
UbiBay: An auction system for mobile
multihop ad-hoc networks ∗

Hannes Frey
University of Trier

Dept. of Computer Science
frey@syssoft.uni-trier.de

Johannes K. Lehnert
University of Trier

Dept. of Computer Science
lehnert@syssoft.uni-trier.de

Peter Sturm
University of Trier

Dept. of Computer Science
sturm@syssoft.uni-trier.de

ABSTRACT
Implementing distributed applications in mobile ad-hoc net-
works is a challenge because of low bandwidth, small trans-
mission range, unpredictable topology changes and the need
to conserve energy in low powered devices. This paper
presents a distributed auction system using a large scale ad-
hoc network as its sole communication platform. The auc-
tion system is built on top of a basic middleware service
intended to be used as a generic background dissemination
service for distributed self-organizing applications in mobile
ad-hoc networks. This service is used to disseminate the lo-
cal knowledge about the current state regarding a particular
auction. The basic idea of this service is the combination of
a device discovery service essential to any ad-hoc network
and a dissemination service based on epidemic message dis-
tribution. This service can be used by different competing
applications for permanent information dissemination, while
consuming only a small fraction of the available limited net-
work bandwidth in a mobile environment.

1. INTRODUCTION
The increasing number of todays mobile computers such as
subnotebooks, PDAs and even smaller devices, their perma-
nently improved computational power and wireless commu-
nication capabilities like Bluetooth [14] or IEEE 802.11b [1]
bear the potential to serve distributed applications as an ad-
ditional communication platform besides existing fixed net-
work infrastructures. Furthermore, the investigation of the
capabilities of applications solely using mobile multihop ad-
hoc networks spanning over a large but limited area like a
city is a challenging research field.

The very nature of large scale ad-hoc networks leads to a
high probability for packet loss due to shadowing, interfer-
ence and to short interaction periods in general between any
two communicating devices. Furthermore, successful solu-
tions in this area have to fulfill stringent restrictions with
respect to energy consumption in order to maximize battery
lifetime. The absence of a stable and dependable communi-

∗This work is funded in part by DFG, Schwerpunktprogramm
SPP1140 “Basissoftware für selbstorganisierende Infrastrukturen
für vernetzte mobile Systeme”.

cation infrastructure forces these distributed applications to
deploy self-organization techniques. The underlying prin-
ciple of this kind of self-organization is to base all the deci-
sions of a device on its local knowledge, to cooperate (some-
times altruistically) with immediate neighbors only, and to
achieve the overall goals primarily through synergy.

Traditional middleware approaches heavily depend on a sta-
ble communication backbone and are therefore not applica-
ble directly to this class of mobile applications. Further-
more, although it is quite clear that about the same services
as traditional middleware provides are required for any self-
organizing distributed application, there is still limited ex-
pertise about how to realize these services in an efficient and
resource saving manner. In order to gain more insights into
the efficient implementation of basic services for these sys-
tems, interesting application domains are chosen and most
services – eventually to be defined as a generic middleware
service – are implemented as part of the application proto-
type in the first place.

All these self-organizing applications build upon a generic
broadcast service which implements an information dissemi-
nation protocol based on common epidemic algorithms. Ide-
ally, this dissemination service is part of the device-specific
drivers and uses periodic control messages already issued by
these devices during the discovery phase to piggyback ap-
plication data as broadcast information. Since the number
of bits available in the control messages is severely limited,
data can be distributed among subsequent control messages
and the number of bits available to a given application as
well as their priority is the result of a quality of service ne-
gotiation.

One of the first application domains chosen to validate and
improve the generic broadcast service are auction systems
for offering and selling new as well as used goods within
a restricted geographical area. The goal is to find a com-
pletely decentralized and self-organizing but working solu-
tion. The broadcast service is used in this case to distribute
all the offerings and bids as well as information about the
trustworthiness of the participants within the user commu-
nity. No further data are exchanged between any two devices
using additional user-space datagram or reliable stream ser-
vices. Parameters such as message frequency and the de-
gree of data replication are crucial for the overall system
performance. On the functional level, self-organizing and
decentralized solutions to problems such as privacy protec-
tion, mutual suspicion between the participants, protocols to

guarantee fair auctions (the highest bid wins), and strategies
to prohibit false bids are required.

