
- 1 -

JPVM: Network Parallel Computing in Java

Adam J. Ferrari
ferrari@cs.virginia.edu

Technical Report CS-97-29
Department of Computer Science

University of Virginia, Charlottesville, VA 22903, USA

December 8, 1997

Abstract
The JPVM library is a software system for explicit message-passing based distributed memory MIMD
parallel programming in Java. The library supports an interface similar to the C and Fortran interface
provided by the Parallel Virtual Machine (PVM) system, but with syntax and semantics modifications
afforded by Java and better matched to Java programming styles. The similarity between JPVM and the
widely used PVM system supports a q uick learning curve for experienced PVM programmers, thus
making the JPVM system an accessible, low-investment target for migrating parallel applications to
the Java platform. At the same time, JPVM offers novel features not found in standard PVM such as
thread safety, multiple communication end-points per task, and default-case direct message routing.
JPVM is implemented entirely in Java, and is thus highly portable among platforms supporting some
version of the Java Virtual Machine. This feature opens up the possibility of utilizing resources com-
monly excluded from network parallel computing systems such as Macintosh and Windows-NT based
systems. Initial applications performance results achieved with a prototype JPVM system indicate that
the Java-implemented approach can offer good performance at appropriately coarse granularities.

1 Introduction

The use of heterogeneous collections of computing systems interconnected by one or more net-
works as a single logical computational resource has become a wide-spread approach to high-perfor-
mance computing. Network parallel computing systems allow individual applications to harness the
aggregate power of the increasingly p owerful, well-networked, heterogeneous, and o ften largely
under-utilized collections of resources available to many users [1]. In this paper, we describe a net-
work p arallel computing software system for use with and implemented in the Java language.
Because of its mandated platform independence and uniform interface to system services, Java pro-
vides an attractive environment for the implementation of both network parallel applications and the
system software needed to support them.

Although numerous software systems support some form of network parallel computing, the
majority of use has thus far been based on a small set of popular packages that provide an explicit
message-passing, distributed memory MIMD programming model such as Parallel Virtual Machine
(PVM) [4], and the Message Passing Interface (MPI) [6]. These software systems support simple,
portable library interfaces for typical high-performance computing languages such as C and Fortran.
For example, PVM provides the programmer with a library routines to perform task creation, data
marshalling, and asynchronous message passing. In addition, PVM provides tools for specifying and
managing a collection of hosts on which applications will execute.

Results obtained with network parallel computing systems have been encouraging. For example,
a performance study of the NAS benchmark suite implemented in PVM demonstrated that relatively
small clusters of workstations could provide performance comparable to significantly more expen-
sive supercomputers [9]. However, the utilization of distributed, heterogeneous, shared resources

- 2 -

connected by commodity networks as a single, virtual parallel computer poses serious problems for
both the application and system software programmer. For example, from the application perspec-
tive, it has been found that successful network parallel programs will almost always exhibit medium
to coarse granularity, and will be tolerant of network latency, for example through the use of a send-
ahead programming style. These attributes can be difficult to achieve within some applications. From
the system programmer perspective, heterogeneity results in difficult problems such as task to plat-
form matching and system portability.

The Java language provides a number of features that appear to be promising tools for address-
ing some of the inherent problems associated with network parallel programming. For example, from
the application perspective, Java provides a portable, uniform i nterface to threads. Using threads
instead of traditional heavyweight processes has been found to be an avenue for increasing latency
tolerance and allowing finer-grained computations to achieve good performance in distributed mem-
ory parallel processing environments [3]. From the system implementation perspective, Java supports
a high degree of code portability and a uniform API for operating system services such as network
communications.

The JPVM (Java Parallel Virtual Machine) library is a software system for explicit message-
passing based d istributed memory MIMD parallel programming in Java. The library supports an
interface similar to the C and Fortran interfaces provided by the Parallel Virtual Machine (PVM) sys-
tem, but with syntax and semantics enhancements afforded by Java and better matched to Java pro-
gramming styles. The similarity between JPVM and the widely used PVM system supports a quick
learning curve for experienced PVM programmers, thus making the JPVM system an accessible,
low-investment t arget for migrating parallel applications to the Java platform. At the same time,
JPVM offers novel features not found in standard PVM such as thread safety, multiple communica-
tion end-points per task, and default-case direct message routing. JPVM is implemented entirely in
Java, and is thus highly po rtable a mong p latforms supporting some version o f the Java Virtual
Machine. This feature opens up the possibility of utilizing resources commonly excluded from net-
work parallel computing systems such as Macintosh and Windows-NT based systems.

