
A generic background dissemination service

for mobile ad-hoc networks

Hannes Frey and Johannes K. Lehnert and Daniel Görgen and Peter Sturm

Abstract

This paper proposes a basic middleware service in-
tended to be used as a generic background dissem-
ination service for distributed self-organizing appli-
cations and protocol services in mobile ad-hoc net-
works. The basic idea is the combination of a device
discovery service needed in ad-hoc networks and a
dissemination service based on epidemic message dis-
tribution. This service is intended to be used by dif-
ferent competing applications and protocols for per-
manent information dissemination, while consuming
only a small fraction of the available limited network
bandwidth in a mobile environment. A prototype of
this service is implemented and studied in a simu-
lation environment. The paper concludes that infor-
mation dissemination based on a background dissem-
ination service is attractive if time constraints for the
information distribution are low.

1 Introduction

The increasing number of todays mobile comput-
ers such as subnotebooks, PDAs and even smaller
devices, their permanently improved computational
power and wireless communication capabilities (like
Bluetooth [8] or IEEE 802.11 [1]) and finally possi-
ble location awareness of such devices due to GPS
receivers or other triangulation techniques, bear the
potential to serve distributed applications as an
additional communication platform besides existing
fixed network infrastructures. Furthermore, in the
near future there will be a number of emerging
self-organizing distributed applications [3][10] based
mainly on the use of mobile network infrastructures,

the mobile ad-hoc networks formed by these devices.

Implementing distributed applications communi-
cating solely over such a mobile wireless network
infrastructure is a challeging task because of low
bandwidth, unpredictable network topology changes,
small transmission range and the need to preserve
energy in low powered devices. Inherent properties
of mobile wireless communication compared to com-
munication over traditional static network infrastruc-
tures are a higher probability of packet loss due to
shadowing and interference and possibly short inter-
action periods between mobile devices.

This paper focuses on the proposal of a basic mid-
dleware service PeriodiCast, coordinating different
competing distributed applications willing to use the
the underlying wireless communication technology to
disseminate information to a potentially high number
of destination devices. One possible approach is to
base such dissemination algorithms on a given net-
work routing infrastructure. Routing in ad-hoc net-
works is extensively studied [11, 2, 4, 7] and performs
well if the mobility pattern of the mobile devices is
moderate. If the mobility pattern is highly dynamic,
maintaining such a routing infrastructure might be
intractable. In this case flooding is an alternative to
routing, since it emphasizes minimal state and high
reliability [5]. Blind flooding in such mobile ad-hoc
networks leads to redundant rebroadcasts, contention
and packet collisions, also known as the broadcast
storm problem [9]. These problems might be reduced
by using the knowledge about temporary adjacent
mobile devices as proposed in [6], where it is assumed
that there exists a base service which maintains this
kind of information.

The remainder of this paper is organized as follows.

1

Section 2 motivates the communication paradigma
proposed by PeriodiCast and gives a simple ex-
ample of the intended usage of this service. The
following two sections 3 and 4 present the proto-
col definition and discuss an appropriate choice of
timeout intervals needed in the current implementa-
tion of PeriodiCast. In the subsequent section 5,
simulation results of a prototype implementation of
PeriodiCast are presented. Finally, in section 6, the
applicability of periodic broadcast message transmis-
sion for data dissemination is discussed and future
extensions of PeriodiCast are considered.

2 Motivation

The PeriodiCast service is used to disseminate infor-
mation within a restricted geographical region using
wireless communication technologies. The underly-
ing assumption is, that the density of mobile devices
within this region is sufficiently high on average to use
self-organizing principles for message distribution. A
stationary backbone network is not required. Devices
cooperate in message dissemination altruistically by
means of epidemic algorithms where devices ”infect”
nearby mobile systems with information. Eventually,
this leads to the receipt of the disseminated informa-
tion in most mobile devices.

