Rechnerstrukturen

2. Grundlagen

Inhalt

- ▼ Elektronische Schalter
- ▼ Elementare Gatterfunktionen
- ▼ Schaltnetze
- ▼ Schaltwerke

Motivation

- Unterscheidung von zwei Zuständen
 - Strom / kein Strom
 - Spannung / keine Spannung
 - Positiv / Negativ geladen
 - Reflektierend / nicht reflektierend
 - ..
- Technische Umsetzung
 - Mechanisch
 - Elektromechanisch
 - Elektronisch
 - Licht
- ▼ Abbildung auf
 - binäre Zahlen
 - Wahrheitswerte
 - Zeichen

2.3

Elektronische Schalter

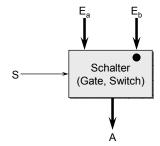
▼ Elementar Wechselschalter

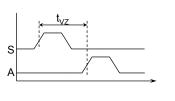
$$A := E_a$$

else

$$A := E_b$$

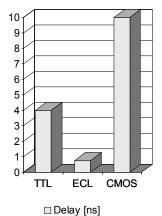
- Vereinfachungen
 - Ein Eingang konstant 0 oder 1
- ▼ Verzögerungszeit t_{∨7}
 - wird durch die eingesetzte Technologie bestimmt
 - wenige Nanosekunden typisch





Realisierungsvarianten

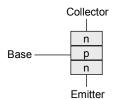
- ▼ Transistor-Transistor-Logik (TTL)
- ▼ Emitter-Coupled-Logik (ECL)
- Metal Oxid Semiconductor (MOS)
- Unterschiede
 - Verzögerungszeit
 - Versorgungsspannung
 - 5 V (TTL)
 - 2.8 3.3 V (MOS)
 - Integrationsdichte
 - 0.13μm 0.18μm (MOS)
 - 0.08μm demnächst (MOS) (vgl. Haar = 100μm)
- Materialien
 - Silicium, Aluminium
 - in Zukunft ev. GaAs, Kupfer

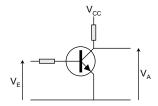


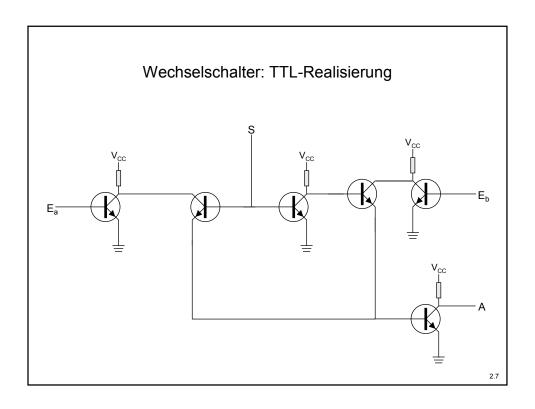
2.5

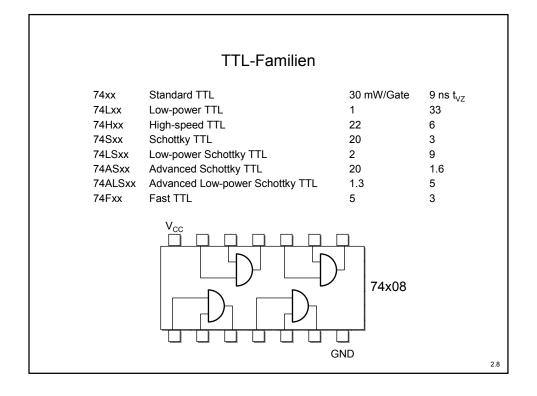
Bipolare Transistoren

- ▼ npn- und pnp-Transistor
 - Dotierung von Silicium
- ▼ Schaltverhalten
 - $V_{E} = 0 V, V_{A} = 3 V$
 - $V_E = 3 V, V_A = 0.2 V$
- ▼ Hohe Ströme
 - p-Kanal muß mit Elektronen gefüllt werden
 - Wärmeentwicklung
 - Dicke der Leiterbahnen
- Geringe Kapazitäten
- ▼ Hohe Schaltgeschwindigkeit





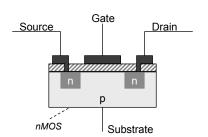


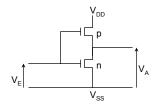


Feldeffekttransistoren

- **FETs**
 - NMOS (n-Kanal)
 - PMOS (p-Kanal)
 - CMOS (complementary MOS)
 - NMOS und PMOS paarweise
- Schaltverhalten

 - $\begin{array}{ll} & \mathsf{V_E} = \mathsf{0V}, \, \mathsf{VA} = \mathsf{V_{DD}} \\ & \mathsf{V_E} = \mathsf{V_{DD}} \,, \, \mathsf{VA} = \mathsf{0V} \end{array}$
- ▼ Längere Verzögerungszeit
 - Kapazitives Element
- ▼ Geringe Spannungswerte
- Extrem geringe Ströme