The remainder of this paper is organized as follows. The
next two sections present the UBIBAY prototype, the auction
protocol and the distributed reputation scheme. In section 4
a detailed definition of the broadcast service PERIODICAST
is given. The paper ends with an overview of related work
in this area and a sketch of the next steps towards a real im-
plementation of UBIBAY using mobile devices.

2. UBIBAY PROTOTYPE
Each device in the UBIBAY prototype runs an auction ap-
plication which allows the user to start own auctions and to
take part in other users’ auctions. The complete auction ap-
plication is based on three message types: auction messages,
description messages and notification messages. UBIBAY
messages are used to disseminate information about new
auctions and new bids:

• An auction message consists of five parts: the seller’s ID,
who initiated the auction, the ID of the item to be sold,
the actual bid, the actual bidder’s ID and the time when
the auction ends.

• A description message contains the description of the as-
sociated auction and may contain any information a po-
tential buyer might need in order to decide whether to
participate in an auction or not. It consists of four parts:
the seller’s ID, the ID of the item, the time when the auc-
tion ends and the textual description of the auction.

• Notification messages are used to notify a bidder that he
won the auction. It consists of four parts: the seller’s ID,
the ID of the item, the winner’s ID and the time when the
notification ends.

As long as a device does not participate in any auction and
does not start a new auction, the auction application only
needs to broadcast incoming auction, description and noti-
fication messages. In order to reduce the number of unnec-
essarily sent messages, all devices store the highest bid they
know for each auction and forward only auction messages
with higher bids. Additionally, they do not disseminate mes-
sages after the end of the auction or notification period. This
prevents messages from being broadcast forever.

A user starts a new auction by constructing a new auction
message with its own ID, a new item ID, an undefined buyer,
the minimum bid and the time when the auction should end.
Additionally it puts a textual description of the auction in
a new description message, together with its own ID, the
item ID and the time when the auction should end. It then
disseminates both messages with the help of PERIODICAST,
the basic broadcast service described in section 4. Whenever
it receives a new auction message with a bid for its auction,
it saves this message if the bid is higher than the previously
saved bid.

As soon as a device has received both auction and descrip-
tion message for an auction, the user may decide whether to
participate or not. The user makes its own bid by replacing
the current buyer’s ID and bid in the auction message with
its own ID and a higher bid and disseminates the changed

message. A local auction agent takes care that every incom-
ing auction message with a higher bid than the last bid is
treated this way as long as the maximum bid is not reached.

At the end of an auction the seller notifies the bidder with the
highest bid by disseminating a notification message. This is
not done if the seller did not receive any bids. This imple-
mentation of the prototype may lead to false winners, since
the seller must not have received the highest bid necessarily.

The prototype depends on the integrity of the messages,
since other devices may alter incoming messages before for-
warding them or suppress messages. Thus, any device could
make false bids on the behalf of other users or suppress un-
wanted high bids from other users. Replay attacks are not a
problem, since PERIODICAST is based on periodic retrans-
mission of messages. Falsely replayed auction messages
have the impact of suppressed auction messages at most, be-
cause other devices will not forward auction messages with
low bids after having received auction messages with higher
bids. Retransmission of notification and description mes-
sages has no impact at all.

In order to cope with altered messages, all messages need
to be digitally signed by using public key cryptography. It is
assumed that a central certification authority (CA) outside of
the mobile ad-hoc network exists and its public key is known
on all devices. When a user buys his device he obtains a pub-
lic and a private key, certified by the CA. All messages that
the user initially sends, are signed with his private key and
contain his public key and the certificate for his public key.
Any other device that receives such a signed message can
check the signature because the public key of the originator
is contained in the message and it can verify the authenticity
of the public key by checking the certificate with the public
key of the CA. Devices drop messages with bad signatures
or false public keys in order to minimize the impact of ma-
nipulated messages.

Auction agents stay on the bidder’s device in order to keep
the highest bid a secret. Thus, even a malicious user can-
not get to know the highest bid of another user. Extensions
to allow auction agents to move to other devices as well as
approaches to cope with message suppression are discussed
in section 6. A solution for moving auction agents to other
devices has to solve the problem of keeping the highest bid
of the user a secret while allowing the auction agent to take
part in the auction on behalf of the user.

