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IntroductionIntroduction

Introducing Sensor NetworksIntroducing Sensor Networks

• Definition of sensor networks
– Large number of small and low cost sensor nodes

• sensing, processing, and wireless communication capabilities
– Densely deployed inside/close to the phenomenon
– Node position not engineered or predetermined

• Deployment in inaccessible terrain or disaster relief
• Protocols and algorithms with self-organization capabilities
• Nodes have to cooperate and partially process sensed data
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Introducing Sensor NetworksIntroducing Sensor Networks

• Sensor Types
– Seismic
– Magnetic
– Thermal
– Visual
– Infrared
– Acoustic
– Radar

• Sensing
– Continuous
– Event detection
– Location sensing
– Actuator control

• Monitored ambient conditions
– Temperature
– Humidity
– Vehicular movement
– Lightning condition
– Pressure
– Soil makeup
– Noise levels
– Presence/absence of objects
– Mechanical stress level
– Object speed, direction, size

Possible Sensor Network ApplicationsPossible Sensor Network Applications

• Environmental applications
– Biology, meteorology, 

geophysics
– Agriculture
– Forest fire detection
– Flood detection

• Health applications
– Interfaces for the disabled
– Telemonitoring of human 

physiological data
– Drug administration in 

hospitals

• Home applications
– Home automation
– Smart environment

• Other commercial applications
– Environmental control in office 

buildings
– Interactive museums
– Monitoring car thefts
– Managing inventory control

• Military Applications
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Example: The Great Duck IslandExample: The Great Duck Island

• Monitoring Storm Petrel activity at Great Duck Island 
• Dilemma for Biologists

– Need multiple measurements of biological parameters at
frequent intervals

– potentially harming their subjects and biasing results
• Solution: "Mote Sensing", using small wireless probes

– Array of individual Motes, capable of recording temperature, humidity, pressure, 
and other environmental data

– Allows to follow nesting activity throughout the season with minimal impact on 
the birds

• Researchers will need to enter the colony only at the beginning of the study 
to actually insert the Motes into burrows

• Data transmitted to a base computer at Eno Station for up-link to the web.
• Potential for conservation efforts in small, isolated locations where any 

human presence is likely to be disruptive, or with species that are 
particularly sensitive to disturbance.

• http://www.greatduckisland.net

Example: Smart Buildings Admit Their FaultsExample: Smart Buildings Admit Their Faults

• Make buildings, bridges, and other structures aware of their own health
• Matchbox-sized Motes can be built to sense numerous factors

– light and temperature for energy saving applications
– location to dynamic response (reveal the structural soundness)

• If sensors cost less than $1 and can be installed in minutes, "dense
packs" of them can surround all critical beams and columns, providing
extremely detailed structural data.

• Recent test at UC Berkeley's Richmond Field Station seismic research
laboratory

– 15 Motes installed in the wood framing of a three-story model apartment building
– Constructed on a "shake table" that simulates earthquakes
– During controlled quake, the Motes gathered seismic data from multiple locations in the 

building
– Information was then compared to discern the way the tremors spread through the building 

and how the structure reacted.
• TinyOS already enables Motes to automatically establish their own network and 

share information as soon as they're switched on
• Eventually, Smart Dust Motes will gain enough brainpower to process the raw data 

they collect before it even leaves the building. 
– Goal: Let the sensors discuss the data among themselves and tell us where the problems 

are
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Sensor Networks compared to AdSensor Networks compared to Ad--Hoc NetworksHoc Networks

• Special class of ad-hoc networks 

• Most ad-hoc networking techniques not well suited

• Difference to ad-hoc networks
– Number of nodes several orders of magnitude higher
– Sensor nodes are deployed densely
– Sensor nodes are prone to failures
– Frequent topology changes
– Communication mainly based on broadcast paradigm
– Limited power, computational capabilities, and memory
– Sensor nodes have no global identification

Communication ArchitectureCommunication Architecture
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A typical Sensor Network ArchitectureA typical Sensor Network Architecture
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Design FactorsDesign Factors

• Fault tolerance
– Sensor node may fail or be blocked

• Lack of power
• physical damage
• environmental interference

– Failure of individual node should not affect the complete network
– (Node failure can be modeled by a Poisson process:              )