In this paper we describe the JPVM system interface, implementation, and performance. In Sec-
tion 2 we describe the interface to the JPVM system including the programming model and interac-
tive c onsole. In Section 3 we describe key features of a c omplete, working JPVM prototype
implementation. In Section 4 we describe initial performance results achieved with JPVM. In Section
5 we describe related systems, and in Section 6 we conclude.

2 Interface

The programming interface provided by the JPVM system is intentionally similar to that sup-
ported by the PVM system, with the addition of enhancements to better exploit the potential benefits
of Java as a language for implementing network parallel applications. As in PVM, the programmer
decomposes the problem t o b e solved into a set of cooperating sequential task implementations.
These sequential tasks execute on a collection of available processors and invoke special library rou-
tines to control the creation of additional tasks and to pass messages among tasks. In JPVM, task
implementations are coded in Java, and support for task creation and message passing is provided by
the JPVM library.

The central interface through which most JPVM interaction takes place is exported by the jpv-
mEnvironment Java class. Instances of this class are declared by JPVM tasks to connect to and
interact with the JPVM system and other tasks executing within the system. Objects of this class rep-
resent communications end-points within the system, and are identified by system-wide unique iden-
tifiers of the opaque type jpvmTaskId (analogous to a PVM task identifier). Whereas standard

- 3 -

PVM restricts each task to having a single communications end-point (and correspondingly a single
task identifier), JPVM allows tasks to maintain a logically unlimited number of communication con-
nections s imply by allocating multiple instances of jpvmEnvironment. The ability to contain
multiple communication end-points in a single task simplifies the process of developing separate
linkable modules that need to p erform communication. First-class s eparation o f communication
streams eliminates the need to artificially distinguish between messages intended for different mod-
ules.

After an instance of jpvmEnvironment is allocated, its containing task can invoke basic
JPVM services such as task creation and message passing. For example, a task can determine its
identity for JPVM communication by invoking the pvm_mytid() method. A task can detach a
jpvmEnvironment from the JPVM system by invoking the pvm_exit() method. The basic
jpvmEnvironment interface is depicted in Figure 1.

2.1 Task Creation

The first action performed by a typical JPVM program i s the creation of additional t asks to
achieve parallel execution. Task creation in JPVM is supported by the pvm_spawn() method,
which takes a string parameter indicating the name of a valid Java class visible in the CLASSPATH
environment variable, as well as the number of tasks to spawn and an array into which the

class jpvmEnvironment {
public jpvmEnvironment(); // Constructor registers task with the JPVM system
public void pvm_exit();

// Identity:
public jpvmTaskId pvm_mytid();
public jpvmTaskId pvm_parent();

// Task creation:
public int pvm_spawn(String task_name, int num, jpvmTaskId tids[]);

// Send messages:
public void pvm_send(jpvmBuffer buf, jpvmTaskId tid, int tag);
public void pvm_mcast(jpvmBuffer buf, jpvmTaskId tids[], int ntids, int tag);

// Receive messages, blocking (non-blocking versions not depicted):
public jpvmMessage pvm_recv(jpvmTaskId tid, int tag);
public jpvmMessage pvm_recv(jpvmTaskId tid);
public jpvmMessage pvm_recv(int tag);
public jpvmMessage pvm_recv();

//Probe for message availability:
public boolean pvm_probe(jpvmTaskId tid, int tag);
public boolean pvm_probe(jpvmTaskId tid);
public boolean pvm_probe(int tag);
public boolean pvm_probe();

// System configuration and control:
public jpvmConfiguration pvm_config();
public jpvmTaskStatus pvm_tasks(jpvmConfiguration conf, int which);
public void pvm_halt();

};

Figure 1. jpvmEnvironment interface excerpt.

- 4 -

jpvmTaskIds of the newly created tasks will be placed on successful return. Each task created
through pvm_spawn() executes in its own instance of the Java Virtual Machine, avoiding issues
such as conflicting usage of system services among tasks. These newly created instances of the Java
Virtual Machine are placed throughout the set of processors available to JPVM, and each runs an
object of the specified Java class.