3. REPUTATION SYSTEM
The UBIBAY prototype contains a self-organizing dis-
tributed reputation system enabling participants to estimate
the trustworthiness of buyers respectively sellers regarding
a certain auction. It is implemented as a standalone service,
which assists users to rate or to retrieve ratings about other
users. A rating might be done by the winner or the initiator
of a finished aution, to publish the reliablity of each other at
the sale transaction.

The current implementation of the reputation system follows
the approach of Schneider et al. in [22]. The basic idea is
to store a database of ratings about members of the UBI-
BAY community, whereby community denotes all users of

the UBIBAY prototype. The database contains both personal
ratings resulting from finished auctions a member was par-
ticipating in and ratings received from other members. Rep-
utation information stored in this database is periodically
distributed by the use of PERIODICAST. Thus every mem-
ber’s database is permanently updated and will grow over
the time in order to get more reliable and complete.

Each database entry represents a reputation vector for one
member. It consists of a personal opinion valuevp, the num-
ber of personal encounters with that membercntp, a commu-
nity opinion valuevc, the number of ratings received for this
membercntc and the last modification date of this database
entry ld. The values ofvp andvc range from−127 to 127,
with −127 representing the worst and127 the best reputa-
tion value possible.

The reputation valuevp and counter valuecntp for one mem-
ber result exclusively from local ratings on one device. Each
time a new rating on that member is done on this device,
cntp is incremented by one andvp is computed by averag-
ing all personal ratings including the new one.

vc represents an average value of ratings received from other
users. It is computed in a similar manner asvp. When a
personal opinion value and a community opinion value are
received from another device, the new community opinion
valuevc is calculated by averaging all previously received
vp andvc values about this member including the received
ones. Thereaftercntc is incremented by two. Thus, unlike
the personal opinion value, the value of a community opin-
ion valuevc is influenced both by personal ratings and by
ratings from the community. An incoming reputation infor-
mation about one member from another device is accepted
only once during a given time interval, in order to avoid that
one user gains to much weight. In addition an aging mech-
anism is realized to decrease the weight of old reputation
information.

Both counter valuescntp andcntc are used to calculate the
average valuesvp and vc, they indicate the quality of the
respective opinion valuesvp andvc. The greater a counter
value the more ratings influenced the assigned opinion value.

The last modification dateld of a database entry limits the
lifetime of this entries usage and is used for garbage col-
lection. It results from the maximum over the last date the
assigned member was rated on this device and allld values
received from other devices about that member.

In order to disseminate reputation information stored about
members in the local database a part of this database is pe-
riodically sent using a low priority buffer of PERIODICAST.
From each database entry only the valuesvp, vc andld are
transmitted.cntp andcntc are used only locally and thus are
not transferred.

4. INFORMATION DISSEMINATION SERVICE
This section presents PERIODICAST, an extended device
discovery protocol, providing applications with information
about current adjacent neighbors. Furthermore, it allows dif-
ferent competing applications to use it as an additional infor-
mation dissemination service. The main idea of the protocol

is to piggyback application specific broadcast messages on
device discovery messages already used to determine other
devices in direct communication range, so that each message
utilizes the full MTU size. The following subsection gives an
overview of the disseminating protocol and how it is used by
different competing applications. After this subsection the
protocol definition by means of its event handler routines is
presented. It is assumed that each event handler is processed
in one atomic step. For ease of representation, obvious han-
dlers for initialisation, deregistration and buffer deactivation
are omitted. Also failure notifications for wrong buffer allo-
cation respectively buffer activation are omitted. In the last
subsection useful protocol parameters are discussed in more
detail.

4.1 Overview
To use the present form of PERIODICAST as a communi-
cation platform, an application has to reserve appropriate
buffer memory of fixed length and assigned priority to place
its broadcast messages inside. PERIODICAST assures the
adherence of certain quality of service agreements. Buffer
allocation fails, if it would result in the inability to meet the
service agreements of previous buffer allocations. In this
case a lower service agreement has to be done or it is up
to the user to shut down other applications consuming too
many network resources. Broadcast messages from differ-
ent competing applications on one device are scheduled in a
fairly controlled manner depending on their priorities.

