keying (PSK)

An Example for Coding and ModulationAn Example for Coding and Modulation

• NRZ-coding of a bit string

• ASK-modulation of the NRZ-code

0 1 0 0 1 1 0 1

L H L L H H L H
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The Collision ProblemThe Collision Problem

• Sender broadcasts signal to all transponders in vicinity

• All Transponders may answer simultaneously
– Interference in a single shared medium
– Can we apply CSMA/CD or CSMA/CA?

Reader

T1

T3

T2

T5

T4

NRZ+ASK and CollisionsNRZ+ASK and Collisions

0 1 0 0 1 1 0 1

0 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1

Transponder 1

Transponder 2

Receiver
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Parity Check and LRCParity Check and LRC

• Parity Check
– Produce always an even/uneven number of bits
– E.g. 0010 → 0010-1

• Longitudinal Redundancy Check LRC

• Simple to implement by using XOR elements

• Weak error detection method
– Parity: even number of inverted bits
– LRC: blocks may mutually affect each other, block permutations

46 72 61 6E 7A 41

46 72 61 6E 7A 41

Sender

Receiver

⊕ LRC

00 LRC-Check⊕

F7  Start

111101110000

XOR 10011

011011

XOR 10011

010001

XOR 10011

00010100

XOR 10011

0011100

XOR 10011

Result      1111

Cyclic Redundancy CheckCyclic Redundancy Check

• Divide by generator polynomial • Use Result as start value for 
next calculation

• CRC-calculation with Data and 
CRC results in CRC value 0

• Simple Error check

• May detect multiple errors

• Implementation with linear 
feedback register and XOR 
elements

46 72 616E7A E580

46 72 616E7AE580 00 00
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Does PC, LRC, and CRC Solve Multiple Access?Does PC, LRC, and CRC Solve Multiple Access?

The ALOHA PrincipleThe ALOHA Principle

• Periodically send data packet with random quiet periods

• If collisions happen occasionally, the data of each 
transponder eventually gets through

• How good is this solution?

Transponder 1

Transponder 2

Transponder 3

Receiver
ok okerror error error

…

ok
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Throughput of ALOHAThroughput of ALOHA

λλ 2−= eS

The Time Needed to Read all TranspondersThe Time Needed to Read all Transponders

2.7s1.8s800ms8

1.6s1.2s500ms6

1.0s750ms300ms4

500ms350ms150ms2

99.9%99%average# transponders
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Improving ALOHAImproving ALOHA

• Suppose unique data packet size d

• Packet transmission start at time t

• Collision in ALOHA another transponders willing to 
send within time interval [t-d,t+d] (T<=2*d)

• How can we improve throughput?

t t+dt-d

transponder 1
transponder 2

time

Slotted ALOHASlotted ALOHA

• Reader introduces timeslots

Transponder 1

Transponder 2

Transponder 3

Receiver
ok okerror error error

…

ok
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Slotted ALOHASlotted ALOHA

• Transponders restrict transmission to time slot intervals

• Collision in slotted ALOHA another transponders 
willing to send within time interval T <= d

Transponder 1

Transponder 2

Transponder 3

Receiver
ok ok error

…

okok ok ok ok

Throughput of slotted ALOHAThroughput of slotted ALOHA

λλ 2
1

−= eS

λλ −= eS2
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Further Improving ALOHAFurther Improving ALOHA

• Signal strength depends on distance between tag an 
reader

• Data packet may dominate others in the same slot →
Capture Effect

• Success depends on bias b

• Throughput increases with decreasing bias

• E.g. b=1 on next slide

Reader

Tag 1

Tag 2

Throughput of slotted ALOHA with CaptureThroughput of slotted ALOHA with Capture

⎟
⎠
⎞

⎜
⎝
⎛

+
−

= b
b

eS 1
2

λ

λ

λλ −= eS1



Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm, University of Trier 22

Applying the ALOHA principle to Applying the ALOHA principle to RFIDsRFIDs

READER:

Loop n times {

provide k time slots;

for each time slot {

if received id and

no collision {

store id;

}

}

for each new id {

read/send data from tag;

}

}

TAG:

On id request with k slots {

randomly select slot i;

send id in slot i;

}

On data provided/requested {

store/send data;

}

Dynamic Slotted ALOHADynamic Slotted ALOHA

• How many time slots have to be reserved
– Optimum: #time slots = #tags
– To less: frequent collisions
– To much: long waiting time

• Reader may dynamically increase number of slots if 
collision occurred: 1,2,4,8,16,…

• Break requesting ID when first ID is received correctly

• (Currently mute all tags which have been handled)
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Deterministic AntiDeterministic Anti--Collision SchemesCollision Schemes

• ALOHA and its improvements are stochastic solutions
– It remains a probability that tag are not found

• Are there deterministic solutions?
– E.g. successively address each possible tag and wait for reply

• Simple to implement
• Scalability?