The dissemination protocol presented in this paper
is based on the periodical transmission of information
in order to keep the overall overhead with respect
to the available bandwidth of the wireless commu-
nication system below 1 percent. Thus, not every
new device getting within transmission range is in-
fected immediately. Of course, this limits the num-
ber of bytes that can be transmitted successfully in a
given time interval. The period of message infection
is in the order of seconds with a substantial end-to-
end latency in information transmission. This mag-
nitude has been chosen to tackle the general problem
with simple infection schemes namely the escalation
in message complexity especially in case of high den-
sity (broadcast storms [9]). PeriodiCast is therefore
limited to dissemination scenarios, where the infor-
mation remains stable for a sufficiently long time pe-
riod and where the long transmission latency is ac-

ceptable.
There are still many application scenarios, where

the PeriodiCast service can be used successfully de-
spite its limitations. Prominent examples are exhibi-
tions and fairs, where - hopefully - many visitors meet
within a limited area and share common interests
such as time schedule about extraordinary events, lo-
cations of exhibitors, and e.g. information about the
public transportation system. Another area of inter-
est are company sites and university campuses where
employees respectively students can use this service
for news, alternatives at lunch time etc. Another
application area has been investigated [3], where an
self-organizing auction system uses PeriodiCast as
its sole message transport protocol to support offers
and bids of new as well as used goods within a local
area. Here, the service is not only used to dissemi-
nate information about ongoing auctions but also to
deliver replies (bids) back to the sender.

The PeriodiCast protocol is used primarily as a
background dissemination service to an anonymous
number of potential recipients. Additional transport
protocols such as unicast with a single neighbor or
certain multicasts can be used by the application on
request. They are not part of this basic service. Ide-
ally, PeriodiCast uses piggybacking to send appli-
cation data as part of the control messages required
by any wireless communication technique during the
discovery phase in ad-hoc networks. Due to stringent
limitations in the number of availalable bytes within
such control messages, the space reserved for a given
application is determined during a quality of service
negotiation. The QoS parameters negotiated before
any communication takes place are buffer sizes and
priorities. Priorities are used to guarantee certain la-
tency constraints. In general, the frequency to send
data of a given priority is proportional to the priority
value.

The first implemented version of PeriodiCast uses
broadcast intervals with a fixed period. After buffer
length and priority negotiation, an application us-
ing PeriodiCast fills its allocated buffers as needed.
Completed buffers can then be validated, thus allow-
ing PeriodiCast to broadcast the information in the
near future. This is done on a fair scheduling ba-
sis with respect to the defined priorities. Typically,

2

an application wants to be informed when the data
has been send completely. This is done by means
of events. For this purpose, the application is re-
quired to register itself as a event listener at the
PeriodiCast service.

Depending on the buffer size, the PeriodiCast ser-
vice may not be able to send the complete buffer in-
formation during a single broadcast message. Be-
cause of the highly dynamic nature of mobile ad-hoc
networks, there is also a high probability for mes-
sage loss. Both problems may slow down application
progress substantially. Some applications may profit
from further partitioning sending buffers into smaller
self-contained fragments, if they are able to achieve
progress with the receipt of single fragments only.
For this purpose, PeriodiCast is able to deliver sin-
gle fragments to a receiving application although the
complete buffer has not been received yet.

The following example is a simplified representa-
tion of an epidemic algorithm using PeriodiCast to
disseminate a text initially stored on one device. De-
vices are distinguished by their unique identifiers uid.
The application on each device reserves one buffer
for port port with buffer identification bid and length
length. Addidtionally, it registers as a listener for re-
ceived buffer fragments and completely sent buffers.
The given text is split in n parts text1, . . . , textn,
whereby each part fits completely in the reserved
buffer. Initially only the device owning the text starts
the dissemination of the first text part text1.

• Application started:
reserve buffer (port, bid) with length length
register as fragment listener for (port, bid)
register as buffer listener for (port, bid)
k ← 1
if(uid = 1) {

copy text1 into buffer (port, bid)
validate (port, bid) with context 1

}

After its buffer is completely sent it continues with
the next one. Note, that the handler for completely
sent buffers is not called until the buffer was validated
for the first time.