• Scalability
– Number of nodes may reach an extreme value of millions
– Node density may be in order of hundreds in a region
– (Density can be calculated as:                               )
– Schemes must be scalable and utilize high node density

tetR λ−=)(

ARNR /)()( 2πµ =

Design FactorsDesign Factors

• Production Cost
– Cost of single node very important to justify cost of the network

• Otherwise traditional tethered sensors would be the alternative
– Sensor node should be less than 1€

• E.g. Bluetooth 10 times more expensive than the targeted price

• Hardware constraints
– Sensor node subunits need to fit in a matchbox-sized module

• Required size may be smaller than a cubic centimeter
• Light enough to remain suspended in the air

– Additional constraints
• Extreme energy efficient
• Low production cost, dispensable
• Autonomous, operate unattended, adaptive to the environment
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Design FactorsDesign Factors

• Sensor network topology
– Predeployment and deployment

• Thrown in as a mass or placed one by one
– Post-deployment

• Topology changes due to position changes, reachability, available 
energy, malfunctioning, task details

– Redeployment of additional nodes
• Redeployment at any time to replace malfunctioning nodes or due 

to changes in task dynamics

• Environment
– Home or large building, interior of a large machinery, bottom of

an ocean, contaminated field, …

Design FactorsDesign Factors

• Transmission media
– Radio

• Used by much of the current hardware
• Must be available worldwide (e.g. 2.4GHz, or 916MHz)

– Infrared, or optical media:
• License-free, robust to interference from electrical devices, cheaper
• Line of sight between sender and receiver

• Power consumption
– Limited power sources: <0.5Ah, 1.2V
– Replenishment of power source might be impossible
– Sensor node lifetime coupled with battery lifetime
– Power consumption in three domains: sensing, communication, 

and data processing 
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Protocol StackProtocol Stack

• Stack used by sink and sensors
• Management planes

– Coordinate sensing task and lower overall 
power consumption

• Power management
– E.g. turn off receiver after message 

receipt
– Disconnect from routing task due to low 

power
• Mobility management

– Track movement of nodes in order to 
maintain routes back to the user

• Task Management
– Schedule sensing task to a specific region
– Nodes with more power are used more 

frequent

Physical layer
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Network layer

Transport layer

Application layer
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Sensor Node HierarchySensor Node Hierarchy

Special Purpose Sensor NodesSpecial Purpose Sensor Nodes

• Cubic-millimeter-scale devices (see Smart Dust)
• Extremely limited energy resources
• Typical duty cycle 0.1%-0.5%
• Example scenario: track mobile assets

– Trigger an alarm when asset leaves facility without authorization
– Periodically report its presence for years

• Example: Spec node (Hill et al. UC Berkley)
– Single-chip node for ultra low cost and low power consumption
– 2.5 mm x 2.5 mm
– Includes data RAM (< 4Kb), minimal onboard processing, and 

communication
– Can interface only with simple sensors; Specialized low bandwidth 

sampling or advanced RF tag
– Communicate over short distance (Bandwidth <50 kbps)
– Current version has only transmitter (future work: transceiver)



Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 11

Generic Sensor NodesGeneric Sensor Nodes

• Simple and specific function
• Require long term battery operation
• Typical duty cycle 1%-2%
• E.g. sensors placed on windows and doors for intrusion detection
• Typical operating characteristics

– Size 1-10cm^3
– General-purpose sensing and

communications relay
– Bandwidth <100kbps
– Flash <0.5Mb ,RAM <10kb

• Notable example: Berkley
motes → Mica2

– Off-the-shelf components
– Most popular sensor network research platform
– Can be connected with a wide range of sensors
– Can receive messages from Spec nodes
– Processing power can easily keep track of several dozen Spec-based tags

HighHigh--Bandwidth Sensor nodesBandwidth Sensor nodes

• Handle high bandwidth of data coming from complex 
sensors (video, acoustic, vibration, …)

• May require battery power but often plugged into public 
power system for long-term operation

• Example iMote (Intel)
– Bluetooth transceiver (~500Kbps)
– On chip RAM ~128Kb
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Gateway Sensor nodesGateway Sensor nodes

• End-point for mesh of sensor nodes
– Containing database/aggregation software to process and store 

individual sensor readings

• Provide an interface into many existing network types

• Example platform Stargate (Intel)
– 400 MHz X-scale architecture
– Megabytes of RAM
– Gigabytes of persistent storage
– Capable to interface directly to Mica2 and iMote
– Bridging the data to 802.11, Ethernet, …
– Can provide a Web front-end to the sensor network