The identity of newly spawned tasks gives rise to a basic problem for JPVM. In PVM, the iden-
tity of a task is clear since tasks have a single communication end-point and thus a single task identi-
fier. In JPVM, tasks can have any number of communication end-points, and thus it is unclear what
identity for a newly spawned task should be returned to the parent (i.e. the spawning task). One sim-
ple solution would be to remove the return of task identifiers from the spawn interface. Spawned
tasks could communicate their identities to their parents explicitly to enable communication. In order
to retain an interface similar to PVM, and to avoid additional application code in the common case of
a single identity per task, JPVM instead addresses this issue by returning the identity of the first
jpvmEnvironment allocated in each newly spawned task. For standard, single-identity tasks, this
provides the familiar PVM style of identifying newly spawned tasks.

2.2 Message Passing

Message passing in JPVM is performed using the pvm_send() and pvm_recv() methods of
the jpvmEnvironment class. However, before data can be sent, it must be collected into a jpvm-
Buffer object. Analogous to PVM buffers, jpvmBuffer objects are the message content contain-
ers of JPVM. The jpvmBuffer interface (depicted in Figure 2) contains two b asic groups of
methods: those to pack data into a buffer, and those to extract data from a buffer. Where possible,
overloading is used in the interface to simplify application code. Scalar and vector pack and unpack
operations are provided for all basic Java types as well as String and jpvmTaskId objects.

An important difference between JPVM buffers and standard PVM buffers is the explicit nature
of the JPVM buffer data structure. In standard PVM, send and receive buffers are manipulated
implicitly by the pvm_pk*() and pvm_upk*() library routines. Whereas routines are provided to
manage multiple buffers, the implicit nature of the buffer being packed or unpacked gives rise to a
difficult interaction with threaded programs. In PVM, if a thread is packing one buffer, and a second
thread is packing another buffer, the threads must explicitly set the send buffer before each pack rou-
tine (since the other thread may have run and set the send buffer since the current thread’s last pack).
Furthermore, a synchronization mechanism such as a lock must be used to ensure that the send buffer
is not reset by another thread between being set and packed by the current thread. This is a complex
and unnecessary requirement to place on applications programs. In JPVM this problem is addressed

class jpvmBuffer {
public jpvmBuffer();

public void pack(int v[], int n, int stride);
public void pack(int s);
public void pack(float v[], int n, int stride);
public void pack(float s);

. . .
public void unpack(int v[], int n, int stride);
public int upkint();
public void unpack(float v[], int n, int stride);
public float upkfloat();

. . .
};

Figure 2. jpvmBuffer interface excerpt.

- 5 -

simply and directly through the use of explicit buffers. Pack and unpack operations manipulate the
buffer object on which they are invoked, leading to a simplified interface for dealing with threaded
tasks. This is one example of JPVM’s changes to the standard PVM interface to better support com-
mon Java programming styles such as the use of threads.

After the contents of a message have been marshalled into a jpvmBuffer object, the buffer
can be sent to any task in the JPVM system using the pvm_send() method of the jpvmEnvi-
ronment class. Besides taking the buffer to be sent, pvm_send() also requires the identity of the
task to which to the message should be delivered (in the form of a jpvmTaskId) and an integer
identification number for the message called the message tag. The send operation is asynchronous—
the sending task proceeds immediately after the send is initiated, regardless of when (or if) the mes-
sage is received.

To receive messages, tasks must execute the pvm_recv() method of the jpvmEnviron-
ment class. Using the various versions of pvm_recv() depicted in Figure 1, tasks can request
messages based on the identity of the message sender, the identification number (tag) of the message,
both of these, or neither (i.e. receive any message). Receive operations block until a message of the
requested type is available (non-blocking pvm_nrecv() versions are also supported, but are not
depicted in Figure 1), at which point a jpvmMessage structure is returned containing the received
message. Besides containing a jpvmBuffer with the message contents, a received jpvmMes-
sage object contains an indication of the identity of the sender of the message as well as the identi-
fication number of the message, as depicted in Figure 3.

