
Transaktionen

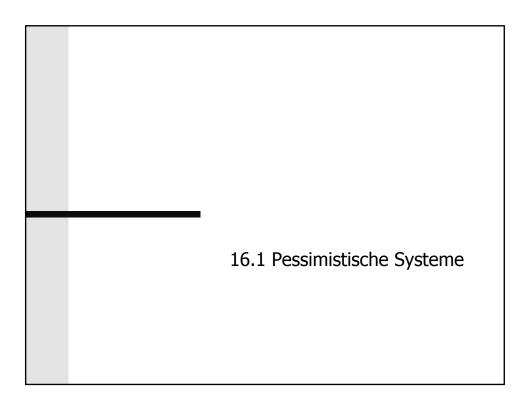
- q **A**tomic
 - Jede Transaktion ist unteilbar (alles oder nichts)
- q **C**onsistency
 - Jede Transaktion überführt einen konsistenten Zustand in einen konsistenten Zustand
- q Isolation (Serialisierbarkeit)
 - Die konkurrente Ausführung mehrerer Transaktionen ist identisch zu einer sequentiellen Ausführungsreihenfolge
- q **D**urability
 - Erfolgreich beendete Transaktionen überleben nachfolgende Fehler

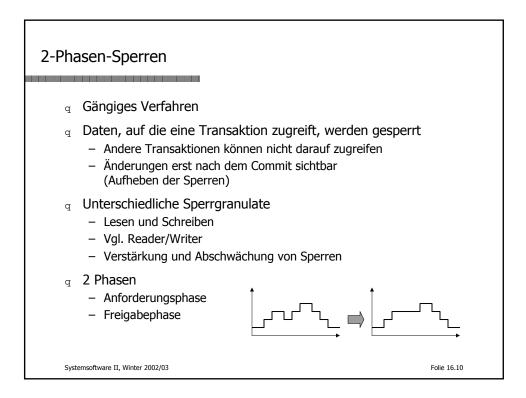
Systemsoftware II, Winter 2002/03

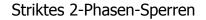
Bemerkungen

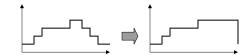
- q Anwendungsunabhängig realisierbar
 - Atomarität
 - Isolation
 - Dauerhaftigkeit
- q Konsistenz ist anwendunsgspezifisch
- q Klammerung
 - Beginn einer Transaktion: BOT
 - Ende einer Transaktion: EOT
 - q Erfolgreich: Commit
 - q Nicht erfolgreich: Abort
- q Einmal Commit, immer Commit?