Every buffer has an assigned port number to enable
PERIODICAST to distinguish the content of different buffers
packed in one received discovery message and pass it to the
applications registered at that port. To use one port for dif-
ferent message types, every buffer has an additional buffer
id. There is no assurance that an activated buffer is sent
completely in one discovery message. Thus the receiving
device might get only a fragment of this buffer. To allow
reassembling of received buffer fragments to the complete
buffer content, each fragment it tagged with the length of
the complete buffer and the position of this fragment inside
the buffer. Finally, every fragment has an assigned context.
Suppose the same buffer content is sent several times before
it is replaced by a new content. The context value might be
used as a lamport clock which is incremented after actual
buffer content is replaced by new one.

4.2 Protocol definition
In order to enable PERIODICAST to pass buffer fragments
of a received broadcast message and send notifications about
completely handled buffers, an application has to register it-
self as a fragment listener respectively buffer listener for a
certain buffer with the unique identifier(port, bid). In this
representation a process identificationpid is used to pass
buffer fragments and send notifications to the associated ap-
plication. All receivers for buffer notifications and fragments
are remembered in the setsLb andLf . Herewith the handlers
for buffer and fragment registration are as follows.

• Processpid registered as listener for completely sent
buffer (port, bid):
Lb ← Lb ∪ {(pid, port, bid)}

• Processpid registered as listener for fragments from
buffer (port, bid):
Lf ← Lf ∪ {(pid, port, bid)}

Received broadcast messages include a unique identifier of
the sending device denoted asuid′. The remainig part of
the message consists of buffer fragments. These are passed
to the corresponding fragment listeners by usingLf and the
pass routine. Furthermore, the sending device andtime,
the actual time on the receiving device, are remembered in
the setN of actual known adjacent devices.

• Broadcast message(uid′, frag1, . . . , fragk) with
fragi = (porti, bidi, . . .) arrived:
if(∃t : (uid′, t) ∈ N)
N ← N \ {(uid′, t)}

N ← N ∪ {(uid′, time)}
forall(i ∈ {1, . . . , k})

forall((pid, porti, bidi) ∈ Lf)
pass(pid, fragi)

The next event handler is called after successive time in-
tervals of length∆s by using a garbage collection timeout
eventgc. The garbage collection removes all lost devices
from N and sets the next garbage collection timeout by us-
ing the methodset .

• Timeoutgc for the next garbage collection occured:
forall((uid′, t) ∈ N)

if(time− t > ∆s)
N ← N \ {(uid′, t)}

set(gc,∆s)

Before an application is able to use PERIODICAST to dis-
seminate its own data, an appropriate buffer has to be allo-
cated for its broadcast messages. Only an unused identifier
may be used for this new buffer. Unused buffers are de-
noted with alength of 0. Buffer allocation only succeeds,
if the sum of the additional buffer length andusagei, the
average number of bytes sent in one pass of all buffers of
the given priorityi, is below a fixed valueli. An accepted
buffer allocation is notified with analloc notification con-
taining the buffer contentbytes, which is subsequently used
to put own broadcast messages inside. In order to send an al-
located buffer, it has to be activated by setting itsvalid entry
to the number of bytes to be sent. Activation succeeds only
if valid is set to a value less or equal to the total length of
the buffer. Additional, the activated buffer might be tagged
with a context valuectx as motivated in section 4.1.

• Processpid requested allocation of buffer(port, bid)
with lengthlength and prioritypri:
if(∀i, j : portij 6= port ∨ bidij 6= bid) {
i← pri
j ← min{k : lengthik = 0}
if(usagei + length ≤ li) {
portij ← port
bidij ← bid
lengthij ← length
notify(alloc, pid, port, bid, bytesij)

}
}

• Processpid activated the firstvalid bytes of buffer
(port, bid) with contextctx:
if(∃i, j : portij = port ∧ bidij = bid)

if(valid ≤ lengthij) {
validij ← valid
ctxij ← ctx
notify(valid, pid, port, bid)