Operating SystemsOperating Systems

• Main objective: Power management
– Individually powered subsystems (radio, CPU, I/O, …)
– Powered on only when in use

• TinyOS (UC, Berkeley)
– For platforms with limited CPU power and memory (special 

purpose and generic sensor nodes)

• Embedded Version of Linux
– For gateway and high-bandwidth nodes
– Multiprocessing, preemptive task switching, virtual memory
– Device drivers to bridge to legacy networks (Ethernet, 802.11, 

…)
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The Need for ComponentThe Need for Component--Based ArchitecturesBased Architectures

• Traditional layered abstractions lead to inefficiencies in 
power usage

• Give applications fine-grain control over underlying 
hardware
– Hardware functions exposed to applications and middleware

• TinyOS designed to allow direct access as needed

• Linux: Special-purpose drivers
– Processor registers, general-purpose I/O lines, timing and state 

of peripherals

• Tradeoff: fine-grain access vs. portability
– High-level interpreters

Platform Road MapPlatform Road Map

• Influence of Moore’s Law on device classes
– Generic Sensor, High-bandwidth Sensor, and Gateway nodes: 

increase in performance (memory, communication bandwidth) 
for a given power and cost budget

– Special-purpose Sensor nodes: reduce power and cost 
requirements while maintaining same performance

• Design of new low-power CMOS radios
– low data rates and low power consumption
– Specialized hardware support reduces CPU peak load

• Preferred sensor network deployment strategy (TinyOS)
– Assemble custom protocols form building blocks
– Start with generic protocols and customize as needed
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Current Sensor Network PlatformsCurrent Sensor Network Platforms

Current Sensor Network PlatformsCurrent Sensor Network Platforms
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Data Centric RoutingData Centric Routing

What Means Data Centric Routing?What Means Data Centric Routing?

• Classic Communication Patterns
– Unicast, Broadcast, Multicast
– Addressing of individual node or set of individual nodes

• What if individual nodes disappear?

• New Data-Centric communication paradigms arise
– Anycast, Geocast, Marketplace-Communication

• Two possible Data-Centric Routing Approaches
– Disseminate interest about data
– Advertise available data and wait for request

• Can be position-based and topology-based or both
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How to Address Nodes with no ID?How to Address Nodes with no ID?

• Attribute-Based naming
– Rather query an attribute than an individual node
– E.g. the areas where the temperature is over 50°C, all available 

information about a running application in a certain area, …

• Data aggregation often needed to merge data received from many 
nodes (data fusion)
– Some specifics may not be left out (e.g. location of the data)

+ +

+

…

Flooding and GossipingFlooding and Gossiping

• Flooding: When receiving packet for the first time, 
repeat forwarding, if maximum hop or destination 
not reached
– Reactive technique
– Does not require costly topology maintenance

• Deficiencies
– Implosion
– Overlap
– Resource Blindness: Does not take energy 

resources into account

• Gossiping: forward to one random selected 
neighbor only
– Avoids implosion problem
– Message propagation takes a long time

R

S

Implosion Problem

R
Overlap Problem
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GeocastingGeocasting

• Reach nodes in a certain area

• Geocasting Components
– Routing towards the area

• Single-path, multi-path
• Restricted directional flooding

– Dissemination inside the area
• Location-aware flooding
• Reducing redundant transmissions

• Geocast with guaranteed 
delivery?

Marketplace PatternMarketplace Pattern

• Place offer in a geographic 
area with high node density

• Send request towards the 
same area

• Code execution at the 
marketplace to reduce 
message complexity

• Background dissemination of 
marketplace locations

• Moving towards the 
marketplace
– Geographic routing

• Communication on the 
marketplace
– Topology based routing
– Efficient flooding

Offer 
Data

Request 
Data

Marketplace
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Sensor Protocols for Information via Negotiation (SPIN)Sensor Protocols for Information via Negotiation (SPIN)
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• Advertise 
metadata of 
sensed 
phenomenon

• Interested 
neighbor replies 
with a request

• Send full data to 
interested 
neighbors only
– Utilizing 

broadcast 
property

Directed DiffusionDirected Diffusion

• Set up gradients for data to flow from source nodes to interested 
sink node

• Sink sends out interest
– Attribute value pairs describing sensing task

• Interest Propagated through the network
– Cached in each node to build gradients back to the sink