2.3 Program Example

A brief example of a JPVM program is depicted in Figure 4. This task represents the master in a
simple master/slave program organization. Note that t he task is implemented as a standard Java
application object with a public main method. The program first creates a connection to the JPVM
system on line 5 where it allocates a jpvmEnvironment object. It then spawns a set of worker
tasks on line 9. Note, for this s pawn to succeed, a valid Java c lass must be stored in the file
“worker.class” located in a directory listed in the CLASSPATH variable. The spawn operation
creates N new Java Virtual Machine processes, each executing an instance of the class worker, and
returns the identity of these tasks’ first jpvmEnvironment connections.

The loop on lines 11-16 demonstrates the creation of a jpvmBuffer, message marshalling,
and use of the pvm_send() method to send a message to each newly spawned task. This loop
might correspond to farming out work to a group of worker tasks. Correspondingly, the loop on lines
17-21 demonstrates the receipt of messages from each of the worker tasks, which might correspond
to gathering results. On line 22 the program invokes the pvm_exit() method to disconnect from
the JPVM system.

class jpvmMessage {
public int messageTag;
public jpvmTaskId sourceTid;
public jpvmBuffer buffer;

};

Figure 3. jpvmMessage data structure.

- 6 -

2.4 System Configuration

The above discussion of the programming model describes the basic syntax and semantics of the
JPVM library. However, the JPVM library routines require run-time support during execution in the
form of a set of JPVM daemon processes running on the available collection of processors. These
daemon processes are required primarily to support task creation (unlike in standard PVM, JPVM
daemon processes do not perform message routing). JPVM system configuration is a two-phase pro-
cess. First, daemon processes must be started manually on all hosts of interest. The daemon program
is provided in the form of a java class (jpvmDaemon), so daemon startup simply involves running
Java Virtual Machine processes to execute the daemon class instances. After the daemons are started,
they must be notified of one another’s existence. This is accomplished through an interactive JPVM
console program. Again, the console program is a java class (jpvmConsole) and should be started
in a Java Virtual Machine process.

Besides adding hosts, the JPVM console can be used to list the hosts available to the system and
JPVM tasks running in the system. An example console session is depicted in Figure 5.

3 Implementation

As was mentioned previously, JPVM is implemented entirely in Java. Although current execu-
tion environments for Java limit performance significantly, the use of Java as a system implementa-
tion language provides a number of distinct advantages over commonly used system implementation
languages such as C. For example, the use of threads in a communications system is an attractive
approach for dealing with the asynchronous activities involved in this type of software. However,

1 import jpvm.*;
2 class example {
3 public static void main(String args[]) {
4 try {
5 jpvmEnvironment jpvm = new jpvmEnvironment();
6
7 // Spawn N worker tasks
8 jpvmTaskId tids[] = new jpvmTaskId[N];
9 jpvm.pvm_spawn("worker",N,tids);
10
11 for (int i=0;i<N; i++) { // Farm out work
12 jpvmBuffer buf = new jpvmBuffer();
13 int work = getWork(i);
14 buf.pack(data);
15 jpvm.pvm_send(buf, tids[i], 123);
16 }
17 for (int i=0;i<N; i++) { // Receive results
18 jpvmMessage message = jpvm.pvm_recv(tids[i]);
19 int result = message.buffer.upkint();
20 processResult(result);
21 }
22 jpvm.pvm_exit();
23 }
24 catch (jpvmException jpe) {
25 System.out.println("Error - jpvm exception");
26 }
27 }
28 };

Figure 4. JPVM programming example.

- 7 -

porting threads-based systems implemented in traditional languages such as C can be a complex and
error-prone task. Java reduces the risks associated with employing threads in system designs by pro-
viding a uniform, portable threads interface and implementation across all supported p latforms.
Another example of the portability advantage of Java is network APIs. Although network-based sys-
tems such as standard PVM are generally portable among Unix variants, they are more difficult to
port t o o ther readily available e nvironments s uch as PCs running Windows NT. For example,
although a wide variety of PVM ports for Unix-based systems have been available for close to a
decade, only in the past year has a Windows based implementation become available. Java essen-
tially eliminates this issue by providing a uniform, portable interface to operating system services
such as network communication.

Given the portability advantage of Java, we chose to implement the JPVM interface entirely in
Java. In this section we discuss some of the core features of the JPVM system implementation.