• Buffer (port, bid) completely sent:
copy textk into the buffer (port, bid)

validate (port, bid) with context k
k ← (k + 1) mod n

PeriodiCast does not assure that a buffer is com-
pletely sent in one message. Thus, a received frag-
ment for context i might only contain a part of texti.
On receipt of a fragment of context i, the currently
stored text part of texti is extended with the frag-
ment content. After the text has been completely
received for the first time, the device also starts the
dissemination of the complete text.

• Fragment for (port, bid) with context i received:
add received fragment to texti
if(text completely received for the first time) {

copy text1 into buffer (port, bid)
validate (port, bid) with context 1

}

Note that this application uses the buffer
context to distinguish the different text parts
text1, . . . , textn. In other application domains this
context value might be used for other purposes (e.g.
as a logical clock).

3 Protocol definition

This section presents the protocol definition of
PeriodiCast. The representation is done by using
its event handler routines. It is assumed that each
event handler is processed in one atomic step. For
ease of representation, obvious handlers for initiali-
sation, deregistration and invalidation are omitted.
Also failure notifications for wrong buffer allocation
respectively buffer validation are omitted.

In order to enable PeriodiCast to pass buffer frag-
ments of a received broadcast message and send noti-
fications about completely handled buffers, an upper
protocol layer or application has to register itself as a
fragment listener respectively buffer listener for a cer-
tain buffer with the unique identifier (port, bid). In
this representation a process identification pid is used
to pass buffer fragments and send notifications to the
associated protocol or application. All receivers for
buffer notifications and fragments are remembered in
the sets Lb and Lf . Herewith the handlers for buffer
and fragment registration are as follows.

3

• Process pid registered as listener for completely
sent buffer (port, bid):
Lb ← Lb ∪ {(pid, port, bid)}

• Process pid registered as listener for fragments
from buffer (port, bid):
Lf ← Lf ∪ {(pid, port, bid)}

Received broadcast messages include a unique
identifier of the sending device denoted as uid′ and its
position pos′ which contains the last value received
by a GPS receiver. The remainig part of the mes-
sage consist of buffer fragments. These are passed to
the corresponding fragment listeners by using Lf and
the pass routine. Furthermore, the sending device,
its position and time, the actual time on the receiv-
ing device, are remembered in the set N of actual
known adjacent devices.

• Broadcast message (uid′, pos′, frag1, . . . , fragk)
with fragi = (porti, bidi, . . .) arrived:
if(∃pos′′, t : (uid′, pos′′, t) ∈ N)

N ← N \ {(uid′, pos′′, t)}
N ← N ∪ {(uid′, pos′, time)}
forall(i ∈ {1, . . . , k})

forall((pid, porti, bidi) ∈ Lf)
pass(pid, fragi)

The next event handler is called after successive
time intervals of length ∆s by using a garbage col-
lection timeout event gc. The garbage collection
removes all lost devices from N and sets the next
garbage collection timeout by using the method set.

• Timeout gc for the next garbage collection oc-
cured:
forall((uid′, pos′, t) ∈ N)

if(time− t > ∆s)
N ← N \ {(uid′, pos′, t)}

set(gc, ∆s)

Before any protocol layer or application is able to
use PeriodiCast to disseminate its own data, an ap-
propriate buffer has to be allocated for its broadcast
messages. Only an unused identifier may be used for
this new buffer. Unused buffers are denoted with a
length length of 0. Buffer allocation only succeedes,
if the sum of the additional buffer length and usagei,

the average number of bytes sent in one pass of all
buffers of the given priority i, is below a fixed value
li. An accepted buffer allocation is notified with an
alloc notification containing the buffer content bytes,
which is subsequently used to put own broadcast mes-
sages inside. In order to send an allocated buffer, it
has to be validated by setting its valid entry to the
number of bytes to be sent. Validation succeeds only
if valid is set to a value less or equal to the total
length of the buffer. Additional, the validated buffer
might be tagged by a context value ctx as motivated
in section 2.