– Binary tree search algorithm
– Algorithms may reach 100% in theory

Manchester CodeManchester Code

• Deterministic algorithm described subsequently needs 
exact bit position of a collision

• Not possible with NRZ

• What about Manchester encoding?
– Constant signal during a bit period not allowed

0 1 0 0 1 1 0 1
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Manchester Coding and CollisionsManchester Coding and Collisions

0 1 0 0 1 1 0 1

0 1 0 1 1 0 0 1

0 1 0 ? 1 ? 0 1

Transponder 1

Transponder 2

Receiver

The Idea of the Binary Search The Idea of the Binary Search AlgortihmAlgortihm

• Simultaneously request IDs of all transponders

• Inspect bitwise collisions, e.g. 1X0X

• Set of all possible IDs {1000, 1001, 1100, 1101}

• At least one transponder ID is within {1000, 1001}

• Mute all transponders with ID >= 1100

• Request IDs of remaining transponders

• Suppose again collision 100X

• Remaining possible IDs {1000, 1001}

• Read data by explicitly addressing transponder 1000
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The Binary Search AlgorithmThe Binary Search Algorithm

turn on all transponders;

request serial number x from all transponders;

while at least one transponder replied {

while collision detected {

determine leftmost collision bit in x;

mute all transponders with that bit set to 1;

request serial number x from remaining transponders;

}

request data from unique transponder x;

turn off transponder x from further use;

activate all muted transponder;

request serial number from all transponders not turned off;

}

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001
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Iteration 1.1

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001

Iteration 1.2

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001
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Iteration 1.3

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001
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Iteration 2.1

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001

Iteration 2.2

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001



Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm, University of Trier 29

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001

Iteration 3.1

An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001
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An Example of the Binary Search AlgorithmAn Example of the Binary Search Algorithm

-

0 1

0 110

0 1 0 1 0 1 0 1

010 110001

Dynamic Binary Search by ExampleDynamic Binary Search by Example

• Iteration 1.1:

• Iteration 1.2:

• Iteration 1.3:

• …

request

request

10110010
10100011
10110011
11100011

110010
100011
110011

0011

request

10

1010

reader transponder
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Possible Threats to RFIDPossible Threats to RFID--SystemsSystems

• Unauthorized read out of data
– In order to duplicate
– Or modify data

• Using a faked tag in order to get unauthorized access
• Eavesdropping of a communication and replay of the 

sequence of signals

• Complexity of cryptographic functions increases 
production cost and communication cost
– Not all applications need security (e.g. Industry automation)
– Inversely forgoing security concerns may be critical in other 

applications (e.g. ticketing, wireless payment)

Mutual Symmetric AuthenticationMutual Symmetric Authentication

• Three Pass Mutual Authentication (challenge-response)
– All tags and readers share the same common key K

• Reader protects application of faked data
• Tag protects its data for unauthorized read out

READER: send GET_CHALLENGE to TAG;

TAG:    create random number A;

send A to READER;

READER: create random number B;

encipher token T=(A,B,DATA) with K and send it to TAG;

TAG:    decipher received token T’ with K;

if A and received A’ are not equal then break;

create random number C;

encipher token S=(C,B) with K and send it to READER;

READER: decipher received token S’ with K;

if B and received B’ are not equal then break;
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Properties of the ChallengeProperties of the Challenge--Response ProtocolResponse Protocol

• Shared Key is never transmitted
• Transmission of two random number avoids 

retransformation of tokens in order to get the key is not 
possible

• Any encryption algorithm may be used
• Replay attack is not possible due to creation of random 

number at both tag and reader
• Random numbers may be used as session key in 

subsequent communication

• Unfortunately, all devices share the same key

Solution: Derived KeysSolution: Derived Keys

• Each tag should use a different key
• During production of tag create key out of master key 

and transponder ID

• Reader asks for tag ID
• Reader calculates specific key from tag ID and master 

key
• Authentication as described above but using derived key 

• Master key only stored in reader device!



Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm, University of Trier 33

Secure data transmissionSecure data transmission

• RFID technology uses private 
key cryptography
– Streamcipher, Blockchiffre

• Streamcipher frequently used
– One-time-pad would be the best
– Pseudo-random generator used 

in practice to create the key
• Session key as seed

– Linear feedback register
– Encipher by simple XOR 

calculation

1011011001

0110100011

data

key

+

sender

0110100011key

1101111010msg

send

+

receiver