3.1 Communications Implementation

In standard PVM, the use of direct task-to-task TCP connections has been found to significantly
outperform the older UDP-based daemon-routed message passing implementation [9]. Thus, the cur-
rent internal JPVM message passing implementation is based on direct task-to-task communication
over TCP sockets using the Java object serialization interface for message transfer. Each jpvmEn-
vironment instance creates a server socket during initialization and embeds the host name and
port number needed to connect to it within its jpvmTaskId identity. Thus, when JPVM task X
wishes to send a message to JPVM task Y, it simply connects to Y using the host and port contained
within Y’s task identifier, and sends a message over the newly created TCP connection.

Internally, JPVM uses threads to manage connections and message delivery. Each jpvmEnvi-
ronment creates a dedicated thread to listen for and accept peer connections, as depicted in Figure
6. When a connection is accepted by this special dedicated connection management thread, it creates
a new message receiver thread dedicated to the new connection. This receiver thread blocks for mes-
sages on its connection. As it receives messages, it enqueues them on an internal message queue, as
illustrated in Figure 6. Thus when user threads perform pvm_recv() operations, instead of per-
forming any network input directly, they simply consult the internal message queue for messages of
the appropriate type.

$ java jpvm.jpvmConsole
jpvm> conf
4 hosts:
 stonesoup00.cs.virginia.edu
 stonesoup01.cs.virginia.edu
 stonesoup02.cs.virginia.edu
 stonesoup03.cs.virginia.edu
jpvm> ps
stonesoup00.cs.virginia.edu, 2 tasks:
 (command line jpvm task)
 jpvm console
stonesoup01.cs.virginia.edu, 1 tasks:
 mat_mult
stonesoup02.cs.virginia.edu, 1 tasks:
 mat_mult
stonesoup03.cs.virginia.edu, 1 tasks:
 mat_mult
jpvm>

Figure 5. Example interactive JPVM console session.

- 8 -

An important attribute of the JPVM communications system implementation is thread safety. As
depicted in Figure 6, multiple user threads can concurrently perform pvm_recv() operations—the
internal message queue structure is a synchronized data type that may safely be manipulated by any
number of reader (user) and writer (internal receiver) threads. Similarly, pvm_send() operations
are synchronized to support thread safety. Threads can be employed in a variety of design schemes in
JPVM programs. For example, a traditional threaded server JPVM task is one possibility. Another
possibility is the use of threads as the basic units of parallel execution, as in TPVM [3]. In this
scheme, each thread would be implemented as a normal JPVM task with its own jpvmEnviron-
ment instance.

3.2 Daemon Services Implementation

The ability to spawn new tasks, to determine and extend system configuration, and to determine
the set of tasks executing in the system is based on services provided by JPVM daemon processes
executing on each host in the JPVM system. The current implementation of the JPVM daemon pro-
cesses is layered on the standard JPVM communication mechanism—i.e. the JPVM daemon imple-
mentation is simply a normal JPVM program employing the interface described in Section 2. The
daemon program employs a server style organization, executing a loop that repeatedly blocks for and
then services a new request. For most client requests (e.g. task status, system configuration informa-
tion) the daemon can respond immediately. However, for task creation requests the daemon creates a
thread to start the new local process. This design prevents slow response to o ther client requests
while tasks are being created.

4 Performance

To evaluate the performance of the current JPVM implementation we conducted a set of experi-
ments to quantify the costs of the basic library primitives and to measure actual application perfor-
mance. The testbed used for these experiments was a set of five dual-processor Pentium Pro hosts
connected by 10 megabit ethernet. Each host in the system contained two 200 MHz Pentium Pro pro-
cessors and 128 MB of memory, and was running Linux 2.0. The version of Java used was the Linux
JDK version 1.1.3.

Figure 6. JPVM communication implementation.

Receiver
Thread 1

Receiver
Thread 2

Receiver
Thread n

Connection
Thread

User
Thread

User
Thread

Message
Queue

TCP Connections

Connection
Requests

JPVM Task

- 9 -

Our first set of experiments measured the cost of task creation. In Table 1 we present the time to
create various numbers of tasks on a single host system and in the full five host system. Since each
host is a dual processor machine, the difference in time to create one or two hosts is negligible. The
cost for task creation is not small—when creating more than one task, approximately 0.5 seconds per
task in the single host system, and between 0.5 and 1.5 seconds per task in the multi-host system are
required. Spawn is somewhat less expensive for small numbers of tasks in the single host system
because less communication is required. For larger numbers of tasks the multi-host system begins to
perform better as it can amortize communications costs by parallelizing the creation of a set of tasks.