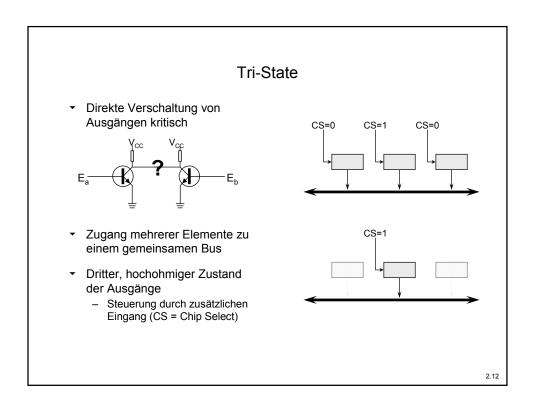


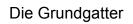


2.9

Wechselschalter: CMOS-Realisierung







▼ UND

E1	E2	A
0	0	0
0	1	0
1	0	0
1	1	1

▼ ODER

E1	E2	A
0	0	0
0	1	1
1	0	1
1	1	1

▼ NICHT

2 1

NAND, NOR, XOR

- NIANID

•	NAND			
		E1	E2	Α
		0	0	1
		0	1	1
		1	0	1
		1	1	0

▼ NOR

R			
	E1	E2	Α
	0	0	1
	0	1	0
	1	0	0 0
	1	1	0

▼ XOF

XUR			
7.01.	E1	E2	Α
	0	0	0
	0	1	1
	1	0	1
	1	1	0

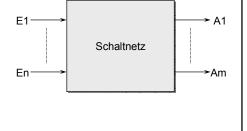
Äquivalenz

- ▼ Ist XOR ein Grundgatter?
- Wieviele Grundgatter braucht man minimal, um beliebige boolesche Ausdrücke zu beschreiben?

2.15

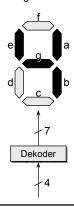
Schaltnetze

- ▼ Schaltung aus logischen Grundgattern mit
 - n Eingängen
 - m Ausgängen
 - Rückkopplungsfrei
- ▼ 2n Eingangskombinationen
- m boolesche Ausdrücke über E1 ... En
- Wahrheitstabelle



Wahrheitstabelle 7-Segment-Dekoder

- ▼ 4 Eingänge
 - Binärzahl $e_3 e_2 e_1 e_0$
- 7 Ausgänge
 - Austeuerung der Segment a bis g



e ₃	e_2	e ₁	e ₀	a :	b	С	d	е	f	g	
0	0	0	0								
0	0	0	1								
0	0	1	0								
0	0	1	1								
0	1	0	0								
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	0	0	0								
1	0	0	1								
1	0	1	0								
1	0	1	1								
1	1	0	0								
1	1	0	1								
1	1	1	0								
1	1	1	1								

2 18

7-Segment-Dekoder (cont.)

▼ Wie erhält man boolesche Ausdrücke für a bis g?

$$a(e_3, e_2, e_1, e_0) =$$
 $b(e_3, e_2, e_1, e_0) =$
 \vdots
 $g(e_3, e_2, e_1, e_0) =$

7-Segment-Dekoder (cont.)

▼ Gatterschaltung:

2.22

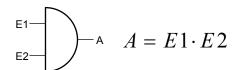
Disjunktive und konjunktive Normalformen

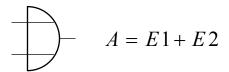
- ▼ Disjunktive Normalform
 - Summe von Produkten (minterme)
- ▼ Minterm
 - 1 Zeile in Wahrheitstabelle
 - Eingänge mit 1: e
 - Eingänge mit 0: e negiert
- Konjunktive Normalform
 - Produkt von Summen (maxterme)
- Maxterm
 - 0 Zeile in Wahrheitstabelle
 - Eingänge mit 1: e negiert
 - Eingänge mit 0: e

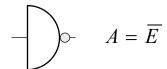
e2	e1	e0	а
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Boolesche Algebra

- ▼ Dualität zwischen
 - Gatterschaltungen
 - Booleschen Ausdrücken
- ▼ Positive Logik
 - 0 = False
 - 1 = True
- ▼ Gesetze







Gesetze

▼ Operationen mit 0 und 1

$$X + 0 = X, X + 1 = 1$$

 $X \cdot 0 = 0, X \cdot 1 = X$

▼ Idempotenz

$$X + X = X$$
$$X \cdot X = X$$

Komplementärgesetz

$$X + \overline{X} = 1$$
$$X \cdot \overline{X} = 0$$

Gesetze (cont.)

▼ Kommutativitätsgesetz

$$X + Y = Y + X$$
$$X \cdot Y = Y \cdot X$$

Assoziativitätsgesetz

$$(X + Y) + Z = X + (Y + Z)$$
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

▼ Distributivgesetz

$$X \cdot (Y+Z) = X \cdot Y + X \cdot Z$$
$$X + (Y \cdot Z) = (X+Y) \cdot (X+Z)$$

2 28

Gesetze (cont.)