Systemsoftware II, Winter 2002/03

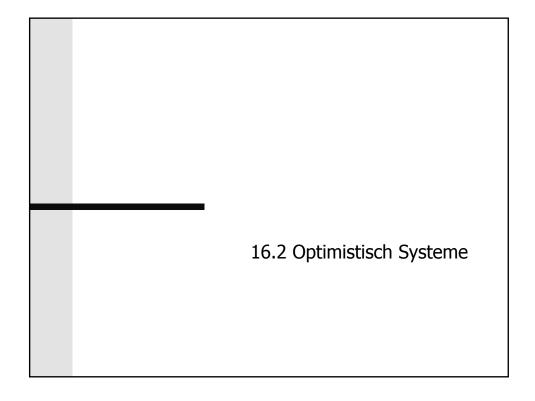

Folie 16.7

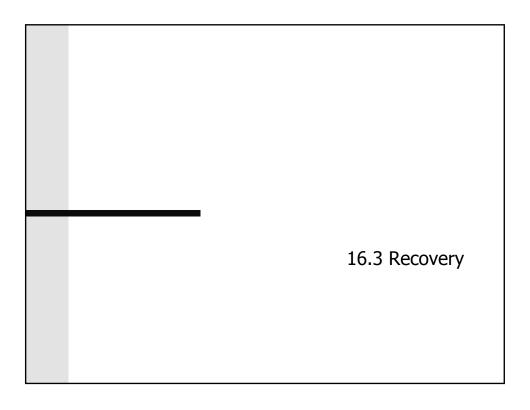

Realisierungsvarianten

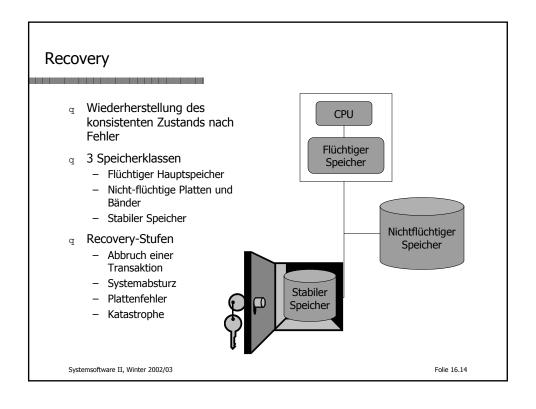

- g Zeitpunkt der Sichtbarkeit von Zustandsänderungen
- q Pessimistische Systeme


- Sichtbarkeit, wenn erfolgreich beendet und gesichert
- Einschränkung der Parallelität (Sperren)
- q Optimistische Systeme
 - Alle Änderungen sofort sichtbar
 - Nachträgliche Überprüfung auf Konflikte bei EOT und ggf. Zurücknahme der Änderungen
 - Höhere Parallelität (Keine Sperren)
 - Gefahr sogenannter Abort-Kaskaden

Systemsoftware II, Winter 2002/03







- q Freigabe aller Sperren erst bei EOT
 - Sperren länger als notwendig (Einschränkung der Parallelität)
- q Warum?
- q Deadlockgefahr
 - Ausschließen (Prevention)
 - ^q Sperren aufsteigend anfordern
 - g Sperren länger als notwendig
 - Auflösen (Detection)
 - g Erkennen verteilter Deadlocks
 - q Aufbrechen des Deadlocks (Ist das schwer?)

Systemsoftware II, Winter 2002/03

Abbruch einer Transaktion

Update-in-place

- q Update
 - Speicherung eines UNDO-Satzes
 - Aktualisierung der Originaldaten
- a Read
 - Lesen der Originaldaten
- g Commit
 - UNDO-Sätze löschen
- a Abort
 - Änderungen mit Hilfe der UNDO-Sätze rückgängig machen

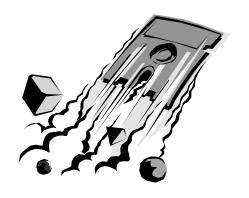
Deferred-Write

- q Update
 - Änderungen in REDO-Liste speichern
- q Read
 - Letzter Wert (REDO-Liste rückwärts durchsuchen bis Originaldaten)
- q Commit
 - Änderungen mittels REDO-Liste nachziehen
- q Abort
 - REDO-Liste löschen