}

PERIODICAST uses a timeout eventbc to send its broad-
cast messages in subsequent time intervals of length∆t.
A broadcast message contains the unique identifier of the
sending deviceuid. The remaining part is filled with buffer
fragments from one or more priorities. Buffer fragments
are appended to the broadcast message as long as its length
is less or equalmtu which is set toMTU − HDR − 1,
while MTU represents the maximum transfer unit of the
underlying radio network technology andHDR amounts to
the number of bytes used to store the header of one frag-
ment(port, bid, ctx, valid, first, last). There aren priori-
ties and each priorityi has an assigned probabilitypi to be
chosen in the next broadcast message, whilep1 > p2 >
. . . > pn and p1 + p2 + . . . + pn = 1. To enable fair
buffer scheduling the functionperm(p1, . . . , pn) creates a
random permutation from{1, . . . , n} by using the probabil-
ities p1, . . . , pn. For eachi, j the jth buffer of priority i
consists ofportij , bidij , ctxij , lengthij , validij , bytesij as
described in previous paragraphs. Additionally, it contains a
field currentij to store the actual position inside the buffer
content PERIODICAST is working on. A buffer is com-
pletely passed whencurrentij ≥ validij holds. All listen-
ers of a completely passed buffer are notified by asent noti-
fication. The last buffer of priorityi completed by PERIODI-
CAST is remembered indonei. In order to calculateusagei,
the average number of bytes sent from one priorityi in one
complete pass of its buffers, the following two variables are
used.sumi cummulates the total number of bytes sent in the
current pass of all buffers. After this,α is used to calculate
the new average valueusagei from the weightedsumi value
and an exponential decay of the old average values. Finally,
a broadcast message is passed to the lower layer by the use
of broadcast . After thisf(t) calculates the time interval
for the next broadcast message transmission and abc timeout
event is set.

• Timeoutbc for the next broadcast message transmission
occured:
(π1, . . . , πn)← perm(p1, . . . , pn)
k ← 1
m← 〈uid〉
while(k ≤ n ∧ |m| ≤ mtu) {
i← πk
while(∃j : currentij < validij) {

if(∀j > donei : validij ≤ currentij) {
usagei ← (1− α) · usagei + α · sumi

sumi ← 0
donei ← 0

}
j ← min{j > donei : currentij < validij}
v ← currentij
w ← min(validij − 1, v +mtu− |m|)

m← m · 〈portij , bidij , ctxij , validij , v, w,
bytesij [v], bytesij [v + 1], . . . , bytesij [w]〉

currentij ← w + 1
if(currentij ≥ validij) {

forall((pid, portij , bidij) ∈ Lb)
notify(sent, pid, portij , bidij)

donei ← j
}
sumi ← sumi + 1 + w − v

}
k ← k + 1

}
broadcast(m)
set(bc, f(∆t))

Note, that buffer allocations for priorityi are limited to the
constraint, that the sum of additionally reserved buffer length
andusagei (the average number of bytes sent in one pass of
all buffers with priorityi) has to be less than a fixed value
li. This QoS constraint assures, that in the average case each
buffer of priorityi is sent at least all∆tpi ·

li
l seconds, whereby

l represents the payload of one broadcast message. Note fur-
thermore, that the smallerα is chosen, the more the change
of usagei will be delayed regarding buffer activation bursts
of different applications or protocols using PERIODICAST
as a dissemination service.

4.3 Setting the timeout intervals
The protocol definition in the previous section introduced
the timeout interval∆t for the successive broadcast mes-
sage transmissions,∆s as the timeout interval for the next
garbage collection and a functionf(t) to vary the broadcast
transmission timeout depending on∆t.

Short transmission timeout intervals between two successive
broadcast messages will result in frequent message colli-
sions, if PERIODICAST is based on a simple radio network
technology without collision detection. Having a more so-
phisticated radio layer, using a network technology such as
CSMA/CA, will reduce or even avoid possible message col-
lisions, but might lead to starvation, if no fair buffer schedul-
ing strategy is used to share the limited bandwidth on all
applications willing to use the radio layer to disseminate
their own data. Additionally, the shorter this interval, the
higher is the energy consumption. On the other hand, if
transmission timeouts are set too long, the above problems
may not appear, but two successive broadcast message trans-
missions might be too long away from each other, so that
PERIODICAST is not reasonable to be used as an informa-
tion dissemination mechanism. The current implementation
of PERIODICAST uses a transmission timeout interval∆t of
1 second.