Vereinfachungsgesetze

$$X \cdot Y + X \cdot \overline{Y} = X, (X + Y) \cdot (X + \overline{Y}) = X$$
$$X + X \cdot Y = X, X \cdot (X + Y) = X$$
$$(X + \overline{Y}) \cdot Y = X \cdot Y, (X \cdot \overline{Y}) + Y = X + Y$$

▼ DeMorgan's Gesetz

$$\overline{X + Y + \ldots + Z} = \overline{X} \cdot \overline{Y} \cdot \ldots \cdot \overline{Z}$$
$$\overline{X \cdot Y \cdot \ldots \cdot Z} = \overline{X} + \overline{Y} + \ldots + \overline{Z}$$

Umformung und Minimierung

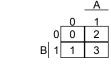
- ▼ Gründe
 - Begrenzungen bei der Schaltungstiefe
 - Minimaler Materialeinsatz
 - Bestimmter Gattervorrat
 - Elektrische Eigenschaften
 - Platzbeschränkungen
 - ...
- Algebraische Umformungen
- Algorithmische Verfahren
 - Karnaugh-Diagramme (1-4 Eingangsvariablen, 1 Ausgang)
 - Quine-McCluskey-Verfahren (n Eingänge, 1 Ausgang)
 - Bündelminimierung (n Eingänge, m Ausgänge)

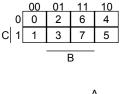
2.30

Karnaugh-Diagramme

- ▼ Graphische Methode
- ▼ max. 4 Eingänge ABCD
- ▼ Übertragung der Wahrheitstabelle
 - Position im Diagramm entspricht ABCD als Binärzahl

Α	В	С	a	
0	0	0	0	
0	0	1 0 1 0	0	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	= (2,3,4,6) =

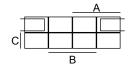


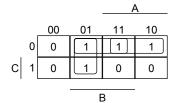


			<i>F</i>	١
	00	01	11	10
0	0	1	1	1
C 1	0	1	0	0
		E	3	

Minimierung im Karnaugh-Diagramm

- ▼ Legende = Gray-Code
 - benachbarte Zeilen und Spalten ändern sich nur in einem Bit
- Zusammenfassen von Gruppen zu 1, 2, 4 oder 8 Einsen
 - 1 = keine Minimierung
 - 2 = Term mit 2 aus 3Eingängen
 - 4 = Term mit 1 aus 3Eingängen
 - 8 = Funktion konstant 1
- ▼ Diagramm als Torus auffassen!



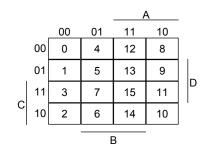


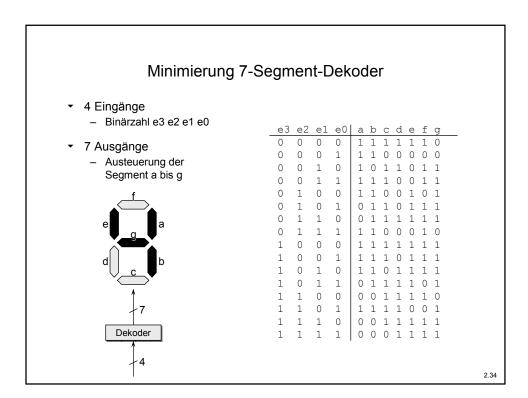
$$= \overline{A}B + B\overline{C} + A\overline{C}$$

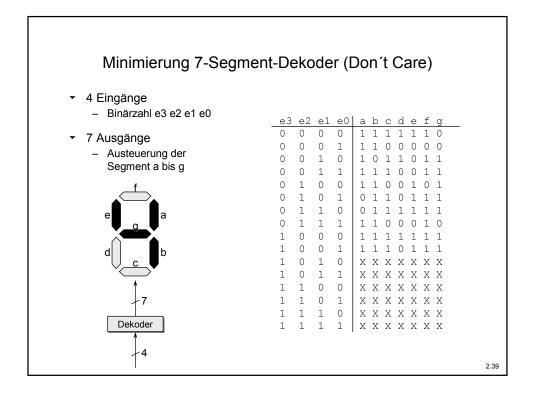
2.32

4 Eingänge

- Zusammenfassen von Gruppen zu 1, 2, 4, 8 oder 16 Einsen
 - 1 = keine Minimierung
 - 2 = Term mit 3 aus 4Eingängen
 - 4 = Term mit 2 aus 4Eingängen
 - 8 = Term mit 1 aus 4 Eingängen
 - 16 = Funktion konstant 1
- ▼ Torus







Bemerkungen

- ▼ Bei bis zu vier Eingangsvariablen ideale Minimierungstechnik
- ▼ 5 und 6 Eingänge theoretisch auch möglich
 - 5: zwei übereinander liegende 4er-Diagramme
 - 6: vier übereinander liegende 4er-Diagramme
 - insgesamt aber praktisch nicht handhabbar
- ▼ Konjunktive Minimalform ebenfalls möglich
 - Zusammenfassen der 0-Gruppen

2.44

Quine-McCluskey-Methode

- Algorithmisches Verfahren
 - beliebig viele Eingänge
 - 1 Ausgang
- ▼ 3 Schritte
 - Initialisierung
 - Ermittlung der Primimplikanten
 - Ermittlung der minimalen Überdeckung
- Beispielfunktion
 - Segment a

eЗ	e2	el	e0	а	b	С	d	е	İ	g	
0	0	0	0	1	1	1	1	1	1	0	
0	0	0	1	1	1	0	0	0	0	0	
0	0	1	0	1	0	1	1	0	1	1	
0	0	1	1	1	1	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	0	1	
0	1	0	1	0	1	1	0	1	1	1	
0	1	1	0	0	1	1	1	1	1	1	
0	1	1	1	1	1	0	0	0	1	0	
1	0	0	0	1	1	1	1	1	1	1	
1	0	0	1	1	1	1	0	1	1	1	
1	0	1	0	1	1	0	1	1	1	1	
1	0	1	1	0	1	1	1	1	0	1	
1	1	0	0	0	0	1	1	1	1	0	
1	1	0	1	1	1	1	1	0	0	1	
1	1	1	0	0	0	1	1	1	1	1	
1	1	1	1	0	0	0	1	1	1	1	