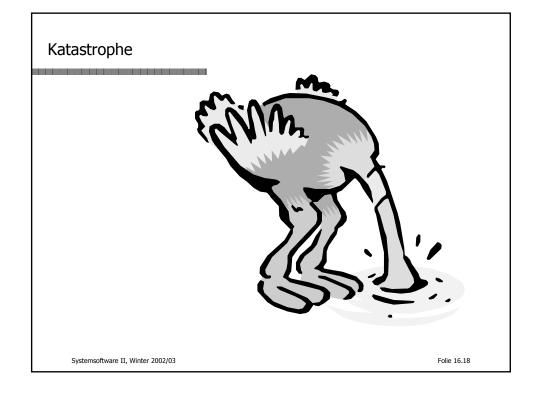
Systemsoftware II, Winter 2002/03

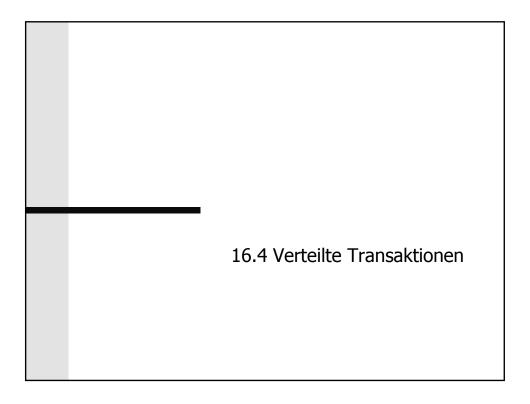
Folie 16.15

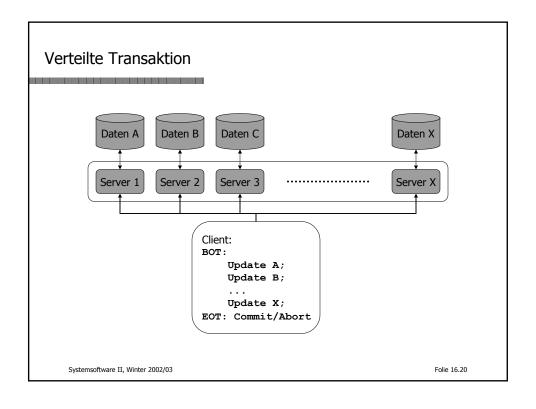
Systemabsturz


- Updates (UNDO- und REDO-Listen) sowie Commit oder Abort werden auf einem sequentiellen Logfile im nicht-flüchtigen Speicher gesichert
- q Redo-Rule

- Commit muß im Logfile stehen (physisch), bevor Transaktion als erfolgreich beendet gilt
- Undo-Rule (Write-ahead log rule)
 - UNDO-Satz muß im Logfile stehen (physisch), bevor Originaldaten geändert werden dürfen
- g Beschränkung der Logfile-Größe
 - Invalidierung von UNDO- und REDO-Einträgen
 - Checkpointing


Systemsoftware II, Winter 2002/03


Plattenfehler


- q Archivkopie der Daten einschließlich einem Archiv-Log
- q Archivkopie n-fach replizieren
 - Größe von n?
- q Konsistentes Archiv
 - System einfrieren
 - Nachteil: Lange Auszeiten
 - Fuzzy Dumps

Systemsoftware II, Winter 2002/03

Commit-Protokolle

- g Jeder Rechner kann lokal für Commit und Abort entscheiden
- g Eine Entscheidung ist nach dem Publizieren nicht mehr änderbar
- q Agreement
 - Alle Rechner kommen zur gleichen Entscheidung
 - Commit, wenn alle Rechner sich für Commit entscheiden
 - Abort, wenn mindestens ein Rechner für Abort entscheidet
- q Commit-Protokolle
 - Agreement auch im Fehlerfall herbeiführen

Systemsoftware II, Winter 2002/03

Folie 16.21

2-Phasen-Commit

q Koordinator

- Z.B. Knoten, auf dem Transaktion begonnen wurde
- q Phase 1
 - Koordinator sendet Commit-Request an alle
 - Teilnehmer antworten mit Ja oder Nein
- α Phase 2
 - Koordinator sammelt Antworten
 - Entscheidung
 - q Commit: Alle haben mit Ja geantwortet
 - ^q Abort: Mindestens einer hat mit Nein geantwortet
 - Ergebnis allen Teilnehmern mitteilen

Systemsoftware II, Winter 2002/03

Fehlerfälle

- q Commit-Request kommt nicht an
 - Teilnehmer warten angemessene Zeit (Timeout) und entscheiden sich bei Ausbleiben für Abort
- q Teilnehmerantwort kommt nicht an
 - Koordinator entscheidet nach Timeout für Abort
- q Ergebnis des Koordinators kommt nicht an
 - Lokale Entscheidung Nein: Okay
 - Lokale Entscheidung Ja: Gossip
 - Blockadesituation!

Systemsoftware II, Winter 2002/03