A good choice off(t) is only necessary, if PERIODICAST
is based on a radio network technology, where packet col-
lisions may occur. Otherwise,f(t) might be deterministic
with t 7→ t. In the current implementation of PERIODICAST
two adjacent devices are using the same value∆t to deter-
mine the interval of two successive broadcast message trans-
missions. If there is a collision of the broadcast messages
from these devices,f(∆t) has to set the next transmission

time in this way, that there is a small collision probability
in the next broadcast message transmission. Additional, the
average interval length should be∆t. Thus, ifX andY are
independent identically distributed random variables result-
ing from f(t) and∆t, the probability P{|X − Y | < d} has
to be small, wherebyd denotes the time used to transmit
one broadcast message. While applicable for radio networks
without packet collisions, it is obvious that a determinis-
tic f(t) due to P{|X − Y | < d} = 1 is inapplicable when
packet collisions may occur. The current implementation of
PERIODICAST usesf(t) to set exponential distributed trans-
mission intervals with rate1

∆t . Consequently, the average
interval length is∆t and the probability P{|X − Y | < d}
results to1− e− d

∆t .

Since PERIODICAST currently does not use trajectory infor-
mation of moving devices to determine if a mobile device is
still accessible, a periodic garbage collection has to be done
to remove lost devices from the set of actual adjacent de-
vicesN . This garbage collection interval has to be set to a
suitable value to keepN up to date. The longer the value
of this interval, the more devices unaccessible remain inN .
On the other hand a value too short results in a permanent
removal of devices still within reach. Sincef(t) schedules
the next broadcast transmission according to an exponential
distributed value with rate1

∆t , the next garbage collection
timeout might be set as follows. Letq denote the probabil-
ity that a device is removed fromN although it is still in
reach. Due to the memoryless property of the exponential
distributed broadcast transmission timeouts,q corresponds
to e−

t
∆t . Thus, PERIODICAST uses∆s = −∆t · ln(q) and

a fixed small valueq = 0.05 to determine the next garbage
collection timeout interval.

5. RELATED WORK
The UBIBAY prototype contains a reputation system, which
enables users to determine the trustworthiness of other par-
ticipants. Reputation systems became popular through the
success of centralized internet auction platforms like eBay
[5], because people needed to decide whether to trust buy-
ers and sellers [17, 21]. Distributed trust models are pre-
sented in [2] and [3]. In [15] a mobile agent based restaurant
recommendation system based on reputation of the raters is
described. Applications in mobile ad-hoc networks demand
new self-organizing reputation systems in order to cope with
the absence of a trustworthy infrastructure and the decen-
tralized data storage. Schneider et. al. [22] present a self-
organizing decentralized reputation system for mobile com-
puters, on which the reputation system described in section
3 is based.

An information dissemination service for mobile multihop
ad-hoc networks like PERIODICAST, coordinating different
competing distributed applications willing to use the the un-
derlying wireless communication technology to disseminate
information to a potentially high number of destination de-
vices, can be based on different techniques. One possible ap-
proach is to base such dissemination algorithms on an exist-
ing network routing infrastructure. Routing algorithms and
in particuar clustered network architectures are well studied
for ad-hoc networks [4, 6, 10, 13, 18, 19, 20]. They per-

form well if the mobility pattern of the devices is moderate.
In case of high node mobility maintaining such a routing
infrastructure might be intractable, since frequent topology
changes will result in permanent network reorganization.

Flooding is an attractive alternative [8] in highly dynamic
mobile ad-hoc networks, because it emphasizes minimal
state and high reliability. Blind flooding in such mobile ad-
hoc networks leads to redundant rebroadcasts, contention
and packet collisions, also known as the broadcast storm
problem [16]. These problems might be reduced by using
the knowledge about temporary adjacent mobile devices as
proposed in [12], where it is assumed that there exists a base
service which maintains this kind of information.

PERIODICAST allows information dissemination without
any network infrastructure. Furthermore it circumvents the
problems known for flooding algorithms in radio networks
by postponing the propagation of information in a fairly
scheduled manner.