1. Initialisierung

 Sortierung der Minterme aufsteigend nach Anzahl 1

> 0001 (1) 0010 (2) 0100 (4) 1000 (8) 0011 (3) 1001 (9) 1010 (10) 0111 (7) 1101 (13)

0000

(0)

2.46

2. Primimplikanten

- Vergleich jedes Element einer Gruppe mit allen Elementen der nächsten Gruppe
- Übernahme in die nächste Spalte, wenn nur in einer Position verschieden
- ▼ Gewählte Zeilen markieren (ok)

0000	(0) ok	000- 00-0	(0,1) (0,2)
0001	(1) ok	0-00	(0, 4)
0010	(2) ok	-000	(0,8)
0100	(4) ok		
1000	(8) ok	00-1	(1,3)
		-001	(1, 9)
0011	(3) ok	001-	(2,3)
1001	(9) ok	-010	(2,10)
1010	(10) ok	100-	(8, 9)
		10-0	(8, 10)
0111	(7) ok		
1101	(13) ok	0-11	(3,7)
		1-01	(9, 13)

Abbruchkriterium

- Markierung mit der nächsten Spalte wiederholen
- ▼ Bis auf eine Position gleich (- = -)
- ▼ Abbruch, wenn keine weitere Spalte entsteht

```
000-
     (0,1) ok
                  00-- (0,1,2,3) *
0 - 0
     (0,2) ok
                  -00- (0,1,8,9) *
0-00 (0,4) *
                  -0-0 (0,2,8,10) *
-000
     (0,8) ok
00-1 (1,3) ok
-001 (1,9) ok
001- (2,3) ok
-010 (2,10) ok
100- (8,9) ok
10-0 (8,10) ok
0-11 \quad (3,7) \quad *
1-01 (9,13) *
```

3. Minimale Überdeckung

Sammeln der mit * markierten Primimplikanten:

```
0-00 (0,4)

0-11 (3,7)

1-01 (9,13)

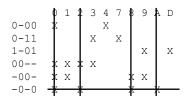
00-- (0,1,2,3)

-00- (0,1,8,9)

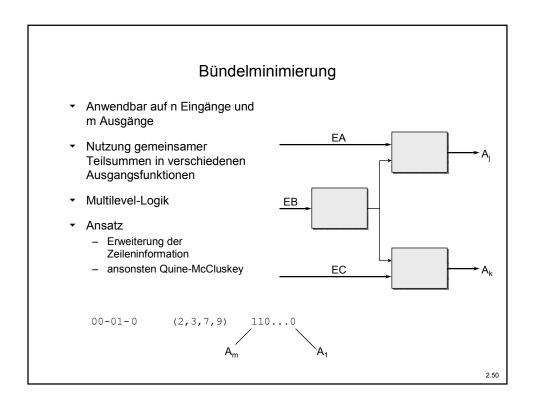
-0-0 (0,2,8,10)
```

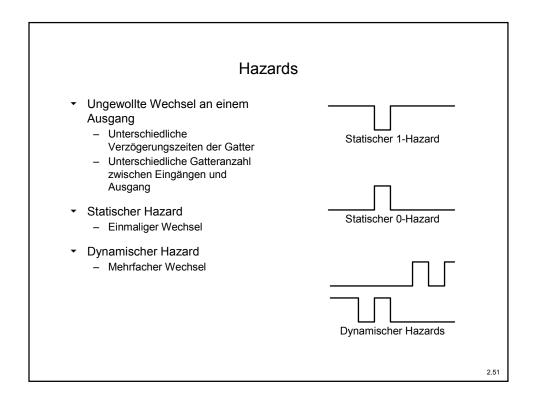
- Nur einmal markierte Spalten suchen
 - essentielle Primimplikanten
 - Zusätzliche Spalten streichen
- Schritt auf unmarkierten Spalten wiederholen

```
0 1 2 3 4 7 8 9 A D
0-00 X X X
0-11 X X X
1-01 X X X
00-- X X X X
-00- X X X X
X X
```



2.49



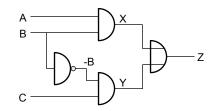


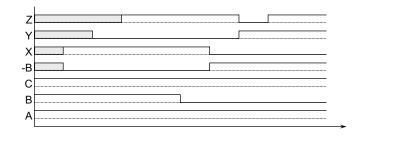
Statischer Hazard

- ▼ Nur 1-Bit-Wechsel
- ▼ Beispiel

$$Z = AB + \overline{B}C$$

- Wechsel 111 nach 011 (ABC)