Our next set of measurements examined the communication costs associated with JPVM. In
Table 2 we present round-trip message times between two tasks for various message sizes. We per-
formed these measurements on messages containing integers and raw bytes to examine the overhead
associated with the requirement of masking byte ordering differences. As might be expected, the
message passing overheads introduced by the Java implemented JPVM system are very high—an
order of magnitude of latency is added, and only about an eighth of the available bandwidth is uti-
lized.

Given the high costs associated with both of the basic JPVM primitives, it is tempting to con-
clude that the overhead introduced by the strategy of using a Java-implemented system as runtime
support for parallel Java applications outweighs the potential benefits. In fact, the high costs of these
operations does essentially rule out JPVM as a platform for network-intensive applications. How-
ever, for applications that exhibit medium to coarse granularities, and also exhibit some tolerance of
network latencies, JPVM may provide sufficiently efficient services to allow good speedup.

To verify this claim, we measured the performance of a parallel matrix multiplication algorithm
implemented in JPVM and compared to a sequential version of the program also implemented in
Java. In Table 3 we present the results of these experiments for three problem sizes. Times are pre-
sented for both the complete program (including task creation time), and for the multiplication algo-
rithm alone (excluding task creation time). As might be expected, at the smallest problem size, poor
speedup is achieved for the multiplication algorithm, and slowdown is observed for the program as a
whole. This problem size is simply too fine grained given the basic costs associated with JPVM. At
the middle problem size we find that the multiplication algorithm begins to speed up well, but the
program as a whole has poor efficiency due to the high cost of task creation. Finally, at the largest
problem size, both the multiplication algorithm and the program as a whole speed up well. As
expected, better speedups are ac hieved for the program when task creation costs are excluded.
Although this may seem like an unfair comparison, it provides valuable insight that for long-running
JPVM programs that can amortize task creation costs, good efficiency is possible for the compute/
communicate phases of the program.

tasks 1 host 5 hosts
1 886 2437

2 1075 2509

4 2092 2574

8 4042 3683

16 7938 6156

Table 1. Task creation times,
milliseconds

size int byte
1 byte 240 224

1 KB 271 243

10 KB 293 282

100 KB 1160 846

1 MB 9309 7535

Table 2. Round-trip message costs,
milliseconds

- 10 -

5 Related Work

A number of other systems have been developed to support network parallel programming in
Java. One common approach to this problem is the use of volunteer-based systems such as Bayani-
han [7] and Javelin [2]. As opposed to JPVM which is based on stand-alone Java applications, these
systems are based on Java applets that execute within the context of a web browser. In these systems,
applications are decomposed into sub-tasks that can be downloaded in the form of Java applets by
clients who wish to volunteer computing resources. When the task completes, its result is uploaded
to the server. These approaches have a number of attractive properties, foremost among which is the
possibility of employing the vast array of processing power available in the form of client machines
connected to the web. The primary drawback of these approaches is the significant restrictions placed
on communications by the Java security model for applets. The restriction that downloaded applets
may communicate only with their server essentially limits these systems to applications that can be
decomposed into non -communicating, coarse-grained, completely independent functional t asks.
Although this is possible for many applications such as parameter space studies, it rules out most
potentially successful network parallel applications.

A system similar to JPVM in its programming interface and model is the JavaPVM library [8].
This s ystem also p rovides a PVM-like interface for Java a pplications. The primary d ifference
between JavaPVM and JPVM is in implementation. Unlike JPVM which is implemented entirely in
Java, JavaPVM is based on the Java Native Methods mechanism, providing native method wrappers
around the existing standard PVM routines. This approach has a number of advantages. First, this
approach takes clear advantage of software reuse—the e ffort t o p roduce the PVM library is not
duplicated, and advances in the standard PVM system can be tracked closely. Also, since JavaPVM
is based on native methods wrappers to the standard PVM library, JavaPVM programs are interoper-
able with standard PVM programs written in C and Fortran. Furthermore, by using native methods
JavaPVM offers a clear performance advantage in the short term. Currently, systems implemented in
lower-level l anguages such as C can easily o utperform Java-based implementation. However, the
JavaPVM approach is not without drawbacks. First, by using native methods, this system is limited in
its portability. JavaPVM can be used only on platforms where standard PVM is available—for exam-
ple, JavaPVM isn’t currently supported on Windows-NT or Macintosh systems. Furthermore, in
being a simple wrapper around the standard PVM implementation, JavaPVM is limited by the
semantic and syntactic features of PVM. For example, JavaPVM programs retain the single commu-
nication end-point PVM model, the thread-unfriendly PVM buffer interface, and so on.