• Data from sources is sent back along interest gradient paths
– Data aggregation performed locally at intermediate nodes

Sink Source

(a) Propagate interest

Sink Source

(b) Set up gradient

Sink Source

(c) Send data
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Geographic Hash Table (GHT) (1)Geographic Hash Table (GHT) (1)

• Idea: hashing on geographical positions

• Put() and Get() operations map to the same device near 
to the hashed location

• Mapped device stores data

• Use of planar graph routing to find the same device

Source Sink
F1 F2 F4

F5

F6

F3

Geographic Hash Table (GHT) (2)Geographic Hash Table (GHT) (2)

• Problem: changing network topology
– Storing node might disappear
– Put() and Get() may retrieve different storing nodes

Source Sink
F1 F2 F4

F5

F6

F3
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Geographic Hash Table (GHT) (3)Geographic Hash Table (GHT) (3)

• Solution
– Replication along the face perimeter
– Periodic refresh messages traveling along the perimeter
– New home node selected when

• Refresh packet is missing for a certain timeout
• Node closer to destination receives refresh packet

D
E

F

B

C
A

home

replica

D
E

F

B

C

D
E

F

B

C

(a) (b) (c)

Security in Sensor NetworksSecurity in Sensor Networks
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Building a Secure SystemBuilding a Secure System

• Traditional techniques can’t be applied
– Limited energy, computation, and communication capabilities
– Added risk of physical attack
– Interact closely with physical environment

• E.g. Public-key cryptography (like Diffie-Hellman)?
– Arbitrary node pairs can set up secure key
– Key establishment beyond sensor network capabilities

• Chance to address sensor network security from the 
start
– No standalone component added to the system

Key Establishment and Trust SetupKey Establishment and Trust Setup

• Network wide shared key
– Simple solution
– Problem: Single node may reveal the secret key

• Single shared key to establish set of link keys
– One per pair of network nodes
– Erase shared key afterwards
– Problem: Does not allow addition of new nodes

• Preconfigure with unique symmetric shared key between 
each pair of nodes
– Scalability? → each node stores n-1 keys (n(n-1) keys need to 

be established)
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Key Establishment and Trust SetupKey Establishment and Trust Setup

• Set up keys with others using a trusted base station
– Each node shares a single key with the base station
– Problem: base station is a single point of failure

• Random-key predistribution protocol
– Large pool of symmetric keys
– Random subset of the pool distributed to each sensor node
– Two nodes search their pools to determine whether they share a 

common key
– If existent, use key to establish a session key
– Problem: attacker may compromise enough keys to reconstruct 

the complete key pool

Privacy Aspects in Sensor NetworksPrivacy Aspects in Sensor Networks

• Sensor technology may be used for illegal surveillance
– Abuse of existing network

• Node capture
– Deployment of new networks

• Affordable small devices
– Data collection, coordinated analysis

• E.g.Tracking of people and vehicles over long periods of time
– E.g. Employers → employees, shop owners → customers, 

neighbors → neighbors, law enforcement agencies → public 
places

• Providing awareness of the presence of sensor nodes!
– Enabled by a mix of societal norms, new laws, and technological 

responses
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Additional Security IssuesAdditional Security Issues

• Robustness to communication denial of service
– Broadcasting a high-energy signal to disrupt network’s operation
– More sophisticated: violate MAC protocol (e.g. continuously request 

channel access with a RTS signal)
– Standard defense: spread-spectrum communication (cryptographically 

secure spread-spectrum radios not commercially available)
• Secure routing schemes needed

– Denial-of-service attacks often possible (injecting malicious routing 
information)

• Resilience to node capture
– Physical security in traditional networks
– Sensor nodes often placed in locations easily accessible to attackers

• Extract cryptographic secrets, modify programming, replace with malicious 
nodes

– Solutions: state replication, majority voting, gather multiple redundant 
views before reporting an event

– E.g. routing along multiple independent paths and checking consistency 
of received packets at destination node

HighHigh--Level Security PrimitivesLevel Security Primitives

• Secure group management
– Sensing often performed by a group of nodes (e.g. tracking a 

vehicle)
– Protocols needed for securely admitting new group members, 

secure group communication, authentication of group’s 
computation, …

• Intrusion detection
– Methods from classical networks applicable? 
– Sensor networks need fully distributed and inexpensive solutions
– Secure group management is a promising approach