Instead of simply using a certification authority outside of
the ad-hoc network and distribute key pairs when users buy
their devices, other more sophisticated approaches can be
used. A distributed certification authority using threshold
secret sharing mechanisms is described in [11]. In [9] al-
gorithms for a self-organized public-key infrastructure are
presented, where users store and distribute certificates.

6. CONCLUSIONS AND FUTURE WORK
This paper describes an auction system intended to be used
in a large scale ad-hoc network without the aid of any other
fixed network infrastructure. The presented UBIBAY appli-
cation, the reputation system and the basic communication
platform PERIODICAST are currently implemented in a Java
based simulation environment which is used to test the func-
tionality of the described components. A real implemen-
tation is planned by porting the existing code to a mobile
computing platform consisting of PDAs equipped with IEEE
802.11b communication facilities.

The presented prototype uses digitally signed messages to
avoid tampering of bids and offerings by other users. This
is of importance, since each device of the ad-hoc network is
used for package fowarding. Without a signature each device
could potentially fake messages before forwarding them. As
motivated in section 2, message replay is no serious attack,
since the auction system is based on a distributed maximum
computation. The attack of dropping relevant messages is
of more importance and will be concerned in a future ex-
tension of this auction system. It is planned to extend the
system by an observing mechanism, where each device is
running in promiscuous mode, observing the messages sent
from direct neighbors within communication range. Due to
this observations, a device can possibly decide if another one
is dropping messages resp. forwarding older messages in-
stead of forwarding the right ones. If several devices detect
such a cheating device, they might reach a consensus to iso-
late such a device from the ad-hoc network and to further
ignore all outgoing messages from this device.

The state of an agent must be hidden from other users, since
it contains a value representing the highest bid a user is will-

ing to do. Knowledge of this value allows to fool the agent
so that it continues bidding until it reaches its maximum bid.
The auction system presented in this paper avoids this prob-
lem, because auction agents are only allowed to run on the
device, where they where created. So the maximum bid will
never be known on another device.

As a consequence of the agents remaining on the device
where they were created, the whole ad-hoc network is in-
volved in each auction, since new bids have to be dissemi-
nated through the whole network. A future more resource
saving modification of the auction system will avoid flood-
ing of the complete network in the following way. An auc-
tion is held on a certain limited geographic location, which
is called a marketplace [7] in the following. Each agent who
wants to participate in this auction has to move towards such
a marketplace. On the market place it is allowed to broad-
cast his bids over the marketplace. Since the user itself is
normally not located on the marketplace, the agent must be
able to change his hosting device. Simply passing an agent
to another device will not work, since the highest maximum
bid of this agent has to be kept secure. One approach based
on the concept of secret sharing is to split the information
how far an agent will bid, by sharing a bit vectorb1b2 . . . bk
on n different devices in this way, that only alln devices
together can determine the the bitbi for 1 ≤ i ≤ k, while
bi is 1 if and only if the agent will continue bidding in the
ith step of the auction. This assures, that thesen devices
can only together sucessively determine for each step of the
auction if the agent will continue bidding or stop. A precise
description how this secret sharing approach works will be
published in subsequent work.

Distributed applications in mobile ad-hoc networks often
need information about current adjacent mobile devices.
Consequently there is the need for a device discovery mech-
anism based on the given radio network technology. If de-
vices are moving permanently, this device discovery has to
be done periodically. Disseminating information by simple
flooding mechanisms leads to early network congestion. On
the other hand using high level services for reliable multi-
cast is not appropriate, when the mobility pattern is highly
dynamic. The basic idea of PERIODICAST is to combine
device discovery and information dissemination in one low
level service using a fair buffer scheduling and appropri-
ate discovery periods. Notice that PERIODICAST is not in-
tended to be used solely for commuication among mobile
devices in a mobile ad-hoc network. There are situations
when more reliable communication and a closer coupling
of mobile devices is needed. The current implementation
of PERIODICAST uses a randomized schedulig strategy and
fixed discovery periods. An extension of this service is
planned with additional scheduling strategies and adaptive
discovery periods to reduce the number of message colli-
sions. Thus discovery periods will depend on the number of
adjacent devices and their discovery periods.