• Process pid requested allocation of buffer
(port, bid) with length length and priority pri:
if(∀i, j : portij 6= port ∨ bidij 6= bid) {

i ← pri
j ← min{k : lengthik = 0}
if(usagei + length ≤ li) {

portij ← port
bidij ← bid
lengthij ← length
notify(alloc, pid, port, bid, bytesij)

}
}

• Process pid validated the first valid bytes of
buffer (port, bid) with context ctx:
if(∃i, j : portij = port ∧ bidij = bid)

if(valid ≤ lengthij) {
validij ← valid
ctxij ← ctx
notify(valid, pid, port, bid)

}

PeriodiCast uses a timeout event bc to send its
broadcast messages in subsequent time intervals of
length ∆t. A broadcast message contains the unique
identifier of the sending device uid and its actual po-
sition pos. The remaining part is filled with buffer
fragments from one or more priorities. Buffer frag-
ments are appended to the broadcast message as
long as its length is less or equal mtu which is set
to MTU − HDR − 1, while MTU represents the
maximum transfer unit of the underlying radio net-
work technology and HDR amounts to the number
of bytes used to store the header of one fragment

4

(port, bid, ctx, valid, first, last). There are n prior-
ities and each priority i has an assigned probabil-
ity pi to be chosen in the next broadcast message,
while p1 > p2 > . . . > pn and p1 + p2 + . . . + pn =
1. To enable fair buffer scheduling the function
perm(p1, . . . , pn) creates a random permutation from
{1, . . . , n} by using the probabilities p1, . . . , pn. For
each i, j the jth buffer of priority i consists of portij ,
bidij , ctxij , lengthij , validij , bytesij as described in
previous paragraphs. Additional, it contains a field
currentij to store the actual position inside the buffer
content PeriodiCast is working on. A buffer is com-
pletely passed when currentij ≥ validij holds. All
listeners of a completely passed buffer are notified
by a sent notification. The last buffer of priority i
completed by PeriodiCast is remembered in donei.
In order to calculate usagei, the average number of
bytes sent from one priority i in one complete pass
of its buffers, the following two variables are used.
sumi cummulates the total number of bytes sent in
the current pass of all buffers. After this, α is used
to calculate the new average value usagei from the
weighted sumi value and an exponential decay of the
old average values. Finally, a broadcast message is
passed to the lower layer by the use of broadcast.
After this f(t) calculates the time interval for the
next broadcast message transmission and a bc time-
out event is set.

• Timeout bc for the next broadcast message trans-
mission occured:
(π1, . . . , πn) ← perm(p1, . . . , pn)
k ← 1
m ← 〈uid, pos〉
while(k ≤ n ∧ |m| ≤ mtu) {

i ← πk

while(∃j : currentij < validij) {
if(∀j > donei : validij ≤ currentij) {

usagei ← (1− α) · usagei + α · sumi

sumi ← 0
donei ← 0

}
j ← min{j > donei : currentij < validij}
v ← currentij
w ← min(validij − 1, v + mtu− |m|)
m ← m · 〈portij , bidij , ctxij , validij , v, w,

bytesij [v], bytesij [v + 1], . . . , bytesij [w]〉
currentij ← w + 1
if(currentij ≥ validij) {

forall((pid, portij , bidij) ∈ Lb)
notify(sent, pid, portij , bidij)

donei ← j
}
sumi ← sumi + 1 + w − v

}
k ← k + 1

}
broadcast(m)
set(bc, f(∆t))

Note, that buffer allocations for priority i are lim-
ited to the constraint, that the sum of additionally
reserved buffer length and usagei (the average num-
ber of bytes sent in one pass of all buffers with priority
i) has to be less than a fixed value li. This QoS con-
straint assures, that in the average case each buffer of
priority i is sent at least all ∆t

pi
· li

l seconds, whereby
l represents the payload of one broadcast message.
Note furthermore, that the smaller α is chosen, the
more the change of usagei will be delayed regard-
ing buffer validation bursts of different applications
or protocols using PeriodiCast as a dissemination
service.