Another software package for network parallel computing in Java is the IceT system [5]. This

problem tasks multiply speedup total speedup

size time time
1 3.2 - 3.2 -

128 4 2.2 1.4 6.6 0.5

9 1.5 2.1 6.7 0.5

1 26.7 - 26.7 -

256 4 7.7 3.5 10.3 2.6

9 4.6 5.9 8.9 3.0

1 223.3 - 223.3 -

512 4 59.7 3.7 64.3 3.5

9 28.9 7.7 33.5 6.7

Table 3. Matrix multiply performance, times in seconds

- 11 -

system addresses a number of concerns not covered by the JPVM design. Whereas JPVM allows a
single user to combine resources on which that user has access privileges, IceT is an inherently col-
laborative, multi-user environment. IceT provides mechanisms by which resources can b e made
available to the system for use by users who do not have log-on privileges. The attractive goals of this
metacomputing-based approach include better utilization of larger r esources based, as well as an
enhanced collaborative environment for high performance computing. Among the challenges intro-
duced by this idea are the numerous security issues introduced by code-upload capabilities for non-
privileged uses.

6 Conclusions

We have described the JPVM system, both in terms of programming model and interface, inter-
active interface, and implementation. This system combines the goals of supporting network parallel
programming in Java, providing a familiar and proven-effective programming interface, and taking
advantage of the attractive features of Java as a system implementation language. The combination of
Java as an applications programming language and system implementation languages allows the sup-
port of a number of powerful features in JPVM, including thread safety and multiple communication
end-points per process. Initial performance experiments with the system indicate that the costs asso-
ciated with the basic JPVM primitives are quite high, but his is not unexpected given the use of Java
for system implementation. However, we have demonstrated that t he system can support good
speedup for applications that exhibit an appropriately coarse level of granularity, tolerance of net-
work latency, and ability to amortize task creation costs. Furthermore, these are issues already well-
known applications programers who employ network parallel programming. Given this observation,
we argue that the added costs associated with a Java-based system do not outweigh the benefits of the
added features, portability, and programming flexibility afforded by Java.

References
[1] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW team, “A Case for NOW (networks of

Workstations),” IEEE Micro, vol. 15, no. 1, pp. 54-64, February, 1995.
[2] P. Cappello, B.O. Christiansen, M.F. Ionescu, M.O. Neary, K.E. Schauser, and D. Wu, “Javelin: Inter-

net-based Parallel Computing Using Java,” ACM Workshop on Java for Science and Engineering
Computation, June, 1997.

[3] A.J. Ferrari and V.S. Sunderam, “Multiparadigm Distributed Computing with TPVM,” Journal of
Concurrency, Practice and Experience, (to appear).

[4] A. Geist, A Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.S. Sunderam, PVM: Parallel Virtual
Machine, MIT Press, 1994.

[5] P.A. Gray and V.S. Sunderam, “IceT: Distributed Computing and Java,” available from:
http://www.mathcs.emory.edu/~gray/abstract7.html

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-
Passing Interface, MIT Press, 1994.

[7] L.F.G. Sarmenta, “Bayanihan: Web-Based Volunteer Computing Using Java,” available from:
http://www.cag.lcs.mit.edu/bayanihan/

[8] D. Thurman, JavaPVM, available from:
http://www.isye.gatech.edu/chmsr/JavaPVM/

[9] S. White, A. lund, and V.S. Sunderam, “Performance of the NAS Parallel Benchmarks on PVM
Based Networks,” Journal of Parallel and Distributed Computing, vol. 26, no. 1, pp. 61-71, April
1995.