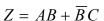


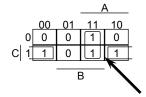


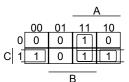
2.52

Eliminierung statischer Hazards

- ▼ Grundlage Karnaugh-Diagramm
- ▼ Merkmal für 1-Hazard
 - Wechsel des Primimplikanten bei 1-Bitwechsel der Eingabe
 - Lösung: Redundante Implikanten
- ▼ Merkmal für 0-Hazard
 - Karnaugh-Diagramm für konjunktive Normalform
 - Analog 1-Hazard
- Eliminierung statischer Hazards auch in mehrstufigen Schaltungen möglich





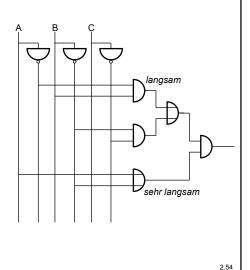


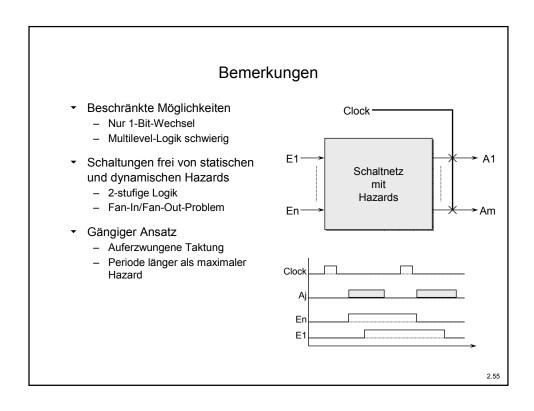
Dynamischer Hazard

Beispiel

$$(\overline{A}B + \overline{B}\overline{C})(A + \overline{B})$$

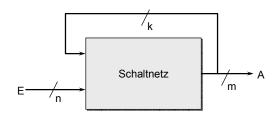
- Wechsel 000 nach 010 (ABC)
- ▼ Grund
 - Unterschiedlich lange Wege von einem Eingang zu einem Ausgang
- ▼ Eliminierung schwierig





Schaltwerke

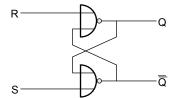
- Kombinatorische Schaltnetze
 - Ausgang hängt nur von den Eingängen ab
 - Unterschiedliche Laufzeiten (Hazard-Problematik)
- Schaltwerk
 - Ausgang hängt von den Eingängen und den vorherigen Ausgaben ab
- Aspekte
 - Speichern möglich
 - Synchron / Asynchron
 - Schwingungen
 - Metastabilität
 - Selbsttaktung
- ▼ Elementarbausteine
 - Latch
 - Flip-Flop

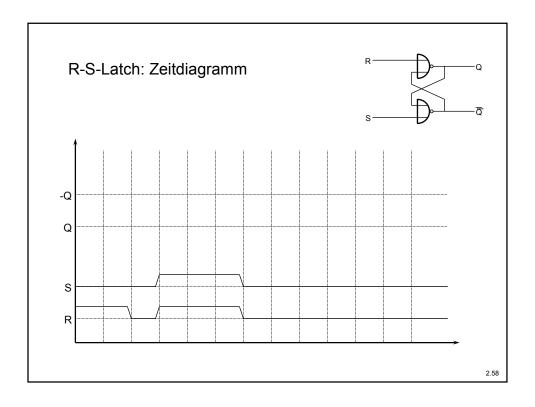


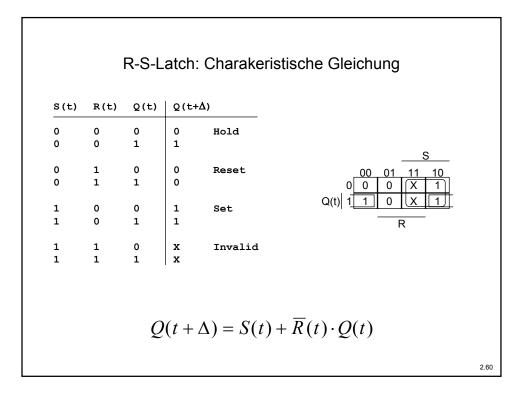
2.56

Elementarspeicher: R-S-Latch

- Kreuzverschaltete NOR-Gatter
 - R: Reset
 - S: Set
 - Ausgang Q mit Komplement
- Ausgang zurücksetzen
 - R=1, S=0
- Ausgang setzen
 - R=0, S=1
- ▼ Wert speichern
 - R=0, S=0



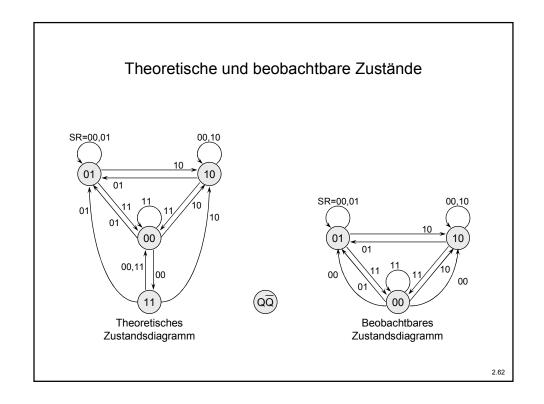




Probleme

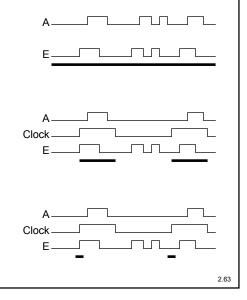
- ▼ Verbotene Eingangskombination
 - R=S=1
 - Beide Ausgänge sind 0
- ▼ Verbotener Übergang
 - R und S gleichzeitig von 1 nach 0
 - Oszillation der Ausgänge
- Wie lang kann die Oszillation dauern?
 - Theoretisch?
 - Praktisch?
- ▼ Race-Condition