4 Setting the timeout intervals

The protocol definition in the previous section in-
troduced the timeout interval ∆t for the successive
broadcast message transmissions, ∆s the timeout in-
terval for the next garbage collection and a function
f(t) to vary the broadcast transmission timeout de-
pending on ∆t.

Short transmission timeout intervals between two
successive broadcast messages will result in frequent
message collisions, if PeriodiCast is based on a sim-
ple radio network technology without collision detec-
tion. Having a more sophisticated radio layer, using
a network technology such as CSMA/CA, will reduce
or even avoid possible message collisions, but might
lead to starvation, if no fair buffer scheduling strat-
egy is used to share the limited bandwidth on all

5

protocol layers or applications willing to use the ra-
dio layer to disseminate their own data. Additionally,
the shorter this interval, the higher is the energy con-
sumption. On the other hand, if transmission time-
outs are set too long, the above problems may not
appear, but two successive broadcast message trans-
missions might be too long away from each other, so
that PeriodiCast is not reasonable to be used as an
information dissemination mechanism. The current
implementation of PeriodiCast uses a transmission
timeout interval ∆t of 1 second.

A good choice of f(t) is only necessary, if
PeriodiCast is based on a radio network technology,
where packet collisions may occur. Otherwise, f(t)
might be deterministic with t 7→ t. In the current
implementation of PeriodiCast two adjacent devices
are using the same value ∆t to determine the interval
of two successive broadcast message transmissions. If
there is a collision of the broadcast messages from
these devices, f(∆t) has to set the next transmis-
sion time in this way, that there is a small collision
probability in the next broadcast message transmis-
sion. Additional, the average interval length should
be ∆t. Thus, if X and Y are independent identically
distributed random variables resulting from f(t) and
∆t, the probability P {|X − Y | < d} has to be small,
whereby d denotes the time used to transmit one
broadcast message. While applicable for radio net-
works without packet collisions, it is obvious that a
deterministic f(t) due to P {|X − Y | < d} = 1 is in-
applicable when packet collisions may occur. The
current implementation of PeriodiCast uses f(t)
to set exponential distributed transmission intervals
with rate 1

∆t . Consequently, the average interval
length is ∆t and the probability P {|X − Y | < d} re-
sults to 1− e−

d
∆t .

Since PeriodiCast currently does not use trajec-
tory information of moving devices to determine if
a mobile device is still accessible, a periodic garbage
collection has to be done to remove lost devices from
the set of actual adjacent devices N . This garbage
collection interval has to be set to a suitable value
to keep N up to date. The longer the value of this
interval, the more devices being no more accessible
remain in N . On the other hand a value too short

results in a permanent removal of devices still within
reach. Since f(t) schedules the next broadcast trans-
mission according to an exponential distributed value
with rate 1

∆t , the next garbage collection timeout
might be set as follows. Let q denote the proba-
bility that a device is removed from N although it
is still in reach. Due to the memoryless property
of the exponential distributed broadcast transmission
timeouts, q corresponds to e−

t
∆t . Thus, PeriodiCast

uses ∆s = −∆t·ln(q) and a fixed small value q = 0.05
to determine the next garbage collection timeout in-
terval.

5 Simulation results

In order to evaluate the applicability of PeriodiCast
for information dissemination in the face of a poten-
tially high number of mobile devices in a small geo-
graphic area, this service is implemented as a proto-
type in a simulation environment [3] tailored to the
specific needs of distributed applications communi-
cating solely over a mobile ad-hoc network.
PeriodiCast is used as the communication plat-

form for a simple information dissemination algo-
rithm representing an extension to the example in
section 2. All devices reserve 10 buffers of size 10 kB
each. At this, 5 buffers are set to the highest priority
level 0 and the other 5 get the next lower priority 1.
Initially one device starts the dissemination of 50 kB
information with priority 0 and 50 kB information
with priority 1. These are split in parts of 10 kB to
fit into the previously reserved buffers. Each device is
registered as a fragment listener for all used buffers.
The buffer content is reconstructed by incrementally
reassembling all received buffer fragments. As soon
as a device has completely reconstructed the content
of one buffer, it also starts the dissemination of this
buffer.