• Secure data aggregation
– E.g. randomly sampling a small fraction of nodes and checking 

that they behaved properly
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Sensor Information Networking Sensor Information Networking 
Architecture (SINA)Architecture (SINA)

SINA Middleware ConceptSINA Middleware Concept

• Allows applications to
– Issue queries and command 

tasks
– Collect replies and results
– Monitor changes within the 

network

• Functional components
– Hierarchical clustering
– Attribute-based naming
– Location awareness

Querying

SINA middleware

Sensor Applications

Answers Events Tasking,
monitoring
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Hierarchical ClusteringHierarchical Clustering

• Autonomous clustering
– Energy-efficiency
– Scalable operations

• Form a hierarchy of clusters

• Election of cluster head
– Performs information filtering, fusion, 

and aggregation

• Re-elect cluster head when current 
cluster head fails or runs out energy
– Reorganize clustering structure if 

necessary

• Each node forms a one-level cluster 
when hierarchy is not applicable

AttributeAttribute--Based Naming and Location AwarenessBased Naming and Location Awareness

• Sensor queries are data-centric
– E.g. what area has a temperature above 50°C?
– E.g. what is the average temperature in the SE quadrant?

• Attribute-based naming preferred addressing scheme
– [type=temperature, location=N-E, temperature=50]

• Location sensing by GPS
– Economical reason: subset of GPS equipped node function as 

location reference
– Alternative: optical tracking in a small region, …

• How are the above questions performed using the three 
functional components?



Ubiquitous Computing Summer 2004

Hannes Frey and Peter Sturm 26

Information AbstractionInformation Abstraction

• Network node viewed as data sheet

• Cells referred via unique attribute-based names
– Initially small number of predefined cells
– New cells can be created to

• Obtain information from other cells, invoke system-defined 
functions, or aggregate information from other nodes

• Cell content can either be
– Single value (e.g. remaining battery power)
– Multiple values (e.g. history of  temperature changes in the past 

30 min)

Sensor Query and Tasking Language (SQTL)Sensor Query and Tasking Language (SQTL)

• Interface between applications and middleware
• Procedural scripting language

– Hardware access: getTemperature, turnOn, …
– Location awareness: isNeighbor, getPosition, …
– Communication: tell, execute, …
– Processing of asynchronous events

• Message receipt: receive
• Periodical timer: every
• Time expiration: expire

• SQTL messages
– Executed by any node in the network

• SQTL wrapper in order to target specific nodes
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Arguments of a SQTL wrapperArguments of a SQTL wrapper

Sensor Execution Environment (SEE)Sensor Execution Environment (SEE)

• Message dispatching
– Inspect “receiver” argument of SQTL

• ALL_NODES: rebroadcast to every node
• NEIGHBORS: send to one-hop neighbors only

– Messages with matching criteria accepted only (late binding)

• “tell” message used to deliver result back to front-end 
node
– Using upstream node from where the script came

• Message forwarding
– Apply translation to unique link-layer address whenever possible
– Use broadcast otherwise
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BuiltBuilt--In Declarative Query LanguageIn Declarative Query Language

• SQL like alternative to explicitly writing procedural SQTL 
code

• Example: ask every cluster head to create a new 
attribute cell “avgTemperature” containing average 
temperature over all cluster members:

SELECT avg(getTemperature())
AS avgTemperature
FROM CLUSTER-MEMBERS

• Technique referred as device databases

Information Gathering MethodsInformation Gathering Methods

• Information gathering primitives
– Sampling Operation
– Self-Orchestration
– Diffused Computation Operation

• Maximize quality of responses
• Minimize network resource consumption
• Avoiding response implosion problem
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Sampling operationSampling operation

• Introduce response probability

• Enhancement: Cluster head determines response 
probability depending on node density

SamplingOperation(ENBC Expected Number of Responses per Cluster)

SelfSelf--Orchestrated OperationOrchestrated Operation

• Avoid collision by deferring response
– randomly
– Depending on distance to destination

SelfOrchestratedOperation(replyProb, kh)
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Diffused ComputationDiffused Computation

• Information 
gathering 
computed by 
SQTL scripts

• Collect data from 
child nodes

• Aggregate en 
route to the front 
end node

DiffusedComputation(timeout)

Supporting a Mobile UserSupporting a Mobile User

• (a) constantly update current location with resolver: 
increases traffic load

• (b) progressive footprint chaining: only inform nearby 
sensors about current location
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Smart DustSmart Dust