S	R	Q
0	0	Speichern
0	1	0
1	0	1
1	1	Instabil



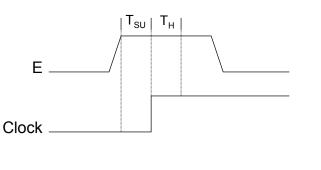
Steuerungsarten

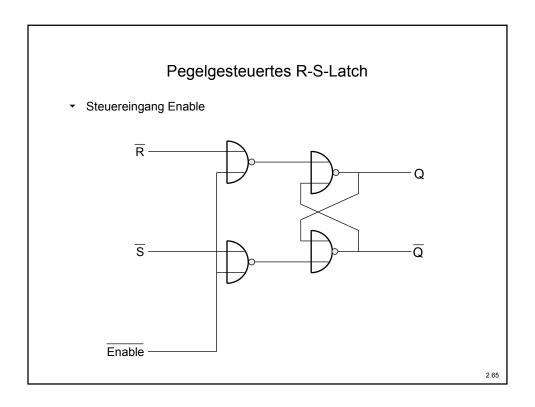
- Wann wirken die Eingänge auf die Ausgänge
- Drei Varianten
 - Ungesteuert (R-S-Latch)
 - Pegelgesteuert
 - Flankengesteuert
 - Positiv (0 nach 1)
 - Negativ (1 nach 0)
- ▼ Zusätzliche Steuerungsleitung
 - Enable
 - Clock

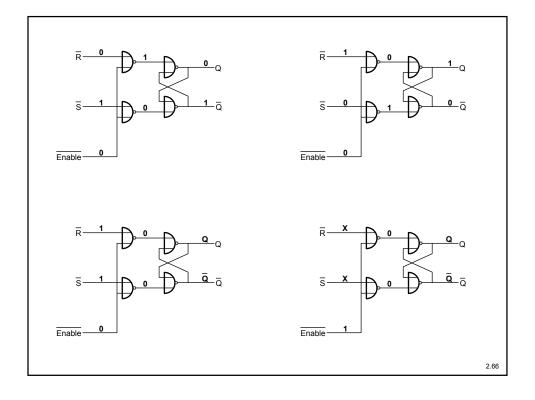


Flankensteuerung

- Stabiler Eingang in einem Zeitfenster vor dem Flankenwechsel
 - Setup-Zeit: T_{SU}
 - Hold-Zeit: T_H
- Verhalten ansonst undefiniert
- Typische Werte (TTL)
 - T_{SU} = 20nsT_H = 5ns

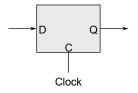


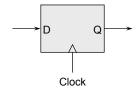




Latch vs. Flip-Flop

- ▼ Latch
 - Ungesteuert
 - Pegelgesteuert
- Änderung der Ausgänge bei Änderung der Eingänge
- ▼ Flip-Flop
 - Positiv flankengesteuert
 - Negativ flankengesteuert
 - Master/Slave
- Änderung der Ausgänge wird durch den Steuerungseingang getriggert