REFERENCES
[1] International Standard ISO/IEC 8802-11. Information

technology – telecommunications and information
exchange between systems – local and metropolitan

area networks – specific requirements – part 11:
Wireless lan medium access control (mac) and
physical layer (phy) specifications, 1999.

[2] A. Abdul-Rahman and S. Hailes. A distributed trust
model. InProceedings of the New Security Paradigms
Workshop (NSPW-97), pages 48–60, New York,
September 23–26 1997. ACM.

[3] A. Abdul-Rahman and S. Hailes. Supporting trust in
virtual communities. InProceedings of the Hawaii
International Conference on System Sciences 33,
2000.

[4] M. Chatterjee, S.K. Das, and D. Turgut. A weight
based distributed clustering algorithm for mobile ad
hoc networks.Proceedings of the 7th International
Conference on High Performance Computing, LNCS
1970, pages 511–524, 2000.

[5] eBay. The world’s online marketplace.
http://www.ebay.com/, 2002.

[6] M. Gerla, C. Chiang, and L. Zhang. Tree multicast
strategies in mobile, multihop wireless networks.
Mobile Networks and Applications 4 (3), pages
193–207, 1999.

[7] D. Görgen, H. Frey, J.K. Lehnert, and P. Sturm.
Marketplaces as communication patterns in mobile
ad-hoc networks.Kommunikation in Verteilten
Systemen (KiVS) 2003, Leipzig, Germany, 2003.

[8] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath.
Flooding for reliable multicast in multi-hop ad hoc
networks.Proceedings of the third international
workshop on discrete algorithms and methods for
mobile computing and communications, pages 64–71,
1999.

[9] J. P. Hubaux, L. Buttyan, and S. Capkun. The quest for
security in mobile ad hoc networks. InProceedings of
the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHOC), 2001.

[10] D.B. Johnson and D.A. Maltz. Dynamic source
routing in ad hoc wireless networks. InMobile
Computing, volume 353 ofThe Kluwer International
Series in Engeneering and Computer Science. Kluwer
Academic Publishers, 1996.

[11] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang.
Providing robust and ubiquitous security support for
mobile ad-hoc networks. In9th International
Conference on Network Protocols (ICNP’01), 2001.

[12] H. Lim and C. Kim. Multicast tree construction and
flooding in wireless ad hoc networks.Proc. 3rd Int.
ACM workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, pages 61–68, 2000.

[13] C.R. Lin and M. Gerla. Adaptive clustering for mobile
wireless networks.IEEE Journal on Selected Areas in
Communications, Vol. 15, No. 7, pages 1265–1275,
1997.

[14] B.A. Miller and C. Bisdikian.Bluetooth Revealed.
Prentice Hall, Upper Saddle River, NJ, 2000.

[15] L. Mui, P. Szolovits, and C. Ang. Collaborative
sanctioning: applications in restaurant
recommendations based on reputation. InProceedings
of the Fifth International Conference on Autonomous
Agents, pages 118–119, Montreal, Canada, May 2001.
ACM Press.

[16] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The
broadcast storm problem in a mobile ad hoc network.
Proceedings of the fifth annual ACM/IEEE
international conference on Mobile computing and
networking, pages 151–162, 1999.

[17] A. Oram, editor.Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly & Associates,
Inc., 2001.

[18] V.D. Park and M.S. Corson. A highly adaptive
distributed routing algorithm for mobile wireless
networks.Proceedings of IEEE INFOCOM 97, pages
1405–1413, 1997.

[19] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing
(DSDV) for mobile computers. InACM
SIGCOMM’94 Conference on Communications
Architectures, Protocols and Applications, pages
234–244, 1994.

[20] C.E. Perkins. Ad-hoc on-demand distance vector
routing. InMILCOM ’97 panel on Ad Hoc Networks,
1997.

[21] P. Resnick, R. Zeckhauser, E. Friedman, and
K. Kuwabara. Reputation systems.CACM,
43(12):45–48, December 2000.

[22] J. Schneider, G. Kortuem, J. Jager, S. Fickas, and
Z. Segall. Disseminating trust information in wearable
communities.2nd International Symposium on
Handheld and Ubitquitous Computing, 2000.