BerkeleyBerkeley’’s Smart Dust Projects Smart Dust Project

• Explore the limits on size and power consumption in 
autonomous sensor nodes
– Sensing, communication, computation, and power supply within 

a cubic millimeter
– Could be small enough to remain suspended in the air
– Last for days

• Networking and application challenges
– Nodes must consume extremely low power
– Communication at bit rates of kilobits
– Need to operate at high volumetric densities
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Smart Dust MotesSmart Dust Motes

Major Challenge: Energy ConsumptionMajor Challenge: Energy Consumption

• Power consumption limited to microwatt levels
– Millimeter sized thick film battery stores energy in the order of 1 

Joule
– Continuous energy consumption over one day may not exceed 

roughly 10 microwatts

• Power management strategies needed
• Energy scavenging whenever possible

– Solar cell and sun light: 1 Joule per day
– Solar cell and room light: 1 millijoule per day

• Sensing and processing can be achieved at low power
• Ultra-low-power communication represents a critical 

challenge
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Dust Mote Communication: MotivationDust Mote Communication: Motivation

• Candidate communication technologies
– Radio frequency (RF)
– Optical transmission techniques

• RF Communication
– Limited space for antennas → extremely short wavelength
– Short-wavelength communication needs a lot of power
– Radio transceivers are relatively complex circuits

• Modulation, bandpass filtering, demodulation circuitry
• Transmission multiplexing of multiple dust motes: time-, frequency-, 

code-division multiple access

• Motes are thus based on an optical communication 
technique

Dust Mote Communication: Optical TransmissionDust Mote Communication: Optical Transmission

• Free-space optical transmission
– Requires significantly lower energy than RF communication
– Line-of-sight!

• Reasons for power advantage
– Simple baseband analog and digital circuitry
– No modulators, demodulators, and active baseband filters

• Short wavelength of visible or near-infrared light can be 
emitted by millimeter scale device

• Space-division multiplexing
– Base-station transceiver (BTS) with image receiver can decode 

simultaneous transmissions at different locations
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Dust Mote Communication: Optical TransmissionDust Mote Communication: Optical Transmission

• Dust motes may block line-of-sight
– Unlikely for small mote sizes

• Different dust motes must be received on different pixels at the BTS
– E.g. covering an 17x17 meter area with 256x256 pixel camera →

motes separated with a 6.6 centimeter square

• Possible communication
– Active: laser diode and beam steering

• Peer-to-peer communication between dust motes
• Power consumption: long ranges (kilometers) at low data rates, high bit 

rates (megabits per second) over shorter distances
• Power consumption of semiconductor laser in the order of 1 milliwatt

– Short-duration burst-mode communication
• Protocol to aim beam towards receiving parties needed

– Passive: corner-cube retroreflector
• No optical power supply needed

Corner Cube Corner Cube RetroreflectorRetroreflector (CCR)(CCR)

• Incident ray of light reflected 
back to source

– Provided ray is within a certain 
angle to cube body diagonal

• Misaligned mirror leads to an 
interrupted ray

• Electrostatic actuator deflects 
one of the mirror at kilohertz 
rates

• Communication
– 1 kilobit/sec
– 150 meters
– 5-milliwatt illuminating laser

• Inherently directional
– Important implications on 

routing strategies
– Apply several CCRs on a mote
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Communication with the Base StationCommunication with the Base Station

Shrinking Mote Size: Flashy DustShrinking Mote Size: Flashy Dust

• 138 mm^3 uni-
directional 
communication 
and sensing 
(ambient light) 
mote
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Shrinking Mote Size: Daft DustShrinking Mote Size: Daft Dust

• 63 mm^3 bi-
directional 
communication 
mote

• four CCR's for 
better 
hemispherical 
coverage 

Shrinking Mote Size: Golem Dust Shrinking Mote Size: Golem Dust 

• solar powered 
mote with bi-
directional 
communications 
and sensing 
(acceleration 
and ambient 
light)

• 11.7 mm^3 total 
circumscribed 
volume

• ~4.8 mm^3 total 
displaced 
volume
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Shrinking Mote Size: Clever DustShrinking Mote Size: Clever Dust

• Ultra-low energy 
microcontroller 
developed for 
Smart Dust that 
consumes an 
average of 
12pJ/instruction in 
0.25µm CMOS.