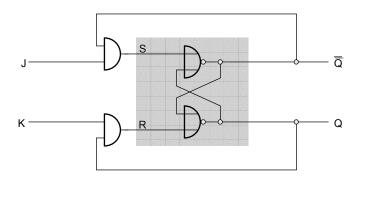


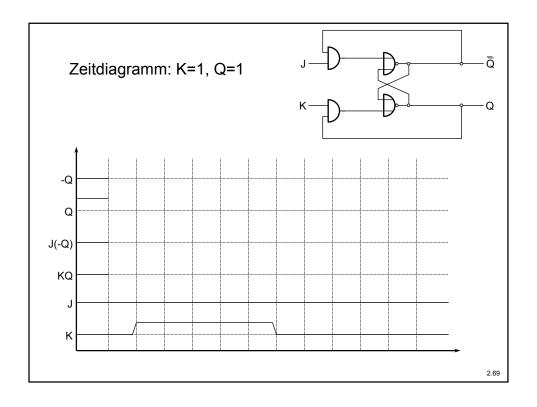


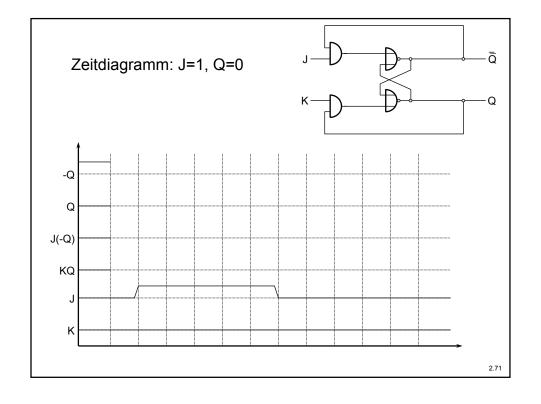
2.67

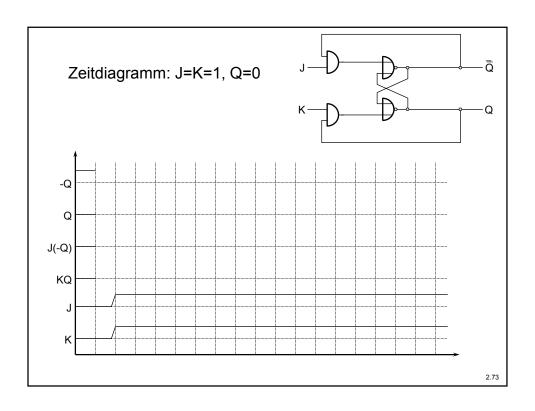
JK-Latch

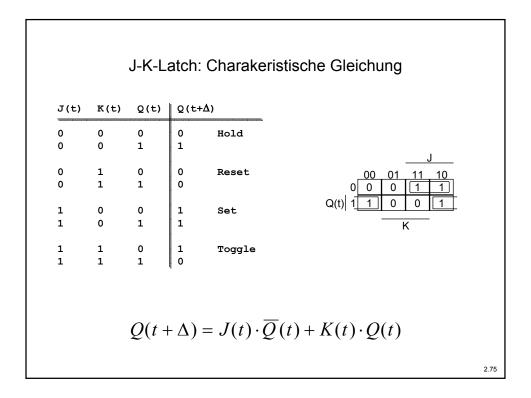
- ▼ Erweiterung eines R-S-Latch
 - Ungültige Eingabe R=S=1 verhindern
- ▼ Was passiert bei J=K=1?