The prototype is tested in a typical exhibition sce-
nario with visitor groups changing their location fre-
quently. This scenario is simulated on an area of 100
m × 100 m with 10 booths. Each booth has an av-
erage size of 10 m × 10 m. There is an extensive
set of paths connecting all booths with each other.
Visitors are equipped with mobile devices. They are

6

100 200 300 400 500 600 700 800 900 1000

number of devices
0

10

20

30

40

50

time in minutes

0

10000

20000

30000

40000

50000

bytes received

Figure 1: Average number of bytes received per de-
vice for buffers with priority 0.

combined to groups moving along the given paths
with a walking speed of 0.8 meters/sec. The mobility
pattern results from alternating mobility and resting
phases. After such a resting phase which takes about
5 min, the group begins to move to the next randomly
chosen booth. The mobile devices are equipped with
a wireless communication adapter. Each transceiver
has a transmission range of 10 meters, a data rate of
780 kBits/sec and a physical MTU size of 500 bytes.
These values approximate typical properties of the
Bluetooth technology. Each simulation run lasts ap-
proximately 1 hour in the exhibition scenario. Fi-
nally, the number of visitors is successively chosen
from {100, 200, . . . , 1000}.

With only one device starting the information dis-
semination, it is of particular interest how long it
takes to disseminate the information in the complete
network. Since a growing number of mobile devices
influences the collision rate of the wireless network,
the effects of higher population densities are studied.
Figure 1 shows the average number of received bytes
per device for buffers with priority 0 in dependence
on increasing simulation time and the number of mo-
bile devices in the simulated area. Figure 2 shows the
corresponding results for buffers of priority 1.

100 200 300 400 500 600 700 800 900 1000

number of devices
0

10

20

30

40

50

time in minutes

0

10000

20000

30000

40000

50000

bytes received

Figure 2: Average number of bytes received per de-
vice for buffers with priority 1.

The simulation result shows that the 50 kBytes
of buffer content with the highest priority are dis-
tributed to all devices at least after 50 minutes of dis-
semination. The best value of 25 minutes is achieved
for networks with 200 to 500 devices.

Of special interest are the results regarding the
lowest and the highest simulated population density.
Compared to the optimal case of 200 to 500 devices,
having 100 mobile devices effects to a substantially
longer period until all devices have received the de-
sired buffer contents (45 minutes), although there
are less devices willing to receive the information.
This is due to the fact that there are less devices
involved in the dissemination of the information. On
the other hand a high number of devices might po-
tentially speed up the dissemination process, but the
more devices communicate in a small geographical
area the higher the probability of message collisions
will be.

Figure 2 depicts that obviously for lower priorities
it takes longer to disseminate the same amount of
information over PeriodiCast. On the other hand
the shortest time it takes to disseminate information
to all devices (40 minutes) is achieved by a wider
range of population densities (100 to 700). Since

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 200 300 400 500 600 700 800 900 1000

pr
ob

ab
ili

ty

number of devices

probability of a collision while sending
probability of a collision while receiving

Figure 3: Probability that a sending respectively re-
ceiving device is involved in a message collision.

the number of collisions is the same for high pop-
ulation densities, while the number of broadcasts is
lower for buffers with lower priorities, the success rate
decreases for populations of 700 and more mobile de-
vices. With the highest population density of 1000
devices, each device will receive the complete con-
tents of the buffers with priority 1 beyond the simu-
lated time of 55 minutes.

Finally, figure 3 shows the effect of increasing
population densities on message collision probability.
Both the probability that sending a packet results in
a collision and the probability that a packet cannot
be received due to a collision, is growing sublinearly
with the population density. Thus, a high popula-
tion density will decrease the number of correctly re-
ceived broadcast messages per time unit, leading to
the longer dissemination times observed above.

6 Conclusions and future work

In order to realize distributed applications and proto-
col services in mobile ad-hoc networks, a device dis-
covery mechanism is needed. Due to unpredictable
topology changes and possibly highly dynamic mobil-
ity patterns, device discovery has to be done periodi-
cally. PeriodiCast realizes such a distributed device
discovery service in combination with a background
dissemination service. Note that the additional band-

with usage of PeriodiCast running on a device
amounts to only 0.5 percent (only 500 Bytes/sec are
used of the available bandwidth of 97 kBytes/sec).
Note furthermore, that PeriodiCast is not intended
to be used as the sole communication service for mo-
bile distributed applications. There might also be the
need for a tighter coupling and a more reliable and
faster communication among mobile devices.

Simulation results show that information dissem-
ination based on PeriodiCast is feasible and per-
forms well, if there are low constraints on the dissem-
ination time. High population densities nevertheless
cause problems because of high collision probabili-
ties. Thus, since high device densities are intrinsic to
the targeted application domains, PeriodiCast will
adapt in these circumstances in a future implementa-
tion. It is planned to enhance PeriodiCast in a way
that it increases the period of broadcast intervals in
case of high device densities. Furthermore, position
tracking (e.g. with the aid of a GPS device) allows
the implementation of additional adaption mecha-
nisms based on movement predictions about mobile
devices.

References

[1] International Standard ISO/IEC 8802-11. Infor-
mation technology – telecommunications and in-
formation exchange between systems – local and
metropolitan area networks – specific require-
ments – part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifica-
tions, 1999.

[2] M. Chatterjee, S.K. Das, and D. Turgut. A
weight based distributed clustering algorithm for
mobile ad hoc networks. Proceedings of the 7th
International Conference on High Performance
Computing, LNCS 1970, pages 511–524, 2000.

[3] Ubibay: A case study for information dissemi-
nation in a distributed mobile auction system.
Submitted to Pervasive Computing 2002.

[4] M. Gerla, C. Chiang, and L. Zhang. Tree multi-
cast strategies in mobile, multihop wireless net-

8

works. Mobile Networks and Applications 4 (3),
pages 193–207, 1999.

[5] C. Ho, K. Obraczka, G. Tsudik, and
K. Viswanath. Flooding for reliable multi-
cast in multi-hop ad hoc networks. Proceedings
of the third international workshop on discrete
algorithms and methods for mobile computing
and communications, pages 64–71, 1999.

[6] H. Lim and C. Kim. Multicast tree construction
and flooding in wireless ad hoc networks. Proc.
3rd Int. ACM workshop on Modeling, Analysis
and Simulation of Wireless and Mobile Systems,
pages 61–68, 2000.

[7] C.R. Lin and M. Gerla. Adaptive clustering for
mobile wireless networks. IEEE Journal on Se-
lected Areas in Communications, Vol. 15, No. 7,
pages 1265–1275, 1997.

[8] B.A. Miller and C. Bisdikian. Bluetooth Re-
vealed. Prentice Hall, Upper Saddle River, NJ,
2000.

[9] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P.
Sheu. The broadcast storm problem in a mobile
ad hoc network. Proceedings of the fifth annual
ACM/IEEE international conference on Mobile
computing and networking, pages 151–162, 1999.

[10] M. Papadopouli and H. Schulzrinne. Seven de-
grees of separation in mobile ad hoc networks.
IEEE GLOBECOM, 2000.

[11] V.D. Park and M.S. Corson. A highly adaptive
distributed routing algorithm for mobile wireless
networks. Proceedings of IEEE INFOCOM 97,
pages 1405–1413, 1997.

9