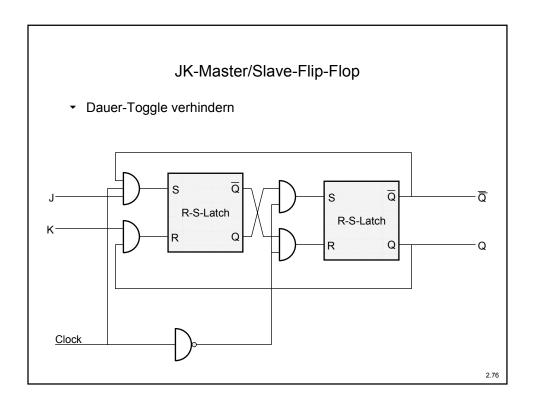


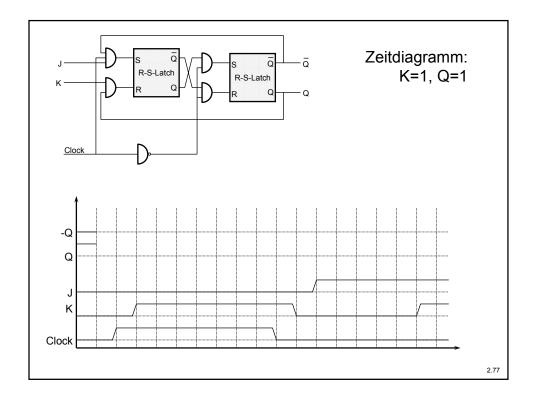


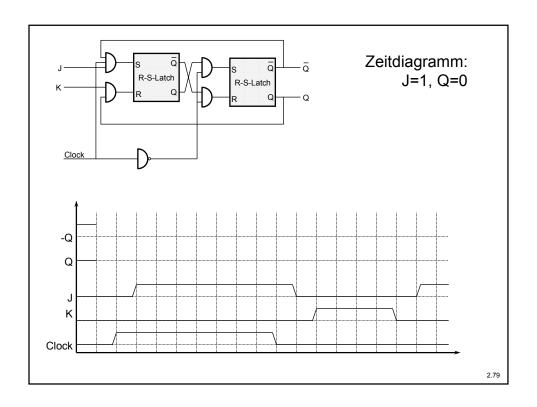


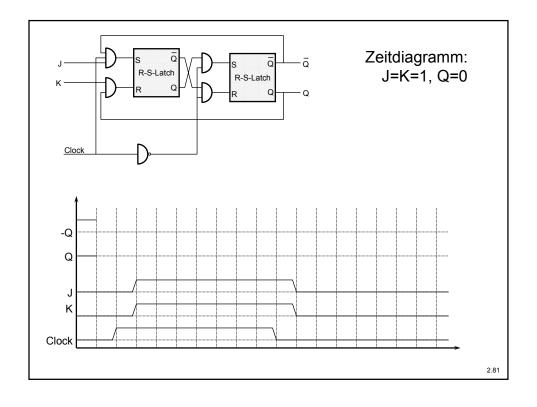


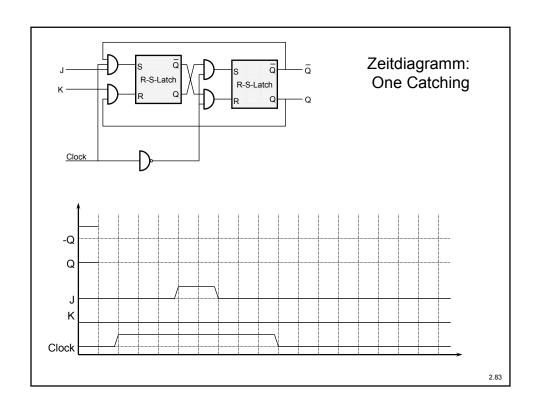


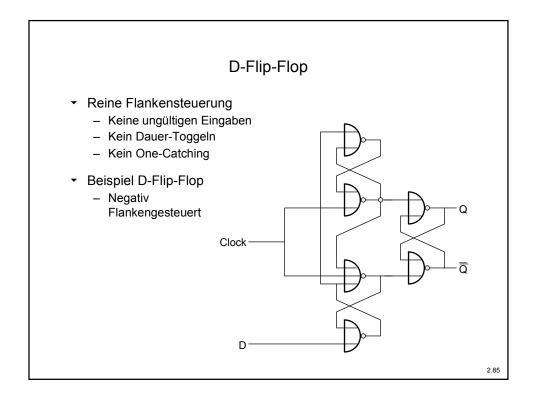


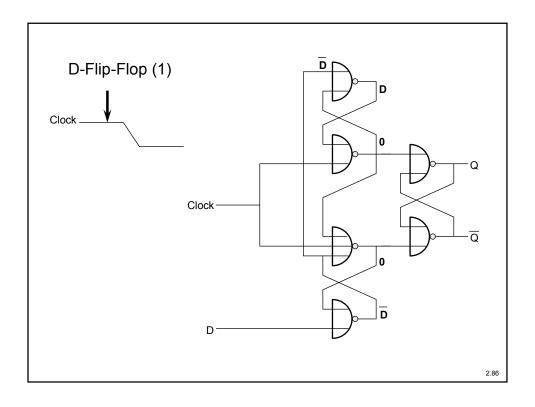


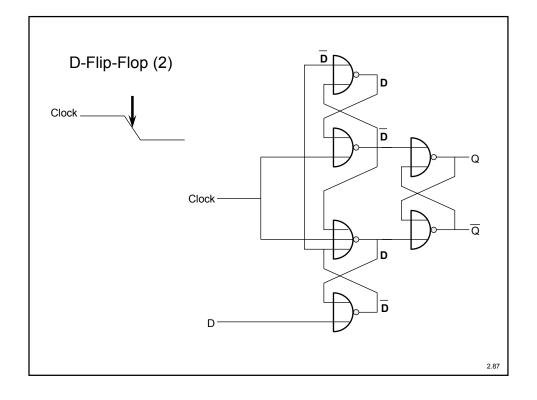


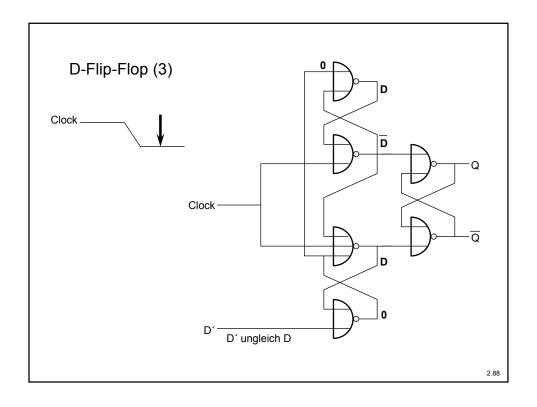


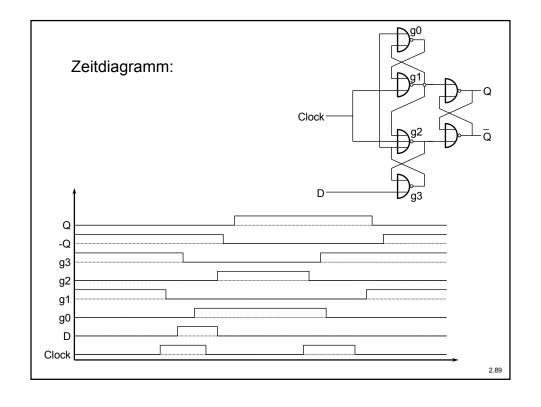






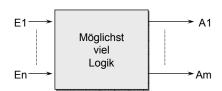






Programmierbare Logik

- ▼ Realisierung von Schaltnetzen und Schaltwerken
- Aufbau mit Hilfe von TTL- und CMOS-ICs aufwendig
 - Große Anzahl an Bausteinen
 - Hoher Platz- und Stromverbrauch
 - Geringe Integrationsdichte
- ▼ IC mit 1000 AND mit jeweils 2 Eingängen = 3002 Pins
- "Programmierbare Bausteine"
 - Genügend Eingängen
 - Genügend Ausgängen
 - Ausreichende Programmierbarkeit
- Zweistufige Normalformen



2.90

PLA und PAL

- Programmierbare disjunktive Normalform
 - n Eingängen
 - m Ausgängen
 - k Terme
- ▼ n,m und k vom jeweiligen Baustein abhängig
- ▼ PLA = Programmable Logic Array
 - UND- und ODER-Array programmierbar
- ▼ PAL = Programmable Array Logic
 - Nur UND-Array programmierbar
- ▼ Programmieren
 - Höhere Programmierspannung
 - "Durchbrennen" einer Verbindung